8 research outputs found

    Optimized Model Simulation of a Capacitated Vehicle Routing problem based on Firefly Algorithm

    Get PDF
    This paper presents an optimized solution to a capacitated vehicle routing (CVRP) model using firefly algorithm (FFA). The main objective of a CVRP is to obtain the minimum possible total travelled distance across a search space. The conventional model is a formal description involving mathematical equations formulated to simplify a more complex structure of logistic problems. These logistic problems are generalized as the vehicle routing problem (VRP). When the capacity of the vehicle is considered, the resulting formulation is termed the capacitated vehicle routing problem (CVRP). In a practical scenario, the complexity of CVRP increases when the number of pickup or drop-off points increase making it difficult to solve using exact methods. Thus, this paper employed the intelligent behavior of FFA for solving the CVRP model. Two instances of solid waste management and supply chain problems is used to evaluate the performance of the FFA approach. In comparison with particle swarm optimization and few other ascribed metaheuristic techniques for CVRP, results showed that this approach is very efficient in solving a CVRP model

    Vehicle routing problem with cross-docking as part of industry 4.0 logistics

    Get PDF
    The work presented in this paper has been supported by West Bohemia University in Pilsen (project No.SGS SGS-2021-022 - Financial (stock) markets, modeling and prediction of behavior).The trends associated with the onset of Industry 4.0 are obvious and require a prompt response from the company. An indisputable advantage is the use of the cross-docking strategy, which makes it possible to coordinate all logistics processes and achieve optimization of transport costs while maintaining minimal handling and storage. The goods are directly redistributed within the distribution system to specific customers according to their requirements without the need for storage. This logistic method is very often associated with various types of vehicle routing problem. It enables the introduction and use of Industry 4.0 principles. The aim of this contribution is to find out the possibilities of using Cross-docking within the vehicle routing problem. The output is a classification of five vehicle routing problems and their further breakdown, which are successfully connected with the idea of Cross-docking technology. This is a Capacitated vehicle routing problem with cross-docking, Open vehicle routing problem with cross-docking, Vehicle routing problem with cross-docking for multi-products, Multi-echelon distribution networks and Rich vehicle routing problem with cross-docking. Literature analysis shows that it is not an isolated technology but a tool offering a comprehensive logistics service connecting several processes. Offer various combinations of technologies in conjunction with vehicle routing problems to provide economic benefit and reduce the environmental impact of logistics chains

    Scheduling cross-docking operations under uncertainty: A stochastic genetic algorithm based on scenarios tree

    Get PDF
    A cross-docking terminal enables consolidating and sorting fast-moving products along supply chain networks and reduces warehousing costs and transportation efforts. The target efficiency of such logistic systems results from synchronizing the physical and information flows while scheduling receiving, shipping and handling operations. Within the tight time-windows imposed by fast-moving products (e.g., perishables), a deterministic schedule hardly adheres to real-world environments because of the uncertainty in trucks arrivals. In this paper, a stochastic MILP model formulates the minimization of penalty costs from exceeding the time-windows under uncertain truck arrivals. Penalty costs are affected by products' perishability or the expected customer’ service level. A validating numerical example shows how to solve (1) dock-assignment, (2) while prioritizing the unloading tasks, and (3) loaded trucks departures with a small instance. A tailored stochastic genetic algorithm able to explore the uncertain scenarios tree and optimize cross-docking operations is then introduced to solve scaled up instaces. The proposed genetic algorithm is tested on a real-world problem provided by a national delivery service network managing the truck-to-door assignment, the loading, unloading, and door-to-door handling operations of a fleet of 271 trucks within two working shifts. The obtained solution improves the deterministic schedule reducing the penalty costs of 60%. Such results underline the impact of unpredicted trucks’ delay and enable assessing the savings from increasing the number of doors at the cross-dock

    A comprehensive framework for sustainable closed-loop supply chain network design

    Get PDF
    Many companies face challenges in reducing their supply chain costs while increasing sustainability and customer service levels. A comprehensive framework for a sustainable closed-loop supply chain (CLSC) network is a practical solution to these challenges. Hence, for the first time, this study considers an integrated multio-bjective mixed-integer linear programming (MOMILP) model to design sustainable CLSC networks with cross-docking, location-inventory-routing, time window, supplier selection, order allocation, transportation modes with simultaneous pickup, and delivery under uncertainty. An intelligent simulation algorithm is proposed to produce CLSC network data with probabilistic distribution functions and feasible solution space. In addition, a fuzzy goal programming approach is proposed to solve the MOMILP model under uncertainty. Eight small and medium-size test problems are used to evaluate the performance of the proposed model with the simulated data in GAMS software. The results obtained from test problems and sensitivity analysis show the efficacy of the proposed model

    The electric vehicle routing problem with capacitated charging stations

    Get PDF
    Much of the existing research on electric vehicle routing problems (E-VRPs) assumes that the charging stations (CSs) can simultaneously charge an unlimited number of electric vehicles, but this is not the case. In this research, we investigate how to model and solve E-VRPs taking into account these capacity restrictions. In particular, we study an E-VRP with non-linear charging functions, multiple charging technologies, en route charging, and variable charging quantities, while explicitly accounting for the capacity of CSs expressed in the number of chargers. We refer to this problem as the E-VRP with non-linear charging functions and capacitated stations (E-VRP-NL-C). This problem advances the E-VRP literature by considering the scheduling of charging operations at each CS. We first introduce two mixed integer linear programming formulations showing how CS capacity constraints can be incorporated into E-VRP models. We then introduce an algorithmic framework to the E-VRP-NL-C, that iterates between two main components: a route generator and a solution assembler. The route generator uses an iterated local search algorithm to build a pool of high-quality routes. The solution assembler applies a branch-and-cut algorithm to select a subset of routes from the pool. We report on computational experiments comparing four different assembly strategies on a large and diverse set of instances. Our results show that our algorithm deals with the CS capacity constraints effectively. Furthermore, considering the well-known uncapacitated version of the E-VRP-NL-C, our solution method identifies new best-known solutions for 80 out of 120 instances

    A matheuristic based on large neighborhood search for the vehicle routing problem with cross-docking

    No full text
    International audienceThe vehicle routing problem with cross-docking (VRPCD) consists in defining a set of routes that satisfy transportation requests between a set of pickup points and a set of delivery points. The vehicles bring goods from pickup locations to a cross-docking platform, where the items may be consolidated for efficient delivery. In this paper we propose a new solution methodology for this problem. It is based on large neighborhood search and periodically solving a set partitioning and matching problem with third-party solvers. Our method improves the best known solution in 19 of 35 instances from the literature

    Mathematical models and solution algorithms for the vehicle routing problem with environmental considerations

    Get PDF
    Urban freight distribution is essential for the functioning of urban economies. However, it is contributing significantly to problems such as traffic congestion and environmental pollution. The main goal of this research is to contribute to greening urban freight distribution by developing new mathematical models and solution algorithms pertaining to the two major steams in Vehicle Routing Problems (VRPs) with environmental considerations: (i) VRPs with an explicit fuel consumption estimation component as a proxy for emissions, and (ii) VRPs with vehicles in the fleet that run on a cleaner alternative fuel such as electricity. In the first stream, this thesis develops and solves a new realistic multi-objective variant of the pollution-routing problem, referred to as the Steiner Pollution-Routing Problem (SPRP), that is studied directly on the original urban roadway network. The proposed variant is capable of incorporating the real operating conditions of urban freight distribution, and striking a balance between traditional business and environmental objectives, while integrating all factors that have a major impact on fuel consumption, including the time-varying congestion speed, vehicle load, vehicle’s physical and mechanical characteristics, and acceleration and deceleration rates. The thesis develops new combinatorial results that facilitate problem solution on the original roadway network and also introduces new mathematical models for synthesizing the expected second-by-second driving cycle of a vehicle over a given road-link at a given time of the day. New efficient multi-objective optimisation heuristics are also developed for addressing realistic instances of the SPRP. On the other hand, in the latter stream discussed above, to tackle the significantly impeding problem of range anxiety in the face of goods distribution using Electric Commercial Vehicles (ECVs), a paradigm shift in the routing of ECVs is proposed by introducing the Electric Vehicle Routing Problem with Synchronised Ambulant Battery Swapping/Recharging (EVRP-SABS). The proposed problem exploits new technological developments corresponding to the possibility of mobile battery swapping (or recharging) of ECVs using a Battery Swapping Van (BSV). In the EVRP-SABS, routing takes place in two levels for the ECVs that carry out delivery tasks, and for the BSVs that provide the running ECVs with fully charged batteries on their route. There is, therefore, a need to establish temporal and spatial synchronisations between the vehicles in the two levels and to do so new combinatorial results and a new solution algorithm is proposed

    PLATFORM-DRIVEN CROWDSOURCED MANUFACTURING FOR MANUFACTURING AS A SERVICE

    Get PDF
    Platform-driven crowdsourced manufacturing is an emerging manufacturing paradigm to instantiate the adoption of the open business model in the context of achieving Manufacturing-as-a-Service (MaaS). It has attracted attention from both industries and academia as a powerful way of searching for manufacturing solutions extensively in a smart manufacturing era. In this regard, this work examines the origination and evolution of the open business model and highlights the trends towards platform-driven crowdsourced manufacturing as a solution for MaaS. Platform-driven crowdsourced manufacturing has a full function of value capturing, creation, and delivery approach, which is fulfilled by the cooperation among manufacturers, open innovators, and platforms. The platform-driven crowdsourced manufacturing workflow is proposed to organize these three decision agents by specifying the domains and interactions, following a functional, behavioral, and structural mapping model. A MaaS reference model is proposed to outline the critical functions and inter-relationships. A series of quantitative, qualitative, and computational solutions are developed for fulfilling the outlined functions. The case studies demonstrate the proposed methodologies and can pace the way towards a service-oriented product fulfillment process. This dissertation initially proposes a manufacturing theory and decision models by integrating manufacturer crowds through a cyber platform. This dissertation reveals the elementary conceptual framework based on stakeholder analysis, including dichotomy analysis of industrial applicability, decision agent identification, workflow, and holistic framework of platform-driven crowdsourced manufacturing. Three stakeholders require three essential service fields, and their cooperation requires an information service system as a kernel. These essential functions include contracting evaluation services for open innovators, manufacturers' task execution services, and platforms' management services. This research tackles these research challenges to provide a technology implementation roadmap and transition guidebook for industries towards crowdsourcing.Ph.D
    corecore