991 research outputs found

    Maximum power point controller for thermoelectric generators to support a vehicle power supply

    Get PDF
    The growing mobility increases the world-wide fuel consumption. Yet the amount of fossil fuel is limited and the environmental burden is increasing dramatically as well. Many governments have enacted laws to regulate and reduce the fuel consumption as well as the CO2 emissions of combustion engines. An idea to save fuel and to reduce the environmental burden is to use thermoelectric generators (TEGs) to recover the waste heat of the exhaust gas and convert into electric energy in automotive applications. For the linking of TEGs to the vehicle is power supply, a DC-DC converter can be used. To support a wide range of TEGs with different electric parameters, the control of DC-DC converter must be robust. Further, the control should track the maximum power point (MPP) of the TEG for an efficient power recovery. This paper presents a digital cascade controller for a boost-buck converter that charges a vehicle battery and supplies the load. To model and analyze the discontinuous converter, the state-space-averaging (SSA) is used. The tracking of the MPP is realized with a gradient algorithm and an input current control. An adaptive step size algorithm reduces the conversion time of the maximum power point tracking algorithm (MPPT). Experiments verified the controller design and the efficiency of the MPPT.BMBF, 03X3553E, Thermoelektrische Generatoren 202

    Analysis of Thermoelectric Coolers as Energy Harvesters for Low Power Embedded Applications

    Get PDF
    The growing popularity of solid state thermoelectric devices in cooling applications has sparked an increasing diversity of thermoelectric coolers (TECs) on the market, commonly known as “Peltier modules”. They can also be used as generators, converting a temperature difference into electric power, and opportunities are plentiful to make use of these devices as thermoelectric generators (TEGs) to supply energy to low power, autonomous embedded electronic applications. Their adoption as energy harvesters in this new domain of usage is obstructed by the complex thermoelectric models commonly associated with TEGs. Low cost TECs for the consumer market lack the required parameters to use the models because they are not intended for this mode of operation, thereby urging an alternative method to obtain electric power estimations in specific operating conditions. The design of the test setup implemented in this paper is specifically targeted at benchmarking commercial, off-the-shelf TECs for use as energy harvesters in domestic environments: applications with limited temperature differences and space available. The usefulness is demonstrated by testing and comparing single and multi stage TECs with different sizes. The effect of a boost converter stage on the thermoelectric end-to-end efficiency is also discussed

    Advanced control and optimisation of DC-DC converters with application to low carbon technologies

    Get PDF
    Prompted by a desire to minimise losses between power sources and loads, the aim of this Thesis is to develop novel maximum power point tracking (MPPT) algorithms to allow for efficient power conversion within low carbon technologies. Such technologies include: thermoelectric generators (TEG), photovoltaic (PV) systems, fuel cells (FC) systems, wind turbines etc. MPPT can be efficiently achieved using extremum seeking control (ESC) also known as perturbation based extremum seeking control. The basic idea of an ESC is to search for an extrema in a closed loop fashion requiring only a minimum of a priori knowledge of the plant or system or a cost function. In recognition of problems that accompany ESC, such as limit cycles, convergence speed, and inability to search for global maximum in the presence local maxima this Thesis proposes novel schemes based on extensions of ESC. The first proposed scheme is a variance based switching extremum seeking control (VBS-ESC), which reduces the amplitude of the limit cycle oscillations. The second scheme proposed is a state dependent parameter extremum seeking control (SDP-ESC), which allows the exponential decay of the perturbation signal. Both the VBS-ESC and the SDP-ESC are universal adaptive control schemes that can be applied in the aforementioned systems. Both are suitable for local maxima search. The global maximum search scheme proposed in this Thesis is based on extensions of the SDP-ESC. Convergence to the global maximum is achieved by the use of a searching window mechanism which is capable of scanning all available maxima within operating range. The ability of the proposed scheme to converge to the global maximum is demonstrated through various examples. Through both simulation and experimental studies the benefit of the SDP-ESC has been consistently demonstrated

    PERFORMANCE EVALUATION OF AN AUTOMOTIVE THERMOELECTRIC GENERATOR

    Get PDF
    Around 40% of the total fuel energy in typical internal combustion engines (ICEs) is rejected to the environment in the form of exhaust gas waste heat. Efficient recovery of this waste heat in automobiles can promise a fuel economy improvement of 5%. The thermal energy can be harvested through thermoelectric generators (TEGs) utilizing the Seebeck effect

    Design Considerations for Thermoelectric Power Generation

    Get PDF

    A Real-Time Implementation of Novel and Stable Variable Step Size MPPT

    Get PDF
    This paper presents a complete study of a standalone photovoltaic (PV) system including a maximum power tracker (MPPT) driving a DC boost converter to feed a resistive load. Here, a new MPPT approach using a modification on the original perturb and observe (P&O) algorithm is proposed; the improved algorithm is founded on a variable step size (VSZ). This novel algorithm is realized and efficiently implemented in the PV system. The proposed VSZ algorithm is compared both in simulation and in real time to the P&O algorithm. The stability analysis for the VSZ algorithm is performed using Lyapunov’s stability theory. In this paper, a detailed study and explanation of the modified P&O MPPT controller is presented to ensure high PV system performance. The proposed algorithm is practically implemented using a DSP1104 for real-time testing. Significant results are achieved, proving the validity of the proposed PV system control scheme. The obtained results show that the proposed VSZ succeeds at harvesting the maximum power point (MPP), as the amount of harvested power using VSZ is three times greater than the power extracted without the tracking algorithm. The VSZ reveals improved performance compared to the conventional P&O algorithm in term of dynamic response, signal quality and stability

    Portable Power Supply with Ultraeapacitor Application

    Get PDF
    Portable power supply reqmres a means of storing energy for powering applications. Energy storage is typically limited to alk:aline or rechargeable batteries. In either instance, the batteries require replacing or recharging

    Modeling and Analysis of Power Processing Systems

    Get PDF
    The feasibility of formulating a methodology for the modeling and analysis of aerospace electrical power processing systems is investigated. It is shown that a digital computer may be used in an interactive mode for the design, modeling, analysis, and comparison of power processing systems
    corecore