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Abstract

Prompted by a desire to minimise losses between power sources and loads,

the aim of this Thesis is to develop novel maximum power point tracking (MPPT)

algorithms to allow for efficient power conversion within low carbon technologies.

Such technologies include: thermoelectric generators (TEG), photovoltaic (PV)

systems, fuel cells (FC) systems, wind turbines etc. MPPT can be efficiently

achieved using extremum seeking control (ESC) also known as perturbation based

extremum seeking control. The basic idea of an ESC is to search for an extrema

in a closed loop fashion requiring only a minimum of a priori knowledge of the

plant or system or a cost function.

In recognition of problems that accompany ESC, such as limit cycles,

convergence speed, and inability to search for global maximum in the presence

local maxima this Thesis proposes novel schemes based on extensions of ESC. The

first proposed scheme is a variance based switching extremum seeking control

(VBS-ESC), which reduces the amplitude of the limit cycle oscillations. The

second scheme proposed is a state dependent parameter extremum seeking control

(SDP-ESC), which allows the exponential decay of the perturbation signal. Both

the VBS-ESC and the SDP-ESC are universal adaptive control schemes that can

be applied in the aforementioned systems. Both are suitable for local maxima

search. The global maximum search scheme proposed in this Thesis is based

on extensions of the SDP-ESC. Convergence to the global maximum is achieved

by the use of a searching window mechanism which is capable of scanning all

available maxima within operating range. The ability of the proposed scheme

to converge to the global maximum is demonstrated through various examples.

Through both simulation and experimental studies the benefit of the SDP-ESC

has been consistently demonstrated.
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Chapter 1

Introduction

1.1 Introduction

In the past few decades, investigation into low carbon technologies (e.g thermo-

electric generators (TEGs), photovoltaic (PV) systems, fuel cell (FC) systems,

wind turbines, etc.) has seen several advancements. This is attributed to the

requirement of green energy and emission reduction. A wide range of research

has been conducted on technologies such as material selection, system configu-

ration, development of estimation models, etc. Despite these advances, however,

the science of low carbon technologies still remains an open area of research.

One area, for example, is the optimisation of the electrical interface between the

power source and the load. This electrical interface or power conditioning unit

(PCU) includes a DC-DC converter controlled by a maximum power point track-

ing (MPPT) algorithm to maximise power transfer from the power source to the

load. The MPPT is a method to obtain the optimum power generating point

for a given system and load. Fig.1.1 illustrates the configuration of a MPPT

with low carbon technologies. The need for MPPT algorithms exists mainly for

systems with variable outputs such as low carbon technologies, where output

power reduction due to load mismatch occurs. As an example, for TEGs, this
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power reduction is caused by the variable temperature across the devices during

its normal operation. MPPT the enables efficient interfacing of TEG and/or PV

systems with a DC-DC converter to transfer maximum power at a fixed voltage,

which in automotive applications is most often the 12V battery.

Fuel Cells

AC-DC
Converter

Thermoelectric

Generators
Wind

Turbines
Photovoltaic

Systems

DC-DC Converter DC-DC Converter DC-DC ConverterDC-DC Converter

MPPTMPPTMPPTMPPT

Load

Figure 1.1: Maximum power point tracking configuration with various systems

1.2 Statement of the problem

1.2.1 Local maxima search for mismatch reduction

There are several MPPT techniques for mismatch reduction between the power

source (e.g. TEG, PV, FC, etc.) and the load (see Chapter 2). However, there

are still problems associated with these techniques, such as the trade-off between

convergence/tracking speed and steady-state performance. It is relatively difficult

to simultaneously achieve fast convergence speed and optimal performance at a

steady state via traditional MPPTs. As an example, perturbation based MPPT

techniques attempt to improve the tracking speed by employing a large step-size in
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the algorithm. However, this affects the steady-state performance by increasing

oscillations at the maximum power point (MPP). On the other hand, hybrid

approaches combine offline MPPT methods which provide fast convergence to

the MPP, and perturbation based techniques with the use of small step-size to

provide fine tuning. Nevertheless, there still are some problems associated with

this approach (see Chapter 2). Another problem of MPPT techniques is their

limited adaptation capability, mainly due to rapid variations of the power source

terminal voltage, which causes most traditional MPPT converters to fail to adapt,

leading to a reduction in system efficiency; for example, TEG terminal voltage

change due to the variation of temperature between the hot side and cold side of

the TEG.

Similar problems arise in PV systems when atmospheric conditions rapidly

change. Apart from that, steady-state oscillations arise as a result of continuous

perturbation of the terminal voltage or terminal current of the power source.

This, consequently, increases power losses and reduces system efficiency. There

are three types of steady-state oscillations, namely; forced, conservative, and limit

cycles. Forced oscillations are usually referred to as a systematic response whose

amplitude and frequency depends on forcing signal amplitude and forcing signal

frequency, respectively. The other two types of oscillations (i.e. conservative,

limit cycle) are types of behavioral modes of unforced systems. While conservative

forced oscillations are an initial condition dependent periodic mode occurring in

nondissipatives systems, a limit cycle is an initial condition independent response

occurring in dissipative systems. Limit cycles occur in traditional MPPTs such

as perturb and observe (P&O), incremental conductance (IC), and extremum

seeking control (ESC) are undesirable. For instance, in a standard ESC, limit

cycles are caused by the dither signal (e.g sine wave, square wave or triangle)

which is applied to seek for an extremum point. Therefore the type of steady-

state referred to in this Thesis is known as an undesirable limit cycle.
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1.2.2 Global maximum search in the presence of local

maxima

Global maximum search in the presence of multiple maxima is still an open

problem. Multiple maxima are a problem that commonly occurs in PVs due to the

shading effect. When a PV panel is shaded, multiple maxima may occur, hence

the MPPT converter may become inefficient by failing to converge to the global

maximum. This is due to the fact that most of the traditional MPPTs are based

on gradient search techniques. Once the MPPT converter has located the nearest

MPP, it converges and oscillates around it. Several studies have been published in

this area that utilise stochastic based approaches (reviewed in Chapter 2). These

approaches require the pre-training of the system, hence the implementation cost

is much higher, as a large memory is required to store these models. Being model

dependent, the aforementioned approaches, cannot be applied directly to different

systems, since each individual system has its own characteristics. For instance,

TEGs are temperature dependent and their power-voltage relation is parabolic

whereas PVs are temperature and irradiance dependent and their power-voltage

relationship is logarithmic.

1.3 Scope and goals of this Thesis

The main goal of this research is to develop an advanced control scheme for

DC-DC converters with application to low carbon technologies. So far, there is

no advanced controller MPPT algorithm which addresses all the aforementioned

issues in Sections 1.2.1 and 1.2.2 simultaneously. Most of the existing techniques

attempt to solve one issue at a time. It has been found through a literature

survey that, compared to other MPPTs, ESC is an ideal candidate which can

be extended to resolve all of the mentioned issues. The reason for this is the

adaptation capability to rapid variation in the terminal voltage of the power
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source, as compared to other MPPT algorithms. However, the extension requires

the resolution of the following drawback or issues of the standard ESC:� Limit cycle due to periodic perturbation, which makes it more difficult for

the true MPP to be achieved� Trade-off between convergence speed and minimisation of losses. A small

tuning parameter results in a slow convergence speed and also failure to

excite the system or plant. On the other hand, a large tuning parameter

achieves a fast convergence speed, however this introduces oscillations and

losses� Inability of the ESC to find global maximum search in the presence of local

maxima

A DC-DC converter model developed in the MATLAB/Simulink environment

serves as a surrogate and is used to develop the scheme performance. To achieve

the goals, the models must combine static (very low bandwidth) and dynamic

(including medium and high bandwidth) characteristics. Having obtained the

converter model(s), an advanced non-model based adaptive control scheme is

developed along with the associated re-configurable structures such that can be

applied to different power sources as shown in Fig.1.1. To gain confidence in the

simulation results, the novel scheme(s) will be validated experimentally using an

emulated TEG (power supply unit (PSU) in series with a resistor) as well as a real

TEG system. Additionally, in order to address all the issues described in Section

1.2 along with making the developed control scheme suitable for TEGs and PVs

working under rapid varying environmental conditions such as temperature and

irradiance, the scheme should comprise the following key features:� Non-constraints based : In order to design a universal advanced control

scheme for stand-alone PCU which can be easily applied in several areas

without pre-requisite knowledge/pre-training of the system, the MPPT con-

verter should be non-constraints based and self-adaptive. Only input/output
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measurement should be needed for the designer to achieve these objectives.

There are some approaches existing, also known as online methods (see

Chapter 2), but most of them do not achieve the trade-off between MPP

tracking speed and steady-state performance. On the other hand, ESC

is a non-model based adaptive controller that can be extended for multi-

applications. Therefore, in this Thesis an advanced controller based on the

extension of the standard ESC scheme is proposed.� Limit cycle minimisation : Most of the commonly used MPPT tech-

niques in the aforementioned power sources tend to enter undesirable limit

cycles due to periodic perturbation. Consequently, this increases losses and

reduces the overall system efficiency. Limit cycle minimisation is required

to increase the efficiency as well as minimising losses. Additionally, limit cy-

cle is associated with ripple currents of the power converter and may cause

components such as capacitors and inductors to degrade much faster, hence,

limit cycle minimisation may improve the life time of the power converter.� Implementation complexity and cost : Most of the MPPT converters

which are either inexpensive or easy to implement tend to be inefficient.

The idea of this Thesis is to a develop universal MPPT converter that is

relatively inexpensive and easy to implement, whilst also being efficient.

The scheme developed in this Thesis incorporates the trade-off between

implementation complexity, efficiency and cost.� Global maximum search in the presence of local maxima : This

feature allows the MPPT converter to be used within PV systems and

improve their overall efficiency. As compared to other existing approaches,

the developed technique is less expensive due to the fact that it is non-

constraints based. Additionally, it can be applied to any system or sub-

system which requires a global maximum search in the presence of multiple

maxima without pre-training of the system.
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ent operating conditions such as noise, harsh driving conditions, etc. Ad-

ditionally, it should maintain optimal performance as the system degrades.

Most of the model based approaches are inefficient as the system degrades.

It should be noted that, the study of controller performance for the de-

graded system or converter is out of the scope of this Thesis. Limit cycle

minimisation however, can be used as an indicator of degradation reduction

and reliability.

1.4 List of publications

This Section contains is the list of patents, journals and conference papers pub-

lished as part of the research work undertaken in this Thesis.

Patents:

[1] ”State dependent electricity controller”, UK patent No. GB1604935.5

Journal papers:

[2] Maganga, O., Phillip, N., Burnham, K. J., Montecucco, A., Siviter, J.,

Knox, A. & Simpson, K. (2014), Hardware implementation of maximum

power point tracking for thermoelectric generators , Journal of Electronic

Materials 43(6), 2293-2300.

[3] Phillip, N., Maganga, O., Burnham, K. J., Ellis, M. A., Robinson, S., Dunn,

J. & Rouaud, C. (2013), Investigation of maximum power point tracking for

thermoelectric generators , Journal of electronic materials 42(7), 1900-1906.

Conference papers:

[4] Maganga, O., Sumislawska, M. & Burnham, K.J. (2015) Review of a model

free adaptive extremum seeking control for maximum point tracking , 24th

7



1. Introduction

International Conference on Systems Engineering (ICSE), Coventry, UK,

September, 2015.

[5] Phillip, N., Maganga, O., Burnham, K.J., Dunn, J., Rouaud, C., Ellis, M.

& Robinson, S. (2012), Modeling and simulation of a thermoelectric gener-

ator for waste heat energy recovery in low carbon vehicles , in Environment

Friendly Energies and Applications (EFEA), Newcastle, UK, pp. 9499.

[6] Maganga, O., Larkowski, T. & Burnham, K.J. (2012),Model complexity

reduction of a DC-DC buck-boost converter, 22nd International Conference

on Systems Engineering (ICSE), Coventry, UK, September 2012

[7] Maganga, O., & Burnham, K.J. Modeling and control of a waste heat en-

ergy recovery system utilising maximum power transfer for hybrid electric

vehicles , Proceeding of 2nd International Conference on Mechanical and

Industrial Engineering (MIE), Arusha, Tanzania, 2012.

1.5 Original contributions

A list of original contributions by the author as a part of the research work under-

taken in this Thesis is presented is this section. References in square brackets refer

to contributions listed in Section 1.4, these are listed in order of their importance

as perceived by the author.� An improved ESC scheme known as the state dependent parameter ex-

tremum seeking control (SDP-ESC) with the benefit of reducing limit cy-

cles, improved convergence speed, ability to track the MPP adaptively as

well as to preserve stability and simplicity of the standard ESC. SDP-ESC

is a universal self-adaptive control scheme that can be applied in various

systems/sub-systems (TEGs, PVs, FCs, wind turbines, etc.) to maximise

output power without requirement for a cost function or knowledge of the
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system. The only limitation of the SDP-ESC is its inability to search for

the global maximum in the presence of local maxima, therefore, it is suitable

for local maxima search. (Chapter 4).� Following the limitation of the SDP-ESC for global maximum search, an

extended SDP-ESC scheme is developed (Chapter 5). The scheme is ca-

pable of searching for the global maximum in the presence of local maxima

and can be applied to both TEG and PV systems. It is able to locate the

global maximum quickly (within seconds) and is less expensive compared to

stochastic based approaches.� A simplified scheme for limit cycle minimisation is known as variance based

switching (VBS) ESC. This scheme is a simplified version of Lyapunov

based switching (LBS) ESC, it also preserves the simplicity of a standard

ESC. Similar to the SDP-ESC it can be applied to the aforementioned power

sources. It is also suitable for local maxima searches (Chapter 3).� Simulation study for application of the ESC within TEGs. The application

of the ESC within TEG was presented as part of this research for the first

time and published in [3]. A well-known perturb and observe P&O served

as a benchmark (Chapter 6).� Simulation study of the SDP-ESC within TEGs, whereby standard ESC and

Lyapunov based switching (LSB-ESC) serves as a benchmark (Chapter 6).� Experimental validation (Phase I) which validates simulation results of the

ESC application to the TEG which was presented in [3]. In this phase,

for the first time, ESC was implemented in the actual TEG and thereafter

published in [2] (Chapter 7).� Following limitations of the standard ESC observed in experiment phase I

and superior simulation results of the SDP-ESC over the standard ESC.

Experimental validation (Phase II), which compares, various MPPT con-

trollers such as P&O, ESC, LBS-ESC, VBS-ESC and SDP-ESC is pre-
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sented (Chapter 7).

1.6 Outline of the Thesis

This section gives a brief description of the chapters forming this Thesis. A gen-

eralised review of MPPT algorithms used in a wide range of applications such as

TEGs, PVs, FCs, etc., is presented in Chapter 2.

State of art of ESC, as well as the methodological background concepts,

upon which this Thesis is based, are introduced in Chapter 3. This comprises

fundamental understanding of the ESC feedback loop such as learning time scale,

averaging, gradient search, ESC designing procedures and limit cycle minimisa-

tion. Also, in this Chapter a simplified scheme known as variance based (VBS)-

ESC for limit cycle minimisation is proposed. The VBS-ESC is compared with

other ESC schemes for limit cycle minimisation, such as LBS-ESC.

Chapter 4 presents an improved ESC scheme known as SDP-ESC. Stability

analysis of the SDP-ESC is presented to demonstrate the ability of the proposed

scheme to preserve stability. Also, the ability to reduce limit cycles, and improve

the convergence speed as compared to the standard ESC is demonstrated, using

linear time invariant (LTI) and linear time varying (LTV) examples. Moreover,

the design procedure for the proposed SDP-ESC scheme is discussed.

In Chapter 5, an extended SDP-ESC scheme for the global maximum search

in the presence of local maxima is presented. Various polynomials with multiple

maxima (emulate shading effects in PV systems) are used as surrogates to demon-

strate the extended SDP-ESC performance, such as time taken, to converge to

the global maximum power point(GMPP).

Chapter 6 is concerned with a simulation study to investigate the perfor-

mance of the SDP-ESC in comparison to other MPPT algorithms such as P&O,

ESC, LBS-ESC, VBS-ESC and SDP-ESC. A simplified TEG model is used for
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MPPT performance at transients and steady-state.

Subsequently, in Chapter 7, two phases of experimental validation for the

MPPT algorithms are presented. Phase (I) demonstrates performance of the

current existing MPPT algorithms and their limitations. In this phase, three dif-

ferent analyses are presented: steady-state, transient using emulated TEG (power

supply unit (PSU) connected in series with a resistor), and transient via actual

TEG. Steady-state analysis is conducted to determine limit cycles as well as

losses. On the other hand, transient analysis using emulated TEG aimed to test

the performance of MPPT algorithms and their adaptation capability under rapid

variations of terminal voltage. Based on similar analysis as in phase (I), phase

(II) presents improved results with the use of the SDP-ESC. The performance of

the SDP-ESC is compared with all MPPT algorithms presented in phase (I).

Chapter 8 Provides conclusions on a chapter by chapter basis of the overall

achievements of the Thesis and also discusses items for further-work. Fig. 1.2

illustrates a structural representation of a logical flow of the Thesis.
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Chapter 3

State dependent parameter
extremum seeking control
for local maxima search

Chapter 4

Extremum seeking control

Extended state dependent 
parameter extremum seeking
control for global maximum 

search

Chapter 5

Simulation study:
Application in thermoelectric 

generator (TEG) system

Chapter 6

Experimental validation using
emulated and real TEG system

Chapter 7

Chapter 2

Review

Figure 1.2: Structural representation of a logical flow of the developments of
this Thesis
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Chapter 2

A review of maximum power

point tracking algorithms

2.1 Introduction

A power conditioning unit (PCU) is essential in a system which comprises un-

stable heat sources and loads. Fig. 2.1 illustrates the block diagram of the PCU

considered in this Thesis. The output of the power source is connected to the

DC-DC converter and the output of the converter is connected to the DC load

or 12V battery. Voltage and current measurements taken from the power source

are applied to the maximum power point tracking (MPPT) controller as inputs

and pulse width modulation as an output. The MPPT controller is implemented

within a PCU (see Fig. 2.1) to alter the operating point of the power source

in order to extract the maximum available power. This power is transferred to

a DC load, or most often a 12V battery in automotive applications. Some of

the MPPT algorithms do not require any prior knowledge, whereas input/output

measurements are sufficient to find the maximum power point (MPP). Such algo-

rithms include: perturb and observe (P&O), incremental conductance (IC), and

extremum seeking control (ESC). Since the contribution of this Thesis is based on
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extensions of the ESC, this method is therefore reviewed separately in Chapter 3.

Also, some MPPT algorithms such as open-circuit-voltage (OCV), short-circuit-

current(SCC) and artificial intelligence (AI) require prior training or knowledge

of the power source to generate control signals. Moreover, some algorithms, also

known as hybrid methods utilise both algorithms; i.e.-’, those which do or do

not require prior knowledge, to search for the MPP. This Chapter is organised

as follows; Section 2.2 presents the literature survey of aforementioned MPPT

algorithms. In Section 2.6 hybrid techniques are reviewed. Sections 2.7 and 2.8

present comparative performance evaluations and critical analysis of the MPPT

techniques, respectively.

DC-DC converter

(i.e. Buck/Boost/Buck-Boost)

PWM

12V battery

V
ol
ta
ge

L
oa
d
vo
lt
ag
e

DC load or

Power condition unit (PCU)

MPPT algorithm

C
u
rr
en
t

L
oa
d
cu
rr
en
t

Power source

(i.e. PV, TEG, FC, etc.)

Figure 2.1: Power conditioning unit (PCU)

2.2 Perturb and observe (P & O)/ Hill climbing

P&O works in a similar manner to the hill climbing (HC) algorithm (Reisi, Moradi

& Jamasb 2013, Kamarzaman & Tan. 2014). HC uses the perturbation of refer-

ence variables such as duty cycle, current or voltage to search for the MPP. While

the P&O is based on the power-voltage(P-V) or power-current(P-I) relationship,
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HC is based on the power-duty cycle (P-D), as compared to other MPPT algo-

rithms, P&O is most widely used in practical applications. It is also used as the

benchmark controller by most researchers due to its simplicity of implementation

(Phillip, Maganga, Burnham, Dunn, Rouaud, Ellis & Robinson 2012).

Fig. 2.2 illustrates a flow chart of the most commonly used P&O algorithm

which works as follows: Current and voltage (i.e. Ik and Vk) at time instance k

are sensed and used to compute current power Pk. Current power Pk is compared

to the power at the previous time instance Pk−1. If Pk is greater than Pk−1 and

current voltage Vk is also greater than Vk−1, it indicates that the power point is

moving toward the MPP, hence duty cycle d will be increased by step-size C.

However, if Vk is less than Vk−1 it implies the power point is moving away from

the MPP, therefore d will be decreased by C. Also, if Pk is less than Pk−1 and Vk

is greater than Vk−1 it indicates that the power point is moving away from MPP,

therefore d will be decremented by C. On the other hand, if Pk is less than Pk−1

and Vk is less than Vk−1 it indicates that the power point is moving towards the

MPP, therefore d will be incremented by C.

As compared to the MPPT algorithms for PV systems, development of MPPTs

for TEGs is still immature. As an example, early research on MPPTs for the

TEGs utilising P&O algorithm emerged more than a decade ago (Nagayoshi, Ka-

jikawa & Sugiyama 2002, Eakburanawat & Boonyaroonate 2006, Nagayoshi &

Kajikawa 2006, Nagayoshi, Tokumisu & Kajikawa 2007). In Eakburanawat &

Boonyaroonate (2006), the battery voltage is considered to be constant and the

MPP is obtained via current measurements only. Also, Eakburanawat & Boon-

yaroonate (2006) present the comparison of battery charging in three different

methods, namely: directly, with a fixed duty cycle and MPPT utilising P&O

algorithm. It has been claimed that,-the efficiency of the MPPT converter in-

creased by 15% when P&O is used. Nagayoshi & Kajikawa (2006) and Nagayoshi

et al. (2007) presented P&O with the use of the buck-boost converter within a

15



Figure 2.2: A flow chart algorithm for perturb and observe (P&O)
(Reisi et al. 2013)

PCU. The MPPT efficiency of the system however was not specified. Further

advancement of MPPT converters utilising P&O algorithms for TEG appeared

in the following: (Kim & Lai 2008, Vieira & Mota 2009, Champier, Favarel, Bd-

carrats, Kousksou & Rozis 2013). Kim & Lai (2008) present a modified P&O

which utilises the voltage/current compensator. The prime function of the com-

pensator is to continuously loop back input measurements (current and voltage),

and the output voltage error to adjust the input reference current to capture max-

imum available power from the TEG. Kim & Lai (2008) used a power supply unit

(PSU) connected in series with a resistor to emulate a TEG. MPPT efficiency

however was not evaluated in their work. In Vieira & Mota (2009), benefits of

using MPPT within the PCU were presented and the harvested energy increased

by 34% as compared to when TEG is connected directly to the load. Champier

et al. (2013), achieved approximately 99% MPPT efficiency by utilising a boost
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2. A review of maximum power point tracking algorithms

converter and the P&O within the PCU. Despite its simplicity and low imple-

mentation cost, the major drawback of the P&O is its inability to track the MPP

effectively when rapid variations occur (e.g. irradiance variation in PV systems

or hot side and cold side temperatures in TEGs). Also, continuous perturbations

make P&O oscillate around the MPP, hence the algorithm fails to converge to the

actual MPP. More research has been conducted on improving the tracking ability

of the P&O/HC as well as reducing the steady-state error (limit cycle minimisa-

tion) by utilising adaptive (variable) step-size (Xiao & Dunford 2004, Wai, Wang

& Lin 2006).

The idea behind variable step-size is that large step-size is used to allow

fast convergence when the operating point is far away from the MPP. On the

other hand, when the operating point is close to the MPP, small step-size is used

to reduce steady-state error. Xiao & Dunford (2004), achieved a variable step size

by introducing a auto-tuning parameter and control mode switching. The control

mode switching in Xiao & Dunford (2004) aimed to eliminate the deviation from

the MPP when rapid variations of power source (i.e. temperature, irradiance)

occurs. In Wai et al. (2006), adaptive step-size is based on incremental refer-

ence voltage and only the trade-off between transients and steady-state error was

targeted. It has been reported in Moradi & Reisi (2011) that,- despite utilising

a variable step-size to overcome the trade-off between transient and steady-state

responses, when the system operating point changes quickly, the algorithm may

fail to converge to the actual MPP.

2.3 Incremental conductance

This method is based on slope finding and utilises the fact that the slope is

calculated as the derivative of power with respect to voltage as zero at the MPP

(Reisi et al. 2013). For a voltage smaller than that of the MPP, the slope is
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positive. On the other hand, when voltage is greater than that at the MPP, this

slope is negative, i.e:

∂P

∂V
= 0,at MPP (2.1a)

∂P

∂V
> 0, V < Vmpp (2.1b)

∂P

∂V
< 0, V > Vmpp (2.1c)

where P and V denote power and voltage, respectively, I denotes the source

current, and Vmpp is the voltage at the MPP. Fig. 2.3 illustrates the P-V curve

with respect to the power voltage relationship presented in (2.1). From (2.1a) it

follows that the derivative of MPP with respect to voltage is:

P

∂P
∂V
> 0

∂P
∂V
= 0

∂P
∂V
< 0

V

Figure 2.3: Curve for Power Vs Source voltage

∂P

∂V
=
∂(IV )

∂V
= 0 (2.2a)

∂P

∂V
= I + V

∂I

∂V
= 0 (2.2b)

∂I

∂V
=
−I

V
(2.2c)

∂I

∂V
≈

∆I

∆V
=
−I

V
= −

Impp

Vmpp

(2.2d)
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2. A review of maximum power point tracking algorithms

where, Impp denotes current at the MPP. ∆I and ∆V denotes incremental current

and incremental voltage, respectively, which are given as

∆I = Ik − Ik−1 (2.3a)

∆V = Vk − Vk−1 (2.3b)

where, Ik and Ik−1 denotes current and previous values of current (A), respec-

tively. Vk and Vk−1 denotes current and previous values of voltage (V ), respec-

tively. The point at the left and right of the MPP is given as,

∆I

∆V
>
−I

V
, at left of MPP (2.4a)

∆I

∆V
<
−I

V
, at right of MPP (2.4b)

where, I
V
denotes the measured conductance of the power source and ∆I

∆V
denotes

the incremental conductance of the power source. The flow chart in Fig. 2.4 illus-

trates the most commonly used IC algorithm (Liu, Duan, Liu & Xu 2007, Esram

& Chapman 2007, Laird, Lovatt, Savvides, Lu & Agelidis 2008, Reisi et al. 2013).

IC work as follows: First, current and voltage (i.e., Ik and Vk) at time instance

k are sensed and used to compute ∆I and ∆V . If ∆V ≠ 0 and ∆I
∆V

is equal to

−I
V
, based on (2.2d), it indicates that the MPP has been reached, hence previous

values for current and voltage (i.e. Ik−1 and Vk−1) will be updated with new

values (i.e. Ik and Vk). Or else if ∆V ≠ 0 and ∆I
∆V

is greater that the −I
V

based

on (2.4a), it indicates current power point is on the left side of the MPP (see

Fig. 2.4) therefore voltage and current at which power source is forced to operate

(i.e., reference voltage or rated voltage for the sources denotes Vref) must be

incremented or perturbed by the small step-size denoted by C. On the other

hand, if ∆I
∆V

is less than −I
V

based on (2.4b), it indicates the power point is at
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Figure 2.4: A flow chart algorithm for incremental conductance (IC)
(Reisi et al. 2013)

right side of the MPP therefore Vref must be decremented by C. Also, if ∆V = 0

and ∆I = 0 based on (2.1a) it implies the power point is exactly at the MPP,

hence previous values of current and voltage will be updated with present values

(see Fig. 2.4). Moreover, if ∆V = 0 and ∆I > 0 it indicates power point is at

right side of the MPP therefore Vref must be decremented by C followed by

updating the Ik−1 and Vk−1 values (see Fig. 2.4). Furthermore, if ∆V = 0 and

∆I < 0 it implies the power point is at the left side of the MPP hence Vref will

be incremented to allow the power point to move towards the MPP followed by

updating Ik−1 and Vk−1. The convergence speed of IC depends on C. A large

value of C indicates fast convergence, however this reduces the accuracy of IC

on tracking the MPP. Some research has been done to improve the convergence

speed and the accuracy of the standard IC, particularly in application to PVs,

see (Lee, Bae & Cho 2006, Liu et al. 2007). Lee et al. (2006) achieved this by
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2. A review of maximum power point tracking algorithms

using a variable increment or decrement denoted by C(k) with similar a concept

as the one used in (Xiao & Dunford 2004, Wai et al. 2006). Convergence speed

is achieved by selecting a large C(k) while the operating point of the source is

away from the MPP and a small C(k) is chosen when the operating point of the

source is relatively close to the MPP (Liu et al. 2007). The standard IC and the

adaptive IC are based on the assumption that the MPP will be reached when the

slope equal to zero, which is not feasible in practice (Laird et al. 2008).

2.4 Open circuit voltage/short circuit current

2.4.1 Open circuit voltage

There are several open circuit voltage (OCV) algorithms for the MPPT with

application to low carbon technologies (Cho, Kim, Park & Kim 2010, Kim, Cho,

Kim, Baatar & Kwon 2011, Schwartz 2012, Montecucco, Siviter & Knox 2012,

Laird & Lu 2013, Kamarzaman & Tan. 2014, Esram & Chapman 2007). The idea

behind OCV methods is to find the voltage at the MPP via OCV measurements,

denoted Voc. This approach is based on assumption that Voc is linearly related to

voltage at the MPP and is presented as

Vmpp ≈ aVoc (2.5)

where a is an empirically derived parameter based on Voc and Vmpp measure-

ments in different environmental conditions. The flow chart in Fig. 2.5 depicts

commonly used OCV method which work as follows: initially, the power source is

isolated from the load and Voc measurements are recorded. Using the relationship

shown in (2.5), the voltage at the MPP is evaluated. Voc measurements are ob-

tained by repeating this process periodically. It is difficult to determine optimal

value of a, however, there is a suitable range for this parameter. For instance,
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2. A review of maximum power point tracking algorithms

in PV applications a range from 0.73 to 0.80 (Kamarzaman & Tan. 2014, Esram

& Chapman 2007). On the other hand, in thermoelectric generator (TEG) ap-

plications a is 0.5, hence the OCV for the TEGs is termed as fractional OCV

(Schwartz 2012, Montecucco, Siviter & Knox 2012, Laird & Lu 2013, Montecucco

& Knox 2014).

Figure 2.5: A flow chart of open circuit voltage method
(Reisi et al. 2013)

Despite its simplicity and low cost of implementation, the actual MPP may

not be accurately tracked for both applications (PV/TEG). The reason is the

assumption that Voc and Vmpp are linearly related, which is unrealistic (Laird

et al. 2008), hence true the MPP can not be achieved. Both the OCV and the

fractional OCV suffer from periodic disconnections of the power source from the

load to measure the Voc and this may cause the unexpected interference of the

circuit operation and lead to more losses.

To overcome this problem, various researchers focused on improving Voc
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2. A review of maximum power point tracking algorithms

estimation methodologies (Montecucco, Siviter & Knox 2012, Montecucco &

Knox 2014, Park, Lee & Bond 2014). Montecucco & Knox (2014) introduced

a switching device across the input capacitor within a synchronous DC-DC buck-

boost converter. The Voc measurements are obtained while the added switch is

open for a short period. Although it has been claimed that-, the Voc estimation

method does not require the disconnection of the TEG from the load, this method

has several drawbacks: firstly, the circuit comprises of an additional switch in the

power converter which increases control complexity as well as the cost. Along

with control complexity, switching devices are one of the major cause of failures

in power converters (Yang, Xiang, Bryant, Mawby, Ran & Tavner 2010), hence

adding more switches may result in the deterioration of reliability. Apart from

that, the frequency of Voc measurements is determined by a specific design pa-

rameter, hence the accuracy is highly dependent on the designer’s experience.

Therefore the accuracy of the OCV method proposed by Montecucco & Knox

(2014) is arguable.

In (Park et al. 2014), a TEG OCV based MPPT controller has been used to

extract the maximum power available from the TEG. This method is a feed for-

ward MPPT controller which utilises temperature measurements of the hot side

and cold side ends of the TEG to evaluate the MPP. The Voc measurements with

respect to the temperature gradient are used to generate reference voltage. The

DC-DC converter is used to regulate the TEG output at this voltage to extract

the maximum power available. The MPP is achieved with 1.15% tracking error is

presented. The proposed method is claimed to be simple, inexpensive and more

reliable as compared to other MPPT approaches for the TEG. This is not neces-

sarily true as it requires a TEG model to search for the MPP. Therefore accuracy

is highly dependent on the TEG model; and it is also expensive. Another work on

the fraction OCV method has been presented by Youn, Lee, Wee, Gomez, Reid

& Ohara (2014) whose paper is a response to recent publications concerning the
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effectiveness of impedance matching techniques for the MPP search. Youn, Lee,

Wee, Gomez, Reid & Ohara (2014) analytically justify that the V-I characteristic

curve is approximately linear. It is argued that,- impedance matching approach

can still be used as an effective way to evaluate the MPP.

2.4.2 Short circuit current

The short circuit current (SCC) method is very similar to the OCV and is based

on the assumption that, the SCC, denoted as Isc, is linearly related to the current

at MPP denoted as Impp. The mathematical relationship between Isc and Impp is

presented as:

Impp ≈ âIsc (2.6)

Similar to the a parameter in the OCV method, â is empirically determined and it

ranges between 0.8 and 0.9 (for PV applications). As compared to the OCV, the

SCC is more efficient and accurate (Reisi et al. 2013). It is however sophisticated

to obtain measurements of Isc and, as a consequence, the implementation cost of

SCC is usually very high.

2.5 Artificial intelligence methods

Recently, the interest in artificial intelligence (AI) based methods such as the

fuzzy logic controller (FLC), the neural network (NN) and the genetic algo-

rithm (GA) for MPPT has shown tremendous growth (Patcharaprakiti, Prem-

rudeepreechacharn & Sriuthaisiriwong 2005, Esram & Chapman 2007, Hiyama,

Kouzuma & Imakubo 1995, Elobaid, Abdelsalam & Zakzouk 2012, Messai, Mel-

lit, Guessoum & Kalogirou 2011). These methods have been mainly applied in

PV systems for global maximum searches in presence of local maxima. Tradi-

tional FLC is an offline method in which expert knowledge of the designer is
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2. A review of maximum power point tracking algorithms

essential. One of the advantages of the FLC is its ability to work effectively with

less accurate mathematical models as well as handling non-linearities (Esram &

Chapman 2007). Fixed parameters within the FLC may become inadequate, es-

pecially in applications whereby the operating conditions change in a wider range

and the expert knowledge is limited. Patcharaprakiti et al. (2005) proposed an

adaptive FLC to eliminate this problem by making FLC less dependent on the

expert knowledge. The adaptive FLC continuously tunes its membership function

and the rule based table, hence it achieves a fast response, and a good perfor-

mance. However, the computational cost of the proposed method is much higher

than that of the traditional FLC due to the inclusion of the learning mechanism.

The NN is an off-line method which requires prior training to track the MPP

effectively, see,- (Hiyama et al. 1995, Elobaid et al. 2012, Reisi et al. 2013, Ka-

marzaman & Tan. 2014). Applications of the NN have significantly increased due

to its ability to perform nonlinear tasks (Kamarzaman & Tan. 2014). Similar to

the FLC, it has been used for a global maximum search in PV systems (Elobaid

et al. 2012). In comparison to other methods, the NN does not require any

programming it totally depends on the learning process. It can provide accu-

racy in tracking the MPP without requiring significant knowledge of the power

source (e.g TEG/PV). On other the hand, it is only suitable for a particular

power source, since different power sources have different characteristics. Also,

most power sources are nonlinear in nature (time-varying), hence the NN must

be trained regularly to guarantee reasonable tracking performance, which is time

consuming. Hiyama et al. (1995) presented the first research work of NN for the

MPP search. In (Hiyama et al. 1995), Voc is used as the input and voltage as

the output of the NN. The PI controller was used to eliminate any error between

the Voc and the output voltage. Elobaid et al. (2012) propose a two stage NN

structure. The role of the first stage is to estimate temperature and irradiance

from the PV measurements (voltage and current). The second NN stage uses
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the estimates of the temperature and the irradiance to determine the MPP. The

proposed approach offers the following advantages: it reduces the training set

due to its cascaded structure and it does not require temperature or irradiance

measurements. In (Messai et al. 2011), GA is used to optimise the FLC by tuning

membership functions to optimal values to track the MPP under varying atmo-

spheric conditions. On other the hand, Ramaprabha & Mathur (2011) use GA

to optimise the values used to train the NN to track the MPP.

2.6 Hybrid methods

Hybrid methods are mostly used in PV applications (Irisawa, Saito, Takano &

Sawada 2000, D’Souza, Lopes & Liu 2005, Kobayashi, Takano & Sawada 2006,

Moradi, Tousi, Nemati, Basir & Shalavi 2013, Zhang, Thanapalan, Procter, Carr

& Maddy 2013) and are usually comprise of two control loops. The first loop

(inner loop) is based on methods which do require prior information and it is

dependent on the system (e.g TEG, PV, etc.) variables, see (Fig. 2.6). The prime

function of the inner loop is to adapt the fast variation of environmental conditions

in order to improve the transient response to converge fast and close to the

MPP. The second loop (outer loop) utilises approaches which do not require prior

knowledge of the system, aiming to minimise steady-state error to ensure that the

algorithm converges to the exact MPP by providing fine-tuning. Fig. 2.6 portrays

a generic flow chart of a hybrid methods which comprises two aforementioned

loops for set-point calculation and fine tuning.

In (Moradi & Reisi 2011, Zhang et al. 2013), a hybrid method comprising

two loops is proposed. The first loop determines the set-point calculations via

OCV at a constant temperature. The second loop performs fine tuning utilising

a standard P&O algorithm. It has been shown that, the proposed method gives

higher accuracy as well as better convergence speed compared to the standard
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P&O. Better convergence speed is achieved due to its ability to pre-determine

Voc which allows for the faster evaluation of the Vmpp. Although it is difficult for

the classic P&O to achieve concurrently fast transience as well as high accuracy,

by allowing the standard P&O to converge slowly (keeping amplitude and fre-

quency of perturbation small), the same accuracy as the proposed method can be

achieved. Contrary to the method proposed by Moradi & Reisi (2011), Moradi

et al. (2013) proposed to take into account the effect of the load and the battery

characteristics which are modelled using a Thevenin equivalent circuit in order to
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design the offline loop. It has been claimed that, compared to the method pro-

posed in (Moradi & Reisi 2011), the method of Moradi et al. (2013) tracks the

MPP efficiently when load variation occurs as well as when the battery degrades.

Irisawa et al. (2000) and Kobayashi et al. (2006) proposed a hybrid algorithm

that utilises an offline method to allow the PV system to quickly converge close

to the MPP and online IC method, to minimise steady-state error, respectively.

Fast convergence of these methods is achieved by matching the power converter

initial operating point with the load resistance. As compared to other hybrid

methods, the proposed method is capable of searching the global maximum in

the presence of local maxima and, as a consequence, ensures the actual MPP is

effectively tracked when PV system is partially shaded. Efficiency of the MPPT

converter was not evaluated in Kobayashi et al. (2006).

D’Souza et al. (2005) proposed a modified P&O that utilises FLC to determine

the direction and magnitude of the next perturbation. This approach simul-

taneously improves both the transient and the steady-state performance. Addi-

tionally, the method can achieve a faster transient response by adjusting the duty

cycle of the power converter, which forces the operating point toward the MPP as

quickly as possible. Benchmark results with the standard P&O was not presented

in (D’Souza et al. 2005), hence the significance of the announced improvement

is not demonstrated. Jain & Agarwal (2004) proposed a hybrid method that

comprises the transient and the steady-state loops. The transient loop is deter-

mined by the PV cells dependent parameter which is obtained empirically. As

compared to other MPPT methods, in transient, the proposed algorithm tracks

this parameter instead of the power; Subsequently, the actual MPP is obtained

via fine tuning with the P&O or the IC. In Koizumi & Kurokawa (2005), the of-

fline loop utilises a linear function to identify the neighbourhood of the operating

point relative to the MPP, to apply appropriate perturbation. This function is

developed from PV cells characteristics. The online loop utilises the IC method.
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Shadmand, Balog & Abu Rub (2014) use a hybrid method to improve the perfor-

mance of the standard P&O. This is achieved by using a model predictive control

(MPC) and P&O. The MPC determines the reference current using P&O and

uses this current as the input as well as the PV’s voltage and current. The MPC

predicts the future error, in addition to the next switching state based on the

defined optimisation cost function. The result shows that the MPC-MPPT con-

verges faster, compared to the standard P&O. Daraban, Petreus & Morel (2014)

proposed a modified GA which utilises P&O. Population size and number of it-

erations of the traditional GA are reduced by embedding a classic P&O inside

the structure of the GA, hence the time required to search for the global MPP is

reduced.

2.7 Performance comparison

Depending on the application, the choice of the MPPT technique should be made

based on the algorithm’s ability to track the actual MPP, its convergence speed,

implementation complexity, cost, robustness, reliability and sensitivity. Table. 2.1

summarises different features of the reviewed MPPT algorithms. The OCV and

the SCC can be implemented in both analog or digital systems. Both methods

have a medium convergence speed and low efficiency. However, implementation

of the SCC is more complex and it is more costly compared to the OCV. The NN,

the FLC and the GA can be implemented in digital systems only. These methods

provide high efficiency. On the other hand, the implementation cost and com-

plexity is high for both methods. P&O with fixed step size can be implemented in

digital systems only. Also, it offers high efficiency with low implementation costs.

However, it converges slower than the P&O a with variable step size. IC can be

implemented on digital systems only and has high efficiency. The convergence

speed of the IC is highly dependent on step size. Hybrid methods are suitable
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for digital systems only. They provide high efficiency and fast convergence speed.

The implementation cost however is high. ESC is suitable for both digital and

analogue systems. It provides high efficiency and a fast convergence speed with

moderate implementation complexity and cost.
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Methods Analogue or Digital? Convergence speed MPPT Converter Efficiency Complexity

Open circuit voltage (OCV) Both Medium Low Low

Short circuit current (SCC) Both Medium Low Medium

Neural networks (NN) Digital Fast High High

Fuzzy logic controller (FLC) Digital Fast High High

P&O (fixed step-size) Both slow High Low

P&O (Adaptive step-size) Digital Fast High Medium

Genetic algorithm (GA) Digital Fast High High

Incremental conductance Digital Depend on step size High Medium

Hybrid Digital Fast High High

ESC Both Fast High Medium

Table 2.1: Summary of MPPT techniques characteristics
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2.8 Critical appraisal and conclusions

The OCV method does not require current sensing therefore it is considered as

the least computationally intensive. Also, the voltage at MPP is determined by

known empirical values in PVs or by taking half of the open circuit voltage in

TEGs. This, however, requires the intermittent disconnection of the power source

from the load to establish the prevailing open circuit voltage value. Disconnection

of the power source can lead to undesired transients and reduced efficiency. For

instance, undesired transients in TEG applications can be due to the operation

in dynamic thermal environments. Conversely, IC is able to identify if the MPP

has been reached or not, but is computationally intensive and, as a consequence,

converges more slowly to the MPP than the OCV. The true MPP cannot be

achieved using P&O due to continuous perturbations which cause the operating

point to oscillate around the MPP. One disadvantage of the P&O and the IC

methods is that for an accurate tracking of the MPP the perturbation gain is

required to be small in order to minimise the amplitude of the limit cycle which

in turn degrades the algorithm’s transient tracking ability. Despite extensions of

P&O, OCV, IC and hybrid methods to address the trade-off between transient

and steady-state performances, an optimal solution does not yet exist. Also,

these methods are suitable only for local maxima searches. NN, FC and GA

have shown great success in searching the global maximum in presence of local

maxima. However, these algorithms require prior knowledge or training. Since

the objective of this Thesis is to create a universal MPPT converter for different

aforementioned power sources, model dependent algorithms are not considered

here.

To address the deficiencies found for the MPPT algorithms presented in this chap-

ter, the requirement is for an algorithm which can work without disconnecting

the power source and load and perform optimally in a transient and steady state
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operation as well as search for global maximum. One such algorithm is the ESC,

which has shown superior performance to other well-known MPPT methods such

as P&O for PV systems (Phillip, Maganga, Burnham, Ellis, Robinson, Dunn &

Rouaud 2013). The perceived advantage is attributed to the ability of the ESC

to converge more rapidly whilst retaining steady-state performance similar to the

P&O method. Therefore, extensions of an ESC for the MPP is proposed in this

Thesis.
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Chapter 3

Extremum seeking control

3.1 Introduction

This Chapter presents a detailed analysis of perturbation based extremum seek-

ing control (ESC) methods, and a novel simplified scheme for limit cycle min-

imisation. The novel scheme proposed in this Chapter is known as variance

based switching extremum seeking control (VBS-ESC). It achieves limit cycles

minimisation based on variance detection of the estimated input. There are dif-

ferent types of ESC schemes, some of which do not require any constraints and

some which do require constraints. As compared to constraints based ESC, non-

constraints based ESC is considered to be the most favourable option for the MPP

search, if negligible parameter uncertainty in the plant or system exists (Guay &

Zhang 2003). The main reason for this is that no constraints are imposed on the

objective function (Guay 2014). On the other hand, in constraints based ESC,

the cost function is considered to be known; therefore, it provides optimal results

by quickly identifying the optimum point and converging towards it (Guay &

Zhang 2003). Taking into consideration that non-constraints based ESC meth-

ods have shown great success in the domain of low carbon technologies, such as

FCs, PVs, and most recently TEGs, this Thesis aims to contribute to the domain
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of the non-constraints based ESC. However, for the sake of completeness, con-

straints based ESC is also reviewed in this Thesis. This Chapter is constructed

as follows: firstly the state of the art for ESC is presented in Section 3.2, fol-

lowed by the perturbation (P)ESC feedback loop design in Section 3.3.4. Limit

cycle minimisation techniques and an improved scheme for reducing limit cycles

are given in Section 3.4.1 and Section 3.4.2, respectively. Section 3.5 presents

conclusions and critical appraisals.

3.2 Survey on extremum seeking control

ESC is an approach which seeks the extremum for steady state online optimi-

sation without knowing the plant model and/or the cost function in a closed

loop fashion. However, it is assumed that measurements of the plant’s input and

output signals are available. Early work on ESC goes back to 1922 by Leblanc

(1922), where control mechanism that maintain the desirable maximum power

transfer was proposed. However, neither mathematical analysis of the scheme’s

dynamics nor practical evaluation was provided. Despite these limitations, ESC

became a powerful and popular tool for either maximising or minimising the un-

known output of functions. Significant use of the ESC method occurred between

the 1940’s to 1960’s. For instance, in the early 1940’s (during World War II)

tremendous research interest in the area of ESC appeared in the Soviet Union.

As an example, Kazakevich a Russian PhD student wrote his Thesis titled ”On

extremum seeking”. On other the hand, presumably the first English article on

ESC was written by Draper & Li (1951), who described ESC and its perfor-

mance. In the aforementioned article, internal combustion engine optimisation

using ESC, or more precisely, a technique for selecting input (ignition timing) to

achieve maximum power output was discussed. Generally speaking, most of the

ESC research work between 1950’s and 1960’s emphasized either implementation
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3. Extremum seeking control

of the algorithm (ESC) or explored the algorithm performance for a specific appli-

cation. Thereafter interest was lost for almost three decades (between 1970’s to

1990’s) due to the lack of a proof of stability. Nevertheless, ESC gained renewed

interest after Krstic (2000) proved local stability for a single-input single-output

(SISO) system. The averaging technique and singular perturbations were used to

demonstrate that ESC converges to the neighbourhood of the extremum. It was

also proven that the neighbourhood is inversely proportional to the perturbation

gain, the amplitude and the perturbation frequency of the dither signal used to

search for the extremum. Due to its robustness and reliability, non-constraints

based ESC has been used in a wide range of applications including: anti-locking

brake systems (ABS) (Zhang 2007, Tanelli, Astolfi & Savaresi 2006), control sys-

tem and optimisation of bio processes (Krstic & Bastin 1999, Guay, Dochain

& Perrier 2004, Zhang, Guay & Dochain 2002), proportional integral controller

(PID) tuning (Killingsworth & Krstic 2006), flow control problems (Chang &

Moura 2009, Kim, Kasnakoglu, Serrani & Samimy 2008), internal combustion

engine (Draper & Li 1951, Haskara, Zhu & Winkelman 2006), ESC with limit cy-

cle detector has been applied in subsonic cavity flow (Kim, Kasnakoglu, Serrani

& Samimy 2009).

It has also been used to reduce the tuning time of various parameters of the

combustion timing controller as well as finding the optimal combustion timing set

point (Popovic, Jankovic, Magner & Teel 2006). Moreover, non-constraints based

ESC has been used for optimising NN/FLC (Gurvich 2004, Hu & Zuo 2005),

autonomous vehicle control and most recently ESC has been applied in TEGs

(Phillip et al. 2013, Maganga, Phillip, Burnham, Montecucco, Siviter, Knox &

Simpson 2014). Non-constraints ESC can either be based on gradient search or

slope seeking. Gradient search is the most commonly used non-constraints based

ESC, and usually utilises both the high pass filter (HPF) and the low pass filter

(LPF) to calculate the gradient of the cost function. Slope seeking is an extension
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of the standard non-constraints based ESC and has attracted significant interest

(Ariyur & Krystic 2003, Wiederhold, King, Noack, Neuhaus, Neise, Enghardt &

Swoboda 2009, King, Petz & Lemke 2006). This method usually drives the plant

to the value of the reference slope of the reference-output map at steady-state.

Slope seeking ESC has been applied to improve the aerodynamic performance of

axial turbo machine (Wiederhold et al. 2009). This approach has been useful in

some applications such as the axial turbo machine, as the peak point between

the input-output map is not distinctly visible. Interest in ESC is based on the

fact that it is non-constraints based and adaptive. ESC is suitable for situations

where non-linearity in the system has a local minimum or local maximum (Ariyur

& Krystic 2003).

For example, in TEG applications it finds a set point which keeps the out-

put power of the TEG at the MPP. As compared to other traditional MPPT

controllers reviewed in Chapter 2, the ESC controller offers a faster convergence

speed and adaptation capability. Within the aforementioned ESC groups there

are five different categories which include: slide mode (SM) ESC, neural network

(NN) ESC, approximation (AP) ESC, perturbation (P) ESC and adaptive (A)

ESC. The main advantage of non-constraints based ESC is that it can be applied

to any system where the input-output relationship has local maxima or local

minima requiring only minimum knowledge of the actual system. On the other

hand, constraints based ESC requires prerequisite-knowledge or information of

the system. All non-constraints based ESC are highly dependent on the time

separation between the learning and the dynamics to be optimised (Guay 2014).

Compared to non-constraints based ESC, constraints based ESC converge to the

true peak point. The drawback of constraints based ESC is that it requires a

model of the system as well as storage of the models, which make constraints

based ESC more expensive compared to non-constraints based ESC.
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Perturbation based ESC

Perturbation based ESC (PESC) is the most common and popular ESC in litera-

ture (Krstic 2000, Tan, Nei & Mareels 2008, Maganga et al. 2014). As compared

to other ESC, PESC allows fast adaptation and it is easy to implement.The PESC

depends on external excitation by a continuous perturbation signal (dither signal)

to numerically calculate the gradient. A sine wave is most commonly used as the

source of perturbation. However, it has been demonstrated by Tan et al. (2008)

and references therein that, dither shapes have an impact on convergence speeds.

As compared to sinusoidal and triangular perturbations, square wave perturba-

tion leads to much faster convergence. Since the method proposed in this Thesis

is based on extensions of PESC, the PESC is therefore analysed in details in the

following sections. Since ESC regained research interest in 2000, an improved

PESC scheme emerged, see (Krstic 2000, Moura & Chang 2010). Krstic (2000)

presents a modified PESC and a generalised framework of PESC for time-varying

input.

The modified PESC comprises of a compensator which overcomes the lim-

itation of the standard PESC which strictly require one of the designing pa-

rameters (i.e. integrator gain) to be small. The compensator in the modified

PESC improves convergence speed compared to the standard PESC. However,

similar to the standard PESC, the modified ESC does not converge to the actual

MPP. Another improved PESC has been presented by Moura & Chang (2013).

In their work, a Lyapunov based switching is added to the standard PESC to

minimise limit cycles. PESC has also been extended for global maximum search

in the presence of local maxima and is reviewed in detail in Chapter 5. More-

over, PESC has been applied in a wide range of robotics (Calli, Caarls, Jonker

& Wisse 2012a, Cistelecan 2008, Ogren, Fiorelli & Leonard 2004). For instance,

in (Cistelecan 2008), PESC is used in eye hand arm to maximise the view of the

camera by providing an appropriate measurement to the robotic arm. In an ABS
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application (Dincmen & Acarman 2012), PESC was applied to search for the

extremum point of the tyre force-slip curve. As part of the contribution to their

work, the driver steering input was added to the optimisation loop to determine

the operation region of the tyres within the characteristic curve between the tyre-

force and the slip ratio. In the chilled-water system application (Li, Li, Seem &

Li 2013), PESC has been used to minimise the combined energy consumption of

the cooling tower fan and the chiller compressor. The performance of PESC was

tested under fixed and varying inlet water conditions. Since FC systems also ex-

perience variation in the output power due to the variation of internal resistance,

tracking the MPP is essential in order to minimise fuel consumption and extract

the maximum available power. There are several applications of PESC for the FC

systems (Bizon 2010, Bizon 2013, Dan, Bo, Jian, Yi & Yuan 2008). For instance,

Bizon (2013) proposed an advanced PESC for MPP search. As compared to the

standard PESC, the proposed approach guarantees convergence, a fast tracking

speed and fast tracking accuracy.

The advanced scheme uses a band pass filter (BPF) instead of series combi-

nation of the LPF and the HPF for gradient search. A gradient estimator within

a standard PESC is the key factor in a successful search for the peak point which

is normally done using a combination of the LPF and the HPF (Tan, Moase,

Manzie, Nesic & Mareels 2010). Henning, Becker, Feuerbach, Muminovic, King,

Brunn & Nitsche (2008) presented an improved gradient estimation by the use

of the extended Kalman filter (EKF). The main advantage of using the EKF for

gradient estimation is that, it uses not only the perturbation signal to estimate

the gradient but also the complete input signal (which comprises of an initial

input, estimated input and perturbation signal). On the other hand, the stan-

dard PESC only uses the initial input and perturbation signal to estimate the

gradient (Tan et al. 2010). The main drawback of the gradient estimation based

on the EKF is that, the estimate of the gradient is influenced by the closed loop
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performance. To overcome this issue Gelberta, Moeck, Paschereit & King (2012)

proposed an alternative way to obtain the input which consequently eliminates

the influence of the closed loop performance. Gelberta, Moeck, Paschereit & King

also extended the application to dual input and single output. Thermo-acoustic

instabilities in an atmospheric combustion were used to demonstrate the effective-

ness of the proposed scheme by Gelberta, Moeck, Paschereit & King. Benefits of

degradation detection in PV systems using square wave perturbation was demon-

strated by Lei & Li (2010). When PV systems degrade, the internal resistance

changes (i.e. an increase in series resistance and a decrease in shunt resistance).

Change in the internal resistance of the PV system due to degradation can affect

the rise time in the transient response. Therefore, the change in the rise time

is used as a degradation indicator. This benefit however remains inconclusive

due to lack of experimental results. Apart from the aforementioned perturbation

signals, stochastic signals also have been applied as a source of perturbation (Liu

& Krstic 2012, Zhang & Ordonez 2012).

Stochastic based perturbation offers better solutions for systems where pre-

dictability associated with the period is difficult (e.g biological systems)(Zhang

& Ordonez 2012). For instance, Manzie & Kristic (2009b) and references therein,

applied stochastic perturbation to demonstrate its ability to guarantee the con-

vergence of the PESC. Proportional and derivative acceleration terms were incor-

porated within the feedback loop of a simple PESC to improve the convergence

speed (Zhang, Siranosian & Kristic 2009). The modified scheme was applied in

Monod and Williams Otto models. Dan et al. (2008), presented PESC for the

FC system which uses BPF utilising harmonics of the output signal. It has been

stated that inclusion of the third harmonic of the output signal offers better track-

ing. No benchmark results however were given to demonstrate the effectiveness

of the proposed approach. Since the standard PESC is suitable for plants that

are open loop stable, Zhang, Siranosian & Kristic (2007) proposed an extension
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of the standard PESC to a moderately unstable system based on a phase lag

compensator.

Slide mode ESC, Neural network ESC and Approximation based ESC

Early research on the SM-ESC emerged in the 1970s by Korovin & Utkin (1972,

1974) and references therein. Compared to the standard PESC, the SM-ESC

is based on a driving signal. This signal is considered as a reference and it is

monotonically decreased as the controller converges to the minimum. It is based

on the conditions, whereby the SM-ESC tracks the driving signal which decays to

a minimum. The SM-ESC by Utkin depends on a high chattering frequency which

makes it unsuitable for some applications such as robotics (Calli et al. 2012a). To

overcome this problem, Manzie & Kristic (Manzie & Kristic 2009a) and references

therein, proposed a different form of control input. The proposed control input

is the function of a sine wave and inversely proportional to a tuning parameter

which influences the chattering effect. By selecting a large value for the tuning

parameter, the chattering effect can be rapidly decreased. The proposed SM-ESC

by Manzie & Kristic was applied on ABS systems. Also, SM-ESC is suitable

when there are disturbances and uncertainties present in the system (Drakunov,

Ozguner, Dix & Ashrafi 1995). Compared to the PESC, excitation of the SM-

ESC is done internally. Another scheme of non-constraints based ESC is known

as NN-ESC which is based on a minimum peak detector (Hu & Zuo 2005, Hu, Zuo

& Li 2006). Similar to SM-ESC, NN-ESC also depends on the reference signal

which is monotonically decreased. Like the SM-ESC and the NN-ESC, AP-ESC

derives a local representation of unknown function based on past data. AP-ESC

uses a gradient based or non-gradient based approach to search for the optimum

point (Reisi et al. 2013).
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Comparison of non-constraints based ESC

This section summarises the performance of the reviewed non-constraints based

ESC methods. Their performance is based on their sensitivity to noise and sys-

tem dynamics, smooth reference tracking and multivariate extensions. A similar

performance is achieved between SM-ESC and NN-ESC when the effect of noise

is negligible. However, this is true only when the chattering effect in the SM-

ESC is taken into account. The NN-ESC also offers a robust performance due

to its hysteresis mechanism, except for small steady state irregularities. SM-ESC

is highly sensitive to noise in a transient response and a change in the driving

signal causes large amplitudes at steady state. AP-ESC converges much closer to

the optimum operating point in the absence of noise. Dynamic effects can cause

performance to deteriorate in both, NN-ESC and SM-ESC. In term of SM-ESC,

control performance can further be affected by causing the system to drift at

steady-state, mainly due to the growth of the driving signal. Since most of the

practical systems suffer from noise effect, both SM-ESC and AP-ESC are not the

best choices for practical systems.

Compared to all other non-constraints based ESC, it appears that PESC is

the least sensitive to noise and is a better choice when the system is affected by

measurement noise. However, when applied to systems with negligible measure-

ment noise, its performance (e.g. settling time) reduces significantly. Under the

effect of system dynamics, PESC and AP-ESC provide robust performance. On

the other hand, SM-ESC and NN-ESC experience minor distortion in the tran-

sient. Considering its consistent performance in various circumstances (e.g. noise,

system dynamics, multivariate extensions, etc.), PESC has been suggested to be

the best choice among the non-constraints based ESC (Calli, Caarls, Jonker &

Wisse 2012b). Taking account of the findings in the literature, further extension

of PESC is proposed in this Thesis.
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3.2.1 Non constraints based ESC

Since non-constraints based ESC usually assumes the plant as a black box, this

implies some known information of the system or model structure is ignored(Guay

& Zhang 2003). This implication can make non-constraints based ESC ineffec-

tive for a plant with parameter uncertainties (Guay et al. 2004). There are

various research works focused on the design of ESC for plants with parameter

uncertainties. These approaches use prerequisite-knowledge of the plant, which

allows the determining of parameter uncertainties. When an objective function

or a model of the system exists, the controller is referred to as a constraints

based ESC. There several research works based on this approach, particularly for

bio-processes (Krstic & Bastin 1999, Guay et al. 2004, Zhang et al. 2002) and

chemical reactors (Dochain, Perrier & Guay 2011). It is usually difficult to recon-

struct the objective function on-line in the presence of parametric uncertainties,

hence the true cost can scarcely be calculated. Constraints based ESC considered

this scenario in advance, hence making it effective in terms of parameter uncer-

tainties. The proposed scheme guarantees some degree of transient performance

whist achieving satisfactory optimisation when a reasonable objective function is

available.

Most of the constraints based ESC methods have been studied for a partic-

ular type of plant or system. Having seen the need for a generalised framework

for the constraints based ESC, Nesic, Mohammadi & Manzie (2013) proposed a

generalised framework for a class of plants with parameter uncertainties. The pro-

posed framework guarantees convergence to the peak point for both static and

dynamical systems. The effectiveness of the proposed framework was demon-

strated on an ABS example using various estimators. Nesic, Mohammadi &

Manzie (2013) also provided a guideline for the parameter tuning of the closed

loop ESC. Polymer electrolyte membrane (PEM) FC is a nonlinear time-varying

parameter system which makes it difficult to maintain oxygen excess ratio under
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all operating conditions. Since the net power of the PEM FC is highly dependent

on the oxygen excess ratio in the cathode, the net output power is also affected.

To maximise the output of the PEM FC, Chang & Moura (2009) proposed a

constraints based ESC. The proposed constraints based ESC incorporated soft

constraints based on a quadratic cost function and it is claimed to offer a faster

convergence speed to that of the standard PESC.

3.3 PESC concept, analysis and design

This section presents concepts of PESC, detailed analysis and design guidance

of the standard PESC scheme. As aforementioned contribution on the Thesis

is based on extension of the PESC therefore, analysis presented here can also

be found in (Ariyur & Krstic 2010). The concept of PESC is briefly explained

followed by the problem description and some key assumptions. Also, the analysis

key features of the PESC are included, such as gradient searching, plant dynamics

and learning time scale. Gradient search will be presented to demonstrate the

ability of the PESC to converge within a small region around the MPP. Also, time

scales of plant dynamics and learning time scales will be analysed to investigate

time separation between the plant or system and the PESC feedback loop. PESC

operates in a closed loop fashion and it comprises a LPF, a HPF, an integrator

and a perturbation signal, see Fig. 3.1. The plant or system is considered to be

unknown; however it is known that its reference-output map has an extremum

point. The gradient search within the PESC is determined by series combination

of the HPF and the LPF. The gradient is searched as follows: a perturbation

signal with an initial input is modulated and fed to the unknown system. Then the

output of the system is filtered through the HPF to remove any DC components.

This signal is then demodulated with a perturbation signal and filtered through

the LPF to attenuate high frequencies. The initial value of the modulated signal
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is then compared with the new value. This is iteratively repeated until the MPP

is found at the point which the PESC enters the stable limit cycle. Adaptation

within the PESC feedback loop is determined by an integrator gain.

Figure 3.1: Block diagram of perturbation based extremum seeking control
(Ariyur & Krystic 2003)

3.3.1 Problem description

Consider a nonlinear system (i.e. unknown system in Fig. 3.1) given as

χ̇ = g(χ,uc) (3.1a)

y = h(χ) (3.1b)

where χ ∈ Rn is the state vector, uc is the smooth control law, g ∈ Rn is the

nonlinear vector field, h is the output performance map, and y ∈ R is the output

of the system. Let us assume the smooth control law in (3.1) is known and given

as

uc = Γ(χ,u) (3.2)

and is parametrised by a scalar input u. It can be stated that the system has

been parametrised by u at equilibrium. Also, let us adopt assumptions used in
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(Ariyur & Krstic 2010) about the closed loop system in Fig. 3.1.

Assumption 1 There exists a smooth function l ∶ R ∈ Rn such that

g(χ,Γ(χ,u)) = 0 (3.3)

if and only if χ = l(u)

Assumption 1 signifies that the function is differentiable and the steady-state

characteristic is well defined.

Assumption 2 For each u, the equilibrium χ = l(u) of the system in (3.1) is

exponentially stable

Assumption 2 ensures that the steady-state characteristic of system in (3.1) is

stable.

Assumption 3 There exists u∗ ∈ R such that

y′ = 0, (3.4a)

y′′ < 0. (3.4b)

where y(u) = h(l(u)) and scalars y′ = dy(u∗)
du

and y′′ = d2y(u∗)
du2

Assumption 3 ensures that the steady-state characteristic has a unique maximum

(i.e. output equilibrium map y = h(l(u)) and is considered to have its maximum

point at u = u∗). The objective of the PESC is to maximise the steady-state

value of y without requiring knowledge of either functions (i.e. h and l) or u∗.

Assumptions (1), (2), and (3) were first proposed in (Ariyur & Krystic 2003). A

new operator is defined as follows:

Definition 1 y = F (s) [u]
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It is used to perform different analyses in this Thesis such as gradient search,

convergence stability: where the time domain signal y is equal to the time domain

signal u filtered with the transfer function F (s). The operator defined in 1 will

be used in the remainder of this Thesis.

3.3.2 Gradient search

This section presents a numerical gradient search of the MPP using PESC. For

simplicity, the MPP search is considered for a single parameter PESC scheme and

the LPF is also removed from the PESC feedback loop (see Fig. 3.2). Prior to the

gradient search analysis, let us define the PESC design parameters as shown in

Table. 3.1. Output of the high pass filter signal, i.e., y − η in Fig. 3.2 is obtained

as follows:

Figure 3.2: Extremum seeking control scheme
(Ariyur & Krstic 2010)
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η =
ωh

s + ωh

[y] (3.5a)

[y] − η = [y] − ωh

s + ωh

[y] (3.5b)

[y] − η = s

s + ωh

[y] (3.5c)

Hereafter, high pass filter will be in Fig.3.2 presented using a single block, i.e.,

s
s+ωh

where input to the filter will be time domain signal y and output from the

filter will be time domain signal y − η.

A static map of the nonlinear system in (3.1) can be approximated using second

order Taylor series expansion as

y ≈ y∗ +
y′′

2
(u − u∗)2 (3.6)

where u is the control input value, u∗ is the optimum value at peak, and y′′ < 0.

Name Notation Unit
Perturbation gain β

Cut-off frequency of the HPF ωh [ rad
s
]

Cut-off frequency of the LPF ωl [ rad
s
]

Perturbation frequency ω [ rad
s
]

Phase angle ϕ [rad]
Integrator gain k

Table 3.1: Designing parameters of the PESC

The objective is to minimise the quantity (u − u∗) such that the output function,

denoted f(u) approaches its maximum value at y∗ (i.e. when u=u∗). The esti-

mated value of the unknown u∗ is denoted û. The perturbation signal βsinωt is

the input to the plant, which is used for measuring the gradient information of

the function g(u). The estimation error of the control input denoted ue is given
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as,

ue = u
∗ − û (3.7)

The quantity û is modulated by βsinωt to obtain u. Note that the difference

between u and u∗ is given as

u − u∗ = βsinωt − ue (3.8)

Substituting (3.8) into (3.6) the function h(l(u)) becomes

y ≈ y∗ +
y′′

2
(ue − βsinωt)2 (3.9)

Expanding (3.9) and replacing sin2ωt with 1

2
(1 − cos2ωt) yield to

y ≈ y∗ +
y′′

4
β2 +

y′′

2
u2
e − βy

′′uesinωt −
y′′

4
β2cos2ωt (3.10)

The time domain signal y in (3.10) is filtered in order to remove unwanted high

frequencies through a high pass filter. The high pass filtered signal becomes

ξ ≈
y′′

2
u2

e − βy
′′uesinωt −

y′′

4
β2cos2ωt (3.11)

This signal is demodulated by multiplying with a dither signal sinωt

ξ ≈
y′′

2
u2

esinωt − βy
′′uesin

2ωt −
y′′

4
β2cos2ωtsinωt (3.12)

Replacing the 2cos2ωtsinωt term with (sin3ωt − sinωt), the demodulated signal

becomes

ξ ≈ −
βy′′

2
ue +

βy
′′

2
uecos2ωt −

β2y′′

8
(sin3ωt − sinωt) + y′′

2
u2

esinωt (3.13)
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The magnitude of u2
e is considered to be small and can be neglected accordingly.

Equation (3.13) is then reduced to

ξ ≈ −
βy′′

2
ue +

βy′′

2
uecos2ωt −

β2y′′

8
(sin3ωt − sinωt) (3.14)

Equation (3.14) comprises a number of high frequency signals which when passed

through the integrator i.e., 1

s
[ξ], yields to (3.14)

û ≈ −
k

s
[βy′′

2
]ue (3.15)

So the derivative of û in (3.15) is given as

˙̂u ≈ −(kβy′′
2
)ue (3.16)

Given that u∗ is constant in (3.7), therefore the derivative of (3.7) is written as

u̇e ≈ − ˙̂u (3.17)

Substituting (3.16) into (3.17) gives

u̇e ≈ (kβy
′′

2
)ue (3.18)

Given that (kβy′′
2
) < 0, the system is stable and it can be concluded that ue Ð→ 0

and û converges within a small region of u∗ which corresponds to the MPP.

3.3.3 Plant dynamics and learning time scale

The overall PESC feedback loop is considered to have three time scales, namely

fastest, medium and slow (Ariyur & Krystic 2003). The plant or system is con-

sidered to have the fastest dynamics as compared to periodic perturbation and
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filters (i.e. LPF and HPF). On the other hand, periodic perturbation is assumed

to have medium dynamics. Filters are considered to have the slowest dynamics.

Prior to time separation analysis, let us define how a function can be bounded.

Definition 2 The big O notation describes the limiting behavior of a function

when the argument tends to a particular value or infinity. For example, O(n2) is

any function g = g(n) such that ∣g(n)
n2 ∣ remain bounded as n Ð→ +∞

In order to analyse the time scale of the PESC scheme, let us begin by determining

the overall closed loop system (see Fig. 3.3). The state of the system is given as

Figure 3.3: Perturbation extremum seeking control
(Ariyur & Krstic 2010)

χ̇ = g(χ,Γ(χ,u)) (3.19)

Given that the modulated input u = û+βsinωt, therefore (3.19) can be expressed

as

χ̇ = g(χ,Γ(χ, (û + βsinωt)) (3.20)
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3. Extremum seeking control

Also estimated input û is obtained when a time domain signal ξ is passed through

a low pass filter such that:

û =
k

s
[ξ] (3.21a)

˙̂u = kξ (3.21b)

Output of the low pass filtered signal ξ is determined as follows:

ξ =
ωl(s + ωl) [(y − η)] sinωt (3.22a)

(s + ωl) [ξ] = ωl [(y − η)] sinωt (3.22b)

ξ̇ = −ωl [ξ] + ωl [(y − η)] sinωt (3.22c)

Time domain signal y when passed through high pass filter becomes

[(y − η)] = s

(s + ωh) [y] (3.23a)

s [y] = (s + ωh) [(y − η)] (3.23b)

η̇ = −ωh [η] + ωh [y] (3.23c)

Using (3.20), (3.21b), (3.22c) and (3.23c) the overall closed loop system in Fig.3.3

is summarised as

χ̇ = g(χ,Γ(χ, (û + βsinωt)) (3.24a)

˙̂u = kξ (3.24b)

ξ̇ = −ωl [ξ] + ωl [(y − η)] sinωt (3.24c)

η̇ = −ωh [η] + ωh [y] (3.24d)

ξ term captures the fastest dynamics of system (3.24). The medium fast varia-

tions are usually represented by the perturbation signal, i.e., βsinωt. The learning
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3. Extremum seeking control

process is usually considered to be the slowest and is governed by integrator gain

k.

Let us define new coordinate as follows

ũ = û − u∗ (3.25a)

η̃ = η − y(u∗) (3.25b)

Using time scale τ = ωt and substituting (3.25) into the overall closed system in

(3.24), the system can be rewritten as

ω
dχ

dτ
= g(χ,α(χ, (ũ + u∗ + βsinτ)) (3.26)

ω (dũ
dτ
+
du∗

dτ
) = kξ (3.27)

Given that u∗ is fixed parameter for a static map, therefore dy(u∗)
dτ
= 0. Equation

(3.27) is reduced to

ω
dũ

dτ
= kξ (3.28)

where k is a design parameter and be selected such that, k = ωδK
′
(Ariyur &

Krystic 2003) where� ω and δ are small positive constants,� K
′
is O(1) positive constant.

Substituting k into (3.28) gives

dũ

dτ
= δK ′ξ (3.29)

From (3.24c) can be rewritten as

ω
dξ

dτ
= −ωlξ + ωl(y − η̃ − y(u∗))sinτ (3.30)
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3. Extremum seeking control

Given that y = g(x), therefore (3.30) becomes

ω
dξ

dτ
= −ωlξ + ωl(h(x) − η̃ − y(u∗))sinτ (3.31)

From (3.31) ωl is another designing parameter and can be selected in a similar

manner as k, therefore ωl = ωδω
′
Lwhere ω

′
L is O(1) positive constant. Substituting

ωl into (3.31) yields to

dξ

dτ
= −δω

′
Lξ + δω

′
L(h(x) − η̃ − y(u∗))sinτ (3.32)

Also (3.24d )can be rewritten as

ω (dη
dτ
+
dy(u∗)
dτ

) = −ωh (η̃ + y(u∗)) + ωhy (3.33)

Similarly y(u∗) is fixed parameter, therefore dy(u∗)
dτ
= 0. Equation (3.33) is reduced

to

ω
dη

dτ
= −ωh (η̃ + y(u∗)) + ωhy (3.34)

Given that ωh = ωδω
′
H where ω

′
H is a positive constant. Equation (3.34)can be

expressed as

dη

dτ
= −ω

′
H (η̃ + y(u∗)) + ω′Hy (3.35)

Eq. 3.35 can be written as

dη

dτ
= −ω

′
H η̃ + ω

′
H (h(x) + y(u∗)) (3.36)

The overall system with time scale τ = ωt is summarised using (3.26), (3.29),

(3.32) and (3.36)

ω
dx

dτ
= g(χ,α(χ, (ũ + u∗ + βsinτ)) (3.37)
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3. Extremum seeking control

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dũ
dτ

dξ
dτ

dη

dτ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δK ′ξ

−δω
′
Lξ + δω

′
L(h(x) − η̃ − y(u∗))sinτ

−δω
′
H η̃ + δω

′
H (h(x) + y(u∗))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.38)

From the system in (3.37), based on the assumption that both ũ+u∗ and the

perturbation signal, i.e., βsinωt are slowly time varying as compared to transients

in χ-dynamics, it is possible to obtain the approximate solution of χ as follows

x = l (ũ + u∗ + βsinτ) (3.39)

Equation (3.39) can be used to discard fast time response in the χ-dynamics. The

time-invariant system which captures the main trend of the learning dynamics can

be obtained by averaging out the time variations. For more details in averaging

analysis of the PESC feedback loop see (Ariyur & Krstic 2010).

3.3.4 PESC parameter design

This section presents design guidance for a single parameter PESC scheme. The

PESC comprises of tuning parameters namely: β, k, ω, ωh, and ωl, ϕ. PESC

feedback performance is highly dependent on these parameters. For instance, ω,

should be larger with respect to k. However, too large a value for ω may trig-

ger un-modeled dynamics and causes oscillations in the system output Ariyur &

Krystic (2003). Also, ω must be large than ωh and ωl. On other the hand, ω must

have a smaller cut off frequency than the input dynamics to separate the frequen-

cies corresponding to the perturbation signal and the inner dynamics Ariyur &

Krystic (2003).
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3.4 Limit cycle minimisation

Similar to the other non-constraints based ESC, the PESC also tends to en-

ter a limit cycle within close proximity of the MPP. As a consequence the true

MPP can rarely be achieved. Limit cycle minimisation for PESC control have

been presented in Wang & Krstic (2000) and (Moura & Chang 2010, Moura &

Chang 2013). Wang & Krstic use the Van der Pol oscillator (VPO) to detect and

minimise limit cycles. VPO is an dissipative oscillator with a nonlinear damping

that dissipates energy at high amplitudes and generates energy at low amplitude.

This results in oscillations around a state at which dissipation and generation

balance energy (Wang & Krstic 2000). The state at which the oscillations con-

verge is the so called limit cycle. PESC together with VPO it is also called

VPO-ESC. Once the PESC enters the stable limit cycle the VPO reduces the

amplitude of the output based on the desire of the designer. Contrary to the

VPO, Moura & Chang(2013) use a LBS to minimise limit cycles by exponentially

decaying the perturbation gain. Both methods for limit cycle minimisation (i.e.

VPO and LBS) comprise multiple tuning parameters which increase the optimi-

sation complexity. Since VBS-ESC (the simplified version of the LBS-ESC) also

achieves limit cycle minimisation by reducing the amplitude of perturbation gain.

A detailed description of the LBS-ESC is given in the following section.

3.4.1 Lyapunov function based switching (LBS) extremum

seeking control

This section describes limit cycle minimisation using the LBS-ESC. To minimise

limit cycles, Moura & Chang (2010) incorporated a LBS within the PESC feed-

back loop (see Fig. 3.4). This approach was demonstrated in the PV system. The

proposed scheme utilises the LBS exponentially decaying the dither signal am-

plitude (perturbation amplitude) once the system enters stable limit cycle. The

56



3. Extremum seeking control

LBS scheme (see Fig. 3.4) comprises an averaging operator, a quadratic Lyapunov

function, a switch and a perturbation signal. The averaging operator is obtained

by linearising the entire PESC feedback loop about the MPP. The averaging op-

erator is also referred to as the Jacobian (i.e. average model) that approximates

the plant or system dynamics near the equilibrium point. The obtained average

model is used to develop a quadratic Lyapunov function denoted by V (xβ) to
govern the switching process. xβ is the average state variable of the estimated

input, LPF output, and HPF output of the PESC feedback loop see Fig. 3.4.xβ

is given as

xβ = [ũ ξ̃ η̃] (3.40)

where ũ, ξ̃ and η̃ are new coordinates defined based on (3.25). If V (xβ) is smaller

than the threshold, denoted ǫlbs, the dither signal with decaying amplitude will

be used, otherwise the same dither signal as in the standard PESC will be used.

This process will continue until V (xβ) drops below ǫlbs. Once this happens, the

integrator resets to its initial condition and the original dither signal will be used.

It has been shown in Moura & Chang (2010) that the Jacobian of the closed loop

system shown in Fig. 3.4 near the equilibrium is given as

J =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 k 0

ωlb2βo −ωl 0

ωhb1 0 −ωh

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.41)

where, b1 = 0 and b2 < 0. Having obtained the Jacobian of system in Fig. 3.4, the

V (xβ) used in the LSB is obtained by solving the following Lyapunov equation

for P:

PJ + JTP +Q = 0 (3.42)
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replacemen

y ≈ y∗ + y′′

2
(u − u∗)2u y

s
s+ωh

sinωt

sinωt
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û ξ y − η

y∗ u∗
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s+ωl
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s

Perturbation based extremum seeking control

Lyapunov based switching scheme

Averaging

operator

High pass filterLow pass filterIntegrator

Figure 3.4: PESC with Lyapunov based switching

where Q is considered as the symmetric matrix (i.e. identity). From (3.42), the

following Lyapunov function

V (xβ) = 1
2
xT
βPxT

β (3.43)

is obtained. V (xβ) given in (3.43) is used to develop the control law as follows,

u(t) =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

û + βosinωt if V (xβ) > ǫlbs⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
û + βsinωt

dβ(t)
dt
= −gβ(t) β(0) = βo Otherwise
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3. Extremum seeking control

where: u(t) denotes the control input signal, û denotes the estimated input, βo

denotes the initial perturbation amplitude, β denotes the perturbation amplitude

based on exponential decay. Parameters −g and ǫlbs ensure system stability due

to disturbances. V (xβ) estimates how close to the MPP the ”average model”

converges. If V (xβ) is within the pre-defined threshold denote ǫlbs, therefore as

xβ Ð→ 0 then V (xβ)Ð→ 0. As the PESC converges close enough to the MPP, the

perturbation signal (i.e. sinusoidal) decays exponentially to zero, hence uÐ→ u∗.

However, due to disturbances V (xβ)may drift away from the ǫlbs therefore control

law will work as follows: if V (xβ) is greater than ǫlbs then the LBS-ESC will

operate as the standard PESC with u(t) = û + βosinωt until the plant converges

back to the MPP. On the other hand, if V (xβ) drops below ǫlbs, the integrator

will reset the initial condition β(0) = βo it will operate with u(t) = û + βsinωt.

3.4.2 Variance Based Switching (VBS) ESC

As aforementioned, both the VPO-ESC and the LBS-ESC comprise multiple

tuning parameters, hence this may lead to an increase in complexity for online

optimisation. To address these issues, in this Section a simplified VBS-ESC

scheme for limit cycle minimisation is proposed (see Fig. 3.5). The proposed

scheme is a simplified version of the LBS-ESC and it also retains the simplicity

of the PESC. The simplification is achieved by removing the averaging operator

hence there is no need for linearising the entire feedback loop. Also, the Lyapunov

function integrator within a LBS scheme and its tuning time varying parameter

g are removed (see Fig. 3.4). A variance detection sub-system is introduced to

minimise limit cycles by detecting variance in the estimated input. The VBS-

ESC comprises of the PESC and the VBS scheme (see Fig. 3.5). The VBS is

used to reduce the amplitude of oscillations once the PESC has entered stable

limit cycle. Detection of the amplitude of oscillations is based on determining

the variance of û. As the PESC scheme approaches steady-state, the variance of
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û Ð→ 0. Once the PESC enters stable limit cycle, no change in the variance of

û will be detected, hence the switch will move from maximum perturbation gain

denote βmax, to minimum perturbation gain denote βmin. On the other hand, if a

variance of û will be detected, the switch will move back to βmax. The threshold

of the variance detection denotes ǫvbs informs the designer how fast oscillations

should be reduced. However, if oscillations are reduced to fast, it may slow down

the convergence to the extremum point. The ability of the VBS-ES on reducing

limit cycles is demonstrated using a TEG system in Chapter 6 where it is also

compared with other schemes such as PESC, LBS-ESC and SDP-ESC.

y ≈ y∗ + y′′
2
(u − u∗)2u y

s
s+ωh

sinωt

sinωt

k
s

û ξ y − η

y∗ u∗

Variance

β

ωl

s+ωl

βmax

βmin

Perturbation based extremum seeking control

Variance based switching scheme

Detect
change

High pass filterLow pass filterIntegrator

Figure 3.5: PESC with variance based switching
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3.5 Critical appraisal and conclusions

In this chapter, non-constraints based and constraints based ESC have been re-

viewed. Detailed analysis of several key features of the PESC such as gradient

search, learning and dynamic time scale and limit cycle minimisation have been

presented. Considering its consistent performance in various circumstances (e.g.

noise sensitivity, sensitivity to system dynamics, multivariate extensions, etc.),

the PESC has been suggested to be the best choice among the non-constraints

based ESC in literature. However, limit cycles due to periodic perturbation makes

it more difficult for the true MPP to be achieved using PESC. The improved

scheme known as VBS-ESC based on simplification of the LBS-ESC for limit

cycle minimisation is presented. VBS-ESC is considered to be simpler based on

the following reasons, Compared to the LBS-ESC, it doesn’t require linearisation

of the entire PESC feedback loop, and it also comprises fewer tuning parameters

and it does not require the solving of the Lyapunov function. Although both

methods minimise limit cycles in a similar manner, neither of them take into

consideration the trade-off between convergence speed and the minimisation of

losses. To address these issues an improved PESC scheme known as the SDP-ESC

is presented in Chapter 5.

61



Chapter 4

State dependent parameter

(SDP) extremum seeking control

4.1 Introduction

This Chapter presents an advanced control strategy based on an extension of the

standard PESC known as SDP-ESC. While the VBS-ESC proposed in Chapter 3

minimises the limit cycle based on variance detection, both the SDP-ESC and the

LBS-ESC minimise limit cycles by decaying the perturbation gain exponentially.

However, the SDP-ESC approach introduces dependency between the estimated

input and perturbation gain which allows the automated exponential decay of

the perturbation signal, instead of linearising the entire feedback loop and defin-

ing a Lyapunov function as is the case in LBS-ESC. Compared to the LSB-ESC,

the SDP-ESC in addition to limit cycle minimisation, also takes into account

the trade-off between the convergence speed and the minimisation of losses. For

that reason the convergence speed is improved by introducing a compensator (PI

controller). Nevertheless, the proposed scheme can be initialised with a large per-

turbation gain, hence making it possible to achieve the required excitation for the

duration of the operation. The main advantages of the SDP-ESC as compared to
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LBS-ESC include its simplicity because it does not have a switch (with multiple

tuning parameters). It does not require calculating a Lyapunov function as well

as not having the need to average the feedback loop. This chapter is organised

as follows; intuitive explanation of the proposed scheme is given in Section 4.2.

Convergence and stability analysis of the proposed scheme is discussed in Sec-

tion 4.3 and Section 4.4, respectively. Section 4.5 describes the design procedure

of the SDP-ESC for a single parameter scheme. Section 4.6 presents simulation

examples for both plant with and without dynamics. The sensitivity analysis of

the SDP-ESC is presented in Section 4.7. Section 4.8 presents the critical ap-

praisal and conclusions.

Similar to other traditional ESCs, the PESC also tends to enter a limit

cycle due to periodic perturbation. When applied to an MPP search within low

carbon technologies (e.g TEGs, PVs, FCs, wind turbines, etc.) the true MPP can

hardly ever be achieved. Apart from that, limit cycle is associated with ripple

currents across the load and the inductor within DC-DC converter (Chen, Chou

& Wu 2005). A large limit cycle indicates high ripple current which can cause

the core temperature of the capacitor to rise and hence reduce the electrolyte

of the capacitor. Reduction of the electrolyte causes both the capacitance and

the equivalent series resistance (ESR) to increase. The ESR is usually used as a

health indicator of capacitors (Chen et al. 2005). An increase of the ESR implies

the reduction of the remaining useful life (RUL) of a DC-DC converter which may

lead to decreased reliability. This justifies the need for a more advanced PESC

which can minimise limit cycles, improve convergence speed and reliability whilst

preserving the stability and simplicity of the standard PESC.
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4.2 SDP-ESC intuitive explanation

The SDP function and the compensator form a modified loop within the PESC.

The PESC with the modified loop is shown in Fig. 4.1 and is further referred to

as the state dependent parameter (SDP) ESC. It is named SDP-ESC due to the

dependence of the perturbation gain parameter on the system state x̂. In this

Thesis, the study of limit cycle minimisation and improving speed of convergence

via SDP-ESC is considered only for a single parameter scheme in a continuous

time domain (see Fig. 4.1). The plant in Fig. 4.1 is considered to have faster

dynamics than the SDP-ESC feedback loop. This will ensure that the plant

appears as a static non-linearity from the viewpoint of the SDP-ESC feedback

loop. A slow perturbation signal will cause time separation between the SDP-

ESC feedback loop and the plant and as a consequence the dynamics of the plant

will not interfere with the peak seeking scheme. Cut-off frequencies of high and

low pass filters are lower than the perturbation frequency ω .

The estimated value û of unknown optimal input u∗ is modulated with a

perturbation signal (sine wave with the gain f (x̂)) which decays exponentially to

a small yet sufficient value to allow the SDP-ESC feedback loop to detect changes

in the system input. It should be noted that f (x̂) must not be allowed to decay

to zero, but rather to a small value close to zero. Allowing f (x̂) to decay to zero

implies no perturbation to the system and as a consequence, the SDP-ESC will

fail to adapt. The rate at which f(x̂) decays depends on α. If û is on either side

of u∗ with minimal limit cycle, a periodic response of the output y which is either

in-phase or out-of-phase with the perturbation signal will be created. The rate of

decay of the perturbation signal depends on the variance of the integrator output

x̂. The variance of x̂ decays to a small value as the system enters a stable limit

cycle. DC components are removed from output y when it passes through the

washout filter (i.e. HPF). The output of the filter is then demodulated with a
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dither signal (sine wave with a fixed perturbation gain). The LPF removes high

frequencies from the demodulated signal. The SDP function should have the

slowest dynamics in the closed loop system to allow the SDP-ESC feedback loop

via perturbation signal f(x̂)sinωt to search for the gradient and reach steady

state. Mathematically, f(x̂) is expressed as

f(x̂) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

βe
−α
µ if µ < α and µ ≠ 0

β otherwise

where µ is the variance of the state x̂, β is the perturbation gain, α > 0 denotes the

exponential decay constant. The variance of x̂ is calculated as a moving averaging

window where the window length is based on a number of samples. Adaptation

within the SDP-ESC is achieved via an integrator and a compensator is used to

improve the convergence time. As f (x̂) decays to a small value the limit cycle is

minimised.

Plant

Modified loop

Low  pass filter High pass filterIntegrator

State dependent
perturbation function

Compensator

y ≈ y∗ + y′′
2
(u − u∗)2u y

s
s+ωh

skc+1
s

f(x̂)

sinωt

k
s

û ξ

y∗ u∗

ωl

s+ωl

x̂ y − η

Figure 4.1: Illustrates state dependent parameter (SDP) ESC scheme
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4.3 Convergence analysis

It is important to ensure that the developed SDP-ESC scheme is capable of con-

verging to the MPP as well as minimising limit cycles. The convergence analysis

using the SDP-ESC is demonstrated using the same problem described in Sec-

tion 3.3.1. Assumptions 1, 2 and 3 (see Section 3.3.1 ) are also considered. Con-

vergence analysis for a single parameter SDP-ESC scheme is considered. Before

proceeding with the convergence analysis, let us make the following assumption:

Assumption 4 µ is a windowed variance hence γ is considered to be constant

for a period of time

Definition 3 γ is a time varying parameter which presents ratio between α and

µ

therefore f(x̂) can be presented as:

f (x̂) = βe−γ (4.1)

4.3.1 SDP-ESC for a static map

Fig. 4.2 presents a simplified form of the SDP-ESC closed loop where the plant

dynamics are neglected.

Preposition 1 The perturbation signal of the system in Fig. 4.2 is sufficiently

slow to allow the plant to appear as a static nonlinear map from the SDP-ESC

viewpoint. LPF is not essential for convergence analysis since the integrator

attenuates high frequencies, however it should be noted that for practical imple-

mentation, LPF is required.
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û ξ

y∗ u∗

x̂ y − η

Figure 4.2: Simplified SDP-ESC scheme

Using second order Taylor series expansion, the static nonlinear map of the

system in Fig. 4.2 can be approximated as

y(u) ≈ y∗ + y′′
2
(u − u∗)2 (4.2)

The objective is to minimise quantity (u − u∗), such that y ≈ y∗.

Denote ue as the estimation error which is the difference between u∗ and û

ue = u
∗ − û (4.3)

The quantity û is modulated by f(x̂)sinωt to obtain u. The difference between

u and u∗ is given as

u − u∗ = f(x̂)sinωt − ue (4.4)

Substitute (4.4) into (4.2) gives

y ≈ y∗ +
y
′′

2
(ue − βe

−γsinωt)2 (4.5)
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Expanding (4.5) and replacing sinωt with 1

2
(1 − cos2ωt) yield to

y ≈ y∗ +
y
′′
u2
e

2
+
y
′′

4
β2e−2γ − y

′′
ueβe

−γsinωt −
y
′′

4
β2e−2γcos2ωt (4.6)

The time domain signal y in 4.6 is filtered in order to remove any unwanted slow

DC components. The high pass filtered signal becomes

ξ ≈
y
′′
u2
e

2
+
y
′′

4
β2e−2γ − y

′′
ueβe

−γsinωt −
y
′′

4
β2e−2γcos2ωt (4.7)

The signal in (4.7) is demodulated by multiplying with dither signal sinωt to

obtain

ξ ≈
y
′′
u2
e

2
sinωt +

y
′′

4
β2e−2γsinωt − y

′′
ueβe

−γsin2ωt −
y
′′

4
β2e−2γcosωtsinωt (4.8)

Replacing cosωtsinωt with 1

2
(sin3ωt − sinωt) the demodulated signal in (4.8)

becomes

ξ ≈
y
′′
u2
e

2
sinωt +

y
′′

4
β2e−2γsinωt − y

′′
ueβe

−γsin2ωt −
y
′′

8
β2e−2γ (sin3ωt − sinωt)

(4.9)

The magnitude of u2
e is considered to be small and can be neglected accordingly.

Equation (4.9) is then reduced to

ξ ≈ −
y
′′

2
ueβe

−γ +
y
′′

4
β2e−2γsinωt +

y
′′

2
ueβe

−γcos2ωt −
y
′′

8
β2e−2γ (sin3ωt − sinωt)

(4.10)

Equation (4.10) comprises a number of high frequency signals which when passed

through the integrator i.e., 1

s
[ξ], yields to 4.11

x̂ ≈ −
k

s
[e−γβy′′

2
]ue (4.11)
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The approximation of the optimal perturbation signal û is obtained by passing

the approximated time signal x̂ through a compensator, such that:

û =
skc + 1

s
[x̂] (4.12)

substituting (4.11) into (4.12) yields to the approximation of the rate of change

of the optimal perturbation signal, i.e.,

˙̂u ≈ −zkcue − zu̇e (4.13)

where z = kβe−γy′′
2

since u∗ is constant in (4.3), its derivative can be written as

u̇e = − ˙̂u (4.14)

Substituting (4.14) into (4.13) yields to the rate of change of the input estimation

error, i.e.,

u̇e =
z

1 − z
kcue (4.15)

since kβe−γy′′

2
< 0 then the system is stable. As ue Ð→ 0, and e−γ converge to a

small region so that 0 < e−γ < 1, then û converge within a small region of u∗ with

minimised limit cycle.

Theorem 1 For the simplified SDP-ESC scheme given in Fig. 4.2, the output

error y − y∗ achieves local exponential convergence to an O(β2e−2γ) of the origin

with minimised limit cycle, provided the exponential decay is 0 < e−γ < 1.
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Proof of theorem 1

From (4.2) output error is expressed as

y − y∗ ≈
y
′′

2
(ue − βe

−γsinωt)2 (4.16)

Expanding (4.16) gives

y − y∗ ≈
y
′′

2
ue − y

′′
ueβe

−γsinωt + β2e−2γ
y
′′

2
sin2ωt (4.17)

as ue Ð→ 0 (4.17) reduced to

y − y∗ ≈ β2e−2γ
y
′′

2
sin2ωt (4.18)

Using definition (2) in Section 3.3.3, the right hand side term in (4.18) is bounded

as follows

β2e−2γ
y
′′

2
sin2ωt = O(β2e−2γ) (4.19)

hence,

y − y∗ ≈ O(β2e−2γ) (4.20)
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4.4 Stability analysis

Stability analysis of the SDP-ESC is performed in the continuous time domain.

Stability is analysed via the averaging technique which is a suitable method for

analysing periodic systems (Ariyur & Krystic 2003). Stability analysis via the

averaging technique includes the following steps:

1. transform a system with a new coordinate to obtain a simplified system,

2. use an averaging method to obtain the average of a reduced system and its

equilibrium point,

3. compute the Jacobian of the average reduced system,

4. find the determinant of the average reduced system to check whether the

system is stable or not.

System transformation:

Consider the non-linear system in Fig. 4.1 presented using state equations as,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

˙̂u = kdξ + x̂

˙̂x = kξ

ξ̇ = −ωlξ − ηωlsinωt + ωly(u)sinωt
η̇ = −ηωh + y(u)ωh

u = û + βe−γsinωt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.21)

where:� u is the control input,� y is the optimal value as the function of control input,� kd = kkc is the product of compensator and integrator gains.

Let us define new coordinates in order to shift the nominal optimal operating

point, denoted as:

ũ = û − u∗ (4.22)
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η̃ = η − y(u∗) (4.23)

Nonlinear system in (4.21) can be translated as follows

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

˙̃u = kdξ + x̂

˙̂x = kξ

ξ̇ = −ωlξ − η̃ωlsinwt + ωl [y (ũ + u∗ + βe−γsinωt) − y(u∗)] sinωt
˙̃η = −η̃ωh − ωh [y (ũ + u∗ + βe−γsinωt) − y(u∗)]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.24)

Set τ = ωt and V (ũr + βe−γsinωt) = y (ũ + u∗ + βe−γsinτ) − y(u∗) to obtain a

reduced system in the following form

d

dτ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ũr

x̂r

ξr

η̃r

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
1

ω

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

kdξr + x̂

kξr

−ωlξr − ωlη̃rsinτ + ωlV (ũr + βe−γsinτ) sinτ
−ωhη̃r − ωhV (ũr + βe−γsinτ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.25)

Adopting design parameters selection used in (Ariyur & Krystic 2003), normalized

parameters are given as

k = ωK = ωδK
′
= O(ωδ) (4.26a)

kd = ωKd = ωδK
′
d = O(ωδ) (4.26b)

ωl = ωωL = ωδω
′
L = O(ωδ) (4.26c)

ωh = ωωH = ωδω
′
H = O(ωδ) (4.26d)
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where ω and δ are small positive constants and K
′
d, ω

′
L, and ω

′
H are O(1) positive

constants.

d

dτ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ũr

x̂r

ξr

η̃r

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= δ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K
′
dξr + x̂

K
′
ξr

−ω
′
Lξr − ω

′
Lη̃rsinτ + ω

′
LV (ũr + βe−γsinτ) sinτ

−ω
′
H η̃r − ω

′
HV (ũr + βe−γsinτ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.27)

Averaging method

In order to analyse the reduced periodic system in (4.27) an averaging technique

is used. The averaging equation is defined as,

xa =
1

2π ∫
2π

0

x (σ)d (σ) (4.28)

where (σ) = τ
Note that: the average of sinτ = 0, hence ω

′
Lη̃rsinτ = 0

Equation ( 4.27) can be expressed as

d

dτ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ũa
r

x̂a
r

ξar

η̃ar

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= δ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K
′
dξ

a
r + x̂

a
r

K
′
ξar

−ω
′
Lξ

a
r +

ω
′
L

2π ∫ 2π

0
V (ũa

r + βe
−γsinτ) sinτdτ

−ω
′
H η̃

a
r −

ω
′
H

2π ∫ 2π

0
V (ũa

r + βe
−γsinτ) dτ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.29)

The equilibrium of system (ũa,e
r , x̂

a,e
r , ξ

a,e
r , η̃

a,e
r ) presented in (4.29) must satisfy

0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K
′
dξ

a,e
r + x̂

a,e
r

K
′
ξ
a,e
r

−ω
′
Lξ

a,e
r +

ω
′
L

2π ∫ 2π

0
V (ũa,e

r + βe−γsinτ) sinτdτ
−ω

′
H η̃

a,e
r −

ω
′
H

2π ∫ 2π

0
V (ũa,e

r + βe−γsinτ)dτ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.30)
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where

ξa,er = 0 (4.31a)

x̂a,e
r = 0 (4.31b)

∫
2π

0

V (ũa,e
r + βe

−γsinτ) sinτdτ = 0 (4.31c)

η̃a,er =
1

2π ∫
2π

0

V (ũa,e
r + βe

−γsinτ) dτ (4.31d)

In view of assumption (3), it is clear that:

V (0) = 0 (4.32a)

V ′ (0) = y′ (u∗) = 0 (4.32b)

V ′′ (0) = y′′ (u∗) < 0 (4.32c)

Substituting V (0) , V ′ (0) and V ′′ (0) into a Taylor expansion gives :

V (x) = V (0) + V ′ (0)x + V ′′ (0)
2!

x2 + .... (4.33)

Postulating in a similar manner to (Ariyur & Krystic 2003), ũa,e
r is expressed

as,

ũa,e
r = a1β + a2β

2 +O(β3) (4.34)
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Substituting (4.34) into (4.31c) and using (4.33), followed by integrating and

equating same power of β yield to,

∫
2π

0

V (ũa,e
r + βe

−γsinτ) sinτdτ = ∫ 2π

0

V ′′(0)
2!
(ũa,e

r + βe
−γsinτ)2 sinτdτ+

∫
2π

0

V ′′′(0)
3!

(ũa,e
r + βe

−γsinτ)3 sinτdτ = 0 (4.35)

V ′′(0)πβe−γ (ũa,e
r ) + V ′′′(0)

8
πβ3e−3γ +

V ′′′(0)
2

πβ3e2γ (ũa,e
r )2 = 0 (4.36)

Simplifying by a bound higher power gives,

V ′′(0)πβ2e−γa1 + V ′′(0)πβ3e−γa2 +
V ′′′(0)

8
πβ3e−3γ = 0 (4.37)

hence,

a1 = 0 (4.38a)

a2 = −
V ′′′(0)
8V ′′(0)e−2γ (4.38b)

Substituting (4.38) into (4.34) gives

ũa,e
r = −

V ′′′(0)
8V ′′(0)e−2γβ2 +O(β3) (4.39)

Using (4.32) followed by integrating, (4.31d) yields to

η̃a,er =
1

2π ∫
2π

0

V (ũa,e
r + βe

−γsinτ) dτ = 1

2π
[∫ 2π

0

V ′′(0)
2!
(ũa,e

r + βe
−γsinτ)2 dτ]+

1

2π
[∫ 2π

0

V ′′′(0)
3!

(ũa,e
r + βe

−γsinτ)3 dτ] (4.40)
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η̃a,er =
1

2π
[V ′′(0)

2!
π(e−2γβ2 + 2(ũa,e

r )2)] + 1

2π
[V ′′′(0)

3!
πũa,e

r (3e−2γβ2 + 2(ũa,e
r )2)]
(4.41)

η̃a,er =
V ′′′(0)

4
e−2γβ2 +

V ′′(0)
2
(ũa,e

r )2 + V ′′(0)4
e−2γβ2(ũa,e

r )+ V ′′′(0)6
(ũa,e

r )3 (4.42)

Bound higher terms with big O yields to

η̃a,er =
V ′′(0)

4
e−2γβ2 +O(β3) (4.43)

The equilibrium of the average model in (4.29) in compact form is expressed as

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ũa,e
r

x̂
a,e
r

ξ
a,e
r

η̃
a,e
r

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− V ′′′(0)
8V ′′(0)e

−2γβ2 +O(β3)
0

0

V ′′(0)
4

e−2γβ2 +O(β3)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.44)

The Jacobian of an average system

The Jacobian of (4.29) can be presented as,

Ja
r =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 K
′
d 0

0 0 K
′

0

ω
′
L

2π ∫ 2π

0
V ′ (ũa

r + βe
−γsinτ) sinτdτ 0 −ω

′
L 0

−w
′
H

2π ∫ 2π

0
V ′ (ũa

r + βe
−γsinτ) dτ 0 0 −ω

′
H

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.45)
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Approximate V ′ (ũa
r + βe

−γsinτ) from (4.45) using (4.33) and taking derivatives

of V (x) yields to

V ′ (ũa
r + βe

−γsinτ) = V ′ (0) + V ′′ (0) (ũa
r + βe

−γsinτ)+
V ′′′ (0)

2!
(ũa

r + βe
−γsinτ)2 (4.46)

solving
ω
′
L

2π ∫ 2π

0
V ′ (ũa

r + βe
−γsinτ) sinτdτ from (4.45) yields to

ω
′
L

2π ∫
2π

0

V ′ (ũa
r + βe

−γsinτ) sinτdτ = ω
′
L

2π ∫
2π

0

V ′′ (0) (ũa
r + βe

−γsinτ) sinτdτ+
ω
′
L

2π ∫
2π

0

V ′′′ (0)
2
(ũa

r + βe
−γsinτ) sinτdτ (4.47)

For simplicity let higher order terms in (4.47) be bounded as

ω
′
L

2π ∫
2π

0

V ′′′ (0)
2
(ũa

r + βe
−γsinτ) sinτdτ = O (β2) (4.48)

Solving (4.47) yields to

ω
′
L

2π ∫
2π

0

V ′ (ũa
r + βe

−γsinτ) sinτdτ = ω
′
Le
−γ

2
V ′′ (0)β +O (β2) (4.49)

Solving
−ω
′
H

2π ∫ 2π

0
V ′ (ũa

r + βe
−γsinτ) dτ from (4.45) yields to

−ω
′
H

2π ∫
2π

0

V ′ (ũa
r + βe

−γsinτ) dτ = −ω
′
H

2π ∫
2π

0

V ′′ (0) (ũa
r + βe

−γsinτ) dτ+
−ω

′
H

2π ∫
2π

0

V ′′′ (0)
2
(ũa

r + βe
−γsinτ) dτ (4.50)

For simplicity let higher order terms in (4.50) be bounded as

−ω
′
H

2π ∫
2π

0

V ′′′ (0)
2
(ũa

r + βe
−γsinτ) dτ = O (β2) (4.51)
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hence (4.50) become

−ω
′
H

2π ∫
2π

0

V ′ (ũa
r + βe

−γsinτ) dτ = −ω
′
H ũ

a
rV
′′ (0)β + O (β2) (4.52)

The Jacobian of (4.45) is then expressed as

Ja
r =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 K
′
d

0

0 0 K
′

0

ω
′
L
e−γ

2
V ′′ (0)β +O (β2) 0 −ω

′
L 0

−ω
′
H ũ

a
rV
′′ (0)β +O (β2) 0 0 −ω

′
H

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.53)

The stability can further be investigated by solving the determinant as

det (λI − Ja
r ) =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ 0 0 0

0 λ 0 0

0 0 λ 0

0 0 0 λ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− δ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 K
′
d 0

0 0 K
′

0

ω
′
L
e−γ

2
V ′′ (0)β +O (β2) 0 −ω

′
L 0

−ω
′
H ũ

a
rV
′′ (0)β +O (β2) 0 0 −ω

′
H

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4.54)

The determinant of (4.54) can further simplified and expressed as:

det (λI − Ja
r ) = (λ + δω′H) (λ3 + pλ2 + cβλ + bβ) +O (β2δ2) (4.55)

whereas:� c = −
K
′
d
e−γω

′
L
δ2

2
V ′′ (0)� b = −

K
′
e−γω

′
L
δ3

2
V ′′ (0)� p = ω

′
Lδ

In view of V ′′ (0) = y (u∗) < 0 parameters c and b are positive. Using the Routh-

Hurwitz criterion, expression (λ3 + pλ2 + cβλ + bβ) can be solved as follows:
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λ3 1 cβ

λ2 p bβ

λ1 (cp−b)β
p

λ0 bβ

Hence it has proven that Ja
r is Hurwitz for (cp−b)β

p
≥ 0

4.5 SDP-ESC design for single parameter scheme

The SDP-ESC comprises of seven main tuning parameters namely: integrator

gain k, compensator gain kc, exponential decay constant α, perturbation gain β,

perturbation frequency ω, high pass filter and low pass filter cut off frequencies ωh,

ωl, respectively. Each parameter independently or dependently, affects overall the

performance of the SDP-ESC such as the tracking accuracy and steady-state per-

formance. For instance, tracking accuracy and steady state error are influenced

by β, k and α. In order to insure fine-tuning of the SDP-ESC, Section 4.5.1

provides guidance for designing an optimal SDP-ESC for the LTI and the LTV

dynamical systems.

4.5.1 Algorithm design guideline

As aforementioned the SDP-ESC comprises of the PI controller (compensator)

and the SDP function (see Fig. 4.1). With respect to the choice of parameters

themselves, there are a number of consideration that must be made. This Sec-

tion, therefore provides a suitable way of optimising these parameters to achieve

optimal performance.

[1] ω should be selected slightly larger than the plant bandwidth

Firstly, the frequency ω of the perturbation signal must be sufficiently large but

not equal to the frequency of any noise components else the tracking error will

79



4. State dependent parameter (SDP) extremum seeking control

increase. The bounded noise is assumed to be uncorrelated with the perturbation

signal, therefore the frequency of noise can be bounded as per Eq. 4.56

fn = lim
T→∞

1

T
∫

T

0

nsinωtdt (4.56)

where fn is the noise frequency and T is the period of the perturbation signal.

[2] Perturbation gain β must be large enough to excite the plant as well as to

achieve a desired convergence speed

A large β will increase the speed of convergence with minimum oscillations due

to the exponentially decaying effect cause by the SDP function. If β is too small

it may fail to excite the plant, especially when the SDP-ESC algorithm is applied

to low voltage applications. As the SDP function will decay exponentially close

to zero, β can be selected to increase the rate of convergence to the extremum,

as well as providing sufficient excitation to the plant.

[3] Cut-off frequencies for high pass and low pass filter should be selected such

that(ωh, ωl << ω)

The upper corner frequency ωh and the lower corner frequency ωl should be chosen

after determining the frequency ω of the perturbation signal such that (ωh, ωl <<

ω). The upper corner frequency ωh and the lower corner frequency ωl should be

bounded such that the HPF removes any unwanted DC components. On the other

hand, the LPF should attenuate the any unwanted high frequency components.

The dynamics of these filters (i.e. HPF and LPF) should be sufficiently fast to

respond to the perturbations.

[4] Set kc and k sufficiently large to adapt to the changes in the plant without

detecting small variations caused by noise
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MPP tracking by the SDP-ESC depends on kc and k. These parameters should

be selected such that, noise is not detected within the feedback loop. Large k

and kc may increase oscillations due to the continuous detection of every small

variation within the feedback loop.

[5] It is important to select the exponential decaying constant α such that var(x̂) <
α

If α = 0, there will be no effect on limit cycle minimisation, and the resulting

SDP-ESC will merely provide the same performance as the conventional PESC.

Conversely, if α < 0 is selected f(x̂) will increase exponentially, causing the control
system to become unstable. Since the state dependent function f(x̂) causes the
perturbation gain β to decay exponentially to a small value when α > 0 is selected,

it is therefore apparent that selecting a large value of β introduces the system

neither unwanted oscillations nor sensitivity to noise. In order to successfully

minimise limit cycle as well as ensure the system responds correctly, α should be

bounded such that var(x̂) < α.
Remark 1 In order to successfully design the SDP-ESC scheme, one should start

by designing the PESC tuning parameters (i.e. β, ω, ωh and ωl, ϕ and k), followed

by modified scheme (see Fig. 4.1) parameters (i.e. α and kc).

Remark 2 Depending on the design requirement, the compensator in the modi-

fied scheme (see Fig. 4.1) can be designed as Cz .s+1
Cp.s+1

where: Cz and Cp are com-

pensator zero and compensator pole, respectively. If one sets Cz and Cp equals 1

it implies no compensation effect on the SDP-ESC feedback loop. Other tuning

parameters such as β and k can be used to improve the convergence speed.
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4.6 Simulation examples

This section presents simulation studies for a nonlinear plant given in Eq. 3.1. It

should be noted that examples used here aim to demonstrate advantages of the

SDP-ESC over the standard PESC on limit cycle minimisation, convergence speed

and preserving the simplicity of the PESC. Also, these examples aim to verify

all the assumptions made in this chapter and chapter 3. Comparison between

SDP-ESC with other MPPT algorithms such as the LBS-ESC and the VBS-ESC

is therefore presented separately in Chapter 6. The effectiveness of the SDP-

ESC has been demonstrated for both systems with and without input/output

dynamics. Prior to present simulation results, let us define the following terms.

Definition 4 The power conditioning unit (PCU) or MPPT converter is the

combination of DC-DC converter and MPPT algorithm.

Definition 5 The MPPT efficiency or percentage accuracy is the ratio between

output power of the PCU and input power of the PCU.

Definition 6 PCU efficiency or percentage accuracy of the PCU is the ratio

between output power and input power of the converter.

Definition 7 The tracking error accuracy refer the amplitude of oscillations be-

tween the desired value and the value achieved by MPPT algorithm

4.6.1 SDP-ESC for LTI system

Consider a LTI system with a static nonlinear map given as

j(u) = j∗ − (u − u∗)2 (4.57)

where j∗ = 0.8 is the maximum value of function j and u∗ = 0.8 is the point at

which maximum value is achieved. For the given LTI system, it is considered
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that,- there are no dynamics in the input or output. The function in (4.57) is

differentiable therefore, it satisfies assumption 1. In addition, the steady-state

characteristic of the function in (4.57) is well defined hence, satisfies assumption

2. The static nonlinear map in (4.57) has a unique maximum at j∗ = 0.8 at steady-

state hence, it verifies assumption 3. The system is simulated and performance

of the SDP-ESC is compared with the standard PESC (see Fig. 4.3 and Fig. 4.4).

Compared to the standard PESC, the SPD-ESC converges much faster to the

extremum point as well as minimising limit cycles. Both the standard PESC and

the SDP-ESC are optimised with the same tuning parameters for β, ω, ωh, ωl, ϕ

and k (see Table. 4.1).

Name Notation PESC SDP-ESC
Exponential decay constant α - 10−6

Perturbation gain β 0.1 0.1

High pass filter cut-off frequency ωh [ rads ] 2.5 2.5

Perturbation frequency ω [ rad
s
] 5 5

Integrator gain k 5 5
Phase angle ϕ [rad] π

2

π
2

Compensator zero Cz - 2
Compensator pole Cp - 1

Table 4.1: PESC and SDP-ESC tuning parameters for LTI system

Based on algorithm design guidelines described in Section 4.5.1, ω is selected

such that ω > ωh. Based on the fact that the variance of x̂ reduces close to

zero as the system enters stable limit cycles, in order to achieve ∣f (x̂)∣ < ∣β∣, a
small positive constant α is selected (see Table. 4.1). This ensures limit cycle

minimisation once the system has entered stable limit cycle. A moving average

variance with N = 300, where N is the number of sample, is used. The moving

average variance is a windowed and is considered to be constant for a period of

time. Hence it satisfies assumption 4. At steady-state the percentage error of

the estimated input is reduced to 2% and 10% by the SDP-ESC and the PESC,

respectively (see Fig. 4.5).
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Figure 4.3: Illustrates output of the ESC and the SDP-ESC for LTI system
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Figure 4.4: Illustrates estimates of the PESC and the SDP-ESC for LTI system
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Figure 4.5: Illustrates steady-state percentage error of the estimated input ob-
tained using the PESC and the SDP-ESC, respectively.

4.6.2 SDP-ESC for plant with dynamics

Effectiveness of the proposed SDP-ESC scheme over the standard PESC for plants

with dynamics is demonstrated using the system presented in (Ariyur & Krystic

2003). The system behaviour is presented with set of equations as follows,

Di(s) = s − 1

s2 + 3s + 2
(4.58a)

Do(s) = 1

s + 1
(4.58b)

j(u) = j∗(t) + (u − u∗(t))2 (4.58c)

j∗(t) = 0.01(t − 10) (4.58d)

u∗(t) = 0.01e0.01t (4.58e)

λuℸu(s) = 0.01

s − 1
(4.58f)

λpℸp(s) = 0.01e−10s
s

(4.58g)

where
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4. State dependent parameter (SDP) extremum seeking control� Di(s) and Do(s) denote input and output dynamics, respectively.� j∗(t) and u∗(t) denote minimum value and point at minimum, respectively.

The PESC is optimised with the same tuning parameters as in(Ariyur & Krystic

2003) as summarised in Table. 4.2. The SDP-ESC is optimised with same tuning

Name Notation PESC SDP-ESC
Exponential decay constant α - 10−5

Perturbation gain β 0.05 0.05

High pass filter cutoff frequency ωh [ rads ] 5 5

Perturbation frequency ω [ rad
s
] 5 5

Phase angle ϕ [rad] 0.7955 0.7955
Integrator gain k 107.7 107.7

Compensator pole Cp 4
Compensator zero Cz 0.01

Table 4.2: PESC and SDP-ESC tuning parameters for plant with dynamics

parameter values as the PESC with addition parameter α (see Table 4.2), hence

validates the simplicity of the proposed scheme. A slide moving average variance

withN = 300 is used. The minimum output value of the SDP function is limited at

10−6 to limit the function to decay to zero. As shown in Fig. 4.6 compared to the

PESC, the SDP-ESC converges faster to the optimum value of control input with

minimised limit cycle. Fig. 4.7) illustrates output measurement obtained using

the PESC and the SDP-ESC. Compared to the PESC, the SDP-ESC converge

much faster to the optimum value with smaller overshoot.

4.7 Sensitivity analysis

Robustness and performance of a non constraints based controller is highly de-

pendent on tuning parameters. Also, assumptions of a noise free system is rather

unrealistic particularly in practice, as measurement and system noise are always

present and can affect the overall performance of a controller. On this basis, this

section presents effects of the SDP-ESC tuning parameters, i.e., β, α, kc, k and
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Figure 4.7: Output measurement for PESC and SDP-ESC
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noise on convergence speed and limit cycles. The analysis is performed using the

system in (4.57).

4.7.1 SDP-ESC tuning parameters

[1] Exponential decay constant and perturbation gain:

α has an effect on both convergence speed and limit cycle minimisation of u and y

(see Fig. 4.8 and Fig. 4.9). This is observed by varying α from 5 ⋅10−7 to 10−6 with

the increment of 2.5⋅10−7, selecting initial β = 0.1 and setting a minimum variance

of x = 5 ⋅ 10−7. When 10−6 is selected, the lowest oscillations occur. However, it

takes much longer to reach the steady-state. On the other hand, when α = 5 ⋅10−7

is selected it converges much faster with more oscillations. Perturbation signal

(i.e. f(x̂)sinωt) amplitude depends on α. The lowest amplitude is achieved when

α = 1e−6 (see Fig. 4.10).
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Figure 4.8: Illustrates estimates of the SDP-ESC for different α
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Figure 4.10: Illustrates perturbation gain amplitude of the SDP-ESC for differ-
ent α
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The initial value of β affects the convergence speed and the limit cycle min-

imisation in a similar manner to α. To guarantee a faster convergence speed as

well as enough excitation, the SDP-ESC should be initialised with a sufficiently

large value of β.

[2] Integrator and compensator gains:

Large values of kc and k improves converge speed. kc is set equal to 2.5 and k

is varied from 2.5 to 3.5 with an increment of 0.5 (see Fig. 4.11, Fig. 4.12, and

Fig. 4.13). For the SPD-ESC, kc and k affect only the convergence speed. How-

ever these parameters should be carefully selected to avoid failure to converge to

true value at steady-state as well as to detect noise in the feedback loop.
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Figure 4.11: Illustrates output of the SDP-ESC for different k

4.7.2 Measurement noise

It is rather difficult to eliminate measurement noise in practice, therefore it is

crucial to eliminate its influence. For this example, normally distributed white
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Figure 4.12: Illustrates estimates of the SDP-ESC for different k

noise is considered. Fig. 4.14 illustrates the simulation results of the PESC and

the SDP-ESC, corresponding to different noise variances denoted σ2. It appeared

that as compared to the PESC, the SDP-ESC is affected more by noise. When the

variance of noise is low as σ2 = 1 ⋅ 10−7 the SDP-ESC achieves better performance

on both limit cycle minimisation and convergence speed. However, when the

variance of noise is as high as σ2 = 1 ⋅10−6 the SDP-ESC performance on tracking

extremum point deteriorates. Both controllers are affected when the variance of

noise is increased beyond σ2 = 1 ⋅ 10−4.

Remark 3 Tracking parameter/control input u is affected more in the SDP-ESC,

compared to the PESC due to higher noise sensitivity of tuning parameter α, as

a consequence one should carefully select this parameter.
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Figure 4.13: Illustrates perturbation gain amplitude of the SDP-ESC for differ-
ent k
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4.8 Critical appraisal and conclusions

In this chapter a novel scheme for MPPT known as SDP-ESC is proposed. Nu-

merical analysis on the ability of the proposed scheme to converge to the MPP

whilst minimising losses has been investigated for a single parameter SDP-ESC

scheme. Also, stability analysis of the proposed scheme is investigated using the

averaging technique. Moreover, SDP-ESC design guideline and sensitivity analy-

sis are presented. Superiority of the SDP-ESC over the standard PESC on limit

cycle minimisation and convergence speed has been demonstrated using simula-

tion examples, i.e., for plants with and without dynamics. It also preserves the

stability and simplicity of the standard PESC. Comparison between the SDP-ESC

and other algorithms, i.e., the VBS-ESC and the LBS-ESC on the trade-off be-

tween the convergence speed and minimisation of losses is presented in Chapter 6.

Similar to other schemes such as PESC, LBS-ESC, VBS-ESC, the drawback of

the SDP-ESC is its inability to search for the global maximum in the presence of

local maxima. To eliminate this issue, an extension of the SDP-ESC is required.

Chapter 5 presents a detailed explanation of the extended SDP-ESC.
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Chapter 5

Extended SDP extremum seeking

control

5.1 Introduction

There are several research developments on the global maximum (GM) search

in the presence of local maxima. Most of these advancements have been seen in

PV systems. However, as aforementioned in Chapter 1, the GM search is still an

open problem. Methods for the GM search reviewed in Chapter 2 are based on

stochastic approaches which require pre-training of the system. Therefore, these

approaches are considered to be expensive (Tan, Nesic, Mareels & Astolfi 2009).

Since this Thesis aim to provide an inexpensive solution for the GM search, the

GM is based on an extension of the SDP-ESC proposed in Chapter 4. There

are few pieces of literature which the propose extension of the ESC for the GM.

ESC which searches for the GM was first proposed by Tan et al. (2009). The

proposed scheme is able to converge to the GM if a large set of initial conditions

are satisfied. One such condition is to initialise the ESC with a large perturba-

tion gain which will force convergence to the GM (Tan et al. 2009). However, the

method proposed by Tan et al. (2009) is shown to be ineffective when Azar, Per-
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rier & Srinivasan (2011) use a function with large number of local maxima. For

instance, when a 6th order polynomial was considered, the ESC scheme by Tan

et al. (2009) failed to locate the GM. Azar, Perrier & Srinivasan (2011) proposed

a multi-unit ESC for the GM search. Different static nonlinear functions with

multiple maxima were used to verify the ability of the scheme proposed by Azar,

Perrier & Srinivasan (2011) to search the GM. The proposed scheme comprises

two identical units within a plant or process which operates at different set points

and the difference between these set points is referred to as an offset. The finite

difference for a given offset is applied to estimate the gradient. It also utilises

an integrator within the multi-framework scheme to force the gradient to zero.

It has been claimed in Azar, Perrier & Srinivasan (2011), that by starting with

a large offset, reducing monotonically to zero and also using switching control

strategy, it is possible to search for the GM.

Particle swarms have been combined with ESC to search for the GM (Yu,

Chen & Kong 2010). The particle swarm algorithm generates a sequence based

on an online cost function which is used to guide the ESC to search for the GM.

However, this method has the disadvantage of taking a longer time to compute

every loop of the ESC. Khong, Nesic, Manzie & Tan (2013) adopted a DIRECT

search algorithm within ESC for a multi-dimensional GM search. DIRECT search

is a method for solving optimisation problems that does not require any informa-

tion about the gradient of the objective function. Apart from that, Doostabad,

Keypour & Khalghani (2013) present a modified ESC with a GM search under

uniform and non-uniform irradiance conditions. Compared to the standard ESC,

the proposed ESC uses a single perturbation signal, hence ripples of lower fre-

quency is achieved. It also uses series configuration of a LPF and a HPF which

acts as BPF and allows a certain range of frequency (e.g. the derivative of power

and voltage of the PV) to pass through as the results converge directly to the

GM. This is also achieved by the inclusion of the partial shading effect detect-
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ing algorithm. Under uniform shading the proposed method uses a variable step

to allocate the MPP. On the other hand, under partial shading, the proposed

method eliminates local MPP and forces the ESC to converge to the GM.

5.2 Problem statement

Searching for the MPP using the standard ESC, the LBS ESC and the SDP-ESC is

based on controlling the gradient at zero through an integrator, which make these

controllers suitable for systems with only local maxima (e.g TEG, PV system,

FC system, wind turbine, etc.). On the other hand, when applied to systems

whereby the input-output map experiences multiple maxima, these controllers

may become ineffective and as a consequence, fail to converge to the GM. The

PV system is one of the example which experiences this phenomenon. When a

PV system is shaded this causes multiple maxima to occur. As a consequence,

it is crucial to search for the global maximum to make the PV system operate

under optimal performance (Doostabad, Keypour & Khalghani 2013). To make

the SDP-ESC scheme presented in Chapter 4 suitable for such systems, further

extension is required, an extended SDP-ESC scheme that searches for the global

maximum in the presence of local maxima is presented. Performance of the

proposed scheme is analysed via several static nonlinear functions with multiple

maxima.In order to develop a simplified scheme for the GM search based on an

extension of the SDP-ESC proposed in Chapter 4, the SDP-ESC scheme is kept

intact and a GM scanning scheme is added. Fig. 5.1 illustrates a block diagram of

the extended SDP-ESC scheme. The scheme comprises the GM scanning scheme

and the SDP-ESC. The GM scanning scheme does not interfere with the closed

loop dynamics therefore it is considered that the stability of the closed loop system

is not affected by the GM scanning scheme. Since the proposed scheme for the

GM is considered to be stable, stability analysis of the extended SDP-ESC is not
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presented in this Thesis. The reference signal governs the GM scanning process.

The scan process will always restart when a change in the reference is detected.

Detailed description of the proposed GM scanning mechanism is presented in

Section 5.2.1

Unknown plant

with multiple

maxima

Global maximum

scanning scheme

update

SDP-ESC

Reference signal

Input Output

Figure 5.1: Block diagram of the extended SDP-ESC scheme for global maxi-
mum search

5.2.1 GM scanning scheme

The GM scanning scheme comprises three subsystems namely: searching win-

dow, window control and memory (see Fig. 5.2). Below is the description of each

subsystem within a GM scanning scheme:

Searching window:

The function of the searching window within the GM scanning scheme is to

initialise the control input of the SDP-ESC denoted û at different points. Ini-
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tialisation is based on prior knowledge of the system’s operational range. For

instance, a PCU operational range usually has a duty cycle which varies between

0% to 100% and hence the searching window can be initialised between 0 to 1.

The searching window can be initialised using a look-up table of data points.

However, the GM is efficiently searched when the searching window is treated as

a ramp signal. This will allow the scanning of all available maxima. The length

of the searching window is determined by the system operational range. For in-

stance, if the system operational range is between 0 to 10 the searching window

length will be 10. The minimum value of the searching window denoted Wmin

will be 0 and the maximum value of the searching window denoted Wmax will be

10. Input to the searching window subsystem is window control denoted Wc and

output is the initial point of the control input denoted uin.

Memory block:

The memory blocks stores the measured output denoted y and its corresponding

initialisation point at each time step. The amount of stored data depends on the

size of the searching window denoted W . Mathematically W is calculated as

W =
Tp

Ts

(5.1)

where Tp and Ts denote window period and sampling time, respectively. For

instance, if Tp = 2 and Ts = 0.1 therefore based on (5.1) W will be equal to 20.

This implies that 20 data points will be stored in the memory block.

Window control:

It governs the GM searching process by controlling the searching window. Every

time the reference signal (denoted as REF in Fig 5.2) such as the irradiance of

the PV system etc. changes, the scanning process will resume.
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Figure 5.2: Extended SDP-ESC scheme for global maximum search in the pres-
ence of local maxima

GM searching process

First, the searching window is initialised with Wmin. Also, the reference signal

is initialised as 0. The initialisation point of the searching window and output

measurements of the unknown plant are stored in the memory. If change on

reference signal occurs, then the searching window will be reset to Wmin. On

the other hand, if no change is detected in the reference signal the next step

will be to check whether the searching window has reached Wmax. When the

searching window equals to Wmax, the memory block will return the point which

corresponds to the GM. This is done by determining the highest value of the

output within the searching window period. The index of the searching window

corresponding to the highest output value is noted and the SDP-ESC will be

updated with u∗in, i.e., the index corresponding to the GM (highest output value).
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On the other hand, if the searching window has not reached to Wmax, then the

searching window will be incremented by a chosen step size denoted C. Once the

extended SDP-ESC converges to the GM, the searching (scanning) process will

stop until change in reference signal is detected causing the scanning process to

resume. Convergence speed to the GM is highly dependent on C. If the searching

window is incremented by a smaller C this will result in a slow convergence speed

to the GM. However, it will usually guarantee convergence to the actual GM.
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Searching window =Wmin

Store input/output
measurements

No
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Reference signal

changed ?

Searching window==Wmax
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to the GM

Searching window=Searching window+C

Reference signal

changed ?

end

Figure 5.3: Flow chart for global maximum searching using extended SDP-ESC
scheme

101



5. Extended SDP extremum seeking control

5.3 Simulation study

This section presents simulation examples of several functions with multiple max-

ima to demonstrate the ability of the extended SDP-ESC to search the GM in

the presence of local maxima. Examples in Sections 5.3.1, 5.3.2 and 5.3.3 are also

considered by Tan et al. (2009) and Azar, Perrier & Srinivasan (2011). These

examples are based on assumptions that there is no input/output dynamics to the

system. A simulation study for a plant with input/output dynamics is presented

in Section 5.3.4.

5.3.1 Static nonlinear map: Example 1

Consider a static nonlinear map presented as sum of exponentials as

j(u) = e 1

(1+0.2u2)
+ e

1

(1+5(u−15)2) (5.2)

j(u) has two local maxima at u = 0 and u = 15. The GM is located at u = 15.

Fig. 5.6 illustrates the input-output map of the system given in (5.2) (i.e., the

map searched using the PESC, the SDP-ESC and the extended SDP-ESC). As

shown in Fig. 5.4, both the PESC and the SDP-ESC converge to local maximum

at u = 0. According to Azar, Perrier & Srinivasan (2011), global PESC scheme

proposed by Tan et al. (2009) was unable to converge to the accurate GM.

On the other hand, the extended SDP-ESC converges to the GM due to its

pre-scanning mechanism, which allows to the scanning to all available maxima

within a W . Once the extended SDP-ESC has converged to the GM, it thereafter

decays exponentially to minimise limit cycles (see Fig 5.5). W of the extended

SDP-ESC is incremented as a ramp input and initialised between −1 and 20.

Since both maxima are located between −1 and 15, the searching period of 20s

(see Fig. 5.4) is considered enough to the reach maximum value of the W . Given
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that Ts = 0.01s and Tp = 20s therefore, maximum size of the W is calculated

using (5.1) as: W =
Tp

Ts
= 20

0.01
= 2000 samples. Table 5.1 illustrates the tuning

parameters of the PESC, the SDP-ESC, and the extended SDP-ESC.

Parameter PESC SDP-ESC Extended SDP-ESC
α - 10−6 5 ⋅ 10−6

β 0.1 0.1 0.1

ωh [ rads ] 2.5 2.5 2.5

ω [ rad
s
] 5 5 5

ϕ [rad] π
2

π
2

π
2

W [Tp
Ts
] - - 2000
k 1 1 1

Cp - 2 2
Cz - 1 1

Table 5.1: PESC and SDP-ESC and extended SDP-ESC tuning parameters for
the global maximum search of example in Section 5.3.1
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Figure 5.4: Control input for PESC, SDP-ESC and extended SDP-ESC for
global maximum search of example in Section 5.3.1
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5.3.2 Static nonlinear map: Example 2

Consider a static nonlinear map of the 6th order polynomial given as

j(u) = −u6
+

1

10
u5
+

623

400
u4
−

659

4000
u3
−

11287

20000
u2
+

259

4000
u +

637

20000
(5.3)

The polynomial given in (5.3) has three maxima at u = −0.8985, u = 0.0 and

u = 0.8951. The global maximum is located at u = −0.8985. The maxima of (5.3)

are located between −1 and 2. As in example 5.3.1, in 5.3.2 the W is incremented

as a ramp input. Ts = 0.01 is selected, therefore based on (5.1), W = 200 samples.

As shown in Fig. 5.7, both the PESC and the SDP-ESC converge to the nearest

local maximum at u = 0. On the other hand, the extended SDP-ESC converges

to the GM at u = −0.8985 within 1s. Compared to the PESC and the SDP-

ESC, the extended SDP-ESC is able to scan all available maxima (see Fig. 5.9)

and accurately converge to the GM (see Fig. 5.8). The tuning parameters (i.e.

β,ωh, ω,ϕ,Cp,Cz) of the PESC, the SDP-ESC, and the extended SDP-ESC for

system in (5.3) are the same as the system in (5.2). However, k = 5 for controllers,

α = 2.5 ⋅ 10−6 for the SDP-ESC and α = 3.5 ⋅ 10−6 for the extended SDP-ESC.

5.3.3 Static nonlinear map: Example 3

Consider a static nonlinear map presented as

j(u) = −3u4
+ 64sin2u3

+ 12u2
+ 4u − 80 (5.4)

The static nonlinear map in (5.4) has several maxima and a unique GM at u =

1.68. The maxima of the system in ( 5.4) are located between −2 to 1. Similar to

the previous examples, Ts = 0.01 is selected. Using Ts and Tp therefore W = 100

samples. As shown in Fig. 5.10, both the PESC and the SDP-ESC converge to the

local maximum at u = −1.15. On the other hand, the extended SDP-ESC scheme
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Figure 5.7: Control input for PESC, SDP-ESC and extended SDP-ESC for
global maximum search of example in Section 5.3.2
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Figure 5.8: Output of example 5.3.2

converges to the GM at u = 1.68. Fig. 5.11 illustrates the output of (5.4) with the

PESC, the SDP-ESC, and the extended SDP-ESC. It require approximately 2s for
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Figure 5.9: Input-output map of example 5.3.2

the extended SDP-ESC to converge to the GM and less than 10s to exponentially

decay in order to reduce oscillations. Fig. 5.12 illustrates input-output map of

system in (5.4) searched using the PESC, the SDP-ESC and the extended SDP-

ESC. Compared to the PESC, the SDP-ESC, the extended SDP-ESC is able to

scan all available maxima within operating range and converge to the actual GM.

Remark 4 β of the extended SDP-ESC should be selected such that it is small,

but sufficient, to perturb the system. When a large β is selected the extended SDP-

ESC may result into large oscillations, i.e., equivalent to those of the standard

PESC.
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Figure 5.10: Control input for PESC, SDP-ESC and extended SDP-ESC for
global maximum search of example in Section 5.3.3

0 5 10 15 20
−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

Time[s]

O
ut

pu
t

 

 

PESC
SDP−ESC
Extended−SDP−ESC

Figure 5.11: Output of example in Section 5.3.3
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Figure 5.12: Input-output map of example in Section 5.3.3

109



5. Extended SDP extremum seeking control

5.3.4 Plant with dynamics: Example 4

Consider a nonlinear system given as

j(u) = −u6
− 3u3

+ u + 1 (5.5a)

Di(s) = 1

3s + 1
(5.5b)

Do(s) = 1

0.2s + 1
(5.5c)

where, j(u) in (5.5a) has two maxima j1 = 2.12 and j = 1.21 at u = −1.11 and u =

0.33, respectively. Di(s) and Do(s) are input and output dynamics, respectively.

The maxima are located between −2 and 3. Ts = 0.01 is selected, therefore

based on (5.1), W = 300 samples. As illustrated in Fig. 5.13, both the PESC

and the SDP-ESC converge to the neighbourhood maximum at u = 0.33. On

the other hand, the extended SDP-ESC converges to the GM at u = −1.11. As

shown in Fig. 5.14, due to the presence of the input/output dynamics, the time

taken for the extended SDP-ESC to converge to the GM is increased. It takes

approximately 30s for the extended SDP to converge to the GM and another 20s

to exponentially decay the perturbation gain in order to minimise oscillations.

Table. 5.2 presents the tuning parameters for the PESC, the SDP-ESC and the

extended SDP-ESC.

Parameter PESC SDP-ESC Extended SDP-ESC
α - 10−6 10−6

β 0.1 0.1 0.1

ωh [ rads ] 2.5 2.5 2.5

ω [ rad
s
] 5 5 5

ϕ [rad] π
2

π
2

π
2

k 1 1 1

W [Tp

Ts
] - - 300

Cp - 2 2
Cz - 1 1

Table 5.2: PESC and SDP-ESC and extended SDP-ESC tuning parameters for
plant with dynamics
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Figure 5.13: Control input for PESC, SDP-ESC and extended SDP-ESC for
plant with dynamics
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Figure 5.14: Output of example in Section 5.3.4
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5.4 Critical appraisal and conclusions

In this chapter, a novel scheme for the GM search in the presence of local max-

ima has been presented. The scheme is based on an extension of the SDP-ESC

scheme presented in Chapter 4. The extended SDP-ESC algorithm has been

demonstrated using several examples comprised of multiple maxima. The pro-

posed scheme has been shown to be effective in converging to the GM regardless of

the available number of maxima. Some of the advantages of the proposed scheme

are: it preserves the stability and simplicity of the SDP-ESC, it converges quickly

to the GM, it can be applied for local maxima search, and it is does not require

any cost function. The convergence period is based on the control input opera-

tional range as well as the step size of the searching window. When a large step

size is selected, a faster convergence speed to the GM will be achieved. However,

when very a large step is selected the extended SDP-ESC may barely converge

to the true GM. On the other hand, a smaller step will guarantee convergence to

the true GM almost every time. This may however result in a slow convergence.
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Chapter 6

Simulation study: Application in

thermoelectric generator systems

6.1 Introduction

This Chapter presents simulation studies of the MPPT algorithms discussed in

Chapter 2, 3 and 4 in application to the TEG system. Some of the results in this

Chapter were also published in Phillip et al. (2013). In the last decade, inves-

tigation into TEGs for waste heat recovery in automotive applications has seen

several advancements and the operational understanding of TEGs as a system has

significantly improved. This is attributed to initial developments of models for the

estimation of fuel economy benefits (Hussain, Brigham & Maranville 2009, Sto-

bart & Milner 2009), more in-depth modelling and design of heat exchangers

(Crane & Jackson 2002, Esarte, Min & Rowe 2001) and TE module subsys-

tems (Montecucco, Buckle & Knox 2012, Lineykin & Ben-Yaakov 2007), as well

as research into material selection (Rowe 2005, Snyder & Toberer 2008). As

aforementioned in Chapter 1, despite these advances the science of TEGs still

remains open to research in many areas. One such area is the optimisation of the

electrical interface between a TEG system and a load for mismatch reduction.

113



6. Simulation study: Application in thermoelectric generator systems

MATLAB/Simulink has been used for the modelling and simulation of the TEG

system as well as for the implementation of the control strategy. This chapter

is organised as follows: Section 6.2 and Section 6.3 present an overview of the

TEG system and modelling of the PCU subsystem, respectively. Section 6.5 and

Section 6.6 presents two Phases of simulation studies, i.e., Phase I and Phase

II, respectively. Phase I presents advantages of using an MPPT algorithm as

well as comparison between P&O and PESC algorithms. Section 6.5.1 presents

findings and observations of the simulation study of Phase I. Phase II presents

improved results with the use of the VBS-ESC and the SDP-ESC, where PESC

and LBS-ESC serves as benchmarks. Section 6.7 presents critical appraisals and

conclusions.

6.2 TEG overview

TEGs are devices which use a temperature difference to generate electricity. The

conversion is based on the phenomenon known as the Seebeck effect, named after

Johann Seebeck who discovered the phenomenon in the early 18th century (Rowe

2005). Essentially such an effect is formed, when two dissimilar metals of N-type

and P-type semiconductor material are connected together and give rise to a

thermoelectric module (TEM), as shown in Fig. 6.1. By keeping the junction of

these metals at different temperatures an electric voltage is generated. However,

the generated voltage depends on other factors such as size of the TEM and the

types of materials used. Performance of the material is typically quoted using

the figure of merit denoted Z (Rowe 2005). The figure of merit Z of the material

is given as

Z =
σS2

kth
(6.1)

where, σ denotes electrical conductivity (S/m), kth denotes thermal conductivity

[ W
m.K
] and S denote the Seebeck coefficient [ V

K
]. For the intended automotive

114



6. Simulation study: Application in thermoelectric generator systems

Figure 6.1: Thermoelectric module (TEM)
(Snyder & Toberer 2008)

application, the heat source to provide the hot side is taken from the exhaust

as shown in Fig. 6.2. To ensure minimal degradation to engine performance

and emissions, the TEG unit is positioned between the catalyst and the muffler,

which is also beneficial for packaging purposes. To provide the cold side, either

the coolant circuit from the engine is used or in the case of hybrid-electric vehicles,

the coolant loop for the power electronics and electric motors can also be used.

The converted electrical energy that is generated, given a temperature difference,

is used to charge the 12V battery. Due to transient unsteady heat flow, electrical

output varies throughout the operation. The steady flow that is required however

is made possible by making use of a PCU which contains a DC-DC converter with

a MPPT algorithm to regulate the required voltage and simultaneously output
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6. Simulation study: Application in thermoelectric generator systems

the maximum possible power for the highest PCU efficiency.

Figure 6.2: Block diagram of waste heat recovery from engine exhaust
(Phillip et al. 2013)

The TEG model developed by Phillip et al. (2013) has been used as a tool to

investigate the performance of the developed MPPT algorithms in this Thesis.

The TEG model comprises three systems, namely: HX, TEM and PCU. Fig. 6.3

illustrates the input/output relations between the individual subsystems. Inputs

to the HX subsystem are: exhaust temperature denotes Te(K), coolant inlet

temperature denotes Tw(K), exhaust mass flow rates denotes ṁe [kgs ] and coolant

inlet mass flow rates ṁw [kgs ]. The gas to liquid HX takes these four inputs to

simulate the hot and cold side temperatures, Th(K) and Tc(K), for the TEM.

The TEM system utilises hot and cold side temperatures as the input to generate

the voltage, Vin(V ), and current,Iin(A) as its outputs. Equations (A.1a) and

(A.1b) are used within the TEM to compute Vin and Iin. Vin and Iin are used as

inputs to the PCU where the voltage, Vout and current Iout are the outputs. The

resulting power out to the load is regulated at 14.4V by a synchronous DC-DC

buck-boost converter. The load in this case is the 12V car battery. Based on
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6. Simulation study: Application in thermoelectric generator systems

the fact that the contributions in this Thesis are focused on the PCU subsystem

further more emphasis (details) on modelling of the PCU will be given in the

forthcoming sections. Further detailed description of the TEG model in given is

appendix A

HX

Te ṁe Tw ṁw

TEM

Vin

Iin

PCU

Vout

Iout

TEG

ThTc

Figure 6.3: TEG model integration of subsystems

6.3 Power conditioning unit (PCU) modelling

As aforementioned in Chapter 1, a PCU comprises the DC-DC converter and the

MPPT controller. One of the key factors in designing TEG systems is to match

the impedance between the TEG and the load. Mismatch power loss of a TEG

system is due to its transient nature and variance in the temperature distribution

of the heat source; and also because of the connection topology of the TEMs. If

all the TEMs in the system are connected in series, the mismatch in power output

occurs due to the drastic change in the temperature gradient along the length of

the HX where TEMs at lower temperatures act in a parasitic manner onto the
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TEMs at the high temperature region. The need for a PCU is thus essential in a

system which comprises of unstable heat sources and loads for outputting power

at a fixed voltage.

6.3.1 DC-DC converter modelling

A DC-DC converter is an electronics circuit that converts a source of DC from

one voltage level to another (Maganga, Larkowski & Burnham 2012). There are

several DC-DC converter topologies which can be used within a PCU. For in-

stance, in Phillip et al. (2012), two DC-DC converters namely the single ended

primary inductor capacitor (SEPIC) and the buck-boost converter were used

within the PCU where the latter is suggested to provide higher efficiency. Taking

into account the advantage of stepping up or down without inverting (reversing

terminals) its output voltage as well as having higher efficiency than a standard

buck-boost, in this Thesis a synchronous DC-DC buck-boost converter is con-

sidered. As shown in Fig. 6.4, a synchronous DC-DC buck-boost comprises of

an input filter capacitor denoted Cin, a Schottky power diode denoted D4, three

metal-oxide-semiconductor field-effect transistors (MOSFETs) denoted M1, M2,

M3, and an output filter capacitor denoted Cout. The Schottky power diode D4

replaces the commonly used fourth MOSFET to block the reverse current flow

and prevent the battery connected at the output from discharging through the

converter during discontinuous conduction mode (DCM). Also, M1 and M3 and

must be on-state while M2 is in the off-state. The converter provides a control-

lable and/or constant output DC voltage despite variation of the input voltage.

Similar to the standard buck-boost converter, the synchronous DC-DC buck-

boost converter operates in two different modes, namely a continuous conduction

mode (CCM) and a DCM. In CCM, the inductor current flows continuously for

the entire period and never falls to zero. On the other hand, in the DCM, the in-
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Figure 6.4: Schematic diagram of a synchronous DC-DC buck-boost converter
(Maganga et al. 2014)

ductor current reduces to zero and remains at a zero level for the remainder of the

period before it begins to rise again (see Fig. 6.5). In this Thesis, the synchronous

DC-DC converter is considered to operate in the DCM mode. Advantages of the

DCM operation over the CCM are: no zero is located at the right half plane in

the s-domain which allows for a higher transient response bandwidth. Zero in

the right half plane in s-domain is nearly impossible to compensate. Also, while

operating in DCM, the converter is considered to have a single pole transfer func-

tion which is easier to compensate for compared to a double pole response. On

the other hand, compared to CCM, DCM requires larger inductors/transformers

for the same output power. A high-fidelity white-box model of a synchronous

DC-DC converter with each component modelled by including its corresponding

physical characteristics, is developed in Simulink/Simscape environment. Conse-

quently, it is deemed that this model provides a realistic representation of a real

synchronous DC-DC buck-boost converter. Here, a synchronous DC-DC buck-

boost converter for a low power application with a variable input voltage and the

output voltage regulated at 12V is considered.

In order to design a synchronous DC-DC buck-boost which provides high effi-

ciency, the design criteria plays a major role. One such criteria is the appropriate
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ILIL

dTsdTs TsTs TT

CCM operation DCM operation

Figure 6.5: Waveform for CCM and DCM, where dTs denote period when
switch is closed and Ts denote switching period

sizing and selection of individual components, in particular, elements that result

in low power losses. Here, the component sizing focuses on the selection of the

inductor and the output filter capacitance. Components are sized to allow the

synchronous DC-DC converter to operate at a switching frequency of 20kHz.

The minimal value of the inductance required, i.e. Lmin, is calculated as

Lmin =
RL(max)

2fs
(1 − dmin)2 (6.2)

where: RL(max) is the maximal load resistance, fs is the switching frequency and

dmin is the minimal duty cycle. The minimal value of the output filter capacitance

Cmin is calculated as follows

Cmin =
dmin

fsRL(min)

Vout

Vrcpp

(6.3)

where: RL(min) is the minimum load resistance, Vout is the output voltage and

Vrcpp- the ripple voltage across the filter capacitor. As the Vout is considered to be

constant, a change in the input voltage Vin and the duty cycle d will only affect

the output current Iout. At steady-state the input current Iin and the output

current Iout are related as

Iout =
(1 − d)

d
Iin (6.4)
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Name Unit Value
Inductor (L) uH 33

Input capacitor (Cin) uF 470
Output capacitor(Cout) uF 220

Diode forward voltage(VD) V 0.8
On resistance MOSFET (Ron) Ω 0.008

Table 6.1: Design parameters for synchronous DC-DC buck-boost converter
model

6.3.2 Control technique modelling:

The control strategy for the MPPT converter is implemented in two different

subsystems, namely the pulse width modulator (PWM) and the MPPT controller.

The PWM is modelled such that it compares the ramp signal with the variable

duty cycle which is generated by the MPPT controller. If the difference of these

signals is greater or equal to 0, then the value will be held at the same value

for one period and then wait for the new value of the duty cycle. The resultant

waveform in Fig. 6.6 illustrates the PWM generated for the variable duty cycle.

The MPPT controller is implemented with 5 different control algorithms which

are: P&O, PESC, LBS-ESC, VBS-ESC, and SDP-ESC and their Simulink models

are presented in appendix B.

6.4 MPPT performance criterion

There are several ways of assessing the performance of a given system. For

instance, the performance can either be assessed based on tracking error, MPPT

efficiency or percentage accuracy, etc. (see definition in section ) The performance

criterion for the MPPT converter can either be measured by energy efficiency,

available power or input voltage at the MPP. Energy efficiency at MPP is given

as

ηe =
Pcov

Pmpp

100% (6.5)
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Figure 6.6: Block diagram for the pulse width modulation (PWM)

where: ηe denotes MPPT converter efficiency, Pcov denotes power absorbed by

the converter and Pmpp denotes power available from the TEG. For the TEG it is

considered that at MPP, the input voltage is half of the open circuit due to load

matching, i.e.,

Vin = Vmpp =
Voc

2
(6.6)

Theoretically the maximum available power from the TEG can be calculated as

Pmpp =
V 2
oc

4Rin

(6.7)

where: Rin is the internal resistance of the TEG. Hereafter criterion (6.5), (6.6)

and (6.7) will be used as the performance index as well as other factors such as

speed of convergence and limit cycle minimisation.
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6.5 Simulation study: Phase I

This section presents the simulation results of the TEG with the use of a fixed duty

cycle, P&O and PESC algorithms. When a MPPT controller is not used within

the PCU (i.e. a synchronous DC-DC converter is driven by a fixed duty cycle) this

is termed as a fixed duty cycle control. Operating a converter with a fixed duty

cycle is aimed to demonstrate the benefits of using a MPPT controller. When the

synchronous DC-DC converter is driven at a fixed duty cycle, simulation results

show that it is only for the 700K to 800K temperature range that a reasonable

output power is achieved. Table. 6.2 presents a range of fixed duty cycle values

for various temperatures as well as corresponding input voltage values at matched

load for the specific system configuration. This is considered to be due to the

inability of the controller to remove the mismatch of the internal resistance values

between the TEG and the DC-DC converter over a wider range of temperatures.

When a fixed duty cycle is used, it implies that the controller will provide

optimal performance only at a specific operating point. This justifies the need for

an MPPT controller. For the results presented in this Section, the fixed duty cycle

has been set to 48.53% for optimal performance at 700K. At the user’s discretion

the duty cycle can be changed for high efficiency at different temperature ranges.

Knowing the characteristic of a TEG system, a look-up table can be used to store

optimal duty cycle values at different operating temperatures. This process, i.e.,

an empirical process, however only works for a specific configuration. ESC on

the other hand, i.e., non-constraints based, can be reconfigured to any system

(e.g. a different power source). The duty cycle can be calculated using (6.4) if

the DC-DC converter input voltage at match load is known. Table. 6.3 shows the

output power of the TEG comparing the implementation of a fixed duty cycle,

P&O and ESC (i.e. PESC), as well as the efficiencies of each MPPT method

compared to ideal matched load (power at MPP ) results. For the simulation

123



6. Simulation study: Application in thermoelectric generator systems

∆T (K) Vmpp d% VBat

600 10.93 56.85 14.4
700 15.27 48.53
800 19.68 42.25
900 24.11 37.39

Table 6.2: Optimum duty cycle at corresponding temperatures

results presented, the hot side temperature varies from 600K to 900K and the

cold side temperature is maintained at 363K. Simulation results demonstrate

that both the P&O and the PESC converge to a similar output power. When

compared to the P&O however, the output power of the PESC converges much

faster to the MPP, as is illustrated in Fig. 6.7.

Figure 6.7: Simulation results for theoretical power, output power with ESC,
P&O and Fixed Duty Cycle: Losses reduced to within 5%

(Phillip et al. 2013)
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Power at MPP Fixed d Fixed d P& O P& O PESC PESC
Temp(K) P(W) P(W) ηe% P(W) ηe% P(W) ηe%

600 47.61 40.80 85.70 46.50 98.19 47.40 99.56
700 90.00 87.40 97.11 88.37 98.18 89.00 98.87
800 144.72 132.60 91.63 141.00 97.43 142.50 98.47
900 210 177.60 83.37 204.40 97.10 206.60 98.15

Table 6.3: TEG results with different MPPT algorithms

6.5.1 Findings and observations

The results obtained in Phase I show that the PESC MPPT algorithm in combi-

nation with a synchronous buckboost DC-DC converter is able to condition the

output power of the TEG device effectively. This finding reinforces the case for

utilising the PESC approach as a candidate for an efficient MPPT algorithm for

use in PCUs for TEGs. After conducting experimental work using hardware in the

loop (HIL) testing however, these findings were inconclusive. Limitations found

in the HIL testing are discussed in detail in Chapter 7. These findings lead to the

development of the novel algorithms presented in previous chapters. Upcoming

sections present simulation studies of the TEG with novel MPPT schemes.

6.6 Simulation study: Phase II

This Phase presents improved results at both transients and steady-state. Perfor-

mance of the PESC, the LBS-ESC, the VBS-ESC and the SDP-ESC were anal-

ysed using an emulated TEG Simulink model. Convergence speeds of the MPPT

algorithms were determined by setting the PSU voltage at 12V and Rin = 6.8Ω.

In order to achieve a fast convergence speed, the SDP-ESC was initialised with

a large value of k, therefore no compensator was needed within SDP-ESC feed-

back loop. The compensator was omitted simply by setting values of Cz and

Cp equal to 1. Also, as aforementioned in Chapter 3, the LBS-ESC MPPT al-

gorithm required linearisation (computing its Jacobian) around its equilibrium.
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The Jacobian of the LBS-ESC is calculated using the design parameters shown

in Table. 6.4. Substituting these parameters in (3.41) in Section (3.4.1), the

Jacobian is given as

J =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 20 0

−2.5 −50 0

0 0 −25

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6.8)

Utilising (6.8), the P matrix of the Lyapunov function is obtained by solving

(3.42) in Section 3.4.1. The P matrix is given as

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.59 −0.025 0

0.025 −0.0113 0

0 0 −0.02

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6.9)

The symmetric matrix of P , i.e., Q, is selected as identity (i.e.)

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0

0 −1 0

0 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6.10)

The Lyapunov function V (xβ) governs switching based on the calculation of

x̃β which comprises of ũβ. Inaccurate estimates of ũβ may cause the LBS-ESC

to fail to satisfy the switching conditions. This can either cause the LBS-ESC

to generate into the standard PESC, or fail to adapt the changes due insufficient

perturbation to the LBS-ESC scheme. This problem can be avoided by selecting

appropriate parameters for ǫlbs and g. On the other hand, it is relatively difficult

to obtain appropriate values for ǫlbs and g for a wide range. Simulation results

shows that while the PESC, the LBS-ESC and the VBS-ESC take around 250ms

to reach steady-state, the SDP-ESC take only 150ms to converge to the steady-

state (see
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Figure 6.8: Simulation results of Vmpp, Impp and d using PESC, LBS-ESC, VBS-
ESC and SDP-ESC MPPT algorithms

Fig. 6.8). Once the SDP-ESC enters stable limit cycle, it then requires an-

other 100ms to decay exponentially in order to minimise electrical losses within

the PCU. Although both LBS-ESC and VBS-ESC minimises losses, both require

a much longer time to converge compared to the SDP-ESC. Fig. 6.11 illustrates

the variance of the state x̂ with respect to time. The variance of the signal x̂ is
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Figure 6.9: Variance of state x̂ for SDP-ESC scheme

Parameters PESC LBS-ESC VBS-ESC SDP-ESC
k 20 20 20 25
β 0.05 0.05 n/a 0.05

βmax n/a n/a 0.05 n/a
βmin n/a n/a 0.01 n/a

ω 250 250 250 250
ωh 25 25 25 150
ωl 50 50 50 100
φ 0 0 0 0
α 10−5 n/a n/a n/a

Cp n/a n/a n/a 1
Cz n/a n/a n/a 1
g -0.05 n/a n/a n/a

ǫlbs n/a -0.0565 n/a n/a
ǫvbs n/a 0 2.5 ⋅ 10−6 n/a

Table 6.4: Tuning parameters for PESC, LSB-ESC, VBS-ESC and SDP-ESC
MPPT algorithms

increases rapidly, which indicates that the SDP-ESC scheme starts with a higher

perturbation gain, and then decreases in order to minimise oscillations. Also, the

performance of the MPPT algorithms at a different voltage range was tested by

increasing from 12V to 16V with increment of 2V .
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Simulation results shows that compared to the PESC, the VBS-ESC and the
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Figure 6.10: Simulation results for PESC, LBS-ESC, VBS-ESC and SDP-ESC
MPPT algorithms while PSU voltage increased from 12V to 16V
by step increment of 2V

LBS-ESC, the SDP-ESC achieves a faster convergence speed at different voltage

ranges (see Fig. 6.10). Although the VBS-ESC and the LBS-ESC achieve a sim-
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Figure 6.11: Variance of state x̂ for SDP-ESC algorithm while PSU voltage
increased from 12V to 16V by step increment of 2V

ilar performance on limit cycle minimisation, it is relatively difficult to optimise

LBS-ESC for optimal performance, due to its large number of tuning parameters.

Based on the fact that the adaptation within SDP-ESC is achieved through an in-

tegrator gain when change is detected, the variance will also increase and start to

decrease again as the system approaches steady-state. As shown in Fig. 6.11, the

variance change of state x̂ is detected at three different voltage steps: Voc = 12V ,

Voc = 14V and Voc = 16V . Moreover, the performance of the MPPT algorithms for

a varying voltage (i.e., increasing or decreasing), was performed by first increas-

ing the PSU voltage from 12V to 16V and then reducing it from 16V to 14V .

As shown in Fig. 6.13 Compared to the LBS-ESC, both the VBS-ESC and the

SDP-ESC consistently perform for the entire tested range. On the other hand,

LBS-ESC was unable to converge to the optimal current and voltage due to the

failure of the switch within the LBS-ESC scheme to detect change (see Fig. 6.15).
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Figure 6.12: Lyapunov function for the LBS-ESC while PSU voltage increased
from 12V to 16V by step increment of 2V
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Figure 6.13: Simulation results for PESC, LBS-ESC, VBS-ESC and SDP-ESC
MPPT algorithms while PSU voltage increased from 12V to 16V
and then reduced from 16V to 14V
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Figure 6.14: Variance of state x̂ for VBS-ESC algorithm while PSU voltage
increased from 12V to 16V by step increment of 2V

0 0.5 1 1.5 2 2.5 3

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

Time[s]

Ly
pu

no
v 

fu
n

 

 

Lyapunov fcn
Switch threshold

Figure 6.15: Lyapunov function for the LBS-ESC while PSU voltage increased
from 12V to 16V and then reduced from 16V to 14V

133



6. Simulation study: Application in thermoelectric generator systems

6.7 Critical appraisal and conclusions

In this Chapter, two phases of simulation studies were presented. In Phase I,

simulation results for the P&O and the PESC algorithms for the TEG were

presented. Also, the benefit of using MPPT algorithms within the TEG was

demonstrated by operating with and without (i.e. fixed duty cycle) MPPT al-

gorithms. Simulation results show that in comparison to P&O, PESC achieves

a faster convergence speed. Due to the limitations of the PESC observed in

Phase I of hardware 7, Phase II presents improved results using novel MPPT

algorithms for both transients and steady-state. The VBS-ESC and the SDP-

ESC schemes were compared with PESC and LBS-ESC schemes. Compared to

others’ schemes, SDP-ESC achieves a faster convergence speed with minimised

electrical losses. This is due to an additional compensator as well as the ability to

be initialised with a large perturbation gain. Also, compared to LBS-ESC, both

VBS-ESC and LBS-ESC consistently perform for a varying source voltage.
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Chapter 7

Experimental work

7.1 Introduction

This Chapter presents two Phases of the experimental validation of the simulation

results presented in Chapter 6. Phase I demonstrates the performance of current

existing MPPT algorithms and their limitations. In this phase, three different

analyses were performed, namely, steady-state, transient using emulated TEG

and transient via actual TEG. Steady-state analysis is conducted to investigate

limit cycles and losses within the PCU. Transient analysis using emulated TEG

is aimed to test the performance of the MPPT algorithms and their adaptation

capability under rapid variations of terminal voltage. On the other hand, tran-

sient analysis with the real TEG system aims to investigate the performance of

the MPPT algorithms for the slow dynamics of the TEG. The results of the ex-

perimental validation Phase I were published in Maganga et al. (2014). Phase

II presents improved results with the use of the VBS-ESC and the SDP-ESC for

similar analysis as that of Phase I. This chapter is organised as follows. Sec-

tion 7.2 provides a description of the experiment-set up for Phase I. Section 7.2.5

and 7.2.6 presents experimental results with emulated TEG and actual TEG,

respectively. Section 7.2.7 presents findings and observations of the experimental
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Phase I. Section 7.3 describes the set-up of the experimental Phase II. This is

followed by experimental results in Section 7.3.2 with emulated TEG and actual

TEG in Section 7.3.3, utilising novel algorithms.

7.2 Experiment-setup: Phase I

This section describes the instrumentation and devices used to gather the exper-

imental results obtained with actual TEGs and with an emulation behaviour of

the TEGs. The actual TEG is used for transients analysis whereas emulation be-

haviour of the TEG is used for steady-state and fast transients analysis. Fig. 7.1

illustrates the schematic diagram of the connections between instrumentations

and devices used for experimental tests. A battery is emulated using a PSU

connected in series with an electronic load in constant-resistance mode, whereas

TEG is emulated using a PSU connected in series with a resistor. A synchronous

DC-DC buck boost converter is interfaced between the source (TEG/PSU) and

the emulated battery. Inputs to the synchronous DC-DC converter are: current

and voltage (i.e. Vin, Iin). Outputs of the converter are: voltage and current

(i.e. Vout, Iout). Inputs and outputs of the converter are fed to dSPACE (i.e.

MicroAutobox) as analog inputs which are used to manipulate the control inputs

of the converter via MPPT algorithms implemented in MATLAB/Simulink in a

PC. The manipulated control input is used to drive the PWM1 and PWM2 (see

Fig. 7.1).

7.2.1 Synchronous DC-DC converter

The synchronous DC-DC buck-boost converter provided by Glasgow University

was used for testing MPPT algorithms. The schematic of the synchronous DC-DC

converter and its principle of operation were presented in Chapter 6. Input and

output currents of the converter are sensed through the differential amplification
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Buck/
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VBS-ESC, and SDP-ESC

Vin, Iin Vout, Iout

MATLAB/Simulink (PC)

TEG or PSU Battery emulation

Figure 7.1: Schematic diagram of the connections between instrumentals and
devices used for the experimental tests

of the voltage across high precision/ power sense resistors placed in series with the

converter’s input and output terminals. The nominal input power of the converter

is 35W at 17.5V,2A. Its electrical efficiency at 34W input power (11.35V,3A) is
88.2%. The converter’s printed circuit board (PCB) is shown in Fig. 7.2.

Sensor accuracy

The synchronous DC-DC buck boost converter (see the schematic diagram in

C.2) comprises of two current sensors: one for the input and one for the output

current measurements. Each of the sensor has ±10% error. A small value of

sensing resistor is used in order to keep the voltage drop on it small (with minimal

losses). The voltage drop across the resistor is then amplified by a factor of 100 by

a differential amplifier. The differential amplifier has a differential input voltage

offset (in millivolts) that constitutes an error. This error is the which is amplified
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Figure 7.2: Picture of the top layer of the converters PCB. The bottom layer
hosts the inductor and the capacitors.

by the differential amplifier, resulting in a fixed offset error in both input and

output measurements.

7.2.2 dSPACE interface

The MicroAutoBox is a portable dSPACE hardware used for real-time application

to perform various rapid control prototyping. MicroAutoBox is used in Phase I

for hardware in the loop (HIL) testing. It comprises of multiple in-built PWM

channels of which two are used to drive the MOSFET gate drivers of the syn-

chronous buck-boost the DC-DC converter. Via the ’drives control center aligned’

feature in the MicroAutoBox a dead-band of 400ns between PWM1 and inverted

PWM2 is initialised. It provides a maximum switching frequency fs of 20 kHz
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which is used as the switching frequency for the converter. Four of the analog

to digital converter (ADC) channels in the MicroAutoBox are used for obtaining

measurements (Vin, Vout, Iin and Iout).

7.2.3 TEG test rig and electrical characterisation

In Phase I, the test rig provided by Glasgow University was used for testing

the MPPT algorithm testing. Two commercial 40mm x 40mm TEG modules

(GM250-127-14-10) were used in the experimental tests. Both TEG modules were

tested separately to obtain their individual electrical characteristics at a constant

mechanical load in the test fixture of 1920N , for three different temperature gra-

dients: 100 ○C, 150 ○C and 200 ○C. The cold block water supply was maintained at

20 ○C for all Phase I testing. The assumptions proposed in chapter 3 and verified

in chapter 4 are confirmed by the experimental work in chapter 7. In particular it

can be observed on Fig. 7.3 that the TEG characteristics has a unique maximum

as stated in Assumption 3, is differentiable as stated in Assumption 1 and the

steady-state characteristic of the TEG is stable as stated in Assumption 2. The

resulting V-I and P-I curves for TEG 2 are presented in Fig. 7.3, while Table. 7.1

lists the important electrical parameters for both TEG modules. The last column

of Table. 7.1, namely variance, shows that the performance variance between the

power output of the modules tested is less than 1%. This slight difference may

be due to a small thermal impedance mismatch in the experimental apparatus or

due to TEG manufacturing tolerances. A consequence of this difference is that

when connected in series their combined output power will be slightly less than

the sum of the individual powers. It must also be noted that the true MPP might

be between two measured load values. The difference in power produced however

will always be less than 0.5%. Considering these factors and the variance data in

Table. 7.1, it can be concluded that the performance values provided in Table. 7.1

have a worst-case accuracy of 1% where V arPmpp = ∣Pmpp1 − Pmpp2∣.
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Figure 7.3: Electrical characterisation for TEG-2 and for three different tem-
perature gradients: 100 ○C, 150 ○C, and 200 ○C between the hot and
cold sides of the thermoelectric module.

(Maganga et al. 2014)

∆T (C) Rin(Ω) Voc(V ) Pmpp(W ) Rin(Ω) Voc(V ) Pmpp(W ) V ariance

100 1.81 4.52 2.82 1.79 4.51 2.83 0.6
150 2.01 6.91 5.91 1.97 6.86 5.92 0.2
250 2.16 8.83 8.97 2.14 8.83 9.04 0.8

Table 7.1: Electrical characteristics of the two TEG modules for three different
temperature gradients: 100 ○C, 150 ○C, and 200 ○C

7.2.4 Steady state analysis

The steady-state performance of the two MPPT algorithms was measured at three

different temperature gradients: ∆T = 100 ○C,150 ○C,200 ○C. Fig. 7.4 illustrates

the comparison of the P&O and the PESC algorithms with the experimental max-

imum TEG output power for the steady-state operation. Clearly, both algorithms

are able to accurately track the MPP within 5% of the maximum output. These
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results however are conservative and the power extracted by the two MPPT algo-

rithms is often even closer to the MPP. When compared to the simulated outputs,

the experimental results have a slightly lower accuracy which is due primarily to

the various losses not incorporated within the simulation model, as well as the

electrical noise present on the acquired data. Despite these issues, the algorithms

are shown to perform in an accurate manner at steady-state.

Figure 7.4: Steady-state performance of perturb and observe and ESC algo-
rithms for 100 ○C, 150 ○C, and 200 ○C temperature difference

(Maganga et al. 2014)

7.2.5 TEG emulation: fast transients analysis

The transient performance of the two MPPT algorithms is investigated using a

PSU in series with a fixed value (6.8Ω) power resistor to emulate the behaviour

of the TEG. The experimental set-up using the PSU is illustrated in Fig. 7.1.

This experiment demonstrates the ability of the P&O and the PESC to converge

to the MPP after fast changes in the open-circuit voltage. The PSU voltage is
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programmed to increase from 12V to 18V in 3V steps within 1 second. Figures 7.5

and 7.6 illustrate the results for P&O and PESC, respectively.

Figure 7.5: Converter’s operating input voltage during PSU open-circuit volt-
age transients (12V,15V,18V ) with the perturb and observe con-
troller. Expected theoretical input voltage would be: 6V,7.5V,9V .
Time div. = 100ms; voltage div. = 1V

(Maganga et al. 2014)

It is evident that for each PSU voltage both controllers converge to a value

very close to the MPP. Whilst P&O provides a smaller limit cycle oscillation

around the MPP, the PESC acquires the MPP faster, in around 50ms, compared

to 200ms for the P&O. Also, it can be observed in Fig.7.5 and Fig.7.6, that the

steady-state characteristics of the TEG system is stable as stated in Assumption

2. Whilst transient performance is assessed via experiment, due to the limitations

of the switching frequency fs in the MicroAutoBox, comparison of convergence

between P&O and PESC is not conclusive. As aforementioned, in order to con-

verge faster to the MPP, high values of β and k should be selected. This may

however introduce ripples to the input voltage. The ripples are more significant

when switching at a lower frequency. To avoid this problem, lower values of β
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and k were chosen, as a consequence, poorer convergence but good steady state

performance was observed.

Figure 7.6: Converter’s operating input voltage during PSU open-circuit volt-
age transients (12V,15V,18V ) with the ESC. Expected theoretical
input voltage would be: 6V,7.5V,9V . Time div. = 100ms; voltage
div. = 1V

(Maganga et al. 2014)

7.2.6 Transient analysis with actual TEG

The last two tests aimed to compare the operating points chosen by the MPPT

algorithms to the maximum estimated TEG power during a long temperature

gradient transient across the TEGs. In Fig. 7.7 the converter is running the P&O

algorithm. The TEGs are rapidly heated from ∆T = 100 ○C to ∆T = 200 ○C in

420s. In Fig. 7.8 the converter is running the PESC algorithm and the TEG

electrical connection is unchanged. The TEGs are cooled from ∆T = 200 ○C to

∆T = 100 ○C in 410 seconds. As aforementioned, the estimated TEG power pro-

vided by the mathematical fitting technique has a worse-case accuracy of 5% and
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this uncertainty range has been marked in the plots, denoted by Pmax and Pmin.

In both figures, the average temperature difference across both TEG modules is

also plotted for reference as ”Temp Diff AVG” Some points related to the power

extracted by the P&O and the PESC fall outside the Pmax − Pmin boundary.

The reason for this is that the two multimeter units used to measure voltage

and current were not synchronized, therefore the V-I values taken for each point

might not be referenced to the same time instant. The transient response time

of the MPPT algorithms is several orders of magnitude faster than the thermal

response time of the system; therefore this experiment effectively corresponds to

setting numerous steady-state thermal operating points. The results presented

show that both algorithms track the maximum available power with efficiency

close to 100%.

Figure 7.7: Thermal transient test of the TEGs from ∆T = 100 ○C to ∆T =
200 ○C, connected to the converter with the perturb and observe
MPPT algorithm. Tracking with accuracy around 5% the transient
maximum estimated TEG.

(Maganga et al. 2014)
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Figure 7.8: Thermal transient test of the TEGs from ∆T = 200 ○C to ∆T =
100 ○C, connected to the converter with the ESC MPPT algorithm.
Tracking with accuracy around 5% the transient maximum esti-
mated TEG.

(Maganga et al. 2014)

7.2.7 Findings and observations

In this phase of the experiment, multiple problems were observed. For instance,

the PESC was unable to excite the system with a smaller perturbation gain. Large

perturbations were therefore used to excite the system, which results into large

oscillations. Also, the advantage of the PESC over P&O seen in the simulation

study was inconclusive. This is thought to be due to the limited switching fre-

quency of the MicroAutoBox hardware used to implement the MPPT algorithms,

as well as the difficulty in obtaining the optimal PESC tuning parameters and the

effects of electrical noise during the data acquisition. In order to overcome these

issues, an additional phase of experiments was conducted. The latter sections

describe the experimental set-up and the improved results.
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7.3 Experimental set-up: Phase II

7.3.1 TEG test rig and electrical characterisation

A similar set-up as that of Phase I was also adopted in Phase II. Based on

the findings presented in Section 7.2.7, however, the MicroAutobox was replaced

by dSPACE board ds1104 in order to overcome the limitation of the switching

frequency. In this phase, a switching frequency of 50kHz was used to drive PWM1

and PWM2 of the synchronous DC-DC converter. Also, four commercial 62mm x

62mm TEMs provided by European Thermodynamics Ltd. (GM250-127-28-12)

were used in the experimental tests. Each of these modules is rated at P = 25W ,

Voc = 5.6V for ∆T=220 ○C. For more details on characteristics of the GM250-

127-28-12 see appendix C.3. From Fig. 7.9, A-denotes the control box, B-denotes

the thermocouple, C-denotes the heater block, D-denotes TE modules, E-denotes

the outlet channel, F-denotes the inlet channel, G-denotes the top end of the cold

plate and H denotes the inner side of cold plate. As shown in Fig. 7.9 the cartridge

heater block (10mm x 150mm) rated at 300W (see more details in appendix C.1)

was fitted at the bottom end of the rig and the coolant loop was created using 2mm

pipes. Water from the chiller was supplied to the test rig via 5-inlet and 5 outlet

channels. Fig. 7.10 illustrates the schematic diagram of the coolant loop of the

rig used in this phase of the experiments. To improve the thermal conductivity of

the TEMs, graphite sheets were placed between both the cold end and the TEMs

and the hot end and TEMs. The TEMs were place in a device designed from a

sandwich maker (see Fig. 7.9). Three thermocouples were used for reading cold

and hot side temperatures. Two of the thermocouples were fitted at the rear and

the front of the heater block, whereas one was fitted at the cold end. The heater

block was controlled by the control box (more details are given in appendix C.1).

The control box allows the temperature of the heater to be regulated at a certain

range depending on the desire of the user. As compared to Phase I, in Phase II
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Figure 7.9: Rig provided by ETL used for experiment tests phase II

A9

A8

A9

A8
Inlets

Outlets

Inlet

Figure 7.10: Schematic diagram of coolant of the rig used in experiment phase
II
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all modules were characterised as a group of four TEMs connected electrically in

series. Electrical characterisations of the TEMs was performed for 20 different

temperature gradients: 50 ○C to 140 ○C with increments of 5 ○C between the hot

and cold side of the TEMs. Table. 7.2 presents electrical characterisation of four

TEMs connected in series.

Th( ○C) Tc( ○C) ∆T ( ○C) Voc(V ) Vmpp(V )
202 62 140 5.6 2.8
195 60 135 5.5 2.75
189 59 130 5.4 2.7
183 58 125 5.3 2.65
176 56 120 5.2 2.6
170 55 115 5.18 2.59
164 54 110 5 2.5
158 53 105 4.8 2.4
151 51 100 4.6 2.3
145 50 95 4.47 2.235
138 48 90 4.3 2.15
132 47 85 4.18 2.09
126 46 80 3.9 1.95
120 45 75 3.7 1.85
116 46 70 3.5 1.75
110 45 65 3.3 1.65
105 45 60 3.1 1.55
98 43 55 2.8 1.4
91 41 50 2.5 1.25

Table 7.2: Electrical characterisation of four TEMs electrically connected in se-
ries

7.3.2 TEG emulation via power supply unit

The aim of this test is to validate the steady-state performance of the TEG seen

in Chapter 6. Also, it aims to demonstrate the ability of the SDP-ESC to track

fast transient of the TEG. For these purposes the PESC serves as benchmark.

For the steady-state analysis, the PSU was connected in series with a resistor

Rin = 3.2Ω and its voltage was maintained at 9.20V which is equivalent to the

open circuit voltage.
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Figure 7.11: Input current at MPP for emulated TEG at steady-state operation

Using (6.6) and (6.7) in Section 6.4, the theoretical power and input voltage

at MPP is given as

Vmpp =
9.2

2
= 4.6V

Pmpp =
9.22

4 ∗ 3.2
= 6.61W

Using values of Vmpp and Pmpp, the theoretical input current at MPP can be

calculated as Impp =
6.61
4.6
= 1.436A. Fig. 7.11 shows a steady-state comparison

of a conventional PESC scheme and an SDP-ESC scheme. At steady-state con-

ventional PESC results in large oscillations. Conversely, the SDP-ESC results

in significantly smaller oscillations (61.04% current ripple reduction) for Impp

at steady-state. Similarly, SDP-ESC also achieves smaller oscillation for Vmpp

(67.97% voltage ripple reduction) at steady-state, see Fig. 7.12. Fig. 7.13 illus-
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trates the duty cycle for both the PESC scheme and the SDP-ESC scheme while

the emulated TEG is operating at steady-state. Compared to the PESC, the

SDP-ESC achieves significantly smaller oscillations.
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Figure 7.12: Input voltage at MPP with emulated TEG at steady-state opera-
tion

Also, the PSU voltage was varied between 10V to 13.0V . Fig. 7.14 shows a

comparison of a typical input voltage for a conventional PESC scheme and an

SPD-ESC scheme. The upper plot in Fig. 7.14 shows the voltage at the extremum

Vmpp for the TEG system using conventional PESC and the lower plot shows the

voltage at the extremum Vmpp for the TEG system using an SDP-ESC. As can

be seen in Fig. 7.14, there is significantly less noise for the SDP-ESC than for

the PESC. This is due to the oscillations introduced by the PESC system when

large initial amplitudes are used. These oscillations hinder the performance of the

system and thus the SDP-ESC is clearly an improvement over the conventional

PESC method. Fig. 7.16 shows that similar performance is also achieved for the

current at the extremum Impp.

As shown in Figures 7.14 and 7.15, compared to conventional PESC, the SDP-
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Figure 7.13: Illustrates duty cycle for a standard ESC and SDP-ESC

ESC showing it is capable of keeping the consistency of oscillations minimisation

at different voltage levels see. Fig. 7.16 show a comparison of a typical input

voltage duty cycle for a conventional PESC and an SDP-ESC. Both the PESC

and SDP-ESC suffer from large oscillations in the duty cycle initially. However,

the oscillations on the SDP-ESC curve are reduced in a relatively short period

of time while the oscillations on the PESC curve remain relatively constant over

time.

7.3.3 Transients analysis with real TEG system

In order to perform transient analysis with the actual TEG, four TEMs (GM250-

127-28-12) were connected in series and placed between the rig (see Fig. 7.9).

However, the rig generates both low open circuit voltage and power (i.e. Voc =

5.2V,P = 2.5W at ∆T = 140 ○C) which is far lower than expected. This is due

to poor heat transfer across the module as well as failure of the cold end of the

module to extract enough heat from the TEMs. Since the objective of the Thesis
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Figure 7.14: Zoomed input current at MPP (Impp) for variable open circuit
voltage

is to maximise power generated by the TEG as well as minimise losses, however,

the low power generated by the TEG did not hinder the investigation of the

performance of novel algorithms proposed in this Thesis.

Two MPPT controllers namely; PESC and SDP-ESC were tested. The tran-

sients performance of the proposed SDP-ESC at a much lower power was tested.

The modules were heated up in open loop and once the temperature on hot end

reached 200 ○C and 60 ○C on cold end then the heater blocks were turned off to

allow the modules to cool and one controller at a time was turned on. The signif-

icance of such test was to determine performance of the proposed MPPTs during

TEG thermal cooling.

Fig. 7.17 illustrates the hot side temperature measurements for the real TEG

system with the conventional PESC and the SDP-ESC algorithms. Due to the

152



7. Experimental work

16 18 20 22 24 26 28 30

5

5.5

6

6.5

7

Time[s]

V
m

pp
[V

]

 

 

PESC

14 16 18 20 22 24 26 28
4.5

5

5.5

6

6.5

7

Time[s]

V
m

pp
[V

]

 

 

SDP−ESC

Figure 7.15: Zoomed input voltage at MPP (Vmpp) for variable open circuit
voltage

ability of the SDP-ESC to minimise losses between the TEG system and the

synchronous DC-DC converter, it results in a higher temperature gradient ( ap-

proximately 5 ○C over 600 seconds) compared to the conventional PESC.

Fig. 7.18 illustrates the cold side temperature measurements for the TEG sys-

tem with conventional PESC and the SDP-ESC MPPT algorithms. SDP-ESC

achieves a higher temperature gradient (approximately 10 ○C over 600 seconds).

Fig. 7.19 illustrates the temperature difference ∆T measurements for the real

TEG system with the conventional PESC and the SDP-ESC. As observed pre-

viously, due to the ability of the SDP-ESC to minimise oscillations results in a

higher temperature difference ∆T than the conventional PESC. The difference

between ∆T ′s for the PESC and the SDP-ESC is slightly larger between 200s to

400s. This is due to effect observed at the cold side end temperature.
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Figure 7.16: Transient response of emulated TEG with PESC and SDP-ESC
MPPT algorithms

Table. 7.3 illustrates the tuning parameters of the PESC and the SDP-ESC. Both

controllers have been optimised with the same k, ω, ωl, ωh and ϕ. PESC was

perturbed with a large β in order to excite the system, which results in large

oscillations in both d, I and V . As shown in Fig. 7.20, both the PESC and

the SDP-ESC initially suffer from larger oscillations in the duty cycle dmpp at

the MPP. However, the oscillations on the SDP-ESC curve are reduced in a rel-

atively short period (approximately 150 seconds) while the oscillations on the

PESC curve remain relatively constant over 600 seconds.

Fig. 7.21) shows a comparison of a typical voltage at extremum (Vmpp) for

the PESC and the SDP-ESC algorithms. As can be seen by comparing transient

performance’s of the two MPPT’s, there is a significantly less oscillations when

SDP-ESC is used. These oscillations are introduced by the PESC when a large

154



7. Experimental work

100 200 300 400 500 600

100

120

140

160

180

200

220

Time[s]

T
h
o
t

 

 
PESC
SDP−ESC

Figure 7.17: Hot side temperature measurements for the real TEG system with
PESC and SDP-ESC MPPT algorithms
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Figure 7.18: Cold side temperature measurements for the real TEG system with
PESC and SDP-ESC MPPT algorithms
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Figure 7.19: Temperature difference (∆T ) measurements for the real TEG sys-
tem with PESC and SDP-ESC MPPT algorithms
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Figure 7.20: Duty cycle measurements for the real TEG system with the use of
PESC and SDP-ESC MPPT algorithms
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initial amplitudes signal is used to excite the system. These oscillations limit the

performance of the system and thus the SDP-ESC is clearly an improvement over

the conventional PESC algorithms.
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Figure 7.21: Input voltage at MPP (Vmpp) for the real TEG system with PESC
and SDP-ESC MPPT algorithms

The ability of the SDP-ESC to minimise limit cycle at transients was performed

by comparing its performance with that of the PESC algorithm. The test was

investigated by first tracking the MPP using the PESC followed by the SDP-ESC.

From 0s − 200s, MPP was tracked with the PESC and from 200 seconds to 600

seconds the SDP-ESC was used to track the MPP. As shown in Fig. 7.22 when

the PESC was used the oscillations were much higher due to the large initial

perturbation required to excite the system. On the other hand, when the SDP-

ESC is used the oscillations are significantly reduced (tracking with an accuracy

around of 4% of the transient maximum estimated TEG) due to its ability to

exponentially decay the perturbation signal.
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Parameter PESC SDP-ESC
k 1 1
β 0.025 0.1

ω [ rad
s
] 25 25

ωh [ rads ] 1.5 1.5

ωl [ rads ] 1.5 1.5
ϕ(rad) 0 0

α - 3.5 ⋅ 10−6

Cp - 5
Cz - 1

Table 7.3: Tuning parameters for PESC and SDP-ESC used to obtain transient
performance for the real TEG system
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Figure 7.22: Comparison of limit cycle minimisation between PESC and SDP-
ESC MPPT algorithms when applied to the real TEG system.
SDP-ESC tracking with an accuracy around of 4% of the transient
maximum estimated TEG
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7.4 Critical appraisal and conclusions

This Chapter presented two phases of experimental work which compared perfor-

mances of the controllers simulated in Chapter 6. Two different HIL set-ups with

the use of MicroAutoBox and ds1104 dSPACE were performed. These set-ups

include: TEG emulation via PSU in series with a resistor and real TEG system.

Using these two set-ups, three different analyses were performed in both phases

which are: steady-state, fast transients using emulated TEG, and actual tran-

sients with real TEG. Experiment Phase I presented a comparison of the P&O

and the PESC MPPT algorithms. Whilst the results show that the MPPT algo-

rithms accurately track the MPP, the perceived advantage of the PESC seen in

simulation was inconclusive. This is thought to be due to the limited switching

frequency of the MicroAutoBox hardware used to implement the MPPT algo-

rithms as well as the difficulty in obtaining the optimal PESC tuning parameters

and the effects of electrical noise during data acquisition. In Phase II, the Mi-

croAutoBox was replaced by ds1104 in order to increase the switching frequency.

One of the issues accounted for in experiment Phase II is that the power generated

by the rig was much lower than expected. This is due to poor heat transfer across

the TEMs as well as the inability of the coolant loop to extract enough heat from

the TEMs. Despite this issue the performance of the proposed MPPT controllers

were successfully tested. Compared to the PESC, the SDP-ESC achieved both

fast convergence speed as well as smaller oscillations. The VBS-ESC and the

LBS-ESC were not experimentally tested as ETL decided to replace the rig with

a much better optimised one.
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Chapter 8

Conclusions and Further work

8.1 Conclusions and Further work

This Section summarises key achievements of the research work undertaken in

this Thesis.

8.1.1 VBS-ESC for local maxima search

In Chapter 3, the scheme for limit cycle minimisation known, as variance based

switching extremum seeking control (VBS-ESC) has been proposed. One of the

issues addressed in this chapter are limit cycles which are caused by continu-

ous perturbation within a perturbation based extremum seeking control (PESC).

VBS-ESC minimises oscillations based on variance detection. VBS-ESC is usu-

ally initialised with a large perturbation gain. As the output of the system enters

a stable limit cycle, no change in variance will be detected. Once no variance is

detected the VBS-ESC will switch to the smaller perturbation gain, hence oscilla-

tions will be reduced. As compared to other schemes proposed by Moura & Chang

(2010) and Wang & Krstic (2000), the VBS-ESC is simpler and comprises fewer

tuning parameters. In terms of limit cycle minimisation both schemes achieve

similar output results, hence the proposed method can be viewed as an extension
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which provides a simplified scheme for limit cycle minimisation. Including the

VBS-ESC, all proposed methods do not take into account the trade-off between

convergence speed and minimisation of electrical losses within the power condi-

tioning unit (PCU). To address this issue, an improved PESC scheme known as

the state dependent parameter extremum seeking control (SDP-ESC) is presented

in Chapter 4.

8.1.2 SDP-ESC for local maxima search

In Chapter 4 a SDP-ESC based on the extension of PESC is proposed. It is simi-

lar to the method known as Lyapunov based switching extremum seeking control

(LBS-ESC) proposed by Moura & Chang (2010) which linearises the entire feed-

back loop, defining a Lypunov function, and using a switch to control the decay

process. The proposed scheme introduces a dependency between the perturbation

gain and the estimated input which allows an automated exponential decay of the

perturbation signal. As compared to VBS-ESC as well as methods proposed by

Moura & Chang (2010) and Wang & Krstic (2000), the proposed SDP-ESC is not

limited only to limit cycle minimisation. It also takes into account the trade-off

between the convergence speed and the minimisation of electrical losses within

the PCU. For that reason, the convergence speed is improved by introducing a

proportional integral (PI) controller within the SDP-ESC loop. The proposed

scheme therefore can be initialised with a large perturbation gain, making it pos-

sible to achieve excitation of the system at almost all times. Other advantages of

the SDP-ESC as compared the aforementioned schemes include: ability to track

adaptively (auto) as well as preserve the stability and simplicity of a standard

PESC.

Similar to PESC, VBS-ESC, and LBS-ESC, the drawback of the SDP-ESC

is its inability to search for the global maximum in the presence of local maxima.

This is based on fact that these methods search the extremum point by control-
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ling the gradient at zero through the integrator. Once the nearest peak is found

they will converge to it. To eliminate this issue, an extension of the SDP-ESC is

proposed in Chapter 5.

8.1.3 Extended SDP-ESC for global maximum search

In Chapter 5, a novel scheme for the global maximum (GM) search in the presence

of local maxima has been presented. The scheme is based on an extension of the

SDP-ESC scheme presented in Chapter 4. A searching window mechanism has

been incorporated within the SDP-ESC in order to effectively search for the GM.

The searching window is designed such that the control input of the SDP-ESC

is initialised at different operating points. Initialisation of the control input is

based on designer knowledge and it can be initialised with either data stored in a

look-up table or as a ramp signal. In this Thesis, the scanning window has been

initialised using a ramp signal where the range of the ramp signal is based on the

operational range. Initialising the SDP-ESC at a different operating point will

allow the scanning of all available maxima. Once the true GM has been found,

the controller will be switched back to the initialisation point which corresponds

to the GM. The scheme has been demonstrated using several examples comprising

multiple maxima. Some of the examples presented by Tan et al. (2009) and Azar,

Perrier & Srinivasan (2011) were used to demonstrate the ability of the proposed

scheme to search the GM. The proposed scheme was shown to be effective in

converging to the GM regardless of available number of maxima. Some of the

advantages of the proposed scheme are: it preserves the stability and simplicity of

the SDP-ESC, it converges faster to the GM, it can be applied for both the GM

and local maxima search and it is model-free. The convergence period depends

on the operational range of the system as well as the step size of the searching

window. When a large step size is selected, faster convergence speed to the GM

will be achieved. When a very large step is selected however, the extended SDP-
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ESC may barely converge to the true GM. On the other hand, a smaller step will

usually guarantee convergence to the true GM. This may however result in a slow

convergence speed to the GM.

8.1.4 Modelling, simulation and experimental validation:

TEG

In Chapters 6 and 7, the simulation studies and experimental work of novel max-

imum power point tracking (MPPT) algorithms has been presented. First, a

simulation study of perturb and observe (P&O )and PESC was applied to the

thermoelectric generator (TEG) as part of the research work undertaken in this

Thesis. The simulation results showed that the PESC converged much faster

to the maximum power point (MPP) with a 5% reduction of electrical losses.

Following this achievement, the experimental work was carried out. Three dif-

ferent analyses were performed which are: steady-state, fast transient with em-

ulated TEG, and transient with the actual TEG. Whilst the results show that

the MPPT algorithms accurately track the MPP, the perceived advantage of the

PESC seen in simulation was inconclusive. This is thought to be due to the lim-

ited switching frequency of the MicroAutoBox hardware used to implement the

MPPT algorithms, as well as the difficulty in obtaining the optimal PESC tuning

parameters and the effects of electrical noise during the data acquisition. The

dSPACE MicroAutoBox hardware however, does allow the user to investigate

the hardware implementation of the MPPTs. These limitations led to the devel-

opment of novel algorithms (i.e. VBS-ESC and SDP-ESC) which incorporated

adaptability of the parameters to ensure optimal performance in both transient

and steady-state operations. In addition, the dSPACE MicroAutobox was re-

placed with ds1104 dSPACE which allowed the switches of a synchronous direct

current (DC)-DC converter to be driven at a much higher switching frequency.
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Performance of the VBS-ESC and the SDP-ESC were compared with the

PESC and the LBS-ESC in simulation study Phase II. To validate these find-

ings, experimental test Phase II was conducted. Similar types of tests conducted

in Phase I were repeated in Phase II. SDP-ESC achieved both fast convergence

speed to the MPP as well as reduced oscillations compared to the PESC when

an emulated TEG was used.

Actual transient analysis was performed using the rig provided by Eu-

ropean Thermodynamics (ETL), however, the rig was unable to generate the

required power as expected. This is due to poor heat transfer across the modules

as well as the inability of the coolant loop to extract heat from the thermoelec-

tric modules (TEMs). Since the objective is investigating the performance of the

algorithms therefore, this limitation was considered as minor and did not hinder

the experiment. However, in order to give sufficient excitation, both the PESC

and the SDP-ESC were perturbed with large perturbation gains. As compared

to the PESC, the SDP-ESC achieved relatively smaller oscillations due to its

ability to exponentially decay the perturbation gain. Due to the low power gen-

erated by the rig, rather than characterising each TEM individually, the electrical

characterisations of all TEMs connected in series was performed. Open circuit

measurements at different temperatures where taken. As aforementioned, for the

TEG, the maximum available power is achieved when the input voltage is half

of the open circuit voltage. Smaller limit cycles indicate less degradation to the

components. Other MPPT controllers (i.e. VBS-ESC and LBS-ESC) were not

tested experimentally.

8.2 Further work

This Section, proposes some directions which could be taken for further improve-

ments.
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8.2.1 Constrained VBS-ESC/SDP-ESC scheme

Both the VBS-ESC and the SDP-ESC are model-free which assumes no a priori

knowledge of the plant or system (neither model nor cost function is available).

Based on these assumptions, there are no constraints imposed to the system.

These controllers seemed to give optimal performance when applied to the TEG

system. Experiments carried out in this Thesis however were conducted under

well-controlled environmental conditions. On the other hand, when applied to

systems where uncertainties are significant, the proposed MPPT controllers may

result in less optimal performance than that seen in the laboratory. To address

these concerns it may be useful to further investigate the possibilities and ad-

vantages of imposing constraints particularly for systems where prior knowledge

exists.

8.2.2 Experimental validation global maximum searching

scheme

Simulation studies showed that the extended SDP-ESC scheme proposed in this

Thesis is able to search for the GM regardless of the number of maxima. As

compared to stochastic based approaches for the GM, this is considered to be

inexpensive solution as it is model-free. It will therefore be beneficial to validate

these findings experimentally as well as imposing constraints to the extended

SDP-ESC if needed. One possible example which can be used to validate these

findings is PV systems due to shading effects which causes multiple maxima to

occur.
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8.2.3 Embedding VBS-ESC/SDP-ESC for stand-alone op-

eration

Experimental work carried out through hardware in the loop (HIL) testing demon-

strates the ability of the SDP-ESC to minimise limit cycle as well as converging

faster to the MPP compared to the standard PESC. It will therefore be useful

to implement the SDP-ESC for stand-alone operations. The SDP-ESC algorithm

can be embedded into a microcontroller, further integrated within a TEG and

tested in a complete drive cycle. This will validate the robustness of the SDP-ESC

particularly under harsh driving conditions and other uncertainties (e.g. noise,

disturbances, etc.).

8.2.4 Degradation of PCU components

Limit cycles are associated with the degradation of components (e.g. electrolyte

capacitors) within a PCU. Large ripples may increase the equivalent series resis-

tance as well as decrease the capacitance of the capacitor. It will be beneficial

to investigate the performance of the novel MPPT algorithms as the components

degrade. One possible way to achieve this is by incorporating degradation effects

within the DC-DC converter. Based on performance of the MPPT algorithm,

necessary improvements can be performed.
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Appendix A

Description of the TEG model

Similar to the physical system, the TEG model is set-up with multiples of the

three subsystems with each multiple representing a section of the system in the

stream of the exhaust as shown in Fig. A. The TEG model requires the exhaust

and coolant inlet temperature (Tai, Twi) and mass flow rate (ma, mw) as inputs

and outputs of the voltage and current (V ,I) generated by the TEG. The tran-

sient analysis capability of the model makes it possible to account for the initial

warm up period and also provides the capability to integrate with a vehicle model

for fuel consumption analysis over defined drive cycles.

A.1 Thermal electric module (TEM)

TEMs can either be connected electrically in series or parallel to increase the

operating voltage or decrease the thermal resistance, respectively. The TEM

subsystem uses the hot and cold side temperature inputs from the heat exchanger
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A. Description of the TEG model

Figure A.1: TEG subsystem configuration in comparison to physical system

subsystem to give the electrical power generated using the following equations

Voc = ncouple (sn + sp)∆T (A.1a)

Rin =
ncouple (ρn + ρp)Ltem

A
(A.1b)

Km =
ncouple (κn − κp)Ltem

A
(A.1c)

where sn denotes Seebeck coefficient of n thermal couple, κn denotes thermal

conductivity of n thermal couple. Voc denotes the open circuit voltage (V), ρ

denotes the electrical resistivity Ω−m, Rin denotes the module internal resistance

(Ω), Km denotes the module thermal conductivity (W /Km), A denotes the cross-

sectional area (m2), ncouple denotes the number of couples, Ltem denotes leg length
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A. Description of the TEG model

(m), subscripts ”n” and ”p” refer to n-type and p-type legs.

A.2 Heat exchange (HX) subsystem

The HX subsystem in Phillip et al. (2013) is modelled as a stack of several ther-

mal layers (see Fig. A.2). The interactions between individual thermal layers are

described using convection and conduction thermodynamic energy balance equa-

tions. Convection and conduction thermodynamics energy balance equations were

used to describe the interactions between individual thermal layers. The energy

balanced equations were formulated based on the assumption that, the tempera-

ture distribution within the layers is homogeneous, hence simplifying the overall

computation whilst retaining the main dynamic features. A further detailed de-

scription of the model together with governing equations can be found in Phillip

et al. (2012). The HX is divided into several control volumes along the flow of the

exhaust gas stream. Heat flow from the exhaust layer to the coolant layer, i.e.,

from hot to cold, is assumed to be uniform, a function of the mean temperature

of the individual layer, and a function of time. The TEG model does not includes

the heat losses to adjacent control volumes and heat losses to ambient, given the

uncertainty of environmental effects within the system. Considering (A.1a) and

(A.1b), it is apparent that the TEM is modelled using material data for n-type

and p-type legs of n-couple number of couples. The Bismuth telluride (Bi2Te3)

TEM was validated in Phillip et al. (2013) in order to provide confidence in the

modelling methodology. The validated TEM model (TEM subsystem) achieves

an output with 94.6% accuracy at steady state.
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A. Description of the TEG model

Control
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Control
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Figure A.2: TEG HX/TEM configuration
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Appendix B

Simulink block diagram for

MPPT algorithms

B.1 Simulink models of MPPT algorithms

This appendix presents Simulink models of the MPPT algorithms implemented

in this Thesis. As shown in Fig. B.1 duty cycle from a selected controller are

fed into a DS1104-DSP-PWM3 which generates 6 PWM signals of which 3 are

in same phase and 3 are out of phase. Two PWM signals were used to drive the

synchronous DC-DC converter. The analog signals from the converter reading

were taken from ADC-5 to ADC-8. Iout and Iin scaled by 1:1 and Vout scaled

by 1:4 and Vin scaled by 1:16. In order to obtain the temperature reading in

dSPACE from K-type thermal couples AD-595 were used. The scale of 1:100 was

used to rescale these readings.
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B. Simulink block diagram for MPPT algorithms

Figure B.2: Simulink block diagram for PESC subsystem
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B. Simulink block diagram for MPPT algorithms

Figure B.3: Simulink block diagram for sensor measurements from ADCs
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B. Simulink block diagram for MPPT algorithms

Figure B.4: Simulink block diagram for LBS-ESC subsystem

Figure B.5: Simulink block diagram for VBS-ESC subsystem
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B. Simulink block diagram for MPPT algorithms

Figure B.6: Simulink block diagram for SDP-ESC subsystem

Figure B.7: Simulink block diagram for extended SDP-ESC subsystem
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B. Simulink block diagram for MPPT algorithms

Figure B.8: Simulink block diagram for window search subsystem
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Appendix C

Components/Instruments used in

the HIL set-up

This appendix presents instruments and components used in the HIL set-up via

dSPACE which are: Temperature control box, cartridge heater, synchronous DC-

DC converter and GM250-127-28-12 TE modules. The main information provided

in this appendix includes: the schematic diagram of the temperature control box

and the synchronous DC-DC converter also, data sheets for the heater cartridge

and the TE modules. Both schematics (i.e. the temperature control box and

synchronous DC-DC converter) comprises all components and these schematics

were used for designing the PCB layout.
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C. Components/Instruments used in the HIL set-up

C.1 Cartridge heater and temperature control

box

Figure C.1: Schematic diagram of control box used in experiment test phase II
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C. Components/Instruments used in the HIL set-up

Figure C.2: Specifications for cartridge heater block used in experiment phase
II
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C. Components/Instruments used in the HIL set-up

C.2 Synchronous DC-DC buck-boost converter

Figure C.3: Schematic diagram of DC-DC buck-boost converter used for exper-
iment tests
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C. Components/Instruments used in the HIL set-up

C.3 GM250-127-28-12 TEMs characteristics
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