761 research outputs found

    Dual Output Power Management Unit for PV-Battery Hybrid Energy System

    Get PDF
    The tremendous evolution in the electronics industry has provided high performance portable devices. However, the high power demand and the limited capacity of batteries, prevent the devices from operating for a long time without the need of a power outlet. The ease of deploying Photovoltaic (PV) cells close to the device enables the user to harvest energy on the go, and get rid of the conventional power outlets. However, applying the PV power to the electronic devices is not as easy as the plug and play model, due to the unstable output voltage and power of the PV cells. In this thesis, a power management unit is proposed to provide dual regulated outputs using a PV module and a rechargeable battery. The main components of the unit are a Dual Input Multiple Output (DIMO) DC-DC converter and a digital controller. The converter is used to interface the battery and the PV module with the loads. Moreover, the proposed converter has the ability to step up or step down the input voltage. The controller maximizes the PV power using the fractional open circuit voltage Maximum Power Point Tracking (MPPT) method. Furthermore, the controller manages the amount of power supplied to or from the battery in order to satisfy the load demand and regulate the outputs at the required levels. The controller has been implemented and synthesized using VHDL. A prototype has been implemented using an FPGA and off the shelf components. The functionality of the system has been tested and verified under varying environmental conditions

    Power Management ICs for Internet of Things, Energy Harvesting and Biomedical Devices

    Get PDF
    This dissertation focuses on the power management unit (PMU) and integrated circuits (ICs) for the internet of things (IoT), energy harvesting and biomedical devices. Three monolithic power harvesting methods are studied for different challenges of smart nodes of IoT networks. Firstly, we propose that an impedance tuning approach is implemented with a capacitor value modulation to eliminate the quiescent power consumption. Secondly, we develop a hill-climbing MPPT mechanism that reuses and processes the information of the hysteresis controller in the time-domain and is free of power hungry analog circuits. Furthermore, the typical power-performance tradeoff of the hysteresis controller is solved by a self-triggered one-shot mechanism. Thus, the output regulation achieves high-performance and yet low-power operations as low as 12 µW. Thirdly, we introduce a reconfigurable charge pump to provide the hybrid conversion ratios (CRs) as 1⅓× up to 8× for minimizing the charge redistribution loss. The reconfigurable feature also dynamically tunes to maximum power point tracking (MPPT) with the frequency modulation, resulting in a two-dimensional MPPT. Therefore, the voltage conversion efficiency (VCE) and the power conversion efficiency (PCE) are enhanced and flattened across a wide harvesting range as 0.45 to 3 V. In a conclusion, we successfully develop an energy harvesting method for the IoT smart nodes with lower cost, smaller size, higher conversion efficiency, and better applicability. For the biomedical devices, this dissertation presents a novel cost-effective automatic resonance tracking method with maximum power transfer (MPT) for piezoelectric transducers (PT). The proposed tracking method is based on a band-pass filter (BPF) oscillator, exploiting the PT’s intrinsic resonance point through a sensing bridge. It guarantees automatic resonance tracking and maximum electrical power converted into mechanical motion regardless of process variations and environmental interferences. Thus, the proposed BPF oscillator-based scheme was designed for an ultrasonic vessel sealing and dissecting (UVSD) system. The sealing and dissecting functions were verified experimentally in chicken tissue and glycerin. Furthermore, a combined sensing scheme circuit allows multiple surgical tissue debulking, vessel sealer and dissector (VSD) technologies to operate from the same sensing scheme board. Its advantage is that a single driver controller could be used for both systems simplifying the complexity and design cost. In a conclusion, we successfully develop an ultrasonic scalpel to replace the other electrosurgical counterparts and the conventional scalpels with lower cost and better functionality

    Single-Inductor, Dual-Input CCM Boost Converter for Multi-Junction PV Energy Harvesting

    Get PDF
    abstract: This thesis presents a power harvesting system combining energy from sub-cells of multi-junction photovoltaic (MJ-PV) cells. A dual-input, inductor time-sharing boost converter in continuous conduction mode (CCM) is proposed. A hysteresis inductor current regulation in designed to reduce cross regulation caused by inductor-sharing in CCM. A modified hill-climbing algorithm is implemented to achieve maximum power point tracking (MPPT). A dual-path architecture is implemented to provide a regulated 1.8V output. A proposed lossless current sensor monitors transient inductor current and a time-based power monitor is proposed to monitor PV power. The PV input provides power of 65mW. Measured results show that the peak efficiency achieved is around 85%. The power switches and control circuits are implemented in standard 0.18um CMOS process.Dissertation/ThesisMasters Thesis Engineering 201

    Wearable flexible lightweight modular RFID tag with integrated energy harvester

    Get PDF
    A novel wearable radio frequency identification (RFID) tag with sensing, processing, and decision-taking capability is presented for operation in the 2.45-GHz RFID superhigh frequency (SHF) band. The tag is powered by an integrated light harvester, with a flexible battery serving as an energy buffer. The proposed active tag features excellent wearability, very high read range, enhanced functionality, flexible interfacing with diverse low-power sensors, and extended system autonomy through an innovative holistic microwave system design paradigm that takes antenna design into consideration from the very early stages. Specifically, a dedicated textile shorted circular patch antenna with monopolar radiation pattern is designed and optimized for highly efficient and stable operation within the frequency band of operation. In this process, the textile antenna's functionality is augmented by reusing its surface as an integration platform for light-energy-harvesting, sensing, processing, and transceiver hardware, without sacrificing antenna performance or the wearer's comfort. The RFID tag is validated by measuring its stand-alone and on-body characteristics in free-space conditions. Moreover, measurements in a real-world scenario demonstrate an indoor read range up to 23 m in nonline-of-sight indoor propagation conditions, enabling interrogation by a reader situated in another room. In addition, the RFID platform only consumes 168.3 mu W, when sensing and processing are performed every 60 s

    On-Chip Solar Energy Harvester and PMU With Cold Start-Up and Regulated Output Voltage for Biomedical Applications

    Get PDF
    This paper presents experimental results from a system that comprises a fully autonomous energy harvester with a solar cell of 1 mm 2 as energy transducer and a Power Management Unit (PMU) on the same silicon substrate, and an output voltage regulator. Both chips are implemented in standard 0.18 μm CMOS technology with total layout areas of 1.575 mm 2 and 0.0126 mm 2 , respectively. The system also contains an off-the-shelf 3.2 mm × 2.5 mm × 0.9 mm supercapacitor working as an off-chip battery or energy reservoir between the PMU and the voltage regulator. Experimental results show that the fast energy recovery of the on-chip solar cell and PMU permits the system to replenish the supercapacitor with enough charge as to sustain Bluetooth Low Energy (BLE) communications even with input light powers of 510 nW. The whole system is able to self-start-up without external mechanisms at 340 nW. This work is the first step towards a self-supplied sensor node with processing and communication capabilities. The small form factor and ultra-low power consumption of the system components is in compliance with biomedical applications requirementsThis work was supported in part by the Spanish Government (Ministerio de Ciencia, Innovación y Universidades) under Project RTI2018-097088-B-C32 and Project RTI2018-095994-B-I00 (MICINN/FEDER), in part by the Xunta de Galicia, in part by the Consellería de Cultura, Educación e Ordenación Universitaria (accreditation 2016-2019, ED431G/08 and reference competitive group 2017-2020, ED431C 2017/69) and European Regional Development Fund (ERDF), and in part by the Junta de Extremadura and the ERDF, under Grant IB 18079S

    Energy-Efficient Start-up Power Management for Batteryless Biomedical Implant Devices

    Get PDF
    This paper presents a solar energy harvesting power management using the high-efficiency switched capacitor DC-DC converter for biomedical implant applications. By employing an on-chip start-up circuit with parallel connected Photovoltaic (PV) cells, a small efficiency improvement can be obtained when compared with the traditional stacked photodiode methodology to boost the harvested voltage while preserving a single-chip solution. The PV cells have been optimised in the PC1D software and the optimal parameters modelled in the Cadence environment. A cross-coupled circuit with level shifter loop is also proposed to improve the overall step up voltage output and hybrid converter increases the start-up speed by 23.5%. The proposed system is implemented in a standard 0.18-μm CMOS technology. Simulation results show that the 4-phase start-up and cross coupled with level-shifter can achieve a maximum efficiency of 60%

    Integrated CMOS Energy Harvesting Converter with Digital Maximum Power Point Tracking for a Portable Thermophotovoltaic Power Generator

    Get PDF
    This paper presents an integrated maximum power point tracking system for use with a thermophotovoltaic (TPV) portable power generator. The design, implemented in 0.35 μm CMOS technology, consists of a low-power control stage and a dc-dc boost power stage with soft-switching capability. With a nominal input voltage of 1 V, and an output voltage of 4 V, we demonstrate a peak conversion efficiency under nominal conditions of over 94% (overall peak efficiency over 95%), at a power level of 300 mW. The control stage uses lossless current sensing together with a custom low-power time-based ADC to minimize control losses. The converter employs a fully integrated digital implementation of a peak power tracking algorithm, and achieves a measured tracking efficiency above 98%. A detailed study of achievable efficiency versus inductor size is also presented, with calculated and measured results.Interconnect Focus Center (United States. Defense Advanced Research Projects Agency and Semiconductor Research Corporation

    Energy-Efficient Start-up Power Management for Batteryless Biomedical Implant Devices

    Get PDF
    This paper presents a solar energy harvesting power management using the high-efficiency switched capacitor DC-DC converter for biomedical implant applications. By employing an on-chip start-up circuit with parallel connected Photovoltaic (PV) cells, a small efficiency improvement can be obtained when compared with the traditional stacked photodiode methodology to boost the harvested voltage while preserving a single-chip solution. The PV cells have been optimised in the PC1D software and the optimal parameters modelled in the Cadence environment. A cross-coupled circuit with level shifter loop is also proposed to improve the overall step up voltage output and hybrid converter increases the start-up speed by 23.5%. The proposed system is implemented in a standard 0.18-μm CMOS technology. Simulation results show that the 4-phase start-up and cross coupled with level-shifter can achieve a maximum efficiency of 60%

    An Energy Harvesting Solution for IoT Sensors Using MEMS Technology

    Get PDF
    The significant development of IoT sensors will play a critical role in a large number of applications. It is predicted that billions of IoT sensors will be used worldwide by 2020 [1]. Batteries are commonly utilized to power on sensors, but they are depleted and they require maintenance and replacement. Battery replacement for billions of sensors is a daunting task and battery disposal for IoT sensors can become an environmental problem. Energy harvesting from ambient sources presents a viable solution to overcome these problems. Among all energy sources, light is considered as one of the best sources due to its high energy density and availability in both indoor and outdoor environments. In order to make an energy harvesting system efficient, many methods have been proposed in the literature to extract the maximum energy while minimizing the power consumption by the energy harvesting circuitry. In this work, a boost converter circuit is designed using MEMS-based switches to reduce the leakage current and power loss caused by conventional transistor-based switches. A light energy harvesting method is also proposed utilizing available components of a typical IoT sensor. The reuse of available components in the proposed solution reduces the overall power consumption and the area overhead of the energy harvesting solution

    Energy efficient control for power management circuits operating from nano-watts to watts

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (p. 163-172).Energy efficiency and form factor are the key driving forces in today's power electronics. All power delivery circuits, irrespective of the magnitude of power, basically consists of power trains, gate drivers and control circuits. Although the control circuits are primarily required for regulation, these circuits can play a crucial role in achieving high efficiency and/or minimizing overall system form-factor. In this thesis, power converter circuits, spanning a wide operating range- from nano-watts to watts, are presented while highlighting techniques for using digital control circuits not just for regulation but also to achieve high system efficiency and smaller system form-factor. The first part of the thesis presents a power management unit of an autonomous wireless sensor that sustains itself by harvesting energy from the endo-cochlear potential (EP), the 70-100mV electrochemical potential inside the mammalian inner ear. Due to the anatomical constraints, the total extractable power from the EP is limited to 1.1-6.3nW. A low switching frequency boost converter is employed to increase the input voltage to a higher voltage usable by CMOS circuits in the sensor. Ultra-low power digital control circuits with timers help keep the quiescent power of the power management unit down to 544pW. Further, a charge-pump is used to implement leakage reduction techniques in the sensor. This work demonstrates how digital low power control circuit design can help improve converter efficiency and ensure system sustainability. All circuits have been implemented on a 0.18[mu]m CMOS process. The second part of the thesis discusses an energy harvesting architecture that combines energy from multiple energy harvesting sources- photovoltaic, thermoelectric and piezoelectric sources. Digital control circuits that configure the power trains to new efficient system architectures with maximum power point tracking are presented, while using a single inductor to combine energy from the aforementioned energy sources all at the same time. A dual-path architecture for energy harvesting systems is proposed. This provides a peak efficiency improvement of 11-13% over the traditional two stage approach. The system can handle input voltages from 20mV to 5V and is also capable of extracting maximum power from individual harvesters all at the same time utilizing a single inductor. A proposed completely digital timebased power monitor is used for achieving maximum power point tracking for the photovoltaic harvester. This has a peak tracking efficiency of 96%. The peak efficiencies achieved with inductor sharing are 83%, 58% and 79% for photovoltaic boost, thermoelectric boost and piezoelectric buck-boost converters respectively. The switch matrix and the control circuits are implemented on a 0.35pm CMOS process. This part of the thesis highlights how digital control circuits can help reconfigure power converter architectures for improving efficiency and reducing form-factors. The last part of the thesis deals with a power management system for an offline 22W LED driver. In order to reduce the system form factor, Gallium Nitride (GaN) transistors capable of high frequency switching have been utilized with a Quasi-Resonant Inverted Buck architecture. A burst mode digital controller has been used to perform dimming control and power factor correction (PFC) for the LED driver. The custom controller and driver IC was implemented in a 0.35[mu]m CMOS process. The LED driver achieves a peak efficiency of 90.6% and a 0.96 power factor. Due to the high power level of the driver, the digital controller is primarily used for regulation purposes in this system, although the digital nature of the controller helps remove the passives that would be normally present in analog controllers. In this thesis, apart from regulation, control circuit enabled techniques have been used to improve efficiency and reduce system form factor. Low power design and control for reconfigurable power train architectures help improve the overall power converter efficiency. Digital control circuits have been used to reduce the form factor by enabling inductor sharing in a system with multiple power converters or by removing the compensator passives.by Saurav Bandyopadhyay.Ph.D
    • …
    corecore