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ABSTRACT 

Urban freight distribution is essential for the functioning of urban economies. 

However, it is contributing significantly to problems such as traffic congestion and 

environmental pollution. The main goal of this research is to contribute to greening 

urban freight distribution by developing new mathematical models and solution 

algorithms pertaining to the two major steams in Vehicle Routing Problems (VRPs) 

with environmental considerations: (i) VRPs with an explicit fuel consumption 

estimation component as a proxy for emissions, and (ii) VRPs with vehicles in the 

fleet that run on a cleaner alternative fuel such as electricity.  

In the first stream, this thesis develops and solves a new realistic multi-

objective variant of the pollution-routing problem, referred to as the Steiner 

Pollution-Routing Problem (SPRP), that is studied directly on the original urban 

roadway network. The proposed variant is capable of incorporating the real 

operating conditions of urban freight distribution, and striking a balance between 

traditional business and environmental objectives, while integrating all factors that 

have a major impact on fuel consumption, including the time-varying congestion 

speed, vehicle load, vehicle’s physical and mechanical characteristics, and 

acceleration and deceleration rates. The thesis develops new combinatorial results 

that facilitate problem solution on the original roadway network and also 

introduces new mathematical models for synthesizing the expected second-by-

second driving cycle of a vehicle over a given road-link at a given time of the day. 

New efficient multi-objective optimisation heuristics are also developed for 

addressing realistic instances of the SPRP. 

On the other hand, in the latter stream discussed above, to tackle the 

significantly impeding problem of range anxiety in the face of goods distribution 

using Electric Commercial Vehicles (ECVs), a paradigm shift in the routing of 



 

 

 

 

ECVs is proposed by introducing the Electric Vehicle Routing Problem with 

Synchronised Ambulant Battery Swapping/Recharging (EVRP-SABS). The 

proposed problem exploits new technological developments corresponding to the 

possibility of mobile battery swapping (or recharging) of ECVs using a Battery 

Swapping Van (BSV). In the EVRP-SABS, routing takes place in two levels for 

the ECVs that carry out delivery tasks, and for the BSVs that provide the running 

ECVs with fully charged batteries on their route. There is, therefore, a need to 

establish temporal and spatial synchronisations between the vehicles in the two 

levels and to do so new combinatorial results and a new solution algorithm is 

proposed.
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1. INTRODUCTION AND 
BACKGROUND 

1.1 Motivation 

Urban Freight Distribution (UFD) plays an indispensable role in transporting and 

delivering the consumer goods required to sustain more than half of the world’s 

population that now live in urban areas (Ritchie and Roser, 2018). UFD is vital for 

economic and societal growth of cities, and is a key enabler of wider businesses. It 

is presently growing at a faster pace than ever, as e-commerce and small-package 

delivery by logistics giants such as DHL, UPS, FedEX, and DPD is becoming more 

and more widespread.     

Alongside with the pivotal role that UFD is playing in the functioning of urban 

economies, however, it is generating significant externalities such as traffic 

congestion and environmental pollution. Freight vehicles typically represent 8% to 

15% of total traffic flow in urban areas (MDS Transmodal, 2012) and are 

responsible for 25% of urban transport related CO2 emissions and 30% to 50% of 

other transport related pollutants (e.g. Particulate Matter and Nitrogen Oxide) 

(Alice/Ertrac, 2015). In London in 2006, for example, of the 9.6 million tonnes of 

CO2 emitted by all forms of transport, around 23% was from freight vehicles 

(Transport for London, 2007). UFD is also considered more polluting than long-

distance freight transportation, as fuel consumption increases sharply due to the 

stop-and-go driving patterns in congested urban centres (MDS Transmodal, 2012). 

The problem is getting more compound as new trends suggest that the high 

competition in the parcel courier sector between multiple operators has led to 

higher numbers of part-loaded vehicles (generally medium-sized goods vehicles) 

that enter residential areas; in many cases if residents are out at work, deliveries 

by these vehicles cannot be completed and the goods have to be returned to the 
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depot of the parcel courier and re-delivery must be arranged (MDS Transmodal, 

2012). 

This large and ever-increasing level of emissions from urban freight transport 

activities has attracted the attention of policy makers and national  governments. 

The European Commission has, for instance, set a target for “essentially CO2-free 

city logistics in urban centres by 2030” (European Commission, 2011). A recent 

survey that is aimed at assessing this target (Allen et al., 2017) reviews freight 

initiatives that are expected to reduce Heavy Goods Vehicles (HGVs) kilometres 

and CO2 emissions in European urban areas and ranks vehicle routing and 

scheduling tools among the top 10 impactful initiatives, which can help achieving 

around 23% reduction in HGV vehicle kilometres by 2030. The same survey 

suggests also that the uptake of vehicles with zero local emissions (e.g. electric 

vehicles) is a top-ranking initiative that is expected to bring in a reduction of over 

60% in emissions in urban centres by 2030. 

It is now well-realised by academics and practitioners that the Vehicle Routing 

Problem (VRP) can play a significant role in greening the UFD while satisfying 

business objectives. The 2015 survey of the UK Department for Transport to 

capture data on current levels of uptake of fuel efficient technologies among HGV 

operators shows that 41% of the respondents are now using telematics to optimise 

their vehicle routing (Department for Transport, 2017). On par with the industry 

side, a considerable wave of academic work has appeared in the area of VRPs with 

environmental considerations in recent years. These comprise the seminal papers 

on the Pollution Routing Problem (PRP) (Bektaş & Laporte, 2011), the Green 

Vehicle Routing Problem (G-VRP) (Erdoğan & Miller-Hooks, 2012) and the 

Electric Vehicle Routing Problem (EVRP) (Schneider et al., 2014).  

Despite the large number of research work that has appeared in a rather short 

time in the area of VRPs with environmental considerations, research in the field 

is still lagging behind in terms of providing a realistic exposition of the real 
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operating conditions of urban freight distribution, and in incorporating the rapid 

transport related technological advancements into new ways of designing 

environment-friendly distribution routes. These technological developments are 

particularly relevant to the wide availability of real-time and historical traffic data 

from all across the roadway network that could be used in data-informed decision 

making, and the rapid developments that are taking place in the area of alternative 

fuel vehicles running on cleaner fuel types such as electricity, natural gas and bio-

diesel. 

In the current doctoral thesis, I have focused on the development of new 

mathematical models and solution algorithms that are pertinent to the two major 

streams leading to the green UFD via VRPs with environmental considerations: (i) 

minimising vehicle emissions by optimising factors that affect the overall amount 

of fuel consumed by a delivery route, and (ii) facilitating the conversion of the fleet 

to electric commercial vehicles that are characterised by zero local emissions 

through the exploitation of new technological developments. 

1.2 The Vehicle Routing Problem 

The VRP is one of the most studied operational research problems that is 

celebrating its 60th anniversary since its introduction in 1959. The seminal paper of 

Dantzig and Ramser (1959) on the ‘‘Truck Dispatching Problem” was concerned 

with a real-life application of designing delivery routes with minimum total distance 

for a homogenous fleet of trucks that deliver gasoline to service stations. In the 

basic variants of the VRP we are given a central depot, a set of customers with 

geographically dispersed locations and known demand sizes, a set of homogenous 

vehicles, and cost (e.g. distance or travel time) of travelling between every pair of 

customers and every customer and depot. The aim of the VRP is to determine a 

set of vehicle routes that begin and terminate at the depot while visiting every 

customer exactly once, such that the total cost is minimised. 
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Since its introduction by Dantzig and Ramser (1959), the VRP has attracted 

a lot of attention in the academic literature, due to its many applications in practice 

and its various theoretical challenges. Many different variants of the VRP have 

been introduced through years to incorporate real-life complexities, and many 

models and solution algorithms have been proposed for the problem. There are now 

several review papers and books available on the VRP (Braekers et al., 2016; 

Eksioglu et al., 2009; Golden et al., 2008; Toth & Vigo, 2014), and there are also 

many specialised review papers on its different variants such as the capacitated 

VRP (Laporte, 2009), VRP with time windows (Bräysy & Gendreau, 2005a; Bräysy 

& Gendreau, 2005b; Gendreau & Tarantilis, 2010), VRP with pickup and delivery 

(Berbeglia et al., 2007), VRP with split deliveries (Archetti & Speranza, 2012), the 

periodic VRP (Campbell & Wilson, 2014), dynamic VRP (Pillac et al., 2013), VRP 

with multiple depots (Montoya-Torres et al., 2015), green VRP (Bektaş et al., 2019; 

Demir et al., 2014; Lin et al., 2014), time-dependent VRP (Gendreau et al., 2015), 

multi-objective VRP (Jozefowiez et al., 2008), heterogeneous VRP (Koç et al., 

2016), VRP on road networks (Ben Ticha et al., 2018) and synchronization aspects 

in VRP (Drexl, 2012). 

In the rest of this section, a brief overview on the variants that are more 

pertinent to the current study is presented. 

1.2.1 Emissions minimising VRP 

Following the realisation of the significant role of the VRP in greening UFD, a 

considerable deal of research work has appeared in the literature in a rather short 

time that try to introduce pollution related objectives into traditional VRPs. In 

this class of the VRP, that could be categorised as Emissions Minimising VRP 

(EMVRP), fuel consumption is usually used as a proxy for pollutants emissions, 

particularly CO2 emissions which are proportional to the amount of fuel consumed. 
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Fuel consumption approximation, on the other hand, is a very complicated 

task as it is dependent on a number of factors including travel related factors (such 

as speed, acceleration rates, and driving pattern), vehicle related factors (such as 

engine size, fuel type, payload, and age of the vehicle), road related factors (such 

as gradients, roundabouts, and traffic lights), and meteorological conditions (such 

as ambient temperature, wind speed and direction) (Palmer, 2007). Existing 

emission models could be broadly categorised into two main groups of (i) 

macroscopic (average speed) models, which make estimations based on the trip-

based average speed, and (ii) microscopic (instantaneous) models, which are based 

on instantaneous vehicle kinematic variables, such as speed and acceleration 

(Demir, Bektaş, & Laporte, 2014b). It is well-known that compared with 

macroscopic models, microscopic emission and fuel consumption models provide 

much more accurate estimations (Zegeye et al.,  2013; Ahn & Rakha, 2008; Boulter 

et al., 2006; Wang et al., 2011). This is because macroscopic models are unable to 

consider technical and vehicle-specific parameters such as vehicle shape (e.g. frontal 

area), and road conditions (e.g., gradient, surface resistance) (Demir, Bektaş, & 

Laporte, 2012). Therefore, microscopic models seem more robust, reliable and more 

applicable in the area of optimization (Demir, Bektaş, & Laporte, 2014b). Among 

all the available models, the Comprehensive Modal Emissions Model (CMEM) of 

Barth et al. (2004) can be viewed as a state-of-the-art microscopic emission model 

that has received far more attention in the EMVRP literature due to its ease of 

application (Demir, Bektaş, & Laporte, 2014) and its capability to embrace time-

varying traffic conditions, vehicle payload, and certain vehicle’s physical and 

mechanical characteristics.  

Existing emissions minimising vehicle routing models have so far considered 

several of the major factors that have an impact on the fuel consumption of a truck, 

such as vehicle type, speed, and load. Some of these models only incorporate the 

effect of the load carried by the vehicle on the fuel consumption level of routes 
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(Kara et al., 2007; Ubeda et al., 2011; Xiao et al., 2012). The main bearing on the 

emissions level in this category of models is due to the sequence that customers are 

visited which affects the payload between consecutive visits. More sophisticated 

models recognise the major role of the vehicle speed over each road-link in addition 

to the vehicle load. In the PRP (Bektaş & Laporte, 2011) and several related papers 

(Demir et al., 2012; Kramer et al., 2015b) fuel consumption is assumed a nonlinear 

convex function of the vehicle speed, and hence speed optimisation in a time-

independent setting, where non-congested traffic conditions are assumed 

throughout the day throughout the network, is attempted. However, the 

acknowledgement of the fact that travel speed could not be freely chosen in 

congested urban areas, as it fully depends on the expected time-varying traffic 

conditions, has led to the consideration of time-dependent variants of the VRP for 

a more accurate estimation model of fuel and other relevant decisions with temporal 

dependencies (Androutsopoulos & Zografos, 2017; Ehmke et al., 2016; M. Figliozzi, 

2010; M. A. Figliozzi, 2011; Franceschetti et al., 2013). Some of these studies also 

consider the possible benefits of waiting at the depot and/or the customers 

(Androutsopoulos & Zografos, 2017; Franceschetti et al., 2013; Xiao et al., 2012).  

The effect of the type and the number of the trucks that are included in the 

fleet to execute the routes on fuel consumption was previously considered in the 

context of the EMVRPs by Koç et al. (2014) and Xiao and Konak (2016). The 

studies of Demir, Bektaş, and Laporte (2014) and Androutsopoulos and Zografos 

(2017) are the only available studies that identify the objectives of fuel consumption 

minimisation and driving time as two conflicting objectives and study the problem 

as a bi-objective optimisation problem. Some recent research work has also 

acknowledged the problem of fuel-consumption minimising path identification in a 

time-dependent setting, and new emissions minimising vehicle routing models 

considering alternative road-paths between the consecutive truck stops have been 
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published recently (Qian & Eglese, 2016; Ehmke et al., 2016; Huang et al., 2017; 

Androutsopoulos & Zografos, 2017). 

This last category of the models constitutes the state-of-the-art in the 

EMVRPs as they offer a more realistic exposition of real life complications 

associated with UFD.  

1.2.2 Green and Electric VRP 

As a second major stream of research in greening UFD through VRPs, the use of 

vehicles that run on cleaner alternative fuels, such as electricity, hydrogen-gas and 

biofuel in the design of delivery routes has gained an increasing popularity in the 

last few years. Despite the significant role that these Alternative Fuel Vehicles 

(AFVs) can play in the development of environment-friendly freight distribution 

solutions, their application is still considerably hindered by their limited driving 

range, due to which visits to Refuelling Stations (RSs) during the course of the 

delivery might be required. This, however, brings in extra challenges owing to the 

fact that RSs are still very much scarce and unevenly scattered over the road 

network. In the case of electric vehicles this situation is still much more difficult as 

the time required to recharge their battery is significantly higher than conventional 

internal combustion engine vehicles. 

The Green vehicle routing problem (G-VRP) which was first introduced by 

Erdoğan and Miller-Hooks (2012) concentrates on routing a fleet of AFVs 

considering the availability of RSs in the network. The main challenge in the G-

VRP is hence to plan visits to the available RSs in the network as many times as 

it is required, as long as AFV routes are energy feasible and minimal in terms of 

the total distance travelled.  

The Electric Vehicle Routing Problem with Time-Windows (EVRPTW) 

(Schneider et al., 2014), on the other hand, can be viewed as a special case of the 

G-VRP (Erdoğan & Miller-Hooks, 2012) where capacity constraints and time-
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windows are added to the problem, and significantly larger refuelling (recharging) 

time is assumed.  In the variant considered by Schneider et al. (2014) a minimum 

number of ECVs must be assigned to energy-feasible delivery routes (potentially 

visiting one or several charging stations) that visit each customer exactly once 

during their pre-defined time-windows, such that the total capacity constraint of 

the ECV is not violated and the total distance travelled is minimised. Due to the 

limited driving range of ECVs, the core complication in the EVRPTW is related 

to the introduction of minimal detours in the vehicle routes to visit available 

Charging Stations (CSs) on the working graph to fully recharge their battery and 

carry on the delivery task.  

To allow more flexibility in the design of the ECV delivery routes, Keskin and 

Çatay (2016) relax the full recharging restriction and allow partial recharging at a 

CS. Other variants of the EVRPTW considering different recharging strategies, 

recharging functions and fleet composition have been also explored in the literature. 

Felipe et al. (2014) solve a variant in which in addition to the decision on the 

charging level at a CS, the technology used for recharging e.g. regular or fast 

recharging is considered. Montoya et al. (2017) argue that the recharging level of 

the battery is a non-linear function of the recharging time and study the EVRP 

(without time windows) with a nonlinear recharging function. Hiermann et al. 

(2016) consider the fleet size and mix in the EVRPTWs where the available vehicle 

types in the fleet differ in terms of their capacity, battery size and acquisition cost. 

Goeke and Schneider (2015) study the EVRPTW with a mixed fleet of ECVs and 

conventional internal combustion commercial vehicles. A distinctive feature of their 

study is that instead of simply assuming energy consumption is a linear function of 

the distance travelled, they utilise an energy consumption model that takes speed, 

road slope and vehicle payload into account. In the same vein, Basso et al. (2019) 

incorporate into the routing decision an improved and more accurate energy 

consumption estimation model comprising detailed topography and speed profiles. 
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To compensate for the large recharging time of ECVs at CSs, research has also 

turned attention towards recent technological developments that allow swapping 

the ECV’s depleted battery with a fully charged spare battery at a battery 

swapping station. In the Battery Swap Station Location-Routing Problem (BSS-

LRP) studied by Yang and Sun (2015) and Hof et al. (2017) the locations of battery 

swap stations and the vehicle routes considering the limited range of the ECVs 

must be determined. 

1.2.3 Time-dependent VRP 

Traffic congestion could be broadly attributed to two different sources of congestion 

known as “recurrent” and “non-recurrent” congestion. Recurrent congestion refers 

to high volume of traffic seen during peak commuting hours, and non-recurrent 

congestion is due to incidents, such as accidents, vehicle breakdowns, bad weather, 

work zones, lane closures, special events, etc. (Güner et al., 2012). Time-dependent 

vehicle routing models are good tools for coping with the effects of recurrent 

congestion.  

While conventional VRPs are often conducted under the assumption that all 

the information necessary to formulate the problems is time-invariant, in the Time-

Dependent VRP (TD-VRP) arc traversal times are assumed varying exogenously 

due to traffic congestion (Gendreau & Tarantilis, 2010). Therefore, given the 

availability of historical data on traffic congestion, travel time of any given road 

link or arc in the network is assumed a function of the start time from the origin 

node of the arc. 

Early TDVRP models (Hill & Benton, 1992; Malandraki & Daskin, 1992; 

Malandraki & Dial, 1996) contained the shortcoming of the undesired effect of 

passing, stemmed from the way travel times were modelled. The non-passing 

property, well-known as the FIFO property, is a logical requirement that ensures 

a later start time cannot lead to an earlier arrival time. To adhere to the FIFO 
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principle, Ichoua et al. (2003) suggested adopting a step function for the speed, 

using which a piecewise linear function for travel time could be deduced that 

satisfies the FIFO property (Figure 1-1). They proposed an algorithmic procedure 

for the calculation of the time-dependent travel time, on which most of the existing 

time-dependent vehicle routing literature relies.  

a. 

 
b. 

 
Figure 1-1 (a.) a step function for speed and (b.) the resulting piecewise linear 

function for travel time for a given arc using the model proposed by Ichoua et al. 

(2003) 

To address a shortcoming of the model proposed by Ichoua et al. (2003), that 

corresponds to ignoring the time required for acceleration/deceleration from one 

speed level to the next, the more realistic FIFO-consistent model of Horn (2000) 

has also attracted some recent attention (Androutsopoulos & Zografos, 2012; 

Androutsopoulos & Zografos, 2017). This model uses directly in its input the speed 

data as they are archived by traffic agencies, i.e. time-series of speed observations. 

Connecting each speed observation at each given time instant from such databases 

results in a continuous piece-wise linear function of the time for speed (including 

acceleration/deceleration rates), using which a FIFO-consistent non-linear travel-

time function could be deduced. 
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a. 

 
b. 

 
Figure 1-2 (a.) speed as a continuous piece-wise linear function of the time (b.) the 

resulting non-linear travel time function using the model proposed by Horn (2000) 

In Figure 1-2.a fifteen-minute data series of average speed provided by 

data.gov.uk (Highways England, 2018) for March 2015 on a given ‘A’ road in the 

UK is illustrated. Figure 1-2.b. shows the corresponding non-linear travel time 

function estimated for 40 kilometres travelled under this speed profile using the 

model proposed by Horn (2000).

1.2.4 VRPs on road networks 

It is a common practice in most of the VRP literature to transform the original 

road network into a complete graph of only the required nodes (i.e. the depot and 

customers), through the calculation of the shortest (or cheapest) path between 

every given pair of customers, and customer and depot, in a pre-processing stage 

(Figure 1-3). This way the routing decision on the transformed graph is only 

concerned with sequencing the customers’ visits, ignoring the intermediate road-

path finding problem between them. However, in many situations this 
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representation results in missing important information contained in the original 

road network and hence can have a negative impact on the quality of the solutions 

obtained. 

 

 
Figure 1-3 Transformation of the original road network into a complete graph of the 

required nodes 

One example of such situation arises when routing on the congested urban 

road network for fuel consumption minimisation. Due to the time-varying 

congestion in urban areas, depending on the time of the day at which a customer 

is to be left towards a next customer on the vehicle’s schedule, the optimal path 

can vary. Combine with this the lack of knowledge about the load on the vehicle 

on its departure which is an undecided factor until the entire routing plan is 

revealed.  

This issue has been recently acknowledged in the literature and there are few 

papers that have tried to address it by studying the problem on the road network. 

Qian and Eglese (2016) and Huang et al. (2017) propose to use a multi-graph of 

the time-dependent shortest paths between the required nodes, where a set of such 
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paths as candidate paths are precomputed between every pair of required nodes 

and kept. Ehmke et al. (2016) propose a new result that identifies a condition under 

which a time-dependent path between two customers is load invariant. This allows 

them to reduce the computational challenge of finding the time and load-dependent 

paths between some customers at some time instants by making it possible to 

precompute expected time-dependent fuel consumption minimising paths between 

them. Androutsopoulos and Zografos (2017) propose a network reduction approach 

that is based on the use of the k-shortest distance road paths. They show that 

when k is small (e.g. k=2) eligible paths might be excluded from the reduced 

network, and if a higher value for k is selected (e.g. k=5), while the number of 

excluded eligible paths is reduced, the computational time increases, accordingly. 

Besides the cases when the nature of the objective function of concern 

necessitates the study of the problem on the original road network, when multiple 

attributes are associated with each arc in the network, the problem of finding the 

best path between two points of interest becomes multi-criteria and efficient paths 

with different compromises between the different attributes, are missed as a result 

of network abstraction to a complete graph. Moreover, it has also been argued that 

from a methodological point of view it is not always beneficial to work on a 

transformed graph instead of the original road network (Ben Ticha et al., 2018).  

1.2.5 Other pertinent variants of the VRP 

There are other variants of the VRP that are closely related to the problems studied 

in this thesis. Alongside with the well-known VRP with time windows, the fleet 

size and mix VRP, and the multi-objective VRP, a relevant variant of the VRP 

that has a role to play in greening UFD is the multi-trip VRP. Unlike conventional 

VRPs, in multi-trip VRP vehicles are allowed to make several journeys during a 

day. In VRPs with environmental considerations, this has important implications 

regarding multiple uses of energy-efficient resources multiple times during the 
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planning horizon. Moreover, multi-trip VRPs are particularly useful for planning 

UFD, as in urban areas vehicle trips are rather short and it is possible to reload 

vehicles and dispatch them for an extra round of delivery.  

Finally, VRPs with synchronisation requirements are also pertinent 

particularly to the problem studied in the fourth chapter of this thesis. Due to the 

existence of specific spatiotemporal synchronisation requirement in the proposed 

problem in chapter 4 of the thesis, it comprises some similarities with a class of 

VRPs known as the two-Echelon VRP with Satellite Synchronisation (2E-VRP-

SS). In 2E-VRPSSs (Anderluh et al., 2017; Crainic et al., 2009; Grangier et al., 

2016) there is a need to establish temporal synchronisation between the vehicles in 

the first echelon with the vehicles of the second echelon at an intermediate site, 

called satellite. The main complication that arises in establishing such 

synchronisation is due to the fact that unlike in the standard VRPs where vehicles 

are independent of one another, in VRPs with temporal synchronisation 

constraints, a change in one route may have effects on other routes, and in the 

worst case, a change in one route may render all other routes infeasible.  

1.2.6 Exact and heuristic solution algorithms 

VRP is an NP-hard problem and exact algorithms can address relatively small 

instances. Hence, in practice heuristics and metaheuristics that are capable of 

producing high-quality solutions in limited time are often used. Typical exact 

algorithms for the VRP include dynamic programming (Christofides et al., 1981b), 

branch-and-bound (Christofides et al., 1981a), branch-and-cut (Laporte et al., 

1985), and branch-and-cut-and-price (Fukasawa et al., 2006), with the latter 

demonstrating noticeable success recently in solving richer variants of the VRP, 

too (e.g. Dabia et al., 2016 and Desaulniers et al., 2016). 

On the other hand, a lot of heuristic and metaheuristics have been proposed 

for the VRP. Traditional heuristic approaches could be classified into: (i) route 
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construction and (ii) route improvement (local search) methods. In route 

construction heuristics customers are selected sequentially based on some cost 

minimization criterion, subject to the problem constraints, until a feasible solution 

is created (Bräysy & Gendreau, 2005a). This can be done either sequentially (i.e. 

constructing one route at a time) or in parallel (i.e. building several routes 

simultaneously). The saving algorithm of Clark and Wright (1964), the sweep 

algorithm of Gillet and Miller (1974), and the parallel-route building algorithm of 

Potvin and Rousseau (1993) are the well-known classics of the route construction 

heuristics. Route improvement methods, on the other hand, are based on the 

concept of iteratively improving a solution by exploring neighbouring ones. The key 

concept here is to select the appropriate move-generation mechanism that creates 

the neighbouring solutions by changing one or several attributes (e.g. arcs 

connecting a pair of customers) of the current solution. A generated neighbouring 

solution is then compared against the current solution and if it is better, it replaces 

the current solution, and the search continues (Bräysy & Gendreau, 2005a). Most 

iterative improvement methods for the VRP are edge-exchange algorithms such as 

the well-known classical 2-opt and 3-opt edge exchange procedures of Lin (1965) 

and the Or-opt operator of Or (1977).  

The local optimum produced by local-search algorithms can be very far from 

the optimal solution, as local-search methods perform a myopic search by only 

sequentially accepting solutions that provide improvements in the objective 

function value (Bräysy & Gendreau, 2005a). To avoid being trapped in a low 

quality local optimum, metaheuristics are devised to explore the wider solution 

space by accepting non-improving solutions also in a systematic way during the 

search. Successful examples of metaheuristics that have been applied on important 

variants of the VRP include Tabu search (Glover, 1989), genetic algorithm 

(Holland, 1992), simulated annealing (Kirkpatrick et al., 1983), ant colony systems 
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(Dorigo & Di Caro, 1999) and large neighbourhood search (Pisinger & Ropke, 

2010).  

In recent years, matheuristic solution algorithms, which are based on the 

hybridisations of heuristic and exact solution techniques, have also been gaining 

popularity, especially in solving richer variants of the VRP (Archetti & Speranza, 

2014; Doerner & Schmid, 2010; Grangier et al., 2017; Kramer et al., 2015a; Villegas 

et al., 2013). While any solution methodology that uses mathematical modelling or 

exact solution algorithms like dynamic programming within the structure of a 

metaheuristic can be identified as a matheuristic, most of the existing matheuristics 

are based on decomposition approaches and column generation-based methods. In 

decomposition approaches, the problem is usually divided into smaller and simpler 

sub-problems and a specific exact solution method is applied to some or all of these 

sub-problems. Column generation-based approaches, on the other hand, preserve 

the structure of the branch-and-price methods but use either restricted master 

heuristics, heuristic branching approaches and/or relaxation-based approaches 

(Archetti & Speranza, 2014). 

As regards algorithmic developments for realistic variants of the VRP with 

environmental considerations, contrary to the modelling developments in the field, 

the literature is significantly lagging behind. Incorporation of factors that have a 

major impact on fuel consumption, such as vehicle speed, acceleration/deceleration 

rates, load, and vehicle type, requires the unification of several hard variants of the 

VRP such as time-and-load dependent VRPs that are studied directly on the road 

network. Moreover, the need to consider environmental criteria alongside 

traditional business objectives leads to the necessity of multi-objective optimisation 

of these models that adds extra challenges. Algorithms that are able to address 

these rich variants of the VRP with environmental considerations are still very 

rare.  
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1.3 Contribution 

Despite the rapid developments in the field of VRPs with environmental 

consideration, modelling and algorithmic developments relevant to realistic variants 

that can incorporate the real operating conditions of UFD are still very rare. 

Incorporation of technological developments pertinent to alternative fuel vehicles 

(electric commercial vehicles in particular) into routing problems dedicated for 

these vehicles has been also advancing rather slowly. This thesis is trying to close 

some of these gaps through the development of new mathematical models and 

solution algorithms for the VRP with environmental considerations. 

The contribution of the thesis can be summarised as follows:  

 The thesis introduces a new realistic variant of the pollution-routing 

problem, referred to as the Steiner Pollution-Routing Problem (SPRP) that 

is studied directly on the original urban roadway network. The proposed 

variant is a multi-objective, time and load dependent, fleet size and mix 

PRP with multiple trips, time windows, and flexible departure times on 

congested urban road networks. In particular, the added value of the 

proposed model is in integrating all previously studied attributes 

contributing to fuel consumption, and other new important decisions such 

as multiple trips, into a single modelling and solution scheme.  

 To overcome difficulties in solving the proposed SPRP problem directly on 

the original roadway network, the thesis introduces new combinatorial 

results that are used in a new exact path elimination procedure to reduce 

the network size to a significant extent in a fast pre-processing stage by 

discarding all proven to be redundant paths from the network. 

 To address a shortcoming of previous research in estimating fuel 

consumption accurately, the thesis proposes to use a microscopic fuel 

estimation formula that incorporates instantaneous truck kinematic 
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variables including the time-dependent second-by-second speed and 

Acceleration/Deceleration (A/D) rates in the proposed models; moreover, 

to supply the models with the possible lack of the instantaneous truck A/D 

data at the planning stage, a new mixed integer linear programming model 

for the construction of realistic spatiotemporal driving cycles from 

macroscopic traffic speed data is proposed. 

 Three new multi-objective optimisation heuristics that are tailored to solve 

the SPRP instances with realistic sizes within a reasonable computational 

time are developed; the proposed heuristics output a pool of Pareto optimal 

solutions, representing the trade-off between business and environmental 

objectives, and their main added value is in that the considered problem 

unifies a number of existing and new complex EMVRP features and difficult 

variants of the VRP. 

 The thesis introduces a new paradigm shift in electric vehicle routing models 

by exploiting new technological developments in the Electric Vehicle 

Routing Problem with Synchronised Ambulant Battery Swapping (EVRP-

SABS).  

 To solve the proposed EVRP-SABS, the thesis develops new combinatorial 

results that are used in an exact eligible path identification procedure for 

the identification of the set of the paths that must be retained between a 

pair of customers or a customer and the depot, a priori. These results are 

hence used in a strengthened formulation for the problem that can tackle 

some large instances, and in a proposed 2-stage matheuristic solution 

algorithm for the problem. 
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1.4 Structure of the thesis 

The next three chapters of this thesis consist of three research articles that are 

either submitted for publication or are in preparation for submission. The following 

is a brief description of each chapter: 

Chapter 2: The Multi-objective Steiner Pollution-Routing Problem on 

Congested Urban Road Networks. This chapter introduces the SPRP and proposes 

a new exact path elimination procedure for alleviating the difficulty of solving the 

problem directly on the roadway network. The chapter also proposes a new model 

for the construction of reliable synthetic spatiotemporal driving cycles from 

available macroscopic traffic speed data. 

Chapter 3: Multi-objective Optimisation Heuristics for the Steiner Pollution-

Routing problem. This chapter develops three new multi-objective optimisation 

heuristics to approximate the true Pareto optimal frontier of realistic instances of 

the SPRP. 

Chapter 4: The Electric Vehicle Routing Problem with Synchronised Ambulant 

Battery Swapping/Recharging. This chapter introduces the EVRP-SABS as a class 

of EVRPs that exploits new technological developments pertaining to mobile 

battery swapping/recharging of electric vehicles. The chapter also proposes new 

results that are used in solving the newly proposed problem.   

Finally, chapter 5 is the discussion and concluding remarks chapter of the 

thesis. 



 

2. THE MULTI-OBJECTIVE STEINER 
POLLUTION-ROUTING PROBLEM 
ON CONGESTED URBAN ROAD 

NETWORKS 

--AN EXCERPT OF THIS CHAPTER IS PUBLISHED AT TRANSPORTATION RESEARCH PART B: METHODOLOGICAL-- 

2.1 Introduction 

Urban Freight Distribution (UFD) is essential to the functioning of urban 

economies; however, it generates significant externalities such as traffic congestion 

and environmental pollution. European surveys indicate that the share of emissions 

of freight vehicles is between 20% and 30% of the total urban traffic emissions. For 

instance, in London in 2006 around 23% of Carbon Dioxide (CO2) emitted by all 

forms of transport was due to freight vehicles (MDS Transmodal, 2012). The 

European Commission has therefore set a target for “essentially CO2-free city 

logistics in urban centres by 2030” (European Commission, 2011).  

A recent survey that is aimed at assessing the target set by the European 

Commission (Allen et al., 2017) reviews freight initiatives that are expected to 

reduce Heavy Goods Vehicles (HGVs) kilometres and CO2 emissions in European 

urban areas, and ranks vehicle routing and scheduling tools among the top 10 

impactful initiatives, which can help achieving around 23% reduction in HGV 

vehicle kilometres by 2030. Therefore, introducing pollution related objectives into 

traditional Vehicle Routing Problems (VRPs) can be viewed as a major approach 

to combat Greenhouse Gas (GHG) emissions, and can assist decision makers to 

strike a balance between business and environmental objectives. This need has led 

to the development of a significant body of the literature related to the Emissions 

Minimising Vehicle Routing Problems (EMVRPs), comprising Green VRPs and 

the Pollution-Routing Problem (PRP) (Bektaş & Laporte, 2011). In the EMVRPs 
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a fuel consumption estimation model, which is dependent on several vehicle and 

roadway network characteristics, is explicitly incorporated into the routing 

decision. Hence, unlike the traditional VRP that is predominantly concerned with 

the allocation of customers to feasible truck routes, realistic emissions minimising 

routing decisions on congested urban road networks must address a much more 

complicated decision, mainly due to the effect that the time-varying traffic 

conditions, the vehicle payload, and certain vehicle’s physical and mechanical 

characteristics have on the fuel consumption level of a truck. A very first 

implication of this, which has not been sufficiently addressed  by the previous 

related work in the field, is that the consideration of a priori determined single 

road-path for travelling between consecutive truck visits is not possible, as in 

practice several alternative paths can become optimal in terms of the fuel 

consumption between a given origin-destination pair on the underlying roadway 

graph depending on the departure time from the origin node, the load on the truck, 

and the type of the truck that is to be dispatched; none of which are known prior 

to realising the full route plan and schedule. Despite very recent efforts in 

addressing this situation(Androutsopoulos & Zografos, 2017; Ehmke et al., 2016; 

Y. Huang et al., 2017; Qian & Eglese, 2016), existing approaches can only identify 

a limited subset of the eligible paths for the time and load dependent emissions 

minimisation, and it is still an open research issue to identify optimally all road-

paths that must be retained.  

This paper aims to close this gap by studying a new variant of the PRP, called 

the Steiner PRP (SPRP), directly on the original urban roadway network, and 

proposing new combinatorial results to develop an exact path elimination approach 

for the identification of the full set of the eligible road-paths (i.e. paths that might 

appear in a fuel consumption minimising route) in a fast pre-processing stage. It is 

worth mentioning that in calling the proposed variant the SPRP, we are following 

Cornuéjols, Fonlupt, and Naddef (1985) and Letchford, Nasiri, and Theis (2013) in 
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calling a relevant variant of the Travelling Salesman Problem (TSP) on road 

networks as the Steiner TSP. 

In addition to the aforementioned issue, the first step in constructing fuel-

efficient truck routes involves an accurate estimation of the amount of fuel 

consumed at each route. Existing PRPs assign this task to a simplified average-

speed version of the Comprehensive Modal Emissions Model (CMEM) formula 

(Barth et al., 2004), in which all model parameters are assumed to remain constant 

during a truck haul, except for load and speed which might vary from one road-

link to another. However, as it has been recently argued by Turkensteen (2017), 

CMEM is a microscopic fuel consumption and emission model and relies on 

instantaneous vehicle kinematic variables, such as second-by-second speed and 

Acceleration/Deceleration (A/D) rates. Lack of this information at the planning 

stage, especially the A/D rates, which are assumed zero over a truck haul in 

average-speed CMEM, can lead to an inaccurate estimation of fuel consumption 

and hence might lead to unreliable and misleading routing decisions. While the 

proposed model in this paper is developed to work directly with the instantaneous 

CMEM formula, to address the lack of truck A/D data we propose a simple and 

reliable model for the construction of synthetic driving cycles from the available 

macroscopic traffic speed data. 

The paper also acknowledges the fact that in urban areas travel times are 

rather small and it is often possible that after performing short routes trucks are 

reloaded and used again (Olivera & Viera, 2007). Therefore, the proposed model in 

the paper incorporates for the first time in the area of EMVRPs the decision 

regarding multiple uses of the cost and energy efficient resources during the 

planning horizon through the multi-trip decision-making in a multi-objective 

setting, where both business and environmental objectives are considered. In the 

SPRP three objective functions pertaining to (i) vehicle hiring cost, (ii) total 

amount of fuel consumed, and (iii) total makespan (duration) of the routes are 
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considered, and to solve the problem to multi-objective optimality the paper 

develops a multi-phase solution framework, underpinned by the proposed exact 

network reduction technique, for the identification of the full set of the Non-

Dominated (ND) points.  

The contribution of this paper is multi-fold: (i) the SPRP is introduced as a 

multi-objective, time and load dependent, fleet size and mix PRP with multiple 

trips, time windows, and flexible departure times on congested urban road 

networks. In particular, the added value of the proposed model is in integrating all 

previously studied attributes contributing to fuel consumption, and other new 

important decisions such as multiple trips, into a single modelling and solution 

scheme, (ii) to overcome difficulties in solving the problem directly on the original 

roadway network, and eliminate the computational burden of the intermediate 

problem of finding the emissions minimising paths between consecutive visits on-

the-fly, new combinatorial results are developed and used in proposing a new exact 

Path Elimination Procedure (PEP) that reduces the network size to a significant 

extent in a fast pre-processing stage by discarding all proven to be redundant paths 

from the network without eliminating ad-hoc ND points, (iii) to address a 

shortcoming of previous research in estimating fuel consumption accurately, the 

microscopic CMEM formula incorporating instantaneous truck kinematic variables 

including the time-dependent second-by-second speed and A/D rates is used in the 

models proposed in the paper, and (iv) a new Mixed Integer Linear Programming 

(MILP) model for the construction of realistic road-and-time-dependent driving 

cycles from macroscopic traffic speed data is proposed, to supply the model with 

the possible lack of the instantaneous truck A/D data at the planning stage.  

The remainder of the chapter is structured as follows: section 2.2 discusses a 

background on the most relevant literature. Section 2.3 develops the SPRP model. 

Section 2.4 elaborates on the proposed path elimination approach and the model 

based on it. Section 2.5 discusses the methodology used for the identification of ND 
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points to the SPRP. Section 2.6 discusses the proposed approach for generating 

driving cycles. Computational experiments are presented in Section 2.7; and finally, 

section 2.8 concludes the chapter. 

2.2 Previous related work 

The problem considered in this paper encompasses several attributes frequently 

encountered in real world urban freight distribution settings, including the time-

varying road congestion, time and load dependent path selection, multiple use of 

the vehicles in the fleet, decisions on hiring a heterogeneous fleet of vehicles, and 

inclusion of both business and environmental objectives in decision making. There 

is research work focusing on each independent aspect of the proposed problem; 

however, the intention of this section is to discuss a selected review of the key 

studies in the general area of emissions minimising vehicle routing, and the more 

specific area of emissions minimisation on congested urban road networks. For an 

inclusive and up-to-date review on the state-of-the-art literature on the role of 

operational research in green freight transportation, the reader is referred to the 

recent study of Bektaş, Ehmke, Psaraftis, and Puchinger (2019b). We may also 

refer to Ben Ticha, Absi, Feillet, and Quilliot (2018) for a review on VRPs that are 

studied on road networks. 

In the VRPs with explicit consideration of environmental performance of the 

planned routes, fuel consumption is usually used as a proxy for pollutants emissions, 

particularly CO2 emissions which are proportional to the amount of fuel consumed. 

Fuel consumption is in turn dependent on many factors, and several of these factors 

such as vehicle type, speed, and load have already been considered in emissions 

minimising vehicle routing models. Some of these models only incorporate the effect 

of the load carried by the vehicle on the fuel consumption level of routes (Kara et 

al., 2007; Ubeda et al., 2011; Xiao et al., 2012). The main bearing on the emissions 

level in this category of models is due to the sequence that customers are visited 
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which affects the payload between consecutive visits. More sophisticated models 

recognise the major role of the vehicle speed over each road-link in addition to the 

vehicle load. In the PRP (Bektaş & Laporte, 2011) and several related papers 

(Demir et al., 2012; Kramer et al., 2015) fuel consumption is assumed a nonlinear 

convex function of the vehicle speed, and hence speed optimisation in a time-

independent setting, where non-congested traffic conditions are assumed 

throughout the day throughout the network, is attempted. However, the 

acknowledgement of the fact that travel speed could not be freely chosen in 

congested urban areas, as it fully depends on the expected time-varying traffic 

conditions, has led to the consideration of time-dependent variants of the VRP for 

a more accurate estimation model of fuel and other relevant decisions with temporal 

dependencies (Figliozzi, 2010; Figliozzi, 2011; Franceschetti, Honhon, Woensel, 

Bektaş, & Laporte, 2013; Ehmke et al., 2016; Androutsopoulos & Zografos, 2017; 

Çimen & Soysal, 2017; Ehmke et al., 2018). Some of these studies also consider the 

possible benefits of waiting at the depot and/or the customers (Xiao et al., 2012; 

Franceschetti et al., 2013; Androutsopoulos & Zografos, 2017).  

Very recent research (Kancharla & Ramadurai, 2018; Turkensteen, 2017) has 

shed light on the inaccuracy of the fuel consumption estimation model used within 

EMVRPs due to ignoring truck A/D rates. Using numerical experiments from 

available chassis dynamometer driving schedules, Turkensteen (2017) shows that 

the magnitude of this error can be high. Kancharla and Ramadurai (2018), on the 

other hand, collect some on-road truck A/D data in a time-independent and static 

setting and randomly feed these data into their model for fuel consumption 

estimation. A major shortcoming of their proposed approach, however, lies in the 

fact that the spatial and temporal characteristics of the road-links in the graph are 

completely ignored. This issue is addressed in the current work by using the 

microscopic CMEM formula that incorporates instantaneous time-dependent 

second-by-second speed and A/D rates. 
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The effect of the type and the number of the trucks that are included in the 

fleet to execute the routes on fuel consumption was previously considered in the 

context of the EMVRPs by Koç et al. (2014) and Xiao and Konak (2016). The 

studies of Demir, Bektaş, and Laporte (2014) and Androutsopoulos and Zografos 

(2017) are the only available studies that identify the objectives of fuel consumption 

minimisation and driving time as two conflicting objectives and study the problem 

as a bi-objective optimisation problem. Some very recent research work has also 

acknowledged the problem of fuel-consumption minimising path identification in a 

time-dependent setting, and new emissions minimising vehicle routing models 

considering alternative road-paths between the consecutive truck stops have been 

published very recently (Qian & Eglese, 2016; Ehmke et al., 2016; Huang et al., 

2017; Androutsopoulos & Zografos, 2017). This last category of research is the most 

pertinent to the current study and will be discussed further in the sequel. 

In Table 2-1 different attributes and features that are considered by the key 

literature in the area and the current work are indicated using tick marks. This 

table can highlight two major gaps in the field that the proposed work is trying to 

address: (i) despite its important implications with regard to multiple use of energy-

efficient resources multiple times during the planning horizon, multi-trips decision 

making has not yet been incorporated into emissions minimising vehicle routing 

models, and (ii) all factors and attributes identified and addressed have not yet 

been unified into a realistic integrated modelling and solution framework. It is also 

worth mentioning that the proposed work in this paper is the first study in the 

area to consider vehicle cost as a major business objective next to makespan and 

fuel consumption objectives in a tri-objective setting. 
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Table 2-1 

Overview of attributes covered by the previous related works 

  Attributes covered 

Study 
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Kara et al. (2007)            

Ubeda et al. (2011)            

Bektaş and Laporte (2011)            

Figliozzi (2011)            

Franceschetti et al. (2013)            

Demir et al. (2014)            

Koç et al. (2014)            

Xiao and Konak (2016)            

Qian and Eglese (2016)            

Ehmke et al. (2016)            

Huang et al. (2017)            

Androutsopoulos and Zografos (2017)            

Kancharla and Ramadurai (2018)            

Proposed work            

Except for the last category of the models discussed above (i.e. models that 

consider alternative road-paths), a major limitation of most of the existing research 

work in the area of EMVRPs lies in the fact that they consider an a priori 

determined single road-path for travelling between each pair of customers. There 

are at least two main reasons why this is not possible when routing on a congested 

urban road network for fuel consumption minimisation: 

 Determining a minimum fuel consuming path between a given pair of 

origin/destination on urban road networks with time-varying traffic 

conditions requires a knowledge of the time the origin node is to be 

departed, the type of the truck to be dispatched to traverse the path (in 

case of a heterogeneous fleet), and the load to be carried by the dispatched 

truck over the path. All these variables are unknown until the routing plan 
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and schedule is fully realised, and therefore identifying a path (or a set of 

paths) between every pair of the required nodes (customers and the depot) 

in order to transform the roadway network into a complete graph seems 

impossible. 

 For a given sequence of visits starting and terminating at the depot (a 

vehicle route), and a given departure time from the depot, it is not 

guaranteed that merely fuel consumption minimising paths are taken by the 

truck between every pair of consecutive stops in order to minimise the total 

amount of fuel required by the vehicle route. In other words, inferior paths 

in terms of the fuel consumption might appear in the optimal fuel 

consuming vehicle route (see examples in Androutsopoulos and Zografos, 

2017). 

We are aware of 4 papers that acknowledge one or both of these issues and 

try to address them. Qian and Eglese (2016) and Huang et al. (2017) propose to 

use a multi-graph of the Time-Dependent Shortest Paths (TDSPs) between the 

required nodes, where a set of such paths as candidate paths are precomputed 

between every pair of required nodes and kept. However, this approach is not 

sufficient as it does not take load (and vehicle type) dependency into account. In 

the hope of partially tackling the effect of load-dependency, Huang et al. (2017) 

also include the distance-minimising path to the set of the time-minimising paths. 

While this might be partially helpful, there is no guarantee that all eligible road-

paths are included. Ehmke et al. (2016) identify the first issue mentioned above 

and state that the identification of a set of all eligible paths a priori is not possible. 

Instead, to take both time and load-dependency into consideration, they propose a 

new result that identifies a condition under which a time-dependent path between 

two customers is load invariant (in case of a homogenous fleet). This allows them 

to reduce the computational challenge of finding the time and load-dependent paths 

between some customers at some time instants by making it possible to precompute 
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expected time-dependent fuel consumption minimising paths between them. 

However, still for the rest of the customer pairs where the condition they check is 

not satisfied, they need to carry out shortest path computation on-the-fly in their 

Tabu Search algorithm, which is a costly requirement that prohibits solving 

problems with larger than 30 customers, even heuristically. Androutsopoulos and 

Zografos (2017) acknowledge both of the stated issues and propose a network 

reduction approach that is based on the use of the k-shortest distance road paths. 

This approach is, however, sensitive to the selection of the value of k. They try to 

show that when k is small (e.g. k=2) eligible paths might be excluded from the 

reduced network, and if a higher value for k is selected (e.g. k=5), while the number 

of excluded eligible paths is reduced, the computational time increases, accordingly. 

Based on this review, the exact identification of the full set of the eligible 

emissions minimising road-paths between the required nodes on a time-dependent 

graph is still an open research issue. To tackle this, an efficient exact Path 

Elimination Procedure (PEP) is proposed by this paper that advances the result 

found by Ehmke et al. (2016) and can identify and discard all proven to be 

redundant paths between the required nodes in a pre-processing stage and 

eliminates the need for the shortest-path calculation on-the-fly. Our results are 

generalised for the case of a heterogeneous fleet, with multiple objective functions 

to be minimised by the planned routes. 

2.3 Model development: notation and definitions 

The SPRP is defined on a directed graph ᵃ� = (ᵃ�, ᵃ�), representing a real roadway 

network, where ᵃ� is the set of network nodes and ᵃ� is the set of directed road-

links. The set ᵃ� = {ᵃ�� ∪ ᵃ�� ∪ ᵃ��} is comprised of the depot ᵃ�� = {0}, customer 

nodes ᵃ�� = {1,2,… , ᵅ�}, and network junctions ᵃ�� = {ᵅ� + 1, … , ᵅ� + �}. There is 

a fleet of heterogeneous vehicles set ᵃ�, with |ᵃ�| = ᵱ�, located in the central depot, 

which is assumed to be composed of ᵕ� different types of trucks. To each truck ᵅ� ∈
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ᵃ� a curb weight ᵰ�� (kg), a maximum payload ᵃ�� (kg), and a daily hiring fixed 

cost ᵃ�� (£), among other vehicle-specific factors such as engine friction factor, 

engine speed, engine displacement, coefficient of aerodynamic drag, and frontal 

surface area is attributed. 

Each customer ᵅ� ∈ ᵃ�� is associated with a certain demand ᵅ�� ≤ max
�∈�

ᵃ�� to be 

delivered within its pre-determined hard time window denoted by ᵅ�� = [ᵃ��, ᵅ��], with 

service time ᵅ��. The depot working hours which is also considered as the planning 

horizon is denoted by ᵃ� = ᵅ�� = [ᵃ��, ᵅ��], and while it is assumed that trucks are 

initially loaded, reloading them for operating a new route takes ᵅ�� time at the 

depot. To each road-link (ᵅ�, ᵅ�) ∈ ᵃ�, a distance ᵃ���, and a time-dependent travel 

time ���
� , depending on the departure time from the origin node ᵅ�, i.e. ᵰ� ∈ [ᵃ��, ᵅ��] is 

attributed. In this study we assume that the time-dependent travel times (���
� ) are 

integer. 

The aim of the SPRP is to determine an optimal composition of vehicles in 

the fleet to operate routes that start and finish at the depot and serve every 

customer exactly once within their pre-defined time-windows, without violating 

vehicle capacities and working day limits, such that the following objectives are 

minimized: (i) vehicle hiring cost, (ii) total amount of fuel consumed, and (iii) total 

makespan (duration) of the routes.  

The following terms are used throughout this paper:  

o Required nodes: required nodes (ᵃ��) are the nodes on the roadway network 

representing the location of the depot and the customers; i.e. 

ᵃ�� = ᵃ�� ∪ ᵃ��. 

o Road-link: a road-link is any kind of road in the hierarchy of roads such as 

a freeway, an arterial, a collector, or a local road that connects two nodes 

on the roadway network; i.e. (ᵅ�, ᵅ�) ∈ ᵃ�. 

o Road-path: a road-path ᵅ���, or simply a path, is a sequence of road-links 

which connects a pair of required nodes ᵅ�, ᵅ� ∈ ᵃ��, ᵅ� ≠ ᵅ� on the roadway 
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network; i.e. ᵅ��� = [(ᵅ�, 1), (1,2),… , (ℓ, ᵅ�)], 1. . ℓ ∈ ᵃ� ∖ ᵅ�, ᵅ�. By convention, let 

us assume that ��� is the set of all paths between a pair of required nodes, 

i.e. ��� = {ᵅ�����, ᵅ�����,… , ᵅ�����} (identification of this set can be intractable). 

Whenever it is needed, we denote the time-dependent travel time of a road-

path ᵅ��� by ��(ᵅ���) for departure time ᵰ� from node ᵅ�; moreover, the fuel 

consumption of a truck ᵅ� ∈ ᵃ�, carrying a load ᵃ� ∈ [0,ᵃ��] over a given road-

path ᵅ��� is denoted by ��
��(ᵅ���). Note that since no waiting is allowed at 

intermediate nodes between the origin and the destination of the path, 

knowing the departure time from the origin node is sufficient for estimating 

the time-dependent attributes of the path. 

o Route (trip): A route or a vehicle trip (ᵅ�) is a sequence of visits starting at 

the depot, passing through at least one customer and terminating at the 

depot, i.e. ᵅ� = {0, ᵅ�, … ,0}, ᵅ� ∈ ᵃ��. 

o Route-path: A route-path (ᵅ��) of route (ᵅ�) is a route enhanced by the road-

paths connecting every pair of consecutive required nodes on the route; i.e. 

ᵅ�� = �(0, ᵅ�, ᵅ�����), … , (ᵅ�, 0, ᵅ�����)�, ᵅ�, ᵅ� ∈ ᵃ��, ᵅ����� ∈ ���, ᵅ����� ∈ ���.   

o Route-trajectory: A route-trajectory (ᵅ��
��) is basically a scheduled route-

path detailing the departure time from the depot and hence each required 

node on the route-path, i.e. ᵅ��
�� = �(0, ᵅ�, ᵅ�����, ᵰ��), … , (ᵅ�, 0, ᵅ�����, ᵰ��)�, ᵅ�, ᵅ� ∈

ᵃ��, ᵅ����� ∈ ���, ᵅ����� ∈ ���, ᵰ��, ᵰ�� ∈ ᵃ� . The total makespan and fuel 

consumption of a truck ᵅ� ∈ ᵃ� over a route-trajectory ᵅ��
�� are denoted by 

�(ᵅ�ᵅ�
ᵰ�0 ) and ��(ᵅ��

�� ), respectively. Note that, since ��(ᵅ��
�� ) is deduced from 

the aggregation of the fuel consumption over each of the constituting road-

paths with varying payloads, it is not indexed by the truck load. 

o SPRP solution: A feasible SPRP solution is a set of feasible route-

trajectories enhanced by the type of the truck with enough capacity to carry 

out each one of them. The solution moreover specifies the amount of load 
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that is carried by each truck over each road-path, and any need for 

reloading any of the vehicles for extra rounds of trip. 

The SPRP is categorised as a Multi-Objective MILP (MOMILP) problem with 

three conflicting objectives. Unlike the single objective optimisation, where a global 

optimal solution is reachable, solution to an MOMILP is the set of the ND points, 

or efficient solutions called the Pareto Optimal Set (POS). The reader is referred 

to Coello, Lamont, and Van Veldhuizen (2007) for definitions relevant to Pareto 

optimality, Pareto dominance, weak/strict Pareto optimality and the Pareto front.  

A list of the notation used throughout the paper is given in Table 2-2. Note 

that Table 2-2 presents only notations that are used in more than one section, and 

additional notations that are used within specific sections are explained when used. 

It is also worth mentioning that while we have attempted to keep unique meaning 

for each notation to the greatest extent possible, in those cases where an item has 

additional uses, we have tried to make it clear from context. 



 

Table 2-2 

List of notation 

Notatio

n 
Definition 

Notatio

n 
Definition 

� A directed graph representing a real roadway network ℎ�� 
Number of available speed observations during the planning horizon for road-

link (�, �) ∈ � 

� The set of network nodes in � �� Observed speed at time instant �� 

� The set of directed road-links in � �� Slope of the line segment connecting �� to ����  

�� The set comprising the depot only ���
�� 

UTM attribute of a road-link (or a road-path if it is explicitly mentioned) for 

truck type � ∈ � at departure time � 

�� The set of customer nodes ���
� 

RTM attribute of a road-link (or a road-path if it is explicitly mentioned) at 

departure time � 

�� The set of network junctions ��� The set of all minimum fuel consuming paths between required nodes � and � 

� Number of customers ℰ�� The set of all paths ��� with non-dominated vectors [��(���), ��
��(���)] 

� Number of network junctions ���� Tuple containing the attributes of path � 

� The fleet of heterogeneous vehicles ℛ��
�� 

The set of retained eligible paths between nodes �, � ∈ �� for vehicle type � ∈ � 

at departure time � 

� The total number of vehicles in � �����
�� The set of tuples containing the attributes of all paths retained in ℛ��

�� 

� The number of vehicle types ℳ��
�  The ordered set of the k fastest paths at time instant � 

�� Curb weight of vehicle � ∈ � � Maximum number trips a truck is allowed to make during the planning horizon 

�� Maximum payload of vehicle � ∈ � ����
�  Travel time of road-path (�, �, �) ∈ �� during time period � 

�� Daily hiring fixed cost of vehicle � ∈ � ����
��  UTM attribute of road-path (�, �, �) ∈ �� during time period � 

�� Demand requested by customer � ∈ �� ����
�  RTM attribute of road-path (�, �, �) ∈ �� during time period � 

�� Hard time window of customer � ∈ �� ���� Time horizon dedicated to road-path (�, �, �) ∈ �� for customised discretisation 

�� Lower boundary of �� ���� Number of time periods during ���� 

�� Upper boundary of �� ����
�  The lower boundary of time period � ∈ � 

�� Service time at customer � ∈ �� ����
�  The upper boundary of time period � ∈ � 

� The planning horizon ����
��  

Binary variable equal to 1 iff vehicle � ∈ � departs node � ∈ �� during time 

period � ∈ � to go to node � ∈ ��, through road-path (�, �, �) ∈ �� 

��� Distance of road-link (�, �) ∈ � ����
��  

Continuous variable to represents the size of load carried by vehicle � ∈ � over 

the road-path (�, �, �) ∈ �� during time period � 



 

 

 

���
�  

The time-dependent travel time of road-link (or a road-

path if it is explicitly mentioned) for departure time � 
����

��  
Integer variable indicating the exact departure time from the origin of path 

(�, �, �) ∈ �� given that it is departed by vehicle � ∈ � during time period � 

�� The set of required nodes �ℕ The set of non-dominated points 

��� 
A road-path that connects a pair of required nodes �, � ∈

��. 
���� The maximum possible acceleration rate for a truck 

��� 
The set of all paths between a pair of required nodes �, � ∈

�� 
���� The maximum possible deceleration rate for a truck 

��(���) 
The time-dependent travel time of road-path connecting 

nodes � to � for departure time � 
�� The maximum possible speed in the network 

��
��(���) 

Fuel consumption of a truck � ∈ �, carrying a load � ∈

[0, ��] at departure time � 
�� Speed level at each second � of a driving cycle 

� A route or a vehicle trip ���� The acceleration rate during second � − 1 until � 

�� A route-path ���� The deceleration rate during second � − 1 until � 

��
�  A route-trajectory  �� 

Binary decision variable equal to 1 iff vehicle accelerates during second � − 1 

until � 

�(��
�  ) Travel time of a route trajectory ��

� �� QSM parameter 

��(��
�� ) 

Fuel consumption of a truck � ∈ � over a route-trajectory 

��
� 

�� QSM parameter 
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2.3.1 The time-dependent travel time estimation model 

Most of the existing research work in the area of the Time-Dependent VRP 

(TDVRP) relies on the model proposed by Ichoua, Gendreau, and Potvin (2003) 

for the calculation of the time-dependent travel time of a road-link. Their algorithm 

uses a step function for speed to deduce a piecewise linear function for travel time 

that satisfies the FIFO property. However, despite its ease of use, the application 

of the model proposed by Ichoua et al. (2003)on real life congestion situations is 

hindered by their extra simplification in viewing congestion speed as a step function 

which implies that changes in travel speed occur instantly (i.e. A/D rates equal to 

infinity) with unjustified leaps from one level to the next, ignoring the time required 

for A/D. In reality, a lot of such A/Ds occur during the actual arc traversal, 

especially in congested urban areas, and this leads to lack of accuracy in estimating 

the expected travel times.  

This shortcoming can be overcome by using the travel time model in Horn 

(2000) which allows using directly the archived point-based historical speed data. 

Connecting each speed observation at each given time instant results in a 

continuous piecewise linear function of the time for speed (including A/Ds) (Figure 

2-1), using which a FIFO-consistent non-linear travel-time function could be 

deduced. In Horn (2000) the computation of these travel times is performed by 

counting time from the departure time up to the point in time that a distance equal 

to the length of the arc is traversed, which can be computationally intensive. 

Androutsopoulos and Zografos (2012) enhance this model by presenting a closed 

form formula for calculating the travel time on any road-link given a departure 

time from the origin node, based on the computation of the arrival time at the 

destination node. Here, we propose an alternative closed form approach that 

compared with that of Androutsopoulos and Zografos (2012) is less complicated to 

implement and use, and unlike their formula does not require to observe if 
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departure and arrival time occur within the same time interval or not. Another 

added advantage of the proposed formula is that it could be simply used in 

backward travel time calculation (i.e. finding the departure time for an intended 

arrival time).  

 

Figure 2-1 Speed as a piecewise linear function of time 

    To deduce the intended closed-form formula, suppose that there are ℎ�� 

speed observations during the planning horizon ᵃ�  for road-link (ᵅ�, ᵅ�) ∈ ᵃ�. For 

notational simplicity, in the rest of this section we drop ᵅ�ᵅ� indices for all parameters. 

We denote by ᵅ��, ᵅ� ∈ {1, … , ℎ} the speed observation at time instant ᵅ��. The line 

segment connecting ᵅ�� to ᵅ��+� has a slope ᵃ�� (i.e. A/D rate) equal 

to (ᵅ��+� − ᵅ��) (ᵅ��+� − ᵅ��)⁄ , and an intercept ᵯ�� equal to (ᵅ�� − ᵃ��ᵅ��), ∀ᵅ� ∈

{1,… , ℎ − 1} (ᵃ�� = ᵯ�� = 0 for ᵅ� = ℎ). The distance that could be traversed from 

time instant ᵅ�� = ᵃ�� until time instant ᵅ��, ᵅ� ∈ {2,… , ℎ}, is denoted by ᵯ��, and 

could be calculated as follows:  

ᵯ�� = ᵯ��−� + �1
2

(ᵅ�� − ᵅ��−�)(ᵅ�� + ᵅ��−�)�,     ᵯ�� = 0, ᵅ� ∈ {2,… , ℎ} (2-1) 

This equation is based on the premise that the area below the speed curve is 

equal to the physical distance that can be travelled. The equation hence calculates 

sequentially the area below the speed curve bounded by each pair of consecutive 
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time instants (which is indeed a right trapezoid as highlighted in Figure 2-1) and 

adds this area to the entire area below the curve up until time instance ᵅ��−�, i.e. 

ᵯ��−�. Based on the definition of ᵯ��, the time-definitive accumulated distance 

function ᵰ�, which is the building block of our closed form formula, is defined as 

follows: 

Definition 1 The time-definitive accumulated distance function ᵰ�(ᵰ�) is defined as a 

function that calculates the distance possible to traverse from the beginning of the 

planning horizon until any given time instant ᵰ� ∈ ᵃ� :  

ᵰ�(ᵰ�) = ᵯ��+� − �1
2
(ᵅ��+� − ᵰ�)(ᵅ�� + ᵅ��+�)� ,     ᵰ�ᵱ�[ᵅ��,ᵅ��+�), ᵅ�

∈ {1,… , ℎ − 1} 
(2-2) 

where ᵅ�� denotes the speed at time instant ᵰ� , which is equal to ᵅ�� + [ᵃ��(ᵰ� − ᵅ��)].  

Then, for any given road-link in the network with distance ᵃ� the following 

relationship always holds: ᵃ� = ᵰ�(ᵰ�ᵕ�) − ᵰ�(ᵰ�ᵕ�), where ᵰ�ᵕ� denotes the departure time 

from the origin of the given road-link, and ᵰ�ᵕ� denotes the arrival time at the 

destination of the road-link. Hence, for any given departure time ᵰ�ᵕ�, the arrival 

time ᵰ�ᵕ� could be found using the inverse of the � function, and this implies the 

possibility of proposing a FIFO-consistent closed form formula for the time-

dependent travel time calculation. To derive such formula, as ᵃ� = ᵰ�(ᵰ�ᵕ�) − ᵰ�(ᵰ�ᵕ�), we 

have ᵰ�(ᵰ�ᵕ�) = ᵃ� + ᵰ�(ᵰ�ᵕ�), which can be written as ᵰ�(ᵰ�ᵕ�) = ᵃ�, where ᵃ� = ᵃ� + ᵰ�(ᵰ�ᵕ�), 

ᵃ� ∈ [ᵯ��, ᵯ��+�), ᵅ� ∈ {1,… , ℎ − 1}. Then, based on the definition of ᵰ� function we can 

write: ᵯ��+� − ��
� (ᵅ��+� − ᵰ�ᵕ�)�ᵅ��ᵕ�

+ ᵅ��+��� = ᵃ�, and further based on the definitions 

of ᵅ��ᵕ�
 and ᵯ��+�, we can write: ᵯ�� + [�� (ᵅ��+� − ᵅ��)(ᵅ��+� + ᵅ��)] − [�� (ᵅ��+� − ᵰ�ᵕ�)(ᵃ��ᵰ�ᵕ� +

ᵯ�� + ᵅ��+�)] = ᵃ�, and writing this for ᵰ�ᵕ� we will have the following expression:  

ᵰ�ᵕ� =

⎩
��
⎨
��
⎧[ᵯ��

� − 2ᵃ��ᵯ�� + 2ᵃ��ᵃ� + ᵃ��
�ᵅ��

� + 2ᵃ��ᵅ��ᵯ��]
�

�� − ᵯ��
ᵃ��

, ᵃ�� ≠ 0

ᵅ�� + ᵃ� − ᵯ��
ᵅ��

,                                           ᵃ�� = 0
 (2-3) 



 

 

Chapter 2: The Multi-objective SPRP     38 

 

Note that the model by Ichoua et al. (2003)is a special case of expression (2-3), 

where ᵃ�� = 0,∀ᵅ� ∈ ᵃ� . Also note that this formula can use microscopic traffic speed 

data (i.e. second-by-second speed variations) as well as macroscopic data (e.g. every 

5, 10, or 15 minutes) as input. As will be discussed later in section 6 of the paper, 

when microscopic data are not available, the travel time estimated from 

macroscopic data using this formula provides a basis for the generation of synthetic 

driving cycles with instantaneous speed variations.  

For the most efficient implementation of (2-3), all model parameters including 

ᵃ��, ᵯ��, and ᵯ��, and also ᵰ�(ᵰ�) and ᵅ��  for all possible departure times, could be pre-

computed, which then make the application of expression (2-3) pretty simple and 

straightforward. A useful feature of (2-3) is that it is also possible to find the 

departure time ᵰ�ᵕ� for any given arrival time ᵰ�ᵕ� using the same formula with the 

only modification that ᵃ� = ᵰ�(ᵰ�ᵕ�) − ᵃ�.  

It is worth mentioning that the time-dependent travel time of a given 

scheduled road-path could be simply estimated from its constituent road-links, and 

thus as the time-dependent travel times of the road-links preserve the FIFO 

property, any simple paths considered on the graph would be also FIFO-consistent 

(given that waiting is not allowed on intermediate nodes). 

2.3.2 The instantaneous fuel consumption estimation model 

Assume that the spatiotemporal instantaneous driving cycles ᵃ�ᵃ���
� , denoting the 

expected second-by-second speed variations, are available for each road-link (ᵅ�, ᵅ�) ∈

ᵃ� of the network, for all time instants ᵰ� ∈ ᵃ� . It is worth mentioning that with the 

current advancements in the Global Positioning System (GPS) devices, it is possible 

to create a historical archive of such data for the required road-links at different 

times of a day (Belliss, 2004; Byon et al., 2006; Lee et al., 2016); however, in the 

event that they are unavailable at the planning stage, they could be instead 

generated synthetically using the approach proposed later in the paper.  
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Given such cycles, the instantaneous time, load and truck-type dependent fuel 

consumption (in litres) over the given road link (ᵅ�, ᵅ�) ∈ ᵃ� for vehicle ᵅ� ∈ ᵃ�, i.e. 

ℱ��
�� , could be computed using the CMEM formula of Barth et al. (2004)as follows: 

ℱ��
�� = � ᵰ�

ᵰ�ᵱ�
�ᵃ��ᵊ��ᵃ�� +

0.5ᵃ��ᵰ�ᵃ��ᵅ����
�

1000ᵰ�ᵱ�
� +

�+���
�

�=�
(ᵰ��

+ ᵃ���) � ᵰ�
ᵰ�ᵱ�

�
ᵅ����(ᵃ� ᵅ�ᵅ�ᵅ� ᵰ� + ᵃ�ᵃ�� ᵃ�ᵅ�ᵅ� ᵰ� + ᵃ��)

1000ᵰ�ᵱ�
�

�+���
�

�=�
,

∀(ᵅ�, ᵅ�) ∈ ᵃ�, ᵅ� ∈ ᵃ�, ᵰ� ∈ ᵃ� , 

(2-4) 

where ᵰ� is fuel-to-air mass ratio, ᵰ� is the heating value of a typical diesel fuel 

(kJ/g), ᵱ� is a conversion factor from grams to litres (from (g/s) to (l/s)), ᵃ�� is the 

engine friction factor (kJ/rev/l) for vehicle ᵅ�, ᵊ�� is the engine speed (rev/s) for 

vehicle ᵅ�, ᵃ�� is the engine displacement (l) for vehicle ᵅ�, ᵰ� is the air density 

(kg/m3), ᵃ�� is the frontal surface area (m2) for vehicle ᵅ�, ᵅ���� is the vehicle speed 

(m/s) at the ᵅ�th second of the cycle, ᵰ�� is the vehicle curb weight (kg) for vehicle 

ᵅ�, ᵃ��� is the load (kg) carried over the given road link by the truck, ᵃ� is the 

gravitational constant (equal to 9.81 m/s2), ᵰ� is the road angle, ᵃ�� and ᵃ�� are the 

coefficient of aerodynamic drag and rolling resistance, ᵰ� is vehicle drive train 

efficiency and ᵱ� is an efficiency parameter for diesel engines.  

Expression (2-4) divides CMEM into a time-dependent term Unrelated to 

Truck Mass (called the UTM attribute and indicated by ᵃ���
��  hereafter), and a time-

dependent term linearly Related to the Truck Mass (called the RTM attribute and 

indicated by ᵮ���
�  hereafter), and both of these could be precomputed and stored for 

all road-links (or road-paths) at all possible departure times based on the available 

ᵃ�ᵃ���
� s. Hence, this expression could be simply re-written as ℱ��

�� = ᵃ���
�� + ᵮ���

� (ᵰ�� +

ᵃ���), ∀(ᵅ�, ᵅ�) ∈ ᵃ�, ᵰ� ∈ ᵃ�  (to see more detail on the derivation of this formula in a 

homogenous fleet case, the reader can refer to appendix A in Androutsopoulos and 

Zografos, 2017). As a note on the storage space requirement for storing all UTM 

and RTM attributes along with time-dependent travel times for all road-links at 
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all possible departure times, it should be mentioned that the space complexity is 

ᵃ�((ᵕ� + 2)|ᵃ�||ᵃ� |), where |ᵃ�| is the number of network road-links, and |ᵃ� | is the 

number of all possible departure times. However, as will be explained later in 

section 2.4.1, this required storage space could be critically reduced by using ‘time 

periods’ instead of ‘time instants’.  

In this study, for experimental purposes, similar to the work of Koç et al. 

(2014) on the fleet size and mix PRP, we consider the fleet to be composed of light, 

medium and heavy duty trucks and use the same values they use for the common 

and vehicular specific parameters, which they obtain for the three main vehicle 

types of MAN Trucks (see Tables 1 and 2 in Koç et al. - 2014). 

2.4 The Path Elimination Procedure (PEP) 

The intention of this section is to deal with an important prerequisite to any 

subsequent exact/heuristic solution algorithm for the SPRP, which is to alleviate 

the difficulty of solving the problem directly on the real roadway network, without 

losing the essential information contained in the original graph. As discussed in 

section 2 of the paper, existing approaches in the literature can only identify a 

limited subset of eligible road-paths that must be preserved between the required 

nodes and cannot guarantee that all paths that might be used in the design of an 

optimal vehicle route are identified and preserved. In the case of the SPRP, a much 

more complicated situation must be coped with, since not only a time, load and 

truck type dependent fuel consumption objective is to be minimised, but also this 

objective is considered alongside two other conflicting objectives, and any set of the 

paths that are returned by any pre-processing algorithm should ensure that ad-hoc 

ND points will not be eliminated.  

Since the main problematic objective function that causes complications is the 

time, load and truck type dependent fuel minimisation objective, we begin by 

focusing on this objective only, and then generalise all our results for the multi-
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objective case of the SPRP. The underlying idea of the proposed PEP in this section 

is hence to identify and retain all road-paths that might be used by at least one of 

the truck types in the fleet, for at least one time instant during the planning 

horizon, to carry some load levels in the range of the truck capacity, and then 

eliminate all other paths as redundant paths from the network. An “eligible” path 

can be therefore defined formally as follows:  

Definition 2 A road-path ᵅ����� between a pair of required nodes ᵅ�, ᵅ� ∈ ᵃ��: ᵅ� ≠ ᵅ� is 

called an ‘eligible’ path, iff ∃ ᵅ� ∈ ᵃ�, ᵃ� ∈ [0,ᵃ��], ᵰ� ∈ ᵃ� : ��
��(ᵅ�����) ≤

��
��(ᵅ�����), ∀ᵅ����� ∈ ���. 

The elimination of an eligible road-path from the underlying roadway network 

can hence lead to a suboptimal vehicle route in terms of fuel consumption, and all 

such paths must be identified and retained.  

In order to set the scene, the motivation of the PEP is reiterated through the 

following remarks: 

Remark 1 Determining a priori a (set of) minimum fuel consuming road-path(s) 

between a given pair of origin/destination on urban road networks with time-

varying congestion seems impossible. 

Remark 2 A minimum fuel consuming route-trajectory is not necessarily 

concatenated; i.e. its constituent scheduled road-paths are not necessarily optimal, 

and they can be road-paths which are inferior in terms of the fuel consumption. 

It is easy to acknowledge the first remark, which stems from our lack of 

knowledge about the departure time from the origin node, the type of the truck 

that is going to traverse the path and the amount of load that the truck is going 

to carry over the road-path, prior to realising the full truck route and schedule. 

However, the second remark is not as intuitive, because it might seem that once 
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fuel consumption minimising road-paths between every consecutive visit, for every 

possible departure time, and any load on the trucks are known, these paths can be 

retained to minimise the overall amount of fuel required by the route, and the 

alternative inferior road-paths could be simply ignored. However, it is not difficult 

to show that it might be beneficial to take road-paths that are not optimal in terms 

of fuel consumption to gain improvements in the overall fuel consumption of the 

route (see example 1 in Androutsopoulos and Zografos, 2017). Note that despite 

Androutsopoulos and Zografos (2017) identify this as an inherent issue for the bi-

objective time-dependent VRPs, it is even an issue in a single objective case. In 

fact, this is a largely ignored situation in any general routing for some time-

dependent cost minimisation in a time-dependent network, and an important 

generalisation of Remark 2 is that the cheapest path in a time-dependent setting is 

not necessarily concatenated.  

Let ᵉ��� be the set of all minimum fuel consuming paths between required 

nodes ᵅ� and ᵅ� for all possible departure times ᵰ� ∈ ᵃ�  from node ᵅ�. Then, building on 

some previous results for the time-dependent shortest path problems (Hamacher et 

al., 2006; Orda & Rom, 1990) the following theorem is proposed: 

Theorem 1 Suppose the set ℰ�� is the set of all paths ᵅ��� with non-dominated vectors 

[��(ᵅ���), ��
��(ᵅ���)] for at least one ᵰ� ∈ ᵃ� , ᵅ� ∈ ᵃ�, and ᵃ� ∈ [0,ᵃ��] (note that ᵉ��� ⊆

ℰ��), and let ℰ = {ℰ��|ᵅ�, ᵅ� ∈ ᵃ��, ᵅ� ≠ ᵅ�}; if departure time from the depot is 

unrestricted, then any optimal route-trajectory in terms of fuel consumption has 

its road-paths in ℰ. 

Proof. Without loss of generality, assume that ᵅ�� = 0 and ᵅ�� = ᵅ�� for all ᵅ� ∈ ᵃ��. 

With this assumption, the departure time from a required node is upon the arrival 

time at the node from an upstream required node. Suppose that ᵅ��
�� =

��0, ᵅ�, ᵅ�����, ᵰ���, �ᵅ�, 0, ᵅ�����, ᵰ���� is an optimal route-trajectory in terms of fuel 

consumption. Since there is only one customer ᵅ� ∈ ᵃ��that is served over this route-
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trajectory, a truck ᵅ� ∈ ᵃ�, that is sufficiently large to carry ᵅ�� is used. According to 

the backward principle of optimality (see Definition 3.2 and Theorem 3.2 in 

Hamacher et al. - 2006) road-path ᵅ����� is optimal in terms of fuel consumption for 

departure time ᵰ�� from node ᵅ�, and thus ᵅ����� ∈ ℰ. Therefore, we must only prove 

that ᵅ����� ∈ ℰ. To use a proof by contradiction, initially suppose that ᵅ����� is not in 

ᵉ���. The assumption that ᵅ����� is not in ᵉ��� implies that there is a fuel consumption 

minimising path ᵅ����� ∈ ᵉ��� that arrives at node ᵅ� at time ᵰ��. Assume that to arrive 

at customer ᵅ� at time ᵰ��, the truck must depart the origin of path ᵅ����� (i.e. the 

depot) at time ᵰ�� (remember that departure time from the depot is not restricted). 

This means ���

���(ᵅ�����) < ���

���(ᵅ�����), and there is a route-trajectory ᵅ��
�� =

��0, ᵅ�, ᵅ�����, ᵰ���, �ᵅ�, 0, ᵅ�����, ᵰ����, such that ��(ᵅ��
��) < ��(ᵅ��

��); contradicting the fact 

that ᵅ��
�� is an optimal route trajectory. This proof is, however, incomplete under a 

certain condition; the departure time from the depot for path ᵅ�����, i.e. ᵰ�� can be 

smaller or larger than ᵰ��, meaning that ���(ᵅ�����) can be smaller or larger than 

���(ᵅ�����). Under the condition that ᵰ�� < ᵰ�� and ᵰ�� < ᵃ��, path ᵅ����� is infeasible; 

however, as in that case ᵅ����� has a  non-dominated vector [���(ᵅ�����), ���

���(ᵅ�����)], 

it already exists in ℰ. �  

Based on this theorem, the key to address the situation in Remark 2 is indeed 

departure time optimisation, and except for a special case, working on a graph 

based on ᵉ� is usually sufficient for the minimisation of the fuel consumption by 

the routes. However, for completeness this theorem proposes to work on ℰ, since if 

the set ℰ could be somehow constructed, the same minimum fuel consuming route-

trajectories that can be found directly on ᵃ� could be found on ℰ. In the sequel, we 

propose new results to construct this set.   

In the rest of this section, whenever we refer to a road-path, it is meant to be 

a road-path between a given pair of required nodes ᵅ�, ᵅ� ∈ ᵃ��, but for notational 

simplicity we drop origin/destination indices of paths and their attributes. 
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Moreover, instead of writing  ���ᵅ���, ᵃ����ᵅ��� and ᵮ���ᵅ��� for the attributes of a 

path ᵅ����� ∈ ���, we simply write ��
� , ᵮ��

��  and ᵮ��
� , respectively. 

Proposition 1 (Ehmke et al., 2016) If path ᵅ�� is a fuel consumption minimising 

path for both a fully loaded truck of type ᵅ�, and an empty truck of the same type ᵅ� 

for departure time instant ᵰ� , then this path is optimal in terms of fuel consumption 

for any other size of load on the truck of type ᵅ�. 

This proposition modifies slightly the proposition stated in Ehmke et al. 

(2016), in the sense that they do not explicitly state that this is a condition that 

must be checked for all possible departure times. Moreover, to generalise it for a 

heterogeneous fleet, the type of the truck matters and is mentioned here. It is also 

worth noting that while they have proposed this proposition in the context of the 

average-speed CMEM, their proof is applicable for the case of the instantaneous 

CMEM, as well. 

While Proposition 1 establishes an interesting result, which can be used to 

precompute expected time-dependent fuel consumption minimising paths between 

some customers at some time instants, our computational experiments on a real 

world urban road network demonstrate that there are cases when this condition is 

not satisfied for up to around 60% of the times (see section 2.7.1); nevertheless, 

Proposition 1 serves as a building block to a more important theorem that 

underpins the proposed PEP: 

Theorem 2 If for a given departure time ᵰ� , path ᵅ�� is a fuel consumption minimising 

path for a fully loaded truck of type ᵅ�, and path ᵅ�� is a fuel consumption minimising 

path for an empty truck of the same type ᵅ� such that ᵅ�� ≢ ᵅ��, then any other path 

ᵅ�� is an eligible path iff it is a fuel consumption minimising path for truck type ᵅ� 

carrying some load ᵃ� ∈ [��
��−��

��

��
�−��

� − ᵰ��,
��

��−��
��

��
�−��

� − ᵰ��]. 
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Proof. We first lay out some useful valid inequalities derived from the assumptions: 

The optimality of ᵅ�� for the fully loaded truck yields the following inequalities: 

ᵮ��
�� + ᵮ��

�(ᵰ�� + ᵃ��) ≤ ᵮ��
�� + ᵮ��

�(ᵰ�� + ᵃ��) (2-5) 

ᵮ��
�� + ᵮ��

�(ᵰ�� + ᵃ��) ≤ ᵮ��
�� + ᵮ��

�(ᵰ�� + ᵃ��) (2-6) 

And the optimality of ᵅ�� for the empty truck suggests the following: 

ᵮ��
�� + ᵮ��

�(ᵰ�� + 0) ≤ ᵮ��
�� + ᵮ��

�(ᵰ�� + 0) (2-7) 

ᵮ��
�� + ᵮ��

�(ᵰ�� + 0) ≤ ᵮ��
�� + ᵮ��

�(ᵰ�� + 0) (2-8) 

Now, to prove the proposed “if and only if” statement a two-way proof must be 

given: 

Part 1 (forward proof): Path ᵅ�� is a fuel consumption minimising path for truck 

type ᵅ� carrying some load ᵃ� ∈ [��
��−��

��

��
�−��

� − ᵰ��,
��

��−��
��

��
�−��

� − ᵰ��] ⇒ path ᵅ�� is an eligible 

path: if we only prove that ��
��−��

��

��
�−��

� − ᵰ�� ≥ 0, and ��
��−��

��

��
�−��

� − ᵰ�� ≤ ᵃ��, then we have 

proved ᵃ� ∈ [0,ᵃ��], which then makes the stated assumption per se sufficient for 

the eligibility of ᵅ�� (note that ��
��−��

��

��
�−��

� − ᵰ�� ≤ ��
��−��

��

��
�−��

� − ᵰ�� is already assumed). A 

proof by contradiction can be used where we assume either 
��

��−��
��

��
�−��

� − ᵰ�� < 0, or 

��
��−��

��

��
�−��

� − ᵰ�� > ᵃ��. If ��
��−��

��

��
�−��

� − ᵰ�� < 0, since it is equivalent to ᵮ��
�� + ᵮ��

�ᵰ�� <

ᵮ��
�� + ᵮ��

�ᵰ��, we will have a contradiction with (2-8). At the same time, if 
��

��−��
��

��
�−��

� −

ᵰ�� > ᵃ��, since it is equivalent to ᵮ��
�� + ᵮ��

�(ᵰ�� + ᵃ��) > ᵮ��
�� + ᵮ��

�(ᵰ�� + ᵃ��), we will 

have a contradiction with (2-6). Therefore, neither ��
��−��

��

��
�−��

� − ᵰ�� < 0, nor ��
��−��

��

��
�−��

� −

ᵰ�� > ᵃ��, and as ᵃ� ∈ [0,ᵃ��], path ᵅ�� is a fuel consumption minimising path for 

truck type ᵅ� carrying some load ᵃ� ∈ [0,ᵃ��] and is hence an eligible path based on 

definition.  

Part 2 (backward proof): path ᵅ�� is an eligible path ⇒ Path ᵅ�� is a fuel 

consumption minimising path for truck type ᵅ� carrying some load ᵃ� ∈ [��
��−��

��

��
�−��

� −

ᵰ��,
��

��−��
��

��
�−��

� − ᵰ��]: The eligibility of ᵅ�� necessitates that both of the following 

inequalities hold for some ᵃ� ∈ [0,ᵃ��]: 
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ᵮ��
�� + ᵮ��

�(ᵰ�� + ᵃ�) ≤ ᵮ��
�� + ᵮ��

�(ᵰ�� + ᵃ�) (2-9) 

ᵮ��
�� + ᵮ��

�(ᵰ�� + ᵃ�) ≤ ᵮ��
�� + ᵮ��

�(ᵰ�� + ᵃ�) (2-10) 

Since (2-9) is equivalent to 
��

��−��
��

��
�−��

� − ᵰ�� ≥ ᵃ� , and (2-10) is equivalent to 
��

��−��
��

��
�−��

� −

ᵰ�� ≤ ᵃ� , we have  ��
��−��

��

��
�−��

� − ᵰ�� ≤ ᵃ� ≤ ��
��−��

��

��
�−��

� − ᵰ��. � 

Corollary 1 If for a given departure time ᵰ� , path ᵅ�� is a fuel consumption 

minimising path for a truck of type ᵅ� carrying load ᵃ�� = ��
��−��

��

��
�−��

� − ᵰ��, then ᵅ�� is 

an eligible path. 

Proof. Based on Theorem 2 we must prove that ᵃ�� ∈ [��
��−��

��

��
�−��

� − ᵰ��,
��

��−��
��

��
�−��

� − ᵰ��]; 

that is, we must prove ��
��−��

��

��
�−��

� ≤ ��
��−��

��

��
�−��

� ≤ ��
��−��

��

��
�−��

� . The optimality of ᵅ�� for the 

truck carrying load ᵃ�� = ��
��−��

��

��
�−��

� − ᵰ�� yields: 

ᵮ��
�� + ᵮ��

�(ᵮ��
�� − ᵮ��

��

ᵮ��
� − ᵮ��

� ) ≤ ᵮ��
�� + ᵮ��

�(ᵮ��
�� − ᵮ��

��

ᵮ��
� − ᵮ��

� ) (2-11) 

ᵮ��
�� + ᵮ��

�(ᵮ��
�� − ᵮ��

��

ᵮ��
� − ᵮ��

� ) ≤ ᵮ��
�� + ᵮ��

�(ᵮ��
�� − ᵮ��

��

ᵮ��
� − ᵮ��

� ) (2-12) 

where (2-11) is equivalent to ��
��−��

��

��
�−��

� ≤ ��
��−��

��

��
�−��

� , and (2-12) is equivalent to 

��
��−��

��

��
�−��

� ≤ ��
��−��

��

��
�−��

� . � 

To understand better the proposed results and the proofs, we further provide 

some visual presentations in Figure 2-2. In Figure 2-2.a, the lines that correspond 

to the equations of the fuel consumption minimising paths for a full and an empty 

truck ᵅ� at time instant ᵰ� , are given as ᵅ�� and ᵅ��, respectively. Figure 2-2.b 

illustrates an ineligible path that can never minimise the truck fuel consumption at 

any load level within the truck capacity. Figure 2-2.c, illustrates an eligible path 

satisfying all conditions set in the Theorem. This figure shows further the condition 

set in Corollary 1. Finally, Figure 2-2.d shows two different eligible paths satisfying 

all conditions. Obviously, no line of an eligible path could be sketched without its 

eligibility range being within the one defined in Theorem 2.



 

a. b. 

  

c. d. 

  

Figure 2-2 a. Paths ᵅ�� and ᵅ�� and their attributes, b. an ineligible path, c. an eligible path, and d. two different 

eligible paths 

Truck curb weight and load Truck curb weight and load

Truck curb weight and load
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In order to use Theorem 2 in the development of the PEP, we need to 

generalise it to derive efficient progression and exit conditions for the algorithm: 

Corollary 2 Assume that for a given departure time ᵰ� , paths ᵅ�� and ᵅ�� are two 

eligible paths, such that ᵅ�� ≢ ᵅ��. Then, if a distinct path ᵅ�� is the fuel consumption 

minimising path for load level ᵃ�� = ��
��−��

��

��
�−��

� − ᵰ��, it is an eligible path.  

Proof. A proof similar to the one used for corollary 1 can be employed. � 

With these results, the PEP is given in Algorithm 2-1. In this algorithm, the 

core operation is assigned to the function (ᵅ��,ᵃ�ᵃ�ᵃ��):= ᵃ�ᵃ�ᵃ�ᵃ�ᵃ�ᵃ�  (ᵅ�, ᵅ�, ᵰ� , ᵅ�, ᵃ�), that 

takes as input the origin and destination nodes (ᵅ�, ᵅ�), the departure time (ᵰ�), the 

truck type (ᵅ�) and the load carried by the truck (ᵃ�), and outputs the time-

dependent fuel consumption minimising path (ᵅ��) and its attributes (ᵃ�ᵃ�ᵃ��), 

comprising ��
� , ᵮ��

��  and ᵮ��
� , under the given settings. In our implementation, 

ᵃ�ᵃ�ᵃ�ᵃ�ᵃ�ᵃ�  is based on a modified extension of the time-dependent shortest-path 

algorithm of Ziliaskopoulos and Mahmassani(1993).  

In the beginning of the algorithm (line 2) the set ℛ��
�� , ᵉ�ᵊ�ᵊ���

�� , ᵃ�ᵃ� , and ᵃ�ᵃ� 

are initialised as empty sets to retain eligible paths (for departure time ᵰ� , vehicle 

type ᵅ�), their attributes, untreated points, and intersecting lines, respectively. In 

lines 3 and 4 of the algorithm, the fuel consumption minimising paths for the full 

and the empty truck are respectively found, and then are compared with each other 

in line 5. If these two paths are the same, then only one of them is retained and 

the algorithm is terminated (Proposition 1). Otherwise, the algorithm computes 

and stores a new untreated point and an intersecting lines pair and goes to line 7. 

In lines 7 to 15, every time a new untreated point is pulled out from the front of 

the ᵃ�ᵃ� , and until ᵃ�ᵃ�  is not empty the operations of these lines are repeated.  

Assuming that |�| is the cardinality of ℛ��
�� , this algorithm must make a 

maximum of 2|�| − 1 calls to the ᵃ�ᵃ�ᵃ�ᵃ�ᵃ�ᵃ�  function and hence is quite fast (note 
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only that in the case of |�| = 1 two calls are required and not one). Another 

speeding up feature that is built in the proposed PEP algorithm is due to the use 

of the information from customers’ time-windows and demands. Note that in line 

1 of the algorithm instead of ᵰ� ∈ ᵃ�  the search space can be significantly reduced 

by using ᵰ� ∈ [ᵃ�� + ᵅ��, ᵅ�ᵅ�ᵅ� (ᵅ�� + ᵅ��, ᵅ��)], where ᵃ�� + ᵅ�� is the earliest possible departure 

time, and ᵅ�ᵅ�ᵅ� (ᵅ�� + ᵅ��, ᵅ��) is the latest possible departure time from the origin node. 

Moreover, in lines 3 and 4, instead of using ᵃ�� and 0 as input to ᵃ�ᵃ�ᵃ�ᵃ�ᵃ�ᵃ�  to 

identify ᵅ�� and ᵅ��, respectively, we have used ᵃ�� − ᵅ��, and ᵅ��. This is because even 

if upon departure from the depot the truck is fully loaded, its load over the path 

from ᵅ� to ᵅ� cannot exceed ᵃ�� − ᵅ��, and it is not going to be less than the demand 

of the destination customer, i.e. ᵅ��. Note that we assume ᵅ�� = 0, so this stays 

consistent when the origin node is the depot. 



 

 

Algorithm 2-1 The PEP (phase I) 

1 Input origin node ᵅ� ∈ ᵃ��, desination node ᵅ� ∈ ᵃ��, time instant ᵰ� ∈ [ᵃ�� + ᵅ��, ᵅ�ᵅ�ᵅ� (ᵅ�� + ᵅ��, ᵅ��)], vehicle type ᵅ� ∈ ᵃ� 

2 Initialise ℛ��
�� = {}, ᵉ�ᵊ�ᵊ���

�� = {}, ᵃ�ᵃ� = {}, and ᵃ�ᵃ� = {} 

3 (ᵅ��, ᵃ�ᵃ�ᵃ��): = ᵃ�ᵃ�ᵃ�ᵃ�ᵃ�ᵃ�(ᵅ�, ᵅ�, ᵰ� , ᵅ�, ᵃ�� − ᵅ��) 

4 (ᵅ��, ᵃ�ᵃ�ᵃ��): = ᵃ�ᵃ�ᵃ�ᵃ�ᵃ�ᵃ�(ᵅ�, ᵅ�, ᵰ� , ᵅ�, ᵅ��) 

5 if ᵅ�� ≡ ᵅ�� then ℛ��
�� = {ᵅ��} and ᵉ�ᵊ�ᵊ���

�� = {ᵃ�ᵃ�ᵃ��} and go to line 15  end if 

6 ℛ��
�� = {ᵅ��, ᵅ��}, ᵉ�ᵊ�ᵊ���

�� = {ᵃ�ᵃ�ᵃ��, ᵃ�ᵃ�ᵃ��}, ᵃ�� = ��
��−��

��

��
�−��

� − ᵰ��, ᵃ�ᵃ� = {ᵃ��}, and ᵃ�ᵃ� = {(ᵅ��, ᵅ��)} 

7 while ᵃ�ᵃ�  is not empty do 

8 Pull out the front element of ᵃ�ᵃ�  and denote it by ᵃ�������; also pull out the front pair in ᵃ�ᵃ� and denote it by (ᵅ�ᵕ�, ᵅ�ᵕ�) 

9 (ᵅ��, ᵃ�ᵃ�ᵃ��): = ᵃ�ᵃ�ᵃ�ᵃ�ᵃ�ᵃ�(ᵅ�, ᵅ�, ᵰ� , ᵅ�, ᵃ�������) 

10 if ᵅ�� ∉ ℛ��
��  then,  

11 Add ᵅ��to ℛ��
�� ,  ᵃ�ᵃ�ᵃ�� to ᵉ�ᵊ�ᵊ���

�� , and compute ᵃ�ᵕ� = ��
��−�ᵕ�

��

�ᵕ�
�−��

� − ᵰ��  and ᵃ�ᵕ� = �ᵕ�
��−��

��

��
�−�ᵕ�

� − ᵰ�� 

12 Add ᵃ�ᵕ� and ᵃ�ᵕ� respectively to the end of ᵃ�ᵃ� ; also add the pairs (ᵅ��, ᵅ�ᵕ�) and (ᵅ�ᵕ�, ᵅ��) respectively to the end of ᵃ�ᵃ�  

13 end if 

14 end while 

15 return ℛ��
�� , ᵉ�ᵊ�ᵊ���

��  
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In order to visualise the working of the proposed PEP algorithm, a step-by-

step example is illustrated in Figure 2-3. In this figure, in the first step, Figure 

2-3.a, ᵅ�� is found (line 3 of the algorithm), and in the second step, Figure 2-3.b, ᵅ�� 

is found (line 4 of the algorithm) and as it is not same as ᵅ��, ᵃ�� is calculated and 

added to the end of ᵃ�ᵃ�  (line 5 of the algorithm). The pair (ᵅ��, ᵅ��) is also added to 

the end of ᵃ�ᵃ�. In the next step, Figure 2-3.c, ᵃ�� is extracted from the beginning of 

ᵃ�ᵃ�  (line 8 of the algorithm), and the fuel consumption minimising path for the 

truck at load ᵃ�� is found (line 9 of the algorithm). Since a different path from ᵅ�� 

and ᵅ��, i.e. path ᵅ�� is found, it is added to ℛ��
��  and ᵃ�� and ᵃ�� are calculated and 

along with pairs (ᵅ��, ᵅ��) and (ᵅ��, ᵅ��) are added to the end of ᵃ�ᵃ�  and ᵃ�ᵃ�, 

respectively (line 11 and 12 of the algorithm). In the next step, Figure 2-3.d, the 

active point is the first element in ᵃ�ᵃ� , i.e. ᵃ��, and a new eligible path is found and 

the same operations as in the previous step are repeated. After this step, however, 

as no other new eligible path is found by examining all points in ᵃ�ᵃ�  (Figure 2-3.e), 

the algorithm terminates and returns 4 distinct eligible paths, following a total of 

7 calls to the ᵃ�ᵃ�ᵃ�ᵃ�ᵃ�ᵃ� . An interesting outcome of the algorithm is further shown 

in Figure 2-3.f, which implies it is possible to know exactly at what load ranges 

carried by the considered truck at the considered departure time, which path is 

optimal. In other words, the PEP can return also a piecewise linear function for 

fuel consumption based on payload.  



 

  a. b. c. 

  

d. e. f. 

 

Figure 2-3 PEP steps 
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The constructed set ℛ�� = {ℛ��
�� : ∀ᵅ� ∈ ᵃ�, ᵰ� ∈ �ᵃ�� + ᵅ��, min�ᵅ�� + ᵅ��, ᵅ����} after 

the application of the PEP-phase I, corresponds to the set ᵉ���, and based on 

Theorem 1, it must be expanded to ℰ��. However, in most cases no further attempt 

is required for this expansion as the retained set is already equivalent to the set 

ℰ��. This is mainly because the fastest path already exists in ℛ��
�  (ℛ��

� = {ℛ��
�� : ∀ᵅ� ∈

ᵃ�}) in most cases (e.g. it is often observed that the fastest path is the fuel 

consumption minimising path for an empty light duty truck). In any case, for the 

sake of completeness any necessary further attempt must be identified and carried 

out in the second phase of the algorithm. 

Assume that ᵅ�� is the fastest path in the set ℛ��
�  after the application of the 

PEP phase-I for all vehicle types at time instant ᵰ� ∈ ᵃ� , and ᵅ�ᵕ� is the globally fastest 

path at this time instant. Let the ordered set ℳ��
� = {ᵅ�ᵕ�, ᵅ�ᵕ�+�, . . . , ᵅ�ᵕ�+�} be the set 

of the k fastest paths at time instant ᵰ� , such that �� (ᵅ�ᵕ�+�) < ��(ᵅ��). Then, none of 

the paths in the set ℳ��
�  are dominated by the paths in ℛ��

�  because of their first 

element in the vector [��(ᵅ���), ��
��(ᵅ���)] (refer back to Theorem 1). However, lower 

ranked paths in the set ℳ��
�  might be dominated by higher ranked paths in this set 

in terms of fuel consumption; hence, this set could be further refined using the 

following strong dominance rule: 

Proposition 2 At time instant ᵰ� , a path ᵅ�ᵕ� in ℳ��
�  is not dominated by the higher 

ranked path ᵅ�ᵕ�−� in ℳ��
�  iff ∃ᵅ� ∈ ᵃ�: ��

��(ᵅ�ᵕ�) < ��
��(ᵅ�ᵕ�−�) and/or ∃ᵅ� ∈ ᵃ�: ���

�� (ᵅ�ᵕ�) <

���

�� (ᵅ�ᵕ�−�). 

Proof. The forward statement is obvious and requires no proof; that is, if there is 

at least one truck ᵅ� ∈ ᵃ� that prefers path ᵅ�ᵕ� over path ᵅ�ᵕ�−�when it is empty and/or 

when it is fully loaded, then ᵅ�ᵕ� is not dominated by ᵅ�ᵕ�−�. Yet, we need to prove the 

backward statement; i.e.: path ᵅ�ᵕ� is not dominated by path ᵅ�ᵕ�−� ⇒ ∃ᵅ� ∈

ᵃ�: ��
��(ᵅ�ᵕ�) < ��

��(ᵅ�ᵕ�−�) and/or ∃ᵅ� ∈ ᵃ�: ���

�� (ᵅ�ᵕ�) < ���

�� (ᵅ�ᵕ�−�): Recall that the 
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domination rule established in Theorem 1 is based on the vector [��(ᵅ�ᵕ�), ��
��(ᵅ�ᵕ�)], 

for at least one � ∈ �, � ∈ �, and ᵃ� ∈ [0,ᵃ��].  At time instant ᵰ� , from the definition 

of ℳ��
�  we know that �(ᵅ�ᵕ�−1

ᵰ� ) < �(ᵅ�ᵕ�
ᵰ�); therefore, for path ᵅ�ᵕ� to be not dominated by 

ᵅ�ᵕ�−�, we must have ��
��(ᵅ�ᵕ�) < ��

��(ᵅ�ᵕ�−�) for at least one � ∈ �, and ᵃ� ∈ [0,ᵃ��], and 

this is equivalent to (2-13) below: 

ᵮ�ᵕ�
�� + ᵮ�ᵕ�

�(ᵰ�� + ᵃ�) < ᵮ�ᵕ�−�
�� + ᵮ�ᵕ�−�

� (ᵰ�� + ᵃ�) (2-13) 

Now, to use a proof by contradiction we assume that path ᵅ�ᵕ� is not preferred over 

path ᵅ�ᵕ�−�neither when truck ᵅ� is empty, nor when it is fully loaded; that is: 

ᵮ�ᵕ�−�
�� + ᵮ�ᵕ�−�

� ᵰ�� < ᵮ�ᵕ�
�� + ᵮ�ᵕ�

�ᵰ�� (2-14) 

ᵮ�ᵕ�−�
�� + ᵮ�ᵕ�−�

� (ᵰ�� + ᵃ��) < ᵮ�ᵕ�
�� + ᵮ�ᵕ�

�(ᵰ�� + ᵃ��) (2-15) 

The combination of (2-13) and (2-14) yields that ᵮ�ᵕ�
� < ᵮ�ᵕ�−�

� , while the combination 

of (2-13) and (2-15) yields ᵮ�ᵕ�
� > ᵮ�ᵕ�−�

�  which is a contradiction. � 

Hence, the second phase of the PEP is presented in Algorithm 2-2. Note that 

in line 3 of the algorithm, a k-fastest path algorithm, that takes ��(ᵅ��) as input, 

must be used. This algorithm begins by finding the time-dependent fastest path, 

and loops for the ᵅ� fastest path where ᵅ� = ∞ or any large number, and breaks out 

of the loop once the last path found has a travel time greater than or equal to 

��(ᵅ��).



 

Algorithm 2-2 The PEP (phase II) 

1 
Input origin node ᵅ� ∈ ᵃ��, desination node ᵅ� ∈ ᵃ��, time instant ᵰ� ∈ [ᵃ�� + ᵅ��, min (ᵅ�� + ᵅ��, ᵅ��)], 

ᵅ��, �
� (ᵅ��) , ℛ��

�  

2 ℰ��
� ← ℛ��

�   

3 Construct the set ℳ��
� = {ᵅ�ᵕ�, ᵅ�ᵕ�+�, . . . , ᵅ�ᵕ�+�}, such that �� (ᵅ�ᵕ�+�) < �� (ᵅ��) 

4 if ℳ��
� = {} then go to line 15  end if 

5 Pull ou the front element of ℳ��
� , denote it by ᵅ��−� and add it to the end of ℰ��

�  

6 while ℳ��
�  is not empty do 

7  Pull out the front element of ℳ��
�  and call it ᵅ�� 

8  for ᵅ� =  1 to ᵕ� do 

9   if ��
�� (ᵅ��) < ��

�� (ᵅ��−�) or ���

�� (ᵅ��) < ���

�� (ᵅ��−�) then 

10    ᵅ��−� ← ᵅ�� and add ᵅ�� to the end of ℰ��
�  

11    break 

12   end if 

13  end for 

14 end while 

15 return ℰ��
�  
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The output of the PEP is a set of retained road-paths between the required 

nodes with a complete archive of their distance, time-dependent travel times, UTM 

and RTM attributes in easy-to-access look-up tables, which greatly facilitate the 

application of any subsequent solution algorithm. However, we still need to 

generalise the results for the multi-objective case of the SPRP.  

Indeed, thanks to the second phase expansion based on paths’ travel times, 

the proposed PEP can be already generalised to the multi-objective case of the 

SPRP. Let ᵃ�̂ = (ᵃ�̂ ,ᵃ�)̂ be the resulting multi-graph after the application of the 

PEP, where ᵃ�̂ = {ᵃ�� ∪ ᵃ��}, and ᵃ� ̂ is the set of retained directed road-paths 

between the nodes, i.e. ᵃ�̂ = {(ᵅ�, ᵅ�, ᵅ�)|ᵅ�, ᵅ� ∈ ᵃ�̂ , ᵅ� ∈ ℰ}. Then, we propose the 

following theorem: 

Theorem 3 Let ᵊ�ℱ be the POS of any instance of the SPRP solved on the reduced 

graph ᵃ�,̂ and ᵊ�ℱ∗ be the POS of the very SPRP instance solved directly on ᵃ�. 

Then, ᵊ�ℱ ≡ ᵊ�ℱ∗. 

Proof. We must prove that no Pareto optimal path is discarded from ᵃ� ̂by applying 

the PEP. Consider a proof by contradiction and suppose that at least for one given 

departure time instant ᵰ� , and a vehicle of type ᵅ� carrying a load of size ᵃ� , road-

path ᵅ�� ∈ ᵃ� between required nodes ᵅ�, ᵅ� ∈ ᵃ��, which is discarded from ᵃ� ̂ by 

applying the PEP (i.e. ᵅ�� ∉ ᵃ�)̂, is a Pareto optimal path, and its corresponding 

non-dominated objective value in the criterion space is �� = (��
�, ��

�, ��
�). The fact 

that ᵅ�� is excluded from ᵃ� ̂ implies that ᵅ�� ∉ ℰᵅ�ᵅ�
ᵰ�  and hence the vector 

[��(ᵅ��), ��
��(ᵅ��)] is a dominated vector. On the other hand, since ��

� = ��
��(ᵅ��) and 

��
� = ��(ᵅ��), the only way for �� to be a non-dominated vector is to be non-

dominated based on ��
�. However, the vehicle hiring cost objective is path-

independent. � 
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2.4.1 The PEP-based MILP for the SPRP 

A MILP formulation of the SPRP based on the PEP, which is equivalent to a 

multi-objective, time and load dependent, fleet size and mix PRP, with time 

windows, flexible departure times, and multi-trips is proposed. 

Prior to introducing the decision variables and the model, however, to reduce 

computational complexity, we need to describe an alternative discretisation of the 

planning horizon ᵃ� , independently for each road-path (ᵅ�, ᵅ�, ᵅ�) ∈ ᵃ�.̂ As we discussed 

earlier the time-dependent travel time of a road-link (and hence a road-path) is 

assumed integer. With this assumption it is probable to have the same travel time 

at several consecutive departure times. For example, it is possible that if the truck 

departs the origin of the road-path at any of the consecutive minutes 

{ᵰ�, ᵰ� + 1, ᵰ� + 2, . . , ᵰ� + ℓ} ∈ ᵃ� , the travel times would be equal; i.e. ����
� = ����

�+� =

����
�+� = ⋯ = ����

�+�. Correspondingly, the UTM and the RTM attributes would be the 

same. Therefore, the whole set of these ‘time instants’ might be bundled together 

as a ‘time period’ ᵕ�, to which a unique ����
ᵕ� ,  ᵃ����

�ᵕ�  and ᵮ����
ᵕ� , can be attributed. In 

other words, departing at any time instant ᵰ� during time period ᵕ�, will yield ����
ᵕ� ,  

ᵃ����
�ᵕ�  and ᵮ����

ᵕ� .      

With this explanation, the planning horizon ᵃ�  could be discretised 

independently for each road-path (ᵅ�, ᵅ�, ᵅ�) ∈ ᵃ� ̂(using a customised notation ᵊ����), 

into a number of time periods ����, proportionate to the changes in the travel time 

of the path during the planning horizon. Therefore, the discretisation of ᵊ���� would 

yield (we drop path indices from �  and ᵊ� for notational simplicity), ᵊ� =

{[����
� , ����

� ], [����
� , ����

� ], . . . , [����
� , ����

� ]}, where ����
� = ᵃ��, ����

� = ᵅ��, and ����
ᵕ�  and 

����
ᵕ�  denote the lower boundary and the upper boundary of time period ᵕ� ∈ ᵊ�, 

respectively. Confining this discretisation further by using the information from 

time-windows, it is possible to impose that ����
� = ᵃ�� + ᵅ�� and ����

� = ᵅ�ᵅ�ᵅ�(ᵅ�� +

ᵅ��, ᵅ��), ∀(ᵅ�, ᵅ�, ᵅ�) ∈ ᵃ� ̂| ᵅ� ≠ 0. The following decision variables are then introduced 
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and used by the formulation: (i) the binary variable ᵅ����
�ᵕ� , which is equal to 1 iff 

vehicle ᵅ� ∈ ᵃ� departs node ᵅ� ∈ ᵃ�̂ during time period ᵕ� ∈ ᵊ� to go to node ᵅ� ∈ ᵃ�̂ , 

through road-path (ᵅ�, ᵅ�, ᵅ�) ∈ ᵃ�,̂ (ii) the continuous variable ᵃ����
�ᵕ�  ∈ [0,ᵃ��] which 

represents the size of load carried by vehicle ᵅ� ∈ ᵃ� over the road-path (ᵅ�, ᵅ�, ᵅ�) ∈ ᵃ� ̂

during time period ᵕ�, and (iii) the integer variable ᵅ����
�ᵕ� , which indicates the exact 

departure time from the origin of path (ᵅ�, ᵅ�, ᵅ�) ∈ ᵃ� ̂ given that it is departed by 

vehicle ᵅ� ∈ ᵃ� during time period ᵕ�. Note that ᵃ����
�ᵕ�  must be time-indexed as it is 

multiplied by the RTM component in the instantaneous CMEM which is time-

dependent.  

In order to allow vehicles to make multiple trips, assuming that each vehicle 

is allowed to make a maximum of � trips during the planning horizon, � copies of 

the set ᵃ� is added to its end. With this modification, the length of the set ᵃ� will 

be �ᵱ� and vehicles {ᵅ� + ᵱ�, ᵅ� + 2ᵱ�, . . . , ᵅ� + �ᵱ�}  all are the dummy copies of vehicle 

ᵅ� ∈ ᵃ�, but with no assignment cost. It is worth mentioning that the definition of 

a fixed set of vehicles follows two main reasons and has no contradiction with 

defining the problem as a fleet size and mix problem; first, the use of the fleet set 

in the formulation of the problem adds to its generality as it could be simply used 

for the case of a heterogeneous or homogeneous fixed size fleet as well, and second, 

it helps multi-trip scheduling. It is clear that if a large enough number of each 

vehicle type is included in the fleet the problem is a fleet size and mix problem.  

The mathematical formulation of the proposed problem is given by (2-16)-

(2-28). 

ᵅ�� ≔ � � �ᵃ��ᵅ����
�ᵕ�

ᵕ�∈��∈�(�����)∈�̂

 (2-16) 

ᵅ�� ≔ � � �ᵃ����
�ᵕ� ᵅ����

�ᵕ�

ᵕ�∈��∈�(�����)∈�̂

+ � �ᵮ����
ᵕ� (� ᵅ����

�ᵕ�

�∈�
ᵰ�� + � ᵃ����

�ᵕ�

�∈�
)

ᵕ�∈�(�����)∈�̂

 
(2-17) 
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ᵅ�� ≔ � � ��ᵅ����
�ᵕ� + ����

ᵕ� ᵅ����
�ᵕ� �

ᵕ�∈��∈�(�����)∈�̂

− � � �ᵅ����
�ᵕ�

ᵕ�∈��∈�(�����)∈�̂

 (2-18) 

  

ᵃ�ᵅ�ᵅ� (ᵅ��, ᵅ��, ᵅ��) (2-19) 

Subject to:  

� � � �ᵅ����
�ᵕ�

ᵕ�∈�
= 1,          ∀ᵅ� ∈ ᵃ��

�∈��∈ℇ���∈�̂

 (2-20) 

� � �(ᵅ����
�ᵕ�

ᵕ�∈�
− ᵅ����

�ᵕ� ) = 0,          ∀ᵅ� ∈ ᵃ�, ᵅ� ∈ ᵃ�̂
�∈ℇ���∈�̂

 (2-21) 

� � � �(ᵃ����
�ᵕ�

ᵕ�∈��∈��∈ℇ���∈�̂

− ᵃ����
�ᵕ� ) = ᵅ��,          ∀ᵅ� ∈ ᵃ�� (2-22) 

ᵅ��ᵅ����
�ᵕ� ≤ ᵃ����

�ᵕ� ≤ (ᵃ�� − ᵅ��)ᵅ����
�ᵕ� ,          ∀(ᵅ�, ᵅ�, ᵅ�) ∈ ᵃ�,̂ ᵅ� ∈ ᵃ�, ᵕ� ∈ ᵊ� (2-23) 

����
ᵕ� ᵅ����

�ᵕ� ≤ ᵅ����
�ᵕ� ≤ ����

ᵕ� ᵅ����
�ᵕ� ,          ∀(ᵅ�, ᵅ�, ᵅ�) ∈ ᵃ�,̂ ᵅ� ∈ ᵃ�, ᵕ� ∈ ᵊ� (2-24) 

� ��ᵅ����
�ᵕ� + ����

ᵕ� ᵅ����
�ᵕ� �

ᵕ�∈��∈ℇ��

− � � ��ᵅ����
�ᵕ� − ᵅ��ᵅ����

�ᵕ� �
ᵕ�∈��∈ℇ���∈�̂

≤ 1 − � �ᵅ����
�ᵕ�

ᵕ�∈��∈ℇ��

, ∀ᵅ� ∈ ᵃ�̂ , ᵅ� ∈ ᵃ��, ᵅ� ∈ ᵃ� 
(2-25) 

� � � ��ᵅ����
�ᵕ� − ᵅ��ᵅ����

�ᵕ� �
ᵕ�∈��∈��∈ℇ���∈�̂

= ᵅ�ᵃ�ᵅ�(� � � ��ᵅ����
�ᵕ� + ����

ᵕ� ᵅ����
�ᵕ� �

ᵕ�∈��∈��∈ℇ���∈�̂

, ᵃ��),   ∀ᵅ�

∈ ᵃ�� 

(2-26) 

� � �ᵅ����
�ᵕ�

ᵕ�∈��∈ℇ���∈�̂

− ᵅ����
(�+�)ᵕ� ≥ 0,          ∀ᵅ� ∈ {1, . . (� − 1)ᵱ�} (2-27) 

� � �ᵅ����
(�+�)ᵕ� − �ᵅ����

�ᵕ� + (����
ᵕ� + ᵅ��)ᵅ����

�ᵕ� �
ᵕ�∈��∈ℇ���∈�̂

≥ ᵃ�(� � �ᵅ����
(�+�)ᵕ� − 1

ᵕ�∈��∈ℇ���∈�̂

), ∀ᵅ� ∈ {1, . . (� − 1)ᵱ�} 
(2-28) 

Expressions (2-16) to (2-18) are the objective functions, constraints (2-20) and 

(2-21) are routing constraints, constraints (2-22) and (2-23) are capacity and load 

flow constraints, constraints (2-24) to (2-26) are scheduling constraints, and 

constraints (2-27) and (2-28) are multi-trip constraints. The first objective function 

(2-16) represents the total hiring cost of the trucks assigned to the routes. Note 
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again that ᵃ�� = 0,∀{ᵅ� ∈ ᵃ�|ᵅ� > ᵱ�}, so that trucks operating extra rounds of trips 

are not penalised more than once. The second objective function (2-17) estimates 

the total time, load and truck type dependent fuel consumption of the routes; and 

the third objective (2-18) represents the total duration of each truck route.  

Constraints (2-20) indicate that each customer must be visited exactly once 

for delivery. Constraints (2-21) guarantee that the same vehicle that enters each 

customer node also exits the node. Constraints (2-22) model the flow on each road-

path. Constraints (2-23) are used to restrict the total load a vehicle carries by its 

capacity. Constraints (2-24) determine the time-period during which the origin of 

a path must be departed. Note that with these constraints ᵅ����
�ᵕ�  variables will be a 

non-negative integer just for one time period, and zero for all other periods. 

Constraints (2-25) tune the time-dependent travel time of each road-path based on 

the departure time from its origin. Constraints (2-26) indicate that a customer is 

departed upon the completion of the service. It is worth noting that through the 

variable domain definition, we have already implicitly imposed that service takes 

place within the customers’ time windows. Constraints (2-27) and (2-28) are multi-

trip constraints and together ensure that vehicles could operate another round of 

trip only if they are back from their first trip and are reloaded for a new one. In 

(2-28), ᵃ� is a sufficiently large number, and without loss of generality could be set 

equal to ᵅ�� + ᵅ��. 

2.4.2 Alternative approximate extensions of the PEP 

Exploiting the tight conditions set by Theorem 2, and given the fact that the PEP 

phase-I is usually sufficient for the identification of all Pareto optimal paths, 

efficient alternative approximate path elimination algorithms could be developed 

based on pre-mature termination of the PEP. Here we propose three alternative 

approximate path elimination algorithms which are as simple as a TDSP algorithm 
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to implement (but much better performing) and faster than the PEP. We call these 

alternative algorithms Alt1, Alt2 and Alt3: 

o Alt1. This algorithm only finds the TDSP paths, along with the time-

dependent fuel consumption minimising paths for all truck types in two 

modes of empty and full, and stops.  

o Alt2. An unprovable but intuitive heterogeneous fleet extension of 

Proposition 1 is to think that if path ᵅ�� is a fuel consumption minimising 

path for both a fully loaded heavy-duty truck, and an empty light-duty 

truck at departure time ᵰ� , then this path might be optimal in terms of fuel 

consumption for any other vehicle type with any size of load. Based on this, 

an alternative algorithm can be the one that finds only the TDSP paths, 

along with the time-dependent fuel consumption minimising paths for a 

fully loaded heavy-duty truck, and an empty light-duty truck, and stops. 

o Alt3. This algorithm is a less conservative extension of Alt2 where we 

hypothesize that if path ᵅ�� is both the fastest path and the fuel consumption 

minimising path for a fully loaded heavy-duty truck at departure time ᵰ� , 

then this path might be optimal in terms of fuel consumption for any other 

vehicle type with any size of load. Hence, this algorithm only finds the 

TDSP paths and the time-dependent fuel consumption minimising paths 

for a fully loaded heavy-duty truck. 

The performance of these algorithms against the exact algorithm is reported 

in section 2.7 of the chapter. 

2.5 Generating the full set of the ND points to the 
SPRP 

It is well-known that Multi-Objective Combinatorial Optimisation (MOCO), 

dealing with Multi-Objective Integer and Mixed Integer Linear Programming 

(MOILP/MOMILP) problems, is much more difficult than the Multi-Objective 
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Linear Programming (MOLP), since the feasible set is no longer convex, and 

unsupported ND points may exist. Hence, even if a complete parameterization on 

the weight of each objective is attempted, unlike in the MOLP, the ND solution 

set of the problem cannot be fully determined (Alves & Clı´maco, 2007). Some of 

these methodological difficulties can be easier overcome in the bi-objective case 

than in the multi-objective one (Alves & Clı´maco, 2007), and this is mainly the 

reason why most of the solution methodologies in the literature focus on a bi-

objective case.  

Noticeable developments have taken place recently in the area of Mathematical 

Programming Techniques (MPTs) for the exact solution of tri- and multi-objective 

integer programming problems, and efficient algorithms have been proposed that 

can find the full set of the ND solutions, saving greatly in the total number of IPs 

required to be solved (Sylva & Crema, 2004; Özlen & Azizoglu, 2009; Lokman & 

Köksalan, 2013; Özlen, Burton, & MacRae, 2014; Boland, Charkhgard, & 

Savelsbergh, 2016; Boland, Charkhgard, & Savelsbergh, 2017). These algorithms, 

however, cannot be directly applied on the MOMILP problems as infinite number 

of ND solutions can lie (e.g. on a line segment) in the continuous parts of the 

solution space to an MOMILP, and the current state-of-the-art in tackling 

MOMILPs only allows the consideration of two objectives within a branch-and-

bound scheme. However, given the characteristics of the SPRP, the following useful 

remark allows us to apply directly any successful MPT developed for MOILPs on 

our problem: 

Remark 3 If in an MOMILP continuous variables only appear in at most one of 

the objective functions, then the given MOMILP has a discrete ND frontier and 

there is no continuous part in the ND frontier. For such MOMILP, since the ND 

frontier is discrete, the methods developed for pure MOIPs can be used to find all 

ND points. 
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This remark is based on the fact that the projection of the image of a feasible 

solution to a multi-objective problem in the criterion space with continuous 

variables in only one of the objectives, is a point, and no line segment can exist 

along the Pareto frontier (assume a bi-objective problem for visualisation). 

Therefore, based on this remark, since in the case of the SPRP continuous variables 

only appear in the objective function related to the fuel consumption minimisation, 

efficient MPTs for MOILPs are applicable.  

In order to justify our choice of the best technique for the purpose of our paper, 

in Table 2-3 a review of the most efficient criterion space search algorithms for 

solving MOILPs is given, along with the bounds on the number of IPs required to 

be solved by them. Observe that in this table ᵊ�� is the set of non-dominated 

points. For a concise description of the methods in this table we refer to Boland et 

al. (2017).



 

Table 2-3 

Existing efficient criterion space search MPTs for finding the full set of all ND solutions of the MOILPs 

Method Bounds 

Sylva & Crema’s method (SCM): (Sylva & Crema, 2004) |ᵊ��| + 1 

The enhanced recursive method (ERM): (Özlen et al., 2014) ᵊ�(|ᵊ��|�) 

The full ᵅ�-split method (FPS): (Dächert & Klamroth, 2015; Dhaenens et al., 2010) 3|ᵊ��| + 1 

The full (ᵅ� − 1)-split method (FP-1S): (Kirlik & Sayın, 2014; Lokman & Köksalan, 2013) ᵊ�(|ᵊ��|�) 

The L-shape search method (LSM): (Boland et al., 2016) ᵊ�(|ᵊ��|�) 

The quadrant shrinking method (QSM): (Boland et al., 2017a) 3|ᵊ��| + 1 
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In selecting the most appropriate MPT for solving the SPRP, a trade-off 

between solving a small number, but increasingly difficult single-objective IPs, and 

solving a larger number, but manageable size single-objective IPs must be made 

(Boland et al., 2016). While the best-known bound is due to the SCM, the IPs to 

be solved in the SCM soon become intractable in hard optimisation problems. 

Hence, the next best existing algorithm in this regard is the QSM, which 

outperforms the FPS in terms of the number of infeasible IPs solved. Therefore, we 

find the QSM as the most appealing choice due to its ease of implementation and 

competitive bound on the number of IPs to be solved for the generation of the full 

set of the ND vectors. 

For the sake of brevity, a full exposition of the QSM method is avoided here 

and the reader is referred to Boland et al. (2017a) for an introduction. In a nutshell, 

the QSM works in a projected 2D criterion space, defined by the first two objectives 

ᵅ��(ᵅ�) and ᵅ��(ᵅ�). The approach uses quadrants in the projected space, which are 

defined using an upper bound ᵅ�(ᵅ��, ᵅ��); i.e. ᵊ�(ᵅ�) = {� ∈ ℝ�: � ≤ ᵅ�}, where � is 

the projection of a point in the 2D space. The core operation of the QSM is 

searching for an as-yet-unknown ND point (if one exists) by solving two IPs, 

through a two-stage scalarisation technique. First, an intermediate point ᵅ�� ∈ ᵊ� 

with minimal third objective value over points ᵅ� ∈ ᵊ� with ᵅ�̅ ≤ ᵅ� (ᵅ� ̅is the projection 

of ᵅ� in the 2D space) is found via: ᵅ�� ∈ argᵅ�ᵅ�ᵅ��ᵅ��(ᵅ�): ᵅ� ∈ ᵊ� ᵃ�ᵅ�ᵃ� ᵅ��(ᵅ�) ≤ ᵅ��, ᵅ� ∈

{1,2}�. If this IP is feasible, it is followed by a second IP that converts the weakly 

efficient solution ᵅ�� into an efficient solution ᵅ�∗: ᵅ�∗ ∈ argᵅ�ᵅ�ᵅ��∑ ᵅ��(ᵅ�): ᵅ� ∈�
�=�

ᵊ� ᵃ�ᵅ�ᵃ� ᵅ��(ᵅ�) ≤ ᵅ��(ᵅ��), ᵅ� ∈ {1,2,3}�. This search is denoted by 2D-NDP-Search(u), 

and if the first IP is infeasible, 2D-NDP-Search(u) returns Null and ᵅ�� does not 

exist. Otherwise, if ᵅ�� exists, the second IP must be feasible and 2D-NDP-Search(u) 

returns ᵅ�∗. Ultimately, this search returns a ND point ᵅ�∗ with ᵅ��
∗ minimal over 

those ᵅ� ∈ ᵊ�� with ᵅ� ̅ ≤ ᵅ�. Following the identification of ᵅ�∗, any other ND point 

with the property that its projection is in ᵊ�(ᵅ�) can now be found by searching for 
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ND points with the property that their projection is in either quadrant ᵊ�(ᵅ��) or 

ᵊ�(ᵅ��), with ᵅ�� = (ᵅ��, ᵅ�� − ᵱ��) and ᵅ�� = (ᵅ�� − ᵱ��, ᵅ��), where ᵱ�� and ᵱ�� are problem-

dependent small positive constants. The search is carried out by finding ND points 

on the top and the right boundary of the quadrant, and when it is established that 

ND points can no longer be found using 2D-NDP-Search(u), the quadrant is 

shrunk, and the process repeats until it is shown that the quadrant does not contain 

any ND points. [refer to Boland et al. (2017a) for related proofs and the algorithm]. 

In order to solve the SPRP for the identification of the full set of ND solutions, 

we use the PEP-based MILP for the SPRP as the core optimisation problem inside 

QSM. The two (M)IPs that must be solved using the 2D-NDP-Search(u) for 

returning a ND vector in each iteration of the QSM, correspond to (i) an IP which 

is a single-objective problem in the third objective of the SPRP, i.e. the total travel 

time of the tours, and (ii) a MIP which is an aggregation of all the three objectives 

of the SPRP. This hybridisation turns out to be very efficient, and as will be 

reported in the computational experiments section of the paper, we are able to find 

the POS of all instances considered over a reasonable computational time despite 

the difficulty of the problem. 

2.6 Construction of realistic spatiotemporal driving 
cycles   

As discussed earlier, with the current technological advancements in Intelligent 

Transportation Systems (ITSs) and GPSs it is possible to collect data on fine-

grained speeds variations over any given road-link in the road network at different 

times of a given day using probe vehicles. However, these data are usually 

unavailable at the planning stage. On the other hand, it has been shown that lack 

of such data, especially the instantaneous A/D data, can cause inaccuracy in 

estimating fuel consumption and hence might lead to unreliable and misleading 

routing decisions (Turkensteen, 2017).  
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The only relevant study in the area of EMVRPs trying to take this situation 

into account is a recent study by Kancharla and Ramadurai (2018) who propose 

to incorporate driving cycles into the estimation of fuel consumption in a time-

independent routing context. The authors collect 450 km (144 h of driving) GPS 

data in the city of Chennai, India, and then for each arc in their test graphs 

randomly combine the collected micro-trips through an iterative process until the 

distance of the intended arc is covered. Despite the effort that is put in collecting 

these data, a major shortcoming of their proposed approach lies in the fact that 

the spatial and temporal characteristics of the road-links in the graph are 

completely ignored. The location of a road-link in the roadway graph and the time 

of the day the given road-link is traversed have a fundamental impact on the shape 

of the speed-time profile and the frequency of vehicles A/Ds.    

The spatiotemporal characteristics of a road-link, however, are very well 

reflected in the macroscopic time-dependent speed data, which are widely available 

for decision making and could be efficiently used for constructing reliable synthetic 

driving cycles. Developing microscopic traffic data from macroscopic traffic data 

based on reconstructed synthetic vehicle trajectories is not something new and is a 

well-known stream of research in transportation engineering (Silvas et al., 2016; 

Wang et al., 2011; Zegeye et al., 2013). However, in this paper we adopt a 

completely different operational research approach and propose a simple but 

reliable method for the generation of synthetic spatiotemporal driving cycles with 

using only the road-link distance and the time-dependent average speed as input, 

and with no parameter tuning. The proposed approach is validated against an 

extensive library of real-world driving cycles and the results are presented in the 

‘computational results’ section of the paper.  

Our proposed approach builds on a model for the generation of worst-case 

driving cycles, which is then simply weakened with slight parameter relaxation to 

lead to realistic cycles. Let ᵃ��� be the distance of a given road-link (ᵅ�, ᵅ�) ∈ ᵃ�, and 
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���
ᵕ�  be the time-dependent travel time of the given road-link during time period ᵕ� ∈

ᵊ�, deduced from the macroscopic traffic speed data using expression (2-3) (note 

that it is not necessary to generate the cycles for every time instant of the planning 

horizon; instead, in line with the arguments in section 2.4.1, we can generate cycles 

in the ‘time period’ level). Also, let ᵉ���� and ᵉ���� respectively denote the 

maximum possible acceleration and deceleration rates for a truck. Finally, suppose 

the maximum possible speed in the network is ᵅ�� . Then, the worst-case second-by-

second A/D rates (ᵃ��) for the given road link during time period ᵕ� could be 

constructed by determining speed levels of every second (��) (where ᵃ�� = �� −

��−�) using the following nonlinear programming model:    

ᵃ�ᵃ�ᵅ� � |�� − ��−�|
���

ᵕ� +���
ᵕ�

�=���
ᵕ� +�

 (2-29) 

Subject to:  

� ��

���
ᵕ� +���

ᵕ�

�=���
ᵕ�

= ᵃ���, (2-30) 

−ᵉ���� ≤ �� − ��−� ≤ ᵉ����,          ∀ᵅ�

∈ {���
ᵕ� + 1, ���

ᵕ� + 2, . . . , ���
ᵕ� + ���

ᵕ� } 
(2-31) 

����
ᵕ� = ����

ᵕ� +���
ᵕ� = 0, (2-32) 

0 ≤ �� ≤ ᵅ��,          ∀ᵅ� ∈ {���
ᵕ� , ���

ᵕ� + 1, . . . , ���
ᵕ� + ���

ᵕ� } 
 

(2-33) 

The nonlinear objective function (2-29) maximises the positive difference 

between speed levels of every two consecutive seconds of the cycle, and hence the 

A/D rates. Constraint (2-30) tunes the instantaneous speeds in a way that the 

cycle is completed within the estimated time-dependent travel time of the given 

road link. Constraints (2-31) ensure that the A/D rates do not violate the maximum 

possible A/D rate of the truck. Constraint (2-32) indicate that the truck accelerates 

from idle (departing node ᵅ�) and comes to a full stop at the end of the cycle (arriving 

at node ᵅ�). Note that this is based on the assumption that in an urban road network 
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trucks are usually forced to reduce their speed significantly or come to a full stop 

at network junctions (e.g. at a cross road traffic light or a turning point). Finally, 

constraints (2-33) determine the range of speed values. 

In order to linearize (2-29)-(2-33), we define two new non-negative continuous 

decision variables ᵃ�ᵃ�ᵃ��,ᵃ�ᵃ�ᵃ��,∀ᵅ� ∈ {���
ᵕ� + 1, ���

ᵕ� + 2, . . . , ���
ᵕ� + ���

ᵕ� } which indicate 

the acceleration rates and the deceleration rates during second ᵅ� − 1 until ᵅ�, 

respectively; and a new binary decision variable ᵱ�� ∈ {0,1},∀ᵅ� ∈ {���
ᵕ� + 1, ���

ᵕ� +

2, . . . , ���
ᵕ� + ���

ᵕ� }, which is 1 iff vehicle accelerates during second ᵅ� − 1 until ᵅ�, and 

0 otherwise. Then, the following MILP which is called the Driving Cycle (ᵃ�ᵃ���
ᵕ� ) 

model hereafter can be developed: 

ᵃ�ᵃ���
ᵕ� : ᵃ�ᵃ�ᵅ� � (ᵃ�ᵃ�ᵃ�� + ᵃ�ᵃ�ᵃ��)

���
ᵕ� +���

ᵕ�

�=���
ᵕ� +�

 (2-34) 

Subject to:  

�� − ��−� = ᵃ�ᵃ�ᵃ�� − ᵃ�ᵃ�ᵃ��,          ∀ᵅ�

∈ {���
ᵕ� + 1, ���

ᵕ� + 2, . . . , ���
ᵕ� + ���

ᵕ� } 
(2-35) 

0 ≤ ᵃ�ᵃ�ᵃ�� ≤ ᵱ��ᵉ����,          ∀ᵅ� ∈ {���
ᵕ� + 1, ���

ᵕ� + 2, . . . , ���
ᵕ� + ���

ᵕ� } (2-36) 

0 ≤ ᵃ�ᵃ�ᵃ�� ≤ (1 − ᵱ��)ᵉ����,          ∀ᵅ�

∈ {���
ᵕ� + 1, ���

ᵕ� + 2, . . . , ���
ᵕ� + ���

ᵕ� } 
(2-37) 

and (2-30), (2-32) and (2-33).  

While one can use this model in the development of the robust extension of 

the SPRP, as we will show later in the computational results section of the paper, 

very realistic cycles could be generated from the same model only by simply using 

empirical ‘mean’ acceleration and deceleration rates (ᵉ���� and ᵉ����) in the model 

instead of ᵉ���� and ᵉ����. In this paper, for these parameters we use the reported 

results by Bokare and Maurya (2017) from their study on the A/D behaviour of 

various vehicle types including trucks. Based on their results while ᵉ���� ≅ 1 m/s2, 

and ᵉ���� ≅ 0.88 m/s2, the mean acceleration rate of a truck is around 0.3 m/s2 

and the mean deceleration rate is around 0.5 m/s2. In Figure 2-4.a, as a real-world 
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driving cycle, we are illustrating the EPA heavy duty urban driving schedule 

(available at: https://www.epa.gov/sites/production/files/2015-10/huddscol.txt) 

which covers a distance of around 8935 m in 1060 s, with an estimated fuel 

consumption of 2.55 litres for an empty light-duty truck. Using ᵃ�ᵃ���
ᵕ�  the worst-

case driving cycle is generated and illustrated in Figure 2-4.b with a fuel 

consumption of 3.22 litres, and the cycle based on the mean A/Ds with a very close 

amount of fuel consumption to the original cycle, i.e. 2.60 litres, is shown in Figure 

2-4.c. 

(a) FC = 2.55 lit. 

 

(b) FC = 3.22 lit. 

 

(c) FC = 2.60 lit. 

 

Figure 2-4 Example synthetic driving cycles constructed from the proposed MILP 

model 
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Using the proposed model, if historical microscopic data are unavailable at the 

planning stage, it is possible to generate reliable driving cycles without collecting 

field data, and estimate fuel consumption more accurately than using the average-

speed CMEM.  

To generate the required cycles for all network links at all time periods, the 

proposed model must be used iteratively. An intuitive iterative algorithm for this 

purpose is presented in Algorithm 2-3. To speed up this procedure, two things are 

done; firstly, we set the relative MIP gap tolerance of the CPLEX mixed integer 

programming setting to 0.01, and the global time limit to 3 seconds. That is, if an 

optimal solution or a solution with 1% MIP gap is observed in less than 3 seconds, 

it is accepted; otherwise, the solution that is returned by CPLEX after 3 seconds 

is accepted and used in the calculation of the road-link attributes (we never 

encountered a solution with over 5% optimality gap with this setting). While 

CPLEX usually requires a few seconds to close the MIP gap and return the optimal 

solution, in almost all our observations, a solution with 1% MIP gap is returned 

within fractions of a second. This solution is either the same as the optimal solution 

or very marginally different from that. Secondly, we store the obtained information 

iteratively in a hash table to use in later iterations. Indeed, the ᵃ�ᵃ���
ᵕ�  MILP relies 

mainly on two pieces of information; i.e. ᵃ��� and ���
ᵕ� . If we use �ᵃ���� instead of ᵃ���, 

then the combination �ᵃ���� and ���
ᵕ�  is repeatedly observed for many road-links at 

different time periods. Note that the effect of this rounding up of distances on the 

ultimate values for the UTM and RTM attributes of the road-link is very negligible. 

Hence, in each iteration of the algorithm once the cycle is returned by the ᵃ�ᵃ���
ᵕ�  

MILP and the UTM and RTM attributes of the road link are computed, they are 

stored in the hash table (ᵃ�ᵃ� ) with their key (�ᵃ����, ���
ᵕ� ). In following iterations 

before calling CPLEX to solve the ᵃ�ᵃ���
ᵕ�  MILP, the key is checked with the hash 

table to see if UTM and RTM values could be directly obtained from the table. 

Observe that at the end of the algorithm execution, it only needs to return the 
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hash table, from which all UTM and RTM attributes of all road-links at all time 

periods could be extracted. 

Algorithm 2-3 Networkwide generation of driving cycles 

1 Input ᵃ�, ᵃ��� ∀ᵅ�, ᵅ� ∈ ᵃ� , ���
ᵕ�  ∀ᵅ�, ᵅ� ∈ ᵃ�, ᵕ� ∈ ᵊ��� 

2 ᵃ�ᵃ� = {}   
3 for ᵅ� =  0 to ᵅ� + � do 

4  for ᵅ� =  0 to ᵅ� + � do 

5  if ᵅ� ≠ ᵅ� then 

6   for ᵕ� =  1 to ��� do 

7    if ᵃ�ᵃ�  does not contain the key (�ᵃ����, ���
ᵕ� ) then 

8     Solve ᵃ�ᵃ���
ᵕ�  MILP  

9     
Compute ᵃ���

�ᵕ� ∀ᵅ� ∈ ᵃ� and  Γ��
ᵕ�  and add them to the ᵃ�ᵃ�  along with the 

key (�ᵃ����, ���
ᵕ� )   

10    end if 

11   end for 

12  end for 

13 end for 

14 return ᵃ�ᵃ�  

In the next section, we report the computational cost of generating the 

network-wide driving cycles in the case of each instance using this algorithm. 

As a wrapper of all modules and processes introduced in the paper, in the flow 

chart in Figure 2-5, we present the flow of the operations that are carried out on 

the original roadway graph until the full set of the ND points to an instance of the 

SPRP are identified. In this flow chart, we are indicating the section of the chapter 

that is relevant to each of the four main modules introduced.



 

 

Start

1. Compute the time-dependent travel 
times for all road-links (section 2.4)

2. Use the iterative algorithm to generate the 
network-wide driving cycles and the 

consequent UTM and RTM attributes of 
road-links (Section 2.7)

3. Apply the PEP and identify the 
set of the retained road-paths with 

their attributes (Section 2.5)

4. Use the QSM with the PEP-
based MILP to find the efficient 

frontier (Section 2.5)

Input: The original 
roadway network G with  

macroscopic speed data for 
all road-links

Output: The 
full set of ND 

points

End

 

Figure 2-5 The flow of modules introduced in the paper until finding the full set of the ND points 
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2.7 Computational results 

A set of time-dependent roadway graphs with 100 nodes are created as the test bed 

of the proposed PEP-based MILP. For these instances, the raw graphs are 

generated using the procedure proposed by Letchford et al. (2013) that leads to 

graphs which resemble real-life road networks. To generate time-dependent travel 

times for the arcs, a planning horizon of 480 minutes is assumed, and traffic 

condition is supposed to follow a non-congested/congested/non-

congested/congested pattern. The two congested periods represent the morning and 

evening rush hours with speed values generated randomly within the range 15-40 

km/h. Non-congested speeds, on the other hand, are determined randomly within 

the range 40-70 km/h. Within this pattern, random speed observations are 

generated independently for each arc in 15-minute increments (i.e. 32 speed 

observations per road-link) such that speed levels change from one period to the 

next smoothly. Following this, the time-dependent travel times of arcs are 

computed per minute using the proposed closed form formula (2-3) and rounded 

up to the nearest integer. For all arcs, driving cycles are generated using ᵃ�ᵃ���
ᵕ�  

MILP for each time period, and the resulting UTM and RTM attributes of the arcs 

are computed and stored.   

Across the generated road networks, we have randomly selected 10 customers 

to be served by a central depot. For multi-objective experiments, to be able to 

generate the full set of the ND points on the efficient frontier within a reasonable 

time, we have considered 5 customers. It is worth mentioning that while the 

dimension of the proposed instances compares well with other existing papers with 

an exact approach given the extra complications from multi-trips and flexible paths, 

it is not an intention of this paper to solve large size test instances, and it has been 

the task of our follow up paper on the development of multi-objective optimisation 

heuristics for the SPRP. Instead, here we are more interested in observing the 
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performance of the PEP, the contributions of the multi-trips, the trade-offs on the 

Pareto front of the SPRP and presenting a benchmark for examining the 

performance of future heuristics for the problem.  

In all test instances, service times and the reloading time at the depot for 

vehicles executing an extra round of trip are assumed 20 minutes. Feasible time-

windows and demands are induced for the customers using a procedure based on a 

nearest neighbour algorithm where a heavy-duty truck is dispatched to visit the 

nearest customer in each iteration of the algorithm, until capacity or time 

constraints are violated. Customers’ demands are drawn randomly from the 

discrete uniform distribution on the interval [1000kg, 15000kg], and relatively wide 

time-windows covering up to 40% of the planning horizon are generated around the 

arrival time of the dispatched trucks. For all instances, the fleet is supposed to be 

composed of two light-duty, two medium-duty, and two heavy-duty trucks, and all 

trucks are allowed to execute a maximum of two rounds of trips during the planning 

horizon. All the test instances and reported solutions in this section are available 

at: https://dx.doi.org/10.17635/lancaster/researchdata/266. 

All the experiments were performed on a computer with Intel Core™ i5 3.20 

GHz processor with 8 GB RAM. The branch-and-bound solver of CPLEX™ 12.6.3 

was used as the exact solver, and except for the PEP and the travel time calculation 

algorithms that were coded in MATLAB™, all other algorithms were modelled as 

OPL scripts in pre-processing, post-processing and model flow control on top of the 

OPL models of the core MILPs. No global time limit was used to allow the solver 

to generate the full set of the ND points for benchmarking purposes. 

2.7.1 Performance of the PEP 

To demonstrate the efficiency of the proposed PEP and the MILP based on it in 

addressing the SPRP, all test instances with 10 customers are solved to optimality 

for the fuel consumption minimisation objective using the PEP-based MILP, and 
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solutions are compared with the solutions from a TDSP-based MILP, where a 

multi-graph based on the full set of the TDSPs between required nodes is used. 

The results of this comparison are presented in Table 2-4. In this table, the total 

number of arcs in the original networks, and in the reduced networks after applying 

the PEP and the TDSP are shown, along with the litres of fuel consumed (FC) by 

the optimal solutions returned by each of the formulations, and the runtime (in 

minutes). One column is also devoted to reporting the percentage optimality gap 

of the TDSP-based formulation from the optimal solution returned by the PEP-

based formulation. Table 2-4 shows that for all the instances considered, the 

solution based on the TDSP is suboptimal. The table also indicates that TDSPs on 

average can only represent less than 44% of the eligible road-paths in the graph. 

Observe that the runtime columns of the table suggest that despite the difficulty 

of the problem, the proposed MILP formulation can find the optimal solutions in a 

reasonable runtime with an average of less than 10 minutes.



 

 

Table 2-4 

Optimal fuel consumption yielded by the PEP-based and the TDSP-based formulations 

Instance 

# 
Network Arcs 

 PEP-based MILP  TDSP-based MILP 

 Arcs FC Runtime (min)  Arcs FC Runtime (min) Gap 

1 344  149 54.24 11.03  109 55.56 29.72 2.43% 
2 370  270 79.32 1.26  82 86.43 0.23 8.96% 
3 358  195 55.36 18.03  127 57.27 4.68 3.46% 
4 348  187 77.06 1.94  96 84.64 4.06 9.83% 
5 362  259 65.85 5.26  112 69.97 3.28 6.26% 
6 366  182 68.30 1.02  92 74.21 0.26 8.65% 
7 354  247 59.09 32.20  152 63.38 80.98 7.26% 
8 358  218 71.56 0.76  108 79.02 0.92 10.42% 
9 374  190 82.15 3.44  131 84.80 3.45 3.22% 
10 350  208 82.95 0.82  117 90.14 0.79 8.67% 
11 358  172 56.49 4.65  119 58.99 10.72 4.42% 
12 360  157 81.25 0.90  90 87.60 0.60 7.82% 
13 362  180 67.39 1.39  96 68.86 0.50 2.18% 
14 358  214 79.84 1.62  121 85.51 1.35 7.11% 
15 360  247 49.12 15.86  145 51.15 12.62 4.13% 
16 348  149 60.28 0.28  99 65.75 0.86 9.08% 
17 412  210 65.48 3.76  102 69.25 1.47 5.76% 
18 348  158 78.31 1.71  89 86.21 1.36 10.09% 
19 426  238 51.58 5.21  102 58.01 6.77 12.48% 
20 352  167 71.20 0.23  85 77.27 0.22 8.53% 
21 346  248 77.16 3.96  99 82.73 0.54 7.22% 
22 370  211 76.04 0.59  106 81.58 0.71 7.27% 
23 350  200 77.47 1.93  103 85.20 0.49 9.96% 
24 368  221 77.80 11.52  103 83.87 1.43 7.80% 
25 362  182 78.69 2.03  83 87.70 1.89 11.45% 
Avg. 362.56  202.36 69.76 5.26  106.72 75.00 3.33 7.52% 
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For a more in-depth analysis of the performance of the PEP and the three 

other approximate algorithms, we are also using a publicly available real-world 

urban road network with time-dependent speed observations. This is based on the 

Chicago’s arterial (non-freeway) streets (https://data.cityofchicago.org) (Figure 

2-6), which has 1485 nodes and 1257 arcs, and congestion estimates are produced 

every fifteen minutes in real-time. However, the database has some incompleteness 

issues (i.e. not all nodes are accessible from one another) due to the omission of 

roads and streets in the lower hierarchy of roads, such as collectors, and local roads. 

Also, real-time speed observations only become available for a subset of all 

segments, and speed data are missing for some arcs at some time instants. 

Therefore, the graph and the traffic updates provided by Dokka and Goerigk (2017) 

after treating this database for the mentioned issues are utilised. Dokka and 

Goerigk (2017) record traffic updates in a 15-minute interval over a time horizon 

of 24 hours spanning Monday March 27th, 2017 morning to Tuesday March 28th, 

2017 morning, leading to a total of 98 data observations, and their final graph 

contains 538 nodes and 1308 arcs.  

 

Figure 2-6 Chicago’s arterial streets 

Four snapshots of Chicago’s arterial streets at different time instants of a 

typical day are displayed in Figure 2-7. In this figure, green arcs have an average 

speed above 30 km/h, yellow arcs represent an average speed between 15 and 30 

km/h, and red arcs show an average speed below 15 km/h.
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Figure 2-7 Time dependent congestion in Chicago’s arterial streets at four different time instants in a typical day 
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A set of 11 source-sink pairs were selected on this road network, and a planning 

horizon of 12 hours from 07:00 to 19:00 was considered for experiments. These pairs 

are identified based on the location of the source and the sink, which are placed 

somewhere in the Centre (C), North (N), East (E), West (W), south(S), Northeast 

(NE), Northwest (NW), Southeast (SE), or Southwest (SW) of the graph (Figure 

2-6). Therefore, we denote by the pair (N, S), for instance, a pair of source-sink, 

where the source is in the North of the graph and the sink is in the South. To 

validate the performance of the PEP, an exhaustive approach for the exact 

identification of the full set of the eligible paths was used. This approach is based 

on the discretisation of the load range [0,26000] in 20 kg increments (1301 

increments), and computation of the emissions minimising paths for all the resulting 

increments and feasible vehicle types, at all 720 possible departure times (every 

minute in the planning horizon). With this approach (called the Exact approach 

hereafter) we can identify the full set of all eligible paths and consider this set as 

the benchmark for the evaluation of the alternative approaches. In Table 2-5 the 

performance of each of the PEP and TDSP algorithms against the exact set of the 

eligible paths is reported. In this table the column with the heading “No. of Paths” 

indicates the total number of paths between the given source-sink pair, identified 

by each of the three approaches. The next three columns report the average number 

of arcs in all the paths identified, the average distance of these paths, and the 

average travel times of them based on each of the PEP and the TDSP algorithms. 

Finally, the last column reports the runtime of each algorithm for returning the 

given set of paths. For the PEP and TDSP the reported runtime is based on the 

average of 10 runs.



 

Table 2-5  

The performance of the PEP and the TDSP algorithms against the Exact set of the eligible road-paths 

Pair Regions 

 No. of Paths  Avg. No. of arcs  Avg. distance  Avg. travel time  Runtime (seconds) 

 
Exac

t 
PEP TDSP  PEP TDSP  PEP 

TDS

P 
 PEP TDSP  Exact PEP 

TDS

P 

(499,481) (C, C)  5 5 1(20%)  13.00 13.00  4.27 4.28  17.28 15.00  1400.97 4.21 0.87 
(7,314) (E, E)  2 2 2(100%)  11.00 11.00  7.72 7.72  13.59 13.59  1110.91 3.96 0.90 
(106,325) (N, N)  9 9 4(45%)  15.56 16.25  20.59 21.57  44.85 46.17  955.36 4.88 0.58 
(426,117) (S, S)  6 6 2(34%)  13.67 13.00  12.93 12.90  28.36 27.11  984.09 3.21 0.46 
(3,72) (W, W)  1 1 1(100%)  8.00 8.00  3.77 3.77  13.13 13.13  1330.73 3.71 0.80 
(20,175) (C, E)  16 16 6(40%)  23.50 20.00  20.01 21.34  47.50 41.08  1505.43 3.60 0.89 
(19,325) (NW, N)  10 10 4(40%)  16.10 16.25  21.23 21.98  45.97 45.94  963.59 2.49 0.90 
(49,111) (S, SE)  9 9 5(56%)  27.56 26.00  38.08 38.06  68.93 67.12  2303.67 3.65 1.17 
(82,55) (N, S)  18 18 7(39%)  39.17 39.86  23.45 23.59  62.99 61.54  1407.33 3.46 1.10 
(3,15) (W, E)  28 28 14(50%)  29.32 29.07  36.34 36.34  73.88 73.45  1805.42 4.13 0.77 
(47,430) (SW, NE)  46 46 24(52%)  39.48 39.83  29.59 29.61  71.27 70.31  1760.21 4.34 0.64 

 

 
Table 2-6 

The performance of alternative approximate path elimination algorithms 

Pair 
No. of Paths Runtime (seconds) 

Alt1 Alt2 Alt3 Alt1 Alt2 Alt3 

(499,481) 5(100%) 5(100%) 5(100%) 4.20 2.13 1.26 
(7,314) 2(100%) 2(100%) 2(100%) 3.96 2.79 2.16 
(106,325) 9(100%) 9(100%) 7(77.78%) 4.76 2.04 1.49 
(426,117) 6(100%) 6(100%) 6(100%) 3.17 2.11 1.35 
(3,72) 1(100%) 1(100%) 1(100%) 3.71 2.74 2.13 
(20,175) 15(93.75%) 15(93.75%) 15(93.75%) 3.50 1.77 2.34 
(19,325) 10(100%) 8(80%) 7(70%) 2.42 1.90 1.40 
(49,111) 9(100%) 9(100%) 9(100%) 3.60 3.05 1.60 
(82,55) 17(94.44%) 15(88.24%) 11(64.71%) 3.34 2.18 1.73 
(3,15) 28(100%) 26(92.86%) 23(82.14%) 3.98 2.20 1.84 
(47,430) 46(100%) 44(95.65%) 40(86.96%) 4.01 2.40 1.55 
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According to Table 2-5, while the PEP is able to exactly identify all of the 

eligible paths, the TDSP can identify only less than 50% of the eligible paths in 

most of the cases. Note that this also implies that adding the shortest distance path 

to the set of the TDSPs (if it is not already there) as proposed by Huang et al. 

(2017) cannot help much. This table also suggests that the number of the paths to 

retain is a pretty much relative value depending on several factors, and it is not 

possible to issue any prescription on a safe number of paths to retain as in the k-

shortest path network reduction technique of Androutsopoulos and Zografos (2017). 

While their results may suggest that keeping 5 paths can reduce the number of 

excluded paths, based on Table 2-5, this can be a too big number (e.g. for source-

sink (3, 27)), or a too small one (e.g. for source-sink (47, 430)). 

A rather intuitive implication of the results in Table 2-5, however, is that as 

the distance and the travel times between a given pair of source-sink increase, so 

does the number of arcs on the paths connecting them and the total number of 

eligible paths. For representation, some of the eligible paths between some of the 

pairs in Table 2-5 are illustrated in Figure 2-8. 

The percentage of time that the fuel consumption minimising path for a full 

truck of a given type, i.e. ᵅ��, has been not the same as the fuel consumption 

minimisation path for the same truck type with no load, i.e. ᵅ��, (see Proposition 1) 

in our experiments is also illustrated in the stacked bar chart in Figure 2-9 for all 

the 11 source-sink pairs in case of each vehicle type. This is the ratio of time 

instants out of the total 720 minutes in the time-horizon when the difference is 

observed. It is clear that in the case of the light-duty truck, due to its very small 

capacity, much less difference is observed compared with the medium and the 

heavy-duty trucks. Furthermore, again as the source and the sink become more 

distant on the graph, this ratio tends to increase. Therefore, while the approach 

proposed by Ehmke et al. (2016) might be helpful in case of the light-duty trucks 

on small graphs, the need to compute the shortest path on-the-fly for time instants 
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when a difference between ᵅ�� and ᵅ�� is observed, make it prohibitive on larger 

graphs and larger vehicle types. 

 

 

Figure 2-8 Illustration of some of the eligible paths between some of the 

considered source-sink pairs on Chicago road graph 

The performance of the three alternative approximate path elimination 

algorithms discussed in section 2.4.2, i.e. Alt1, Alt2 and Alt3 is reported in Table 

2-6. The table shows that all these algorithms that are based on the premature 

termination of the PEP, and rely on the tight bounds set by ᵅ�� and ᵅ�� according 

to Theorem 2 have a good performance, with Alt1 being the best alternative and 
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Alt2 a bit better performing than Alt3. These algorithms are as simple as the TDSP 

to implement while they promise a much better performance. 

 

Figure 2-9 The percentage of time that ᵅ�� ≠ ᵅ�� for each truck type 

2.7.2 Fleet size and mix, and the effect of using multiple-trips 

The fleet size and mix of the optimal solutions to instances with 10 customers in 

case of the fuel consumption minimisation is analysed and presented in Table 2-7. 

In this table, the column ‘C’ indicates the cost of hiring the trucks in the solution, 

and the column ‘R’ denotes the number of routes in the solution. Number of each 

vehicle type light-duty (L), medium-duty (M) and heavy-duty (H) employed by 

the solution is presented under the heading ‘NU’. Average percentage of capacity 

of each truck type used when departing the depot is shown by ‘CU’, and the 

number of each truck type employed for multiple trips is given under the heading 

‘MT’. Since only medium-duty trucks are selected by all solutions for multi-trips, 

the average percentage of their capacity used for the second round of delivery is 

shown in column ‘CUM’. Finally, the last two columns of the table denote the 

percentage savings in fuel consumption and cost due to the use of multi-trips. To 

measure the savings, we have prohibited multi-trips from all instances and then re-

optimised the problems for fuel consumption minimisation and calculated the 

deviation. Note that in case of instance #9 the problem is infeasible if multi-trips 

are not allowed.



 

Table 2-7  

Fleet size and mix, average capacity use and the use of the multiple-trips in the optimal fuel consuming solutions 

 

Inst. C  R 
NU  CU  MT  CUM  MT savings 

L M H  L M H  L M H  M  Fuel cost 

1 162 5 1 2 0  79% 91% -  0 2 0  68%  2% 84% 

2 214 4 0 2 1  - 74% 94%  0 1 0  82%  2% 16% 

3 120 4 0 2 0  - 74% -  0 2 0  77%  9% 78% 

4 308 4 0 2 2  - 60% 82%  0 0 0  -  0% 0% 

5 204 5 2 2 0  98% 63% -  0 1 0  97%  4% 46% 

6 214 4 0 2 1  - 76% 89%  0 1 0  64%  3% 44% 

7 120 4 0 2 0  - 77% -  0 2 0  79%  2% 148% 

8 214 4 0 2 1  - 53% 75%  0 1 0  80%  0% 39% 

9 392 8 2 2 2  92% 82% 73%  0 2 0  77%  - - 

10 214 5 0 2 1  - 54% 86%  0 2 0  85%  3% 64% 

11 204 5 2 2 0  73% 81% -  0 1 0  94%  3% 0% 

12 214 5 0 2 1  - 68% 94%  0 2 0  75%  2% 44% 

13 298 6 2 2 1  68% 85% 87%  0 1 0  67%  2% 32% 

14 298 6 2 2 1  84% 51% 51%  0 1 0  80%  0% 0% 

15 162 4 1 2 0  73% 67% -  0 1 0  80%  10% 58% 

16 214 5 0 2 1  - 83% 58%  0 2 0  86%  5% 44% 

17 214 4 0 2 1  - 95% 97%  0 1 0  74%  4% 44% 

18 214 5 0 2 1  - 83% 69%  0 2 0  75%  2% 44% 

19 204 5 2 2 0  79% 59% -  0 1 0  78%  0% 46% 

20 214 4 0 2 1  - 72% 68%  0 1 0  40%  2% 0% 

21 308 5 0 2 2  - 85% 70%  0 1 0  56%  4% 0% 

22 214 4 0 2 1  - 89% 84%  0 1 0  73%  4% 16% 

23 214 4 0 2 1  - 85% 94%  0 1 0  92%  5% 64% 

24 256 6 1 2 1  72% 79% 30%  0 2 0  70%  4% 37% 

25 214 5 0 2 1  - 66% 84%  0 2 0  77%  3% 44% 

Avg. 224.16 4.80 0.60 2.00 0.84  80% 74% 77%  0.00 1.36 0.00  76%  3% 31% 
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It is clear from the table that the medium-duty truck is the most preferred 

resource in the fleet, as it establishes an adequate balance between the energy-

efficient but capacity-inefficient light-duty truck, and the energy-inefficient but 

capacity-efficient heavy-duty truck. Moreover, capacity usage in all cases for all 

vehicle types is very well distributed, for which some contribution could be 

attributed to multiple-trips possibility. It is also interesting to see that when a 

vehicle is assigned to an extra round of trip it is not under-utilised in terms of its 

capacity. 

2.7.3 The Pareto front of the SPRP 

All the test instances with 5 customers were solved to multi-objective optimality 

for the generation of the full set of the ND points on the true Pareto fronts using 

the approach discussed in section 5 of the paper, i.e. embedding the PEP-based 

MILP within the framework of the QSM (QSM+PEP-based MILP). Again, an 

alternative approach based on the integration of the QSM with the TDSP-based 

MILP (QSM+TDSP-based MILP) is considered to further see the effect of 

suboptimal network reduction techniques on the generation of the true Pareto 

fronts. The QSM+TDSP-based MILP uses the TDSP-based MILP described earlier 

as the core optimisation problem. That is, a multi-graph based on the full set of 

the TDSPs between required nodes is considered, and the MILP described in (2-16)-

(2-28) is solved on this multi-graph rather than on the original PEP-based multi-

graph. Like the case of the QSM+PEP-based MILP, in each iteration of the 

QSM+TDSP-based MILP, for returning a ND vector, the two (M)IPs discussed in 

section 5 must be solved. For all test instances we had to calibrate only ᵱ�� as the 

first objective is integer, and hence considered ᵱ�� = 1, and ᵱ�� = 0.01 (ᵱ�� and ᵱ�� are 

QSM parameters). Also, as earlier mentioned no time limit was applied on the 

solver to allow the full set of the ND points to be found.  
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In Table 2-8, the total number of ND points and the objective-wise values of 

the extreme points on the Pareto fronts found by each of the two approaches are 

shown. In this table, the columns Obj1, Obj2, and Obj3 represent the global 

minimum value found for the first objective (vehicle cost in £), the second objective 

(fuel consumption in lit.) and the third objective (travel time in mins.), respectively. 

The important column here is the column with the heading ‘I ≺ II’ which indicates 

the number of ND points found by the QSM+TDSP-based MILP which are strictly 

dominated by the ND points on the QSM+PEP-based SPRP Pareto front. 

It is observed that in several of the cases the number of the ND points found 

by the TDSP-based formulation is much less than what is found by the PEP-based 

one, and more importantly, many of these are strictly dominated. For example, 

there are 50 ND points on the true Pareto front of instance #3 found by the PEP-

based formulation, and there are only 12 ND points on the Pareto front of the 

TDSP-based model; however, 10 of these are strictly dominated by the solutions 

on the true front, meaning that the TDSP-based approach has been in effect able 

to find only 2 ND points out of the 50 solutions. On average, the number of the 

ND points found by the TDSP-based formulation is 70% of what is found by the 

PEP-based formulation, but around 75% of these are strictly dominated by the 

true front. Comparison of the extreme points, on the other hand, reveals that as 

expected the solutions with minimal vehicle cost and travel time could be found by 

the TDSP-based formulation; however, complying with the results in Table 2-4, in 

all cases a suboptimal solution for fuel consumption minimisation is yielded by the 

TDSP-based formulation..



 

Table 2-8 

Extreme points on the Pareto fronts generated by each approach 

Instance 

# 

I: QSM+PEP-based MILP  II: QSM+TDSP-based MILP 

# of ND points 
Extreme points 

Runtime (min) 

 

# of ND points 
Extreme points 

I ≺ II Runtime (min) Obj1 Obj2 Obj3  Obj1 Obj2 Obj3 

1 40 94 43.66 228 127.24  28 94 49.54 228 22 21.78 
2 43 60 28.16 245 808.28  37 60 29.11 245 33 46.63 
3 50 94 38.86 222 150.20  12 94 41.41 222 10 10.13 
4 39 60 25.13 229 73.45  33 60 25.52 229 24 43.90 
5 31 94 36.96 267 166.40  12 94 38.46 267 10 12.73 
6 65 94 36.91 227 1095.91  41 94 38.35 227 34 175.08 
7 51 94 41.91 256 662.77  46 94 43.57 256 31 171.47 
8 79 94 41.52 270 222.03  72 94 42.11 270 70 123.31 
9 77 136 50.08 250 218.51  57 136 50.74 250 35 103.90 
10 101 154 67.75 323 616.62  78 154 68.46 323 43 299.35 
11 39 94 44.31 210 51.84  25 94 46.30 210 12 8.12 
12 41 94 25.97 192 657.65  28 94 26.89 192 19 116.95 
13 27 154 56.75 239 82.50  22 154 58.67 239 13 108.78 
14 82 136 41.90 234 133.68  55 136 43.31 234 43 67.65 
15 30 94 31.67 207 76.88  23 94 32.29 207 16 63.87 
16 100 94 41.04 247 982.92  88 94 41.18 247 82 775.78 
17 34 94 24.52 180 159.99  39 94 26.62 180 35 63.89 
18 53 60 33.98 231 177.97  13 60 34.81 231 6 8.22 
19 61 94 38.21 212 48.66  33 94 39.14 212 21 7.75 
20 41 94 25.97 192 566.37  28 94 26.89 192 19 111.30 
21 27 154 56.75 239 83.78  22 154 58.67 239 13 106.04 
22 82 136 41.90 234 108.65  55 136 43.31 234 43 70.34 
23 34 94 24.52 180 133.43  39 94 26.62 180 35 59.76 
24 53 60 33.98 231 129.54  13 60 34.81 231 6 7.87 
25 61 94 38.21 212 41.26  33 94 39.14 212 21 7.29 

Average 53.64 100.8 38.82 230.28 303.06  37.28 100.8 40.24 230.28 27.84 103.68 



 

 

Chapter 2: The Multi-objective SPRP     89 

 

It is worth mentioning that despite the size of the POSs (i.e. around 54 ND 

points on average) the full sets of ND points are generated within a very reasonable 

runtime of around 304 minutes on average, suggesting the successful integration of 

the QSM with the proposed MILP formulation.  

Unlike bi-objective optimisation, visualisation of the Pareto front in the case 

of the multi-objective optimisation with more than two objectives is not easy. 

However, to provide the decision maker with a useful visual presentation of the 

trade-offs among the ND points on the Pareto front, and aid her/him to select a 

solution that provides a suitable compromise among the objective values, we 

propose the use of enhanced heat maps similar to the one shown in Figure 2-10. In 

this figure, the Pareto front of instance #4 is selected and the percentage deviations 

from the absolute minimum in case of each objective function for all the 39 solutions 

on the considered front is shown. While it can be observed that there exists a 

significant trade-off among the three objectives of the SPRP and the minimisation 

of one objective can significantly deteriorate the value of the other two, with the 

help of the colour gradient, this figure makes it possible to visually locate the more 

balanced solutions. 

It is also clear from Figure 2-10 that in the case of the considered instance the 

range of deviations in the travel time objective is much larger than the other two 

objectives, and it is particularly maximised when the solution tends to minimise 

fuel consumption. To investigate this further, we analyse that when one of the 

objectives is minimised, how much sacrifice is made in case of the other two 

objectives. As an average over all the instances with 5 customers, Figure 2-11 

illustrates this trade-off. Similar to Figure 2-10, Figure 2-11 shows clearly that less 

sacrifice must be made in the other two objectives, when one minimises travel time, 

whereas the minimisation of fuel consumption can lead to a significant increase in 

the other two objectives. 
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Figure 2-10 Heat map illustrating the ND points to a given SPRP instance 

   

 

Figure 2-11 Average trade-off among the objective functions in case of the 5-customer 

instances 

Finally, in Figure 2-12 for one instance we illustrate the routing patterns of the 

solution with minimum vehicle cost, the solution with minimum fuel consumption, 

and the solution with minimum travel time.  
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Vehicle cost minimising routes 

Vehicle cost: 94 (£) 

Fuel consumption: 85.11 (lit.) 

Travel time: 420 (min) 

 

Fuel consumption minimising routes 

Vehicle cost: 120 (£) 

Fuel consumption: 51.13 (lit.) 

Travel time: 1081 (min) 

 

Travel time minimising routes 

Vehicle cost: 94 (£) 

Fuel consumption: 79.87 (lit) 

Travel time: 398 

 

Figure 2-12 Routing patterns in case of the minimal objective value for each of 

the objectives 

In this figure, in case of the minimum fuel consumption routes, two medium 

duty trucks are used for four routes (each making an extra round of trip), whereas 

in the other two cases all customers are served by one heavy–duty truck that also 

makes an extra round of delivery. 

2.7.4 Reliability of the constructed driving cycles 

In order to demonstrate the reliability of the proposed model for the generation of 

synthetic driving cycles, an extensive library of real-world driving cycles, consisting 

of over 19,000 different on-road driving cycles collected by Kancharla and 

Ramadurai(2018), are used as the benchmark set. For each cycle, the travel time 

and the distance of the cycle is fed into the proposed model, and the model is used 

to generate a synthetic cycle. Following the cycle generation, an empty light-duty 
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truck (which is similar to the probe truck used in data collection in their study) is 

assumed to traverse both the real and the synthetic cycles, and the incurred fuel 

consumption based on the instantaneous CMEM in each case is computed. The 

percentage deviation of the incurred fuel consumption over the synthetic cycle from 

the fuel consumed over the real driving cycle (i.e. [(ᵃ�ᵅ�ᵃ�ᵅ���������� − ᵃ�ᵅ�ᵃ�ᵅ�����) ᵃ�ᵅ�ᵃ�ᵅ�����⁄ ] ×

100) is then calculated. A descriptive statistics summary of the percentage 

deviations in all the 19,362 cases is presented in Table 2-9, and a histogram of these 

deviations is illustrated in Figure 2-13. 

Table 2-9 

Descriptive statistics summary table of percentage deviation of the generated cycles 

from on road-cycles 

Count 19362  Sample Variance 0.000127964 

Mean 0.018511164  Kurtosis 1.31344784 

Standard Error 8.12959E-05  Skewness 1.025999919 

Median 0.016021384  Range 0.0983492 

Mode 0.054775047  Minimum -0.020289727 

Standard Deviation 0.011312111  Maximum 0.078059472 

 

 

Figure 2-13 Histogram of percentage deviations of fuel consumption on synthetic 

cycles from on-road data 
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Based on Table 2-9, the proposed MILP can generate driving cycles, which 

have fuel consumption characteristics very close to real-life driving cycles, and on 

average lead to a fuel consumption estimation inaccuracy of less than 2%. Based 

on the histogram in Figure 2-13, for over 75% of the cycles considered, deviation 

lies between 0 and 2.5%. 

Finally, it is useful to see the value of gaining this information and using truck 

A/D rates in fuel consumption estimation when routing on congested road 

networks. To this aim, we have solved all the instances with 10 customers to fuel 

consumption optimality when A/D rates are ignored and assumed zero all over the 

network, throughout the planning horizon. The performance of these solutions is 

then evaluated under the ‘real’ speed-time profiles; i.e. when the truck in practice 

accelerates and decelerates based on the generated driving cycles. With this, we are 

able to see to some extent the sub-optimality of these solutions and the estimation 

inaccuracy they contain. The results of these experiments are presented in Table 

2-10. 



 

 

Table 2-10  

The effect of estimating fuel consumption inaccurately due to ignoring truck A/D rates 

Instance 

# 
 Arcs Percentage optimality gap 

Estimation 

inaccuracy 

DCs generation runtime (seconds) 

1  129 11.67% 75.51% 294.90 
2  157 5.73% 76.89% 512.66 
3  160 2.80% 61.08% 320.29 
4  169 1.02% 68.03% 484.26 
5  185 2.06% 56.64% 351.54 
6  151 0.37% 67.26% 483.57 
7  191 2.13% 57.33% 317.61 
8  168 3.68% 65.44% 532.96 
9  120 9.59% 81.36% 1006.06 
10  172 2.97% 66.49% 469.92 
11  156 4.41% 68.61% 325.69 
12  130 4.23% 71.33% 514.18 
13  138 2.49% 52.77% 527.12 
14  190 4.74% 73.33% 459.93 
15  188 0.71% 57.80% 319.48 
16  142 3.04% 58.43% 463.71 
17  155 0.84% 58.82% 617.72 
18  147 2.17% 68.74% 504.84 
19  188 3.53% 45.77% 673.53 
20  172 1.13% 58.52% 496.20 
21  188 2.90% 75.05% 480.11 
22  174 7.54% 76.86% 522.29 
23  150 2.96% 65.74% 450.84 
24  184 2.20% 55.03% 492.37 
25  145 8.57% 79.10% 531.54 
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It must be noted that ignoring truck A/D rates results in a completely different 

reduced network when the PEP is applied. As it is presented in Table 2-10, when 

A/D rates are ignored the PEP can only represent on average around 80% of all 

eligible road-paths that are identified in the case of the instantaneous CMEM with 

A/D data. As the table suggests, ignoring A/D rates leads to suboptimal solutions 

in all cases.  

In Table 2-10, we have also reported the total computational time required for 

the generation of all driving cycles for all road-links in the network at all time 

periods in case of each instance, under the column ‘DCs generation runtime’. 

Observe that in comparison with field data collection, the required computational 

cost reported in the table can be considered insignificant. 

2.8 Discussion and concluding remarks 

In the paper presented in this chapter, we introduced a realistic urban freight 

distribution model that can address traditional business and environmental 

objectives simultaneously while integrating several factors affecting fuel 

consumption, on the original roadway network. The proposed model is a variant of 

the well-known PRP, called the SPRP, and is a multi-objective, time and load 

dependent, fleet size and mix, emissions minimising vehicle routing and scheduling 

problem, with time windows, flexible departure times, and multi-trips on congested 

urban road networks. The paper focused mainly on a key complication arising from 

emissions minimisation in a time and load dependent setting, corresponding to the 

identification of the full set of the eligible road-paths between consecutive truck 

visits. It was shown that the state-of-the-art pre-processing approaches are unable 

to extract all such paths from the underlying roadway graph and thus lead to sub-

optimal solutions with an optimality gap of as high as 12% in terms of fuel 

consumption. It was also observed that compared with the proposed approach in 

the paper, the other approach based on the TDSPs has a very limited ability to 
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identify true ND points on the Pareto front in a multi-objective case, where it is 

only able to identify less than 18% of the true ND points on average. Further 

experiments on a real road network based on Chicago’s arterial streets indicated 

that the set of eligible road-paths between a given origin/destination pair can be 

so large, and while TDSPs constitute a very limited subset of these paths, the PEP 

can identify them all.   

All models in the paper are based on the instantaneous CMEM formula and 

can incorporate second-by-second speed variations and thus A/D rates for a more 

accurate estimation of fuel consumption. However, acknowledging the fact that 

such well-grained speed data are rarely available to the decision maker at the 

planning stage, the paper proposed a simple optimisation model for the construction 

of reliable spatiotemporal driving cycles that with very few model inputs and no 

parameter tuning can yield synthetic driving cycles that very well approximate the 

expected real-life fuel consumption of the truck. Experiments that are carried out 

on over 19000 different on-road driving cycles confirm an average over-estimation 

of less than 2% for the proposed model. This model hence can replace the costly 

and time-consuming data acquisition phase for attaining reliable figures on the 

expected fuel consumption in routing applications. 

The proposed model in the paper also shed light on an interesting opportunity 

to further cut down on GHG emissions and costs by using more energy-and-cost-

efficient resources in the fleet multiple times during the planning horizon through 

multi-trip optimisation; especially in urban areas where trips are rather short, and 

trucks could be simply reloaded and dispatched for an extra round of trip. Multi-

trip optimisation in a time-dependent setting, however, has never been studied 

before, and would constitute an interesting line of research due to new and 

previously unvisited challenges that it brings about when tackling real life size test 

instances.    
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The SPRP is a realistic and hence a very difficult problem to solve, and the 

main limitation of the current work lies in its inability in addressing large practical 

size SPRP instances. We develop tailored multi-objective optimisation heuristics 

for the SPRP in the next chapter of this thesis to cope with this situation. While 

there are multiple research opportunities relevant to the study of EMVRPs directly 

on the roadway networks, we identify the incorporation of the effect of non-

recurrent congestion in the routing decisions through the development of real-time 

or stochastic variants of the SPRP as a significant line for future research. 

Moreover, as a recommendation for further research, the development of realistic 

problem instances that can reflect the real daily congestion patterns, and allow the 

analyses of different what-if scenarios for the departure time, depot location, 

customers’ demands and time-windows negotiation, planning horizon alterations, 

and fleet size and mix decisions, can help gaining many practical insights for a 

logistics system operating in an urban area.



 

3. MULTI-OBJECTIVE 
OPTIMISATION HEURISTICS FOR 

THE STEINER POLLUTION 
ROUTING PROBLEM 

3.1 Introduction 

Urban Freight Distribution (UFD) is more polluting than long distance freight 

transport, generates between 20% and 60% of the local transport-based pollution, 

and represents about one fourth of CO2 emissions coming from transport activities 

in European cities (Dablanc, 2009). Planning traffic-aware and fuel-efficient 

distribution routes that can realistically include the real operating conditions of 

urban roadway networks and address traditional business and environmental 

criteria simultaneously is inevitable to gain tangible reductions in the amount of 

Greenhouse Gas (GHG) emissions while fulfilling business objectives.  

As a variant of the Pollution-Routing Problem (PRP), the Steiner PRP 

(SPRP) has been recently introduced (Raeesi & Zografos, 2019) to deal with finding 

cost and emissions efficient distribution routes directly on the congested urban 

roadway networks. This variant is a tri-objective, time and load dependent, fleet 

size and mix PRP, with time windows, flexible departure times, and multiple-trips 

on road networks that aims at minimising the three objective functions pertaining 

to: (i) vehicle hiring cost, (ii) total amount of fuel consumed, and (iii) total 

makespan (duration) of the routes. The main distinctive features of the SPRP 

comprise: (i) studying the problem directly on the original roadway network in a 

time and load dependent setting, (ii) integrating all previously identified factors 

affecting fuel consumption, (iii) consideration of the expected time-dependent truck 

instantaneous Acceleration/Deceleration (A/D) rates over each road-link in the 

network for a more accurate estimation of fuel consumption, and (iv) bringing in 
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an important decision regarding multiple uses of cost and energy-efficient resources 

in the fleet through multi-trip optimisation. The latter feature of the SPRP is 

particularly relevant in the context of UFD where delivery routes are rather short, 

and trucks could be usually utilised for one or more rounds of trip (Olivera & Viera, 

2007). 

Solving the SPRP to optimality is intractable even in case of small sized 

instances, and as it encompasses several hard variants of the Vehicle Routing 

Problem (VRP) and contains several distinctive and previously unvisited 

characteristics, available heuristic solution algorithms are unable to approach 

realistic instances of the problem efficiently within a reasonable computational cost. 

A major complication in the context of the SPRP arises from the emerging problem 

of intermediate road-path(s) identification on the original roadway graph. In a 

time-and-load-dependent setting, the consideration of a priori determined single 

road-path for travelling between consecutive truck visits is not possible, and 

determining a set of eligible paths requires a knowledge of the departure time from 

the origin node, the truck type utilised, and the load carried by the truck over the 

road-path; however, none of these factors are known prior to realising the full route 

plan and schedule. In the face of this complication, existing algorithms either 

employ a built-in path identification procedure to find such road-paths on-the-fly 

(Ehmke et al., 2016; Qian & Eglese, 2016), which can be computationally expensive, 

or rely on a limited subset of all such paths that are pre-computed in advance 

(Androutsopoulos & Zografos, 2017; Y. X. Huang et al., 2017). In addition to this 

primary complication, the features that are included in the SPRP call for solving 

several NP-hard multi-objective lower level optimisation problems including the 

route-path and departure time optimisation, fleet size and mix optimisation and 

multi-trip optimisation, which are intertwined optimisation decisions that must be 

made simultaneous with the consideration of the three conflicting objectives of the 

SPRP in order to be able to evaluate the efficiency of a single solution in the 
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context of the problem. Hence, designing algorithms that can carry out all these 

tasks while tracing the non-inferior surface efficiently within a non-prohibitive 

computational time to solve real-life sized instances of the SPRP is a significant 

challenge that requires new algorithmic developments.   

This paper proposes three new Multi-Objective Optimisation Heuristics 

(MOOHs) used within a multi-phase hybridised exact and heuristic solution 

framework to approximate the true Pareto Optimal Set (POS) of practical real-life 

sized instances of the hard to solve SPRP efficiently. The first algorithm of the 

paper is based on the hybridisation of an efficient Mathematical Programming 

Technique (MPT) with a two-stage Local-Search (LS) based heuristic, the second 

one is a hybrid Multi-Objective Evolutionary Algorithm (MOEA) with generational 

target attainment, while the third one is a simple order-first-split-second based 

MOEA. All these higher-level solution algorithms benefit extensively but differently 

from a new concept of ubiquitous external Non-Dominated (ND) solutions archive, 

new lower-level dedicated procedures for tackling the emerging optimisation 

problems that arise during SPRP solution evaluation, and a new neighbourhood 

exploration strategy. The proposed algorithms are tested on a library of SPRP 

benchmark test instances that are based on a network of Chicago’s arterial streets, 

and another set of large time-dependent graphs resembling real world urban 

roadway networks. While the problem features in the SPRP are considerably more 

complicated and comprehensive than the problems considered in the existing 

related studies (Androutsopoulos & Zografos, 2017; Ehmke et al., 2016; Y. X. 

Huang et al., 2017; Qian & Eglese, 2016), the problem sizes accounted for in this 

paper go well beyond the ones solved by those studies at a more reasonable 

computational cost.  

In the remainder of the chapter, first in section 3.2 we present a brief review 

of the previous literature. In section 3.3, we describe formally the SPRP and its 

modelling features including the travel time and fuel consumption estimation 
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model. Section 3.4 elaborates on the proposed solution algorithms. Section 3.5 is 

devoted to the computational study of the algorithms; and finally, section 3.6 

concludes the chapter. 

3.2 Previous related work 

The literature on the VRP and its variants is huge, and the SPRP relates well with 

several of those variants. For a general review on the state-of-the-art in the VRP 

and its variants the reader might be referred to the book of Toth and Vigo (2014) 

and the recent paper of Braekers et al.(2016). More specific reviews on green VRP 

(Bektaş et al., 2019a; Demir, Bektaş, et al., 2014b; Lin et al., 2014), Time-

Dependent VRP (TDVRP) (Gendreau et al., 2015), Multi-Objective VRP (MO-

VRP) (Jozefowiez et al., 2008), and heterogeneous VRP (Koç et al., 2016) are also 

available.   

The main stream of research in the area of VRPs with explicit consideration 

of environmental performance most pertinent to the current study is related to 

emissions minimising vehicle routing models that consider alternative road-paths 

between the consecutive stops when routing on a congested urban roadway 

network. This line of research has very recently emerged in the literature 

(Androutsopoulos & Zografos, 2017; Ehmke et al., 2016; Y. X. Huang et al., 2017; 

Qian & Eglese, 2016; Raeesi & Zografos, 2018; Raeesi & Zografos, 2019), and is 

particularly very difficult to solve due to the problem of intermediate road-paths 

identification on the original roadway graph.  

In Table 3-1, a summary of the key research papers in this area and the current 

study is provided. The SPRP attributes considered by the problems studied in 

these papers are indicated using tick marks, and their approach to deal with the 

problem of intermediate road-paths identification, their solution algorithms, test 

beds used, and problem sizes considered are also presented. In these studies, the 

intermediate road paths are either identified recursively as the algorithm constructs 
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a solution (Qian & Eglese, 2016), or a limited subset of the eligible paths is 

precomputed in a pre-processing stage and used (Androutsopoulos & Zografos, 

2017; Y. X. Huang et al., 2017). A third approach is also used by Ehmke et al. 

(2016) who identify a set of load-invariant paths a priori and find the remaining 

paths on-the-fly as the need arises. We, on the other hand, use the Path Elimination 

Procedure (PEP) proposed by Raeesi and Zografos (2019) that is applied on the 

original roadway graph and guarantees no ad-hoc Pareto optimal path is eliminated 

from the set of the retained road-paths.   

Qian and Eglese (2016) propose a Column Generation (CG) based Tabu 

Search (TS) algorithm to solve the problem on the road network of London with 

instances containing 25 customers. Due to the need to call the interwoven path 

identification heuristic iteratively, the runtime of their original algorithm increases 

to over 20 hours on a high performance computer cluster; however, a less accurate 

distance-based approach they propose requires around 5 minutes for an acceptable 

approximation of the original algorithm. Ehmke et al. (2016) propose a TS 

algorithm to solve problems with 10 and 30 customers on a road network based on 

the metropolitan area of Stuttgart. The runtime of their algorithm varies as they 

change the experiments setting, but for example, solving a TSP in the context of 

their problem takes over 1800 seconds. Androutsopoulos and Zografos (2017) study 

the problem in a bi-objective context and propose an Ant Colony System (ACS) 

algorithm to solve generated test instances with a maximum of 50 customers, while 

at a computational time of over 3 hours due to the difficulty of the lower-level bi-

objective time-dependent shortest path problem which must be solved at each 

iteration.



 

Table 3-1 

Characteristics of the key pertinent studies 
 

Study characteristics 

Studies  

Qian and Eglese 

(2016) 
Ehmke et al. (2016) 

Androutsopoulos and Zografos 

(2017) 

Huang et al. 

(2017) 
Current study 

S
P

R
P

 a
ttrib

u
tes cov

ered
 

Time-dependency      

Load-dependency      

Time-windows      

Fleet mix      

Fleet size      

Alternative paths      

Departure time      

Multi-tour      

Multi-objective      

Fuel estimation 

accuracy 
     

      

S
olu

tio
n
 

featu
res 

Paths identification 

approach 
On-the-fly 

Precomputed and on-

the-fly 
Precomputed subset 

Precomputed 

subset 
Exact complete set (PEP) 

Solution algorithm CG-based TS TS ACS CPLEX Three MOOHs 

Test bed 
London road 

network 

Metropolitan area of 

Stuttgart 
Synthetic instances 

Urban area of 

Beijing 

Chicago arterial streets and 

synthetic instances 

Problem size 25 30 50 20 100 
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We are aware of only two studies that consider Emissions Minimising Vehicle 

Routing Problems (EMVRPs) in a bi-objective context where fuel consumption and 

driving time are identified as the two conflicting objectives. Besides the paper by 

Androutsopoulos and Zografos (2017) discussed above, Demir et al. (2014a) use an 

Adaptive Large Neighbourhood Search (ALNS) algorithm as the search engine in 

four different a posteriori methods to solve the bi-objective PRP. Note that studies 

like that of Ehmke et al. (2018), are not categorised as multi-objective EMVRPs 

as the various objectives that are considered in these papers are either treated 

separately, or linearly aggregated to a single objective function. The wider literature 

on the multi-objective VRPs, on the other hand, has mostly focused on multi-

objective VRP with Time Windows (VRPTWs) (Banos et al., 2013; Garcia-Najera 

& Bullinaria, 2011; Ghoseiri & Ghannadpour, 2010; Ombuki et al., 2006; Qi et al., 

2015) and evolutionary algorithms constitute the most popular algorithms. It is 

worth mentioning that all the stated papers consider bi-objective problems and 

none of them considers more than two objective functions, and the current study 

is the first one in this respect. 

Despite its important implications with regard to multiple uses of energy-

efficient resources multiple times during the planning horizon, Multiple-Trip (MT) 

decision-making has not been incorporated into emissions minimising vehicle 

routing algorithms so far. Existing algorithms for MT-VRPs, however, could be 

broadly categorised into models with and without time-windows. While in models 

without time-windows (Olivera & Viera, 2007; Petch & Salhi, 2003; Salhi & Petch, 

2007; Taillard et al., 1996) routes could be easier assigned to the vehicles by solving 

simpler lower-level optimisation problems such as the Bin-Packing Problem (BPP), 

MT-VRPTWs (Brandao & Mercer, 1998, 1997; Cattaruzza et al., 2016; Cattaruzza, 

Absi, Feillet, & Vigo, 2014; Macedo et al., 2011) are more challenging to deal with 

as the sequence in which routes are assigned to trucks affects the feasibility of the 

solutions.  
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Overall, this brief review suggests that algorithms to solve VRPs directly on 

the original roadway networks with the consideration of alternative road-paths 

between consecutive truck visits are still very rare (Androutsopoulos & Zografos, 

2017; Ehmke et al., 2016; Garaix et al., 2010; Qian & Eglese, 2016), and due to the 

difficult nature of the problem, these algorithms are unable to approach real-life 

sized instances within a reasonable computational budget. Therefore, it is a 

significant open research direction to develop new efficient approaches that can 

address such problems. Furthermore, the literature is significantly lagging behind 

in developing solution algorithms that can take into account the realistic conditions 

of UFD while unifying several factors affecting fuel consumption in a multi-

objective context. This paper is trying to address these gaps. 

3.3 Formal description of the SPRP and its modelling 
features 

The SPRP is defined on a directed graph ᵃ� = (ᵃ�, ᵃ�), representing a real roadway 

network, with ᵃ�  being the set of network nodes and ᵃ� the set of directed road-

links. The set ᵃ� = {ᵃ�� ∪ ᵃ�� ∪ ᵃ��} is comprised of the depot ᵃ�� = {0}, customer 

nodes ᵃ�� = {1,2,… , ᵅ�}, and network junctions ᵃ�� = {ᵅ� + 1, … , ᵅ� + ᵅ�}. There is 

an unlimited fleet of heterogeneous vehicles set ᵃ� to hire from, which is assumed 

to be composed of � different types of trucks. To each truck ᵅ� ∈ ᵃ� a curb weight �� 

(kg), a maximum payload ᵃ�� (kg), and a daily hiring fixed cost ᵃ�� (£), among 

other vehicle-specific factors such as engine friction factor, engine speed, engine 

displacement, coefficient of aerodynamic drag, and frontal surface area is 

attributed. Each customer ᵅ� ∈ ᵃ�� is associated with a certain demand ᵅ�� ≤ max
�∈�

ᵃ�� 

to be delivered within its pre-determined hard time window denoted by ᵅ�� = [ᵃ��, ᵅ��], 

with service time ᵅ��. The depot working hours, which is considered as the planning 

horizon, is denoted by ᵃ� = ᵅ�� = [ᵃ��, ᵅ��], and while it is assumed that trucks are 
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initially loaded, reloading them for operating a new tour takes ᵅ�� time at the depot. 

To each road-link (ᵅ�, ᵅ�) ∈ ᵃ�, a distance ᵃ���, and an integer time-dependent travel 

time ���
� , depending on the departure time from the origin node ᵅ�, i.e. ᵰ� ∈ [ᵃ��, ᵅ��], is 

attributed. To estimate the ���
� s, in this paper we use the closed-form formula 

proposed in Raeesi and Zografos (2019). The aim of the SPRP is to determine an 

optimal composition of vehicles in the fleet to operate routes that start and finish 

at the depot and serve every customer exactly once within their pre-defined time-

windows, without violating vehicle capacities and working day limits, such that the 

three objectives pertaining to: (i) vehicle hiring cost, (ii) total amount of fuel 

consumed, and (iii) total makespan (duration) of the tours, are minimised. 

In the SPRP the spatiotemporal instantaneous driving cycles ᵃ�ᵃ���
� , denoting 

the expected second-by-second speed variations for each road-link (ᵅ�, ᵅ�) ∈ ᵃ� and for 

all time instants ᵰ� ∈ ᵃ� , are assumed either available or generated synthetically 

using the proposed model in Raeesi and Zografos (2019). Given such cycles, the 

instantaneous time, load and truck-type dependent fuel consumption (in litres) over 

the given road link for departure time ᵰ� ∈ ᵃ�  could be computed using the 

instantaneous CMEM formulae of Barth et al. (2004), which could be summarised 

as follows: 

ℱ��
�� = ᵃ���

�� + (ᵰ�� + ᵃ���)ᵮ���
� ,           ∀(ᵅ�, ᵅ�) ∈ ᵃ�, ᵰ� ∈ ᵃ�  (3-1) 

Expression (3-1) divides CMEM into a time-dependent term Unrelated to 

Truck Mass (called the UTM attribute hereafter), and a time-dependent term 

linearly Related to the Truck Mass (called the RTM attribute hereafter), and both 

of these could be precomputed and stored for all road-links (or road-paths) at all 

possible departure times based on the available ᵃ�ᵃ���
� s (for a full exposition refer to 

Raeesi and Zografos, 2019). 

In this study, for experimental purposes, similar to the work of Koç et al. 

(2014) on the fleet size and mix PRP, we consider the fleet to be composed of light, 

medium and heavy duty trucks and use the same values they use for the common 
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and vehicular specific parameters, which they obtain for the three main vehicle 

types of MAN Trucks (see Tables 1 and 2 in Koç et al. - 2014). 

3.4 Solution algorithms 

The main source of complication that inhibits a straightforward application of the 

existing VRPTW heuristics on the SPRP is due to the difficulty of solution 

evaluation in the context of the SPRP. In the case of the conventional VRPTWs, 

once the sequence of customer visits for a given truck (a route) is known, it is 

straightforward to calculate the cost of the corresponding route; however, the same 

route can have an exponential number of SPRP evaluations depending on the 

objective function that is considered, the road-path that is taken between every 

pair of visits, the time that the depot is departed, and the type of truck that is 

used and if it is an extra round of trip for the selected truck or not; and these are 

all intertwined optimisation decisions that must be made simultaneously in order 

to be able to evaluate a single solution to the SPRP.  

We propose that the key to handle the mentioned complications is in: (i) 

decomposing the interrelated optimisation problems that must be solved, while 

preserving the necessary interactions among them, (ii) reducing these optimisation 

problems to single-objective problems whenever possible while applying a higher-

level control on the selected cost function for ensuring that ad-hoc ND solutions 

are not significantly eliminated, and (iii) designing a built-in implicit search scheme 

that operates independently from the main search direction of the algorithms and 

stores all encountered ND solutions. 

Therefore, to solve the SPRP a multi-phase solution framework that is shown 

in Figure 3-1 is used. In the first phase of the proposed algorithm, the exact Path 

Elimination Procedure of Raeesi and Zografos (2019) is applied on the underlying 

roadway network in order to discard all proven to be redundant paths and retain 

only eligible paths that are potential to contribute to the generation of ND 
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solutions. The output from the PEP is a multi-graph containing a set of pre-

computed road-paths between the required nodes with a complete archive of their 

distance, time-dependent travel times, UTM and RTM attributes in easy-to-access 

look-up tables, which greatly facilitates the application of any subsequent solution 

algorithms. Following the application of the PEP, the problem is solved on the 

resulting multi-graph using the MOOHs proposed in this paper for approximating 

the true POS of the SPRP. 

Figure 3-1 The proposed multi-phase solution framework for the SPRP 

As indicated in Figure 3-1, we are proposing three different higher-level 

MOOHs that use extensively (but differently) several lower-level heuristics to carry 

out LS tasks, and deal with the lower-level optimisation problems that arise in the 

context of the SPRP. The success of the proposed algorithms greatly relies on a 

Ubiquitous External ND Archive (UENDA) scheme that is actively present in all 

levels of the proposed algorithms in order to store all encountered ND solutions 

implicit to the main search direction of the algorithm.  

In the rest of this section, we begin by introducing the proposed lower-level 

heuristics, and then we discuss how they are employed by the higher-level MOOHs. 
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3.4.1 Lower-level heuristics 

The new heuristics that are proposed for the lower-level decomposed problems of 

route-trajectory optimisation, fleet size and mix optimisation, and multi-trip 

optimisation are discussed in this section. For brevity, we refer the reader to Raeesi 

and Zografos (2019) for detailed definitions relevant to scheduled road-path, route-

path, and route-trajectory that are required in the rest of the paper. 

3.4.1.1 The Threshold-Based Route-Trajectory Optimisation (TB-
RTO) procedure 

The multi-objective route-path optimisation problem, which is called the Fixed 

Sequence Arc Selection Problem (FSASP) by Garaix et al. (2010), corresponds to 

the Multidimensional Multiple Choice Knapsack Problem (MMKP), which is an 

NP-hard generalization of the knapsack problem (Garaix et al., 2010). To deal with 

FSASP, Garaix et al. (2010) and Androutsopoulos and Zografos (2010) use pseudo-

polynomial solution algorithms based on dynamic programming. The evaluation of 

every newly generated candidate solution in the course of the LS using these 

algorithms, however, is very computationally expensive and prohibitive. 

The optimisation of the departure time from the depot, on the other hand, has 

implications both in terms of the travel time and the fuel consumption of the truck 

operating the tour. Departure time optimisation, however, cannot be carried out 

independently from route-path optimisation, because any given departure time for 

a given sequence of road-paths corresponds to objective values that might differ 

from a different sequence of road-paths for the same departure time, and still both 

of the two solutions might be non-dominated. As a result, these two decisions 

should be made together by solving a joint optimisation problem, called the Route-

Path and Departure Time Optimisation (RPDTO) problem, or by definition, the 

Route-Trajectory Optimisation (RTO) problem.  
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At least two main difficulties are associated with incorporating any RTO 

procedure into the search process. The first one certainly arises from the difficulty 

of solving the corresponding NP-hard multi-objective optimisation problem, and 

the second one is deciding on the frequency at which this possibly costly procedure 

should be called during the search. In this paper, to tackle the first difficulty, we 

are proposing to deal with a much easier to solve single-objective RTO problem, 

that by incorporating the UENDA scheme and applying a higher-level control on 

the determined single-objective function, tries to approximate the true set of ND 

solutions associated with the original multi-objective problem. Solving the RTO 

problem as a single objective problem can be done very efficiently, since as Raeesi 

and Zografos (2019) prove, in a single objective case if departure time is not 

restricted, an optimal route-trajectory could be found that uses the “cheapest” road-

path between every two consecutive visits. In order to address the second difficulty 

stated above, we establish a subtle balance between the overall computational time 

of the algorithm and the solution quality by calling the RTO procedure only in 

promising areas of the solution space. This is done by examining each new 

candidate solution against a pre-set threshold value to see if it is worth searching 

for its optimal departure time. 

A description of the proposed TB-RTO procedure is given in Algorithm 3-1. 

Very generally, suppose that ᵅ� is a vector of the decision variables of the problem 

at hand, and ᵃ�(ᵅ�) is the objective function to be minimised by the TB-RTO 

procedure for a given solution ᵊ� = {ℛ�, ℛ�,… , ℛᵕ�} representing a set of ᵕ� truck 

trips ℛ� ∈ ᵊ�, where ℛ� = {0,1,2,… , ᵅ�, 0} is a trip that starts from the depot {0} 

serves customers in ᵉ�� = {1,2,… , ᵅ�},ᵉ�� ⊆ ᵃ��, and returns to the depot. This 

objective function is decided by the higher-level heuristics and will be discussed 

duly in appropriate sections of the paper.
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Algorithm 3-1 TB-RTO 

1 input ᵃ�(ᵅ�), ᵊ�, UENDS, δ, ᵃ�, ᵃ�∗   
2 ᵃ�(ᵊ��∗) = 0 
3 for � = 1 to ᵔ� do 
4  ᵰ� = ᵃ�� 
5  (ᵃ�(ℛ�

� ), UENDA) ≔ Route-path-opt (ᵃ�(ᵅ�), ℛ�, load(ℛ�), ᵰ� , UENDA) 
6  ᵃ�(ᵊ��∗) = ᵃ�(ᵊ��∗) + ᵃ�(ℛ�

� ) 
7  ᵰ�∗ = ᵰ�, ᵃ�(ℛ�

�∗) = ᵃ�(ℛ�
� ) 

8 end for 

9 if  ᵃ�∗ ≥ δᵃ�(ᵊ��∗) then 
10  for � = 1 to ᵔ� do 
11   while ᵰ� ≠ ᵅ�� do 
12    (ᵃ�(ℛ�

� ),  UENDA) ≔ Route-path-opt (ᵃ�(ᵅ�), ℛ�, load(ℛ�), ᵰ� , UENDA) 
13    if  ᵃ�(ℛ�

� ) ≤ ᵃ�(ℛ�
�∗) then ᵰ�∗ = ᵰ�, ᵃ�(ℛ�

�∗) = ᵃ�(ℛ�
� ) end if 

14    If departing at time ᵰ�  is infeasible then break end if 
15    ᵰ� = ᵰ� + ᵃ�  
16   end while 

17  end for 

18 end if 

19 return ᵰ�∗, ᵃ�(ᵊ��∗), UENDA 

The key role in the TB-RTO is played by a route-path optimisation function 

(Route-path-opt) that selects a sequence of road-paths in the current vehicle 

route, i.e. ℛ�, and minimises ᵃ�(ℛ�
�) for a given time instant ᵰ� . This is a simple 

function that between every pair of visits ᵅ� and ᵅ� + 1 only needs to select the path 

ᵅ��� ∈ ��� (��� is the set of all retained PEP path between nodes ᵅ� and ᵅ�) that 

minimises ᵃ�(ᵅ�). Therefore, the cost of this trip for departure time ᵰ� , i.e. ᵃ�(ℛ�
�) 

based on the objective function ᵃ�(ᵅ�), is returned by Route-path-opt using the 

following expression:  

ᵃ�(ℛ�
�) = ᵅ�ᵅ�ᵅ�

���∈���

�(ᵅ���
� ) + ᵅ�ᵅ�ᵅ�

���∈���

�(ᵅ���
�� ) + ⋯+ ᵅ�ᵅ�ᵅ�

���∈���

�(ᵅ���
�� ) (3-2) 

where ᵰ�� = ᵅ�ᵃ�ᵅ�{ᵃ�� + ᵅ��, ᵰ� + ᵅ�ᵅ�ᵅ�
���∈���

�(ᵅ���
� ) + ᵅ��}, and so on.  

It is worth mentioning that the calculation of (3-2) is done in ᵊ�(ᵅ�) thanks to 

the PEP which has already made access to all paths attributes possible in look-up 

tables. Also, since infeasible path attributes for certain departure times (e.g. 

violating the upper boundary of time-windows) are already set to ∞ in the PEP 

look-up tables, feasibility check for RTO can be done very quickly. Note that the 
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Route-path-opt also takes UENDA in its input and checks if it must be 

updated.    

To optimise route-trajectory of a given truck trip ℛ� ∈ ᵊ� now, i.e. to find 

ᵃ�(ℛ�
�∗), the following task must be carried out by TB-RTO: 

ᵃ�(ℛ�
�∗) = ᵅ�ᵅ�ᵅ�

�∈�
ᵃ�(ℛ�

�) (3-3) 

To carry out this task efficiently, the TB-RTO initially starts only by getting 

the Route-path-opt function to find ᵃ�(ℛ�
��) for all ℛ� ∈ ᵊ� , and thus ᵃ�(ᵊ��∗)  =

∑ ᵃ�(ℛ�
��)

�∈�  (lines 2 to 8). In its input, the TB-RTO always has some information 

regarding the ᵃ�∗, i.e. the value of the best solution with regard to ᵃ�(ᵅ�) found so far 

by the higher-level algorithm. Hence, in line 9 of the algorithm, the threshold check 

can be carried out, by checking the value of ᵃ�(ᵊ��∗) against ᵃ�∗, such that lines 10 

to 17 are run iff  ᵃ�∗ ≥ δᵃ�(ᵊ��∗); where δ��� ≤ δ ≤ 1 is a user defined parameter and, 

without loss of generality, ᵯ���� = ᵅ�ᵃ�ᵅ�
���∈�

(̂ᵅ�ᵅ�ᵅ�
(�∈�)

�( ���
� ) ᵅ�ᵃ�ᵅ�

(�∈�)
�( ���

� )� ). The closer the 

selected δ is to the upper bound of its defined interval, the less likely it is to call 

the complete RTO for new candidate solutions, and therefore, the faster will the 

algorithm run, but also the lower might be the ultimate quality of the solutions 

found. 

If the threshold in line 9 of the algorithm is met, the stepwise search for 

optimising the route-trajectory of each trip must be carried out throughout the 

planning horizon; however, as the time-dependent travel times satisfy the non-

passing property, well-known as the First-In-First-Out (FIFO) property, that 

ensures a later start time cannot lead to an earlier arrival time, there is no need to 

sweep the entire time horizon and the algorithm can break out of the loop pre-

maturely (line 14):  

Remark 1 Due to the FIFO property, if it is infeasible to depart the origin node of 

a trip ℛ� at some time ᵰ� ∈ ᵃ� , then it is also infeasible to depart the origin at any 

later time ᵰ�� ∈ ᵃ� , ᵰ�� ≥ ᵰ� .  
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In addition to this exit condition, to speed up the search in the planning 

horizon a larger time step (S) could be used (line 15). Therefore, the complete TB-

RTO algorithm is an ᵊ�(ᵅ�ᵃ�/ᵃ�) algorithm (if the threshold is met). With this 

algorithm, while we can save greatly on the number of times that it is required to 

be run during the solution process, it can be ensured that potential search directions 

are not missed.  

The algorithm for determining the fleet size and mix of a given solution is 

described next. 

3.4.1.2 Fleet size and mix optimisation: the look-ahead split procedure 

Order-first split-second methods have recently led to successful evolutionary based 

algorithms for various VRPs (Prins, 2009), and in particular, for the Fleet Size and 

Mix VRP (FSMVRP) and the Heterogeneous Fixed Fleet VRP (HFFVRP) (Koç 

et al., 2015; Liu et al., 2009; Prins, 2009). In these methods, a solution is represented 

as a permutation of customers without trip delimiters, and can therefore be viewed 

as a giant TSP tour for a vehicle with infinite capacity, which is then optimally 

partitioned into a set of feasible vehicle trips by applying a tour splitting procedure. 

Using this strategy, the algorithm searches the set of TSP tours, which is much 

smaller than the set of FSM and HFFVRP tours (Prins, 2009). For a complete 

review of the state-of-the-art order-first split-second methods, the interested reader 

is referred to Prins et al. (Prins et al., 2014).  

In a multi-objective case, the split procedure is NP-hard and very 

computationally expensive. Therefore, using a similar approach to the case of the 

RTO procedure we rather deal with a simple single-objective split procedure whose 

objective function ᵃ�(ᵅ�) is adaptively decided by the higher-level heuristic algorithm. 

This procedure is also accompanied by the UENDA to archive all ND solutions 

encountered during the search.  

It is worth mentioning that MT optimisation has previously been integrated 

with the split procedure (Cattaruzza et al., 2016; Cattaruzza, Absi, Feillet, & Vidal, 
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2014). However, as we will discuss in the next sub-section, it is more efficient to 

keep these two operations separated, and instead, for getting the best results, a 

look-ahead extension of the split (LA-split) is proposed in this paper that tries 

to leave room for subsequent MT decisions basically by ‘rewarding’ the shorter arcs 

in the auxiliary acyclic graph (refer to Prins et al. (2014) for the description of the 

auxiliary graph in the context of the split procedure). Each arc in the auxiliary 

graph represents a vehicle tour, and clearly the shorter is a vehicle tour, the more 

it will be likely for the vehicle to operate an extra round of trip during the planning 

horizon. In the look-ahead split we reduce the original cost of the shorter trips that 

reinforce the chance of MT for the vehicles based on a “Rewarding Policy (RP)”, 

so that these arcs get a higher chance to appear in the optimal split of the giant 

tour. For these arcs to get rewarded based on the RP, however, they are checked 

against some “Rewarding Conditions (RCs)” which are generally a duration check 

against some maximum allowable durations. The ultimate split is sensitive to the 

selected RP, and therefore it should be determined with caution, such that it only 

reflects the value of MT to the solution with regard to the current objective of 

interest, and not more than that. For example, assume the single objective function 

of the split determined by the higher-level heuristic is to minimise an aggregated 

function of all the three objective functions to the SPRP. Also suppose that a 

maximum of three rounds of trips are allowed for each truck during the planning 

horizon. Then, if the duration of an arc is less than 1/3 of the planning horizon 

(RC), a good RP can be to allocate a cost equal to “the cost of the vehicle/3 + fuel 

cost + travel time” to the corresponding arc, as opposed to the original cost of the 

arc which is “the cost of the vehicle + fuel cost + travel time”. In our 

implementation, the RP is adaptively selected for the LA-split based on the 

objective function determined for the split by the higher-level heuristic.



 

  

Algorithm 2 LA-split 

1 input ᵃ�(ᵅ�), GT, RP, RC(s), UENDA  
2 ᵃ�� = 0; 
3 for ᵅ� = 1 to ᵅ� do ᵃ�� = +∞ end for 
4 for ᵅ� = 1 to ᵅ� do 
5  ᵅ� = 1, ᵅ�ᵅ�ᵃ�ᵃ� = 0 
6  while ᵅ� ≤ ᵅ� and ᵅ�ᵅ�ᵃ�ᵃ� ≤ ᵃ�� do 
7   ᵅ�ᵅ�ᵃ�ᵃ� = ᵅ�ᵅ�ᵃ�ᵃ� + ᵅ����

 
8   if ᵅ� = ᵅ� then 
9    ᵃ�ᵃ� = {0,ᵃ�ᵃ��, 0} 
10    (ᵃ�(ᵃ�ᵃ� ��), UENDA) ≔ Route-path-opt (ᵃ�(ᵅ�), ᵃ�ᵃ�, load(ᵃ�ᵃ�), ᵃ��, UENDA) 
11    if RC(s) are met then apply RP on ℤ�� end if 
12   Else 

13    ᵃ�ᵃ�|��| = ∅ 
14    ᵃ�ᵃ� = {ᵃ�ᵃ�, ᵃ�ᵃ��, 0} 
15    (ᵃ�(ᵃ�ᵃ� ��), UENDA) ≔ Route-path-opt (ᵃ�(ᵅ�), ᵃ�ᵃ�, load(ᵃ�ᵃ�), ᵃ��, UENDA) 
16    if RC(s) are met then apply RP on ᵃ�(ᵃ�ᵃ� ��) end if 
17   end if 

18   If ᵅ�ᵅ�ᵃ�ᵃ� ≤ ᵃ�� and ᵃ��−� + ℤ�� ≤ ᵃ�� then ᵃ�� = ᵃ��−� + ℤ��, ᵃ�� = ᵅ� − 1 end if 
19   ᵅ� = ᵅ� + 1 
20  end while 

21 end for 

22 return ᵃ� , ᵃ� , UENDA 
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A description of the proposed look-ahead split procedure is shown in Algorithm 

3-2. An objective function ᵃ�(ᵅ�) is supposed to be minimised for a given giant tour 

(GT) by the LA-split procedure. Two labels ᵃ�  and ᵃ�  are computed in this 

algorithm for each node ᵅ� ∈ {1, . . , ᵅ�}, in order to record the cost of the shortest 

path from node 0 to node ᵅ� in the auxiliary graph, and to point to the predecessor 

of ᵅ� on this path, respectively. In each loop of the algorithm a partial route (ᵃ�ᵃ�) 

which represents one arc in the auxiliary graph is examined using the Route-

path-opt function, and if its cost for the earliest departure time ᵃ��, i.e. ᵃ�(ᵃ�ᵃ� ��), 

meets the determined RC(s), then it is rewarded based on the RP (line 16). Note 

that, in this algorithm ᵃ�� refers to the payload of a heavy duty truck. Also, note 

that the beginning of the planning horizon is chosen because based on the FIFO 

principle stated in Remark 1, if the arc is not feasible at the earliest possible 

departure time, i.e. ᵃ��, then it is also infeasible for all later departure times. The 

yielded solution by LA-split can undergo departure time optimisation later using 

TB-RTO if the threshold in TB-RTO is satisfied. 

It is discussed next how the possibility of the MTs could be checked for a given 

SPRP solution. 

3.4.1.3 The Brute-Force Multi-Trip Optimisation (BF-MTO) procedure 

Multi-Trip Optimisation (MTO) can contribute significant savings to the total 

vehicle cost incurred by hiring trucks to operate the trips, and the total amount of 

fuel consumed at routes by using environmentally-efficient resources more than 

once. As stated earlier, to solve the MTO problem heuristically, an approach unified 

with the split procedure (similar to the one in Cattaruzza et al., 2016) can be 

employed. However, besides its computational cost, such integration, especially in 

a time-dependent setting with a heterogeneous fleet, does not allow a complete 

examination of all MT possibilities. The main reason is that with this approach it 

is only possible to position a trip after the trips that are already assigned to the 
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vehicle, as arcs are assigned to a vehicle in the order they appear in the path. As a 

result, later trips (or arcs in the auxiliary graph) are never given a chance to be 

the first trips allocated to the vehicles. In the time-dependent setting, the travel 

time of each trip depends on the time the depot is departed and therefore, while 

an allocation of two trips A and B to a vehicle might be infeasible in the order A-

B, the alternative allocation of B-A is not essentially infeasible. Furthermore, in 

the case of a heterogeneous fleet, in addition to the aforementioned shortcoming, 

many more MT possibilities are simply ignored due to heterogeneity of vehicles 

carrying out the trips. For example, an optimal split for an FSM problem that 

results in three trips that are carried out by a light, medium, and heavy-duty truck, 

respectively, may imply the impossibility of MTs, since the payload of a light-duty 

truck is not large enough to operate the trip allocated to a medium-duty truck, and 

so on. However, it is clear that (as one of the several MT possibilities) a heavy-

duty truck can take care of all the three trips if temporal constraints do not get 

violated. 

Therefore, to solve the MTO problem, we propose a new procedure that takes 

all forward and backward combinations, and all possible vehicle variations into 

account, and outputs the optimal multi-trip scenario with clear schedules. This 

procedure is an all-possibility-check procedure and is called the Brute-Force MTO 

(BF-MTO) procedure. Since BF-MTO is an exhaustive search algorithm, it can be 

time consuming to examine all the possible combinations of multi-trips, many of 

which might turn out to be infeasible. However, to speed-up the BF-MTO procedure, 

several quick feasibility checks, mainly based on the temporal characteristics of the 

trips, such as the time-windows information and the time-dependent travel time of 

the trips could be utilised.  

As stated above, in a time-dependent setting if for a given departure time 

instant ᵰ� of trip B, it could not be allocated to the same vehicle operating trip A, 

it might still be possible to do so by departing the depot at another departure time. 
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However, checking the entire planning horizon for finding such possibly existing 

departure time is very time consuming and unreasonable. Instead, a helpful 

property of the FIFO principle could be exploited to check the feasibility of such 

allocation by checking only one time instant, i.e. the beginning of the planning 

horizon: 

Remark 2 Based on the FIFO property, if a truck that departs the depot in the 

beginning of the planning horizon to operate trip ᵃ� cannot accommodate trip ᵃ� 

after trip ᵃ�, then trip ᵃ� can never be operated after trip ᵃ� by a single vehicle, at 

no other time during the planning horizon.  

The clear reason for this is that a later departure time from the origin cannot 

lead to an earlier arrival time at the destination. Based on Remark 2, if A-B is 

infeasible, then all other combinations of trips containing the same sequence of trips 

A and B, such as A-B-C and A-C-B are also infeasible and there is no need to 

check them. However, note that still the opposite order B-A can be feasible and 

must be checked. 

If information about the optimal travel times of the trips is available (which 

is the case in our solution algorithms as MTO is always carried out after RTO), 

another very helpful feasibility check that can quickly eliminate the need for 

checking lots of multi-trip possibilities could be used: 

Remark 3 Suppose �∗(ᵃ�) and �∗(ᵃ�) denote the optimal time-dependent travel times 

of two different trips ᵃ� and ᵃ�, respectively. If �∗(ᵃ�) + �∗(ᵃ�) + ᵅ�� > ᵃ� , then 

allocation of any combination of these two trips, and any other combination of 

these trips and other trips, to a single truck of any type is infeasible.   

Information from time windows (especially in case of tight time windows) 

could be also used for quick feasibility checks, such as comparing the arrival time 
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of trip A with the smallest upper boundary of time windows of all customers on 

trip B.   

Similar to the cases of TB-RTO and LA-split, the BF-MTO procedure is 

accompanied by the UENDA, and we assume that a single objective function ᵃ�(ᵅ�) 

(decided by the higher-level heuristic) must be minimised. Given that a maximum 

of � trips are allowed for each truck during the planning horizon, the 

implementation of the BF-MTO requires � nested loops, where the uppermost outer 

loop checks the first round of trip for each vehicle ᵅ� ∈ {1, . . , �}, the first inner loop 

the second round of trip and so on. This implementation is ᵊ�(ᵅ���), however, due 

to the discussed feasibility checks, in practice most of the loops are never executed 

and the algorithm is sufficiently fast. In our experiments, we have been routinely 

able to use an ᵊ�(ᵅ�ᵃ���) implementation to also optimise the departure times for 

the trips in each MT. 

In what follows, we describe the higher-level MOOHs and the way the 

described heuristics are used by them. 

3.4.2 Higher-level solution algorithms 

Three different higher-level MOOHs for the SPRP are proposed in this paper and 

are compared with one another. The first method, which is the main MOOH of the 

paper, hybridises an efficient Mathematical Programming Technique (MPT) with 

a two-stage LS-based heuristic for the first time to solve a multi-objective 

optimisation problem with more than two objectives. The main benefit of this 

hybridisation is that all emerging lower-level multi-objective optimisation problems 

needed to be solved in the context of the SPRP could be reduced to single objective 

problems, which can be handled much more efficiently. Moreover, using a MPT as 

the pedestal of search for ND solutions has the added advantage of more systematic 

non-inferior surface tracing. 
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The second and the third methods are based on the well-established concept 

of the Multi-Objective Evolutionary Algorithms (MOEAs). The second MOOH is a 

Hybrid MOEA (HMOEA) with a generational target attainment scheme that 

particularly aims at preventing the algorithm from wandering around the huge 

feasible solution region of the SPRP, and guiding the search better towards and 

along the Pareto front. The third MOOH is a MOEA which has a much simpler 

structure than the second MOOH and is more agile.  

The rest of this section introduces these higher-level solution algorithms, the 

metaheuristics and the new neighbourhood exploration strategy employed by them. 

3.4.2.1 MOOH I: Hybridised Quadrant Shrinking Method with a 
Simulated Annealing and a Memetic Algorithm (HQSM-SA-MA) 

Despite several successful applications in solving hard optimisation problems 

(Becerra & Coello, 2006; Demir, Bektaş, et al., 2014a; Ranjithan et al., 2001; 

Srigiriraju, 2000), the integration of MPTs that guarantee the identification of the 

full set of the ND solutions, and LS-based heuristics is a promising line of research 

that has drawn insufficient attention in the literature. The main reason why this 

sort of hybridization is usually refrained is its supposedly high computational cost 

(Ranjithan et al., 2001; Srigiriraju, 2000). However, as Becerra and Coello (2006) 

argue, if the single-objective optimiser is well-designed and implemented, this 

hybridisation is able to generate the true Pareto front of very difficult multi-

objective optimisation problems at a reasonable computational cost. The authors 

demonstrate this by solving a number of hard test problems that are considered to 

be very difficult to be solved by current MOEAs, and show that in most cases, even 

when performing a very high number of fitness function evaluations, the employed 

MOEA is unable to reach the true Pareto front, while the MPT-based algorithm 

they propose is able to converge to the true Pareto front (or very close to it) of all 

the problems (Coello et al., 2007). 
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To the best of our knowledge, most of the existing algorithms of this sort of 

hybridisation mainly rely on the MPTs based on the ᵱ�-constraint approach in a bi-

objective context, and no such algorithm has so far been reported for solving a 

problem with more than two objectives. Noticeable developments have been made 

recently in the area of MPTs for tri- and multi-objective optimisation of Integer 

Programming (IP) problems, and efficient algorithms have been proposed that can 

find the full set of the ND solutions. Reviewing the bounds on the total number of 

IPs required to be solved by the state-of-the-art MPTs, and the difficulty of these 

IPs at each iteration, Raeesi and Zografos (2019) conclude that the Quadrant 

Shrinking Method (QSM) by Boland et al. (2017b) offers the most promising 

performance among the existing approaches. 

The reader is referred to Boland et al. (2017b) for an introduction to the QSM, 

but very concisely, similar to any other method for generating the ND frontier of a 

Multi-Objective IP (MOIP), the core operation of the QSM is searching for an as-

yet-unknown ND point. An ND point  ᵅ�� = ᵅ�(ᵅ��) with the property that its 

projection ᵅ��������� satisfies ᵅ��������� ≤ ᵅ� for a given point ᵅ� in the projected space, if one 

exists, is found by solving two IPs, through a two-stage scalarisation technique. 

First, an intermediate point ᵅ�� ∈ ᵊ� with minimal third objective value over points 

ᵅ� ∈ ᵊ� with ᵅ�̅ ≤ ᵅ� is found via: ᵅ�� ∈ argᵅ�ᵅ�ᵅ��ᵅ��(ᵅ�): ᵅ� ∈ ᵊ� ᵃ�ᵅ�ᵃ� ᵅ��(ᵅ�) ≤ ᵅ��, ᵅ� ∈

{1,2}�. If this IP is feasible, it is followed by a second IP that converts the weakly 

efficient solution ᵅ�� into an efficient solution ᵅ��: ᵅ�� ∈ argᵅ�ᵅ�ᵅ��∑ ᵅ��(ᵅ�): ᵅ� ∈�
�=�

ᵊ� ᵃ�ᵅ�ᵃ� ᵅ��(ᵅ�) ≤ ᵅ��(ᵅ��), ᵅ� ∈ {1,2,3}�. This search is denoted by 2D-NDP-

Search(u), and if the first IP is infeasible, 2D-NDP-Search(u) returns Null 

and ᵅ�� does not exist. Otherwise, if ᵅ�� exists, the second IP must be feasible and 

2D-NDP-Search(u)returns ᵅ��. Ultimately, this search returns an ND point ᵅ�� 

with ᵅ��
� minimal over those ᵅ� ∈ ᵊ�� (the set of ND points) with ᵅ� ̅ ≤ ᵅ� [refer to 

Boland et al. (2017b) for the full algorithm and related proofs].   
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In the case of the SPRP two IPs must be solved in each iteration of the QSM, 

where the first IP is a single-objective problem in the third objective of the SPRP, 

i.e. the total travel time of the tours, and the second IP is a composite function of 

all the three objectives of the SPRP. This task is intractable to be assigned to an 

exact solver for even very small sized instances of the SPRP, and thus, the idea is 

to assign it to LS-based heuristic optimisers instead. However, this is a critical 

hybridisation and several considerations must be made to be able to replace the 

exact solver with a heuristic one successfully.  

The QSM (or any other MPT for the identification of the set of the ND points) 

is mainly based on the premise that the solution found at the end of each iteration 

is an ND solution. However, this could not be guaranteed when the exact solver is 

replaced with a heuristic one, since as opposed to an exact optimal solution to a 

single-objective problem, a heuristic near-optimal solution is obtained based on 

some stochastic operations and each run of the heuristic can lead to (at best) a 

slightly different solution. Therefore, it is possible that in later iterations of the 

QSM when the IPs get even tighter constrained, a heuristic solution is found which 

dominates the previously found and assumed to be ND solutions. This mainly has 

implications regarding the true progression of the QSM along the efficient frontier, 

as the solution returned by the 2D-NDP-Search in each iteration provides the 

basis for defining the bounds on the first and second objectives in subsequent 

iterations of the algorithm. When using heuristic optimisers, the solution found in 

each iteration is only an approximation of the optimal solution, and thus the 

bounds defined based on it usually underestimate the true bounds and hence some 

ND points will be missed. 

In addition to this, one major difficulty in hybridising heuristics with MPTs 

arises from the fact that LS-based heuristic algorithms for single-objective 

optimisation often find it very difficult to retrieve an initial feasible solution when 

extra objectives are progressively appended to the problem in form of additional 
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constraints, and a large proportion of their computational time is just spent on 

finding such initial feasible solutions. As the upper bounds to these constraints 

progressively become tighter, sometimes the algorithm spends the entire allotted 

computational budget and even fails to find a feasible solution, and therefore only 

returns Null. However, if the very algorithm for the very bounded problem is 

provided with an initial feasible solution satisfying the assigned bounds, it is usually 

fast and easy for it to improve the provided solution; what the algorithm is indeed 

mainly intended to do. 

We address these complications by replacing the original list of efficient 

solutions in the QSM, with the UENDA scheme introduced earlier, and 

implementing techniques for obtaining the required initial feasible solutions from 

the very archive for each bounded IP. The UENDA appears everywhere in the 

solution process and accompanies all lower-level functions used by the higher-level 

algorithm to identify and archive all ND solutions encountered during the search. 

That is, while the first IP optimiser is just focusing on minimising the third 

objective function, for instance, all newly generated solutions, even those which 

cannot contribute to the progress of the search towards the minimisation of the 

objective function of concern, are checked against the UENDA, and if non-

dominated, are archived. With this scheme, the optimal solution to each IP under 

consideration is taken from the UENDA at the termination of the corresponding 

IP optimiser, instead of using the optimal solution found by the solver explicitly. 

Moreover, always prior to launching the first IP solver in the 2D-NDP-Search, a 

“best” feasible initial solution, based on the bounds on the first and second objective 

functions, is selected from the UENDA using an init-sol-select function. This 

function sorts the UENDA based on the non-decreasing values of the third objective 

function and starts from the top of the list and picks the first solution that satisfies 

the upper bounds on the first and second objective functions as the initial solution 

to the first IP. If no such solution is found, the solution that minimises the 
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aggregated difference between its first and second objective values, and the upper 

bounds on those objectives is selected as the initial solution. Even though these 

solutions do not satisfy the bounds on the first two objectives, they are as close as 

it gets to the bounds. Moreover, the first IP solver has some built-in features that 

are only activated when the initial solution provided is still unable to satisfy the 

bounds, and take over the main operators in the first IP optimiser for minimising 

the third objective, and try to convert the provided infeasible solution into a 

feasible one first. In case the UENDA is empty (usually only at the beginning of 

the search) an init-sol-gen heuristic that is described later is utilised. Observe 

that the solution to the first IP is used as an initial solution to the second IP. 

Finally, to define “more conservative” bounds on the first two objective functions 

for the forthcoming iterations of the algorithm, similar to the approach proposed 

by Becerra and Coello (2006), the upper bounds derived from the solution returned 

by the 2D-NDP-Search can be increased by a confidence tolerance ᵕ��, ᵅ� ∈ {1,2}.  

For solving the first IP in the 2D-NDP-Search we are proposing a Simulated 

Annealing (SA) algorithm with a new Exhaustive Neighbourhood Search (ENS), 

called the SAENS algorithm. The second IP, however, is solved using an Order-

First-Split-Second Memetic Algorithm (OFSS-MA). Therefore, the resulting 

hybridisation is called the HQSM-SA-MA (Figure 3-2).  

 

Figure 3-2 Schematic of the proposed HQSM-SA-MA algorithm 

In the rest of this section, the first and the second IP optimisers are described. 
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3.4.2.1.1 IP-I optimiser: SAENS  

Solving the first IP in the 2D-NDP-Search is assigned to SAENS, which is 

specifically tailored to minimise the third objective of the SPRP, i.e. travel time of 

the tours; however, to deal with infeasible initial solutions some extra features are 

also built in the algorithm to convert an infeasible solution to the bounded SPRP 

into a feasible one.  

A description of the SAENS is given in Algorithm 3-3. The initial solution to 

the algorithm (init_sol) is selected using the init-sol-select function 

explained earlier. We remind that the very first feasible solution at the beginning 

of the HQSM-SA-MA, when UENDA is still empty, is generated using the init-

sol-gen heuristic. This simple heuristic initially generates a Giant Tour (GT) as 

a random permutation of all customers, which undergoes the 2-opt heuristic for 

distance minimisation. The resulting GT then goes through the LA-split based 

on the third objective of the SPRP, i.e. total makespan, with no RP. Subsequently, 

the generated set of trips from LA-split undergoes the RTO algorithm for the 

minimisation of the third objective.  

Common termination criteria for the standard SA are used, and a number of 

local search iterations are performed in each temperature. One of the special 

features of the proposed SA is how it explores the neighbourhood using ENS 

strategy (line 7), which will be explained shortly. Along with archiving ND solutions 

and updating the UENDA steadily, the ENS outputs both a new solution (new_sol) 

and a usually different current solution (curr_sol) from what it takes as input. 

Lines 8 to 21 of the algorithm are only operated if the current solution is infeasible 

with regard to the upper bounds (ᵅ��, ᵅ��) assigned on the first and the second 

objectives by the higher-level 2D-NDP-Search. If the solution is infeasible with 

regard to the upper bound assigned on the first objective (line 8), first it is 

converted into a giant tour (GT) using the Split-inv function (line 9) which is 

the inverse of the split function. The resulting GT then goes through the LA-Split 
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function (line 10), with the following RCs (RemCon) and RP (RemPol): if an arc 

in the auxiliary graph has a third objective value less than or equal to 1/3 (or 1/2) 

of ᵃ� , then reduce its first objective value to zero (or 1/2 of its actual value). Note 

that in this study we consider � = 3. After this, the BF-MTO procedure is called 

(line 11) to find the optimal MT of the resulting split_sol. If this leads to finding 

a solution MT_sol with first or third objective values lower than the current 

solution, then it replaces curr_sol (lines 12 to 14). 

In case of the infeasibility of the current solution regarding the upper bound 

assigned on the second objective (line 16), this solution undergoes a completely 

different route-path optimisation (line 17) by getting the Route-path-opt 

function to minimise the second objective instead of the third. Observe that in IP-

I optimiser, the Route-path-opt everywhere else optimises route-path and 

vehicle type operating the tour by only considering the third objective of the SPRP, 

and changing the objective of concern can lead to the selection of a completely 

different sequence of road-paths. Again, if the resulting solution RP_sol has a first 

or third objective values lower than the current solution, then it replaces curr_sol 

(lines 18 to 20). 

Unlike the standard SA algorithm, in SAESN updating the solutions to see if 

we have a new best_sol, or curr_sol is not a straightforward task, because in order 

for retrieving a feasible solution as fast as possible, we might sometimes need to let 

the best solution get degraded, and accept a solution that is worse with regard to 

the third objective, but feasible with respect to the upper bounds on the first two 

objectives, as the new best solution. This analysis is assigned to a sol-update 

function (line 22). This function compares the third objective values of the new_sol 

and the curr_sol, with that of the best_sol, and if any of them is better than the 

best_sol, both the best_sol and the curr_sol are replaced by the corresponding 

curr_sol or new_sol. If neither curr_sol nor new_sol can replace best_sol based 

on this condition, then still if best_sol is infeasible with regard to at least one of 
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the upper bounds assigned on one of the two first objectives, and either the new_sol 

or the curr_sol is feasible, best_sol is replaced by them. If both are feasible, then 

the one which has a lower value in the third objective is selected to replace both 

best_sol and curr_sol. If none of the above conditions are satisfied, then while 

best_sol remains unchanged, the chance of new_sol replacing curr_sol is 

investigated using the standard SA thresholds; that is, a delta parameter is 

calculated as follows: delta = obj3(new_sol) – obj3(curr_sol) (note that 

obj3(curr_sol) means the cost of curr_sol with regard to the third objective of 

SPRP). If delta ≤ 0, then cur_sol is replaced with new_sol; otherwise, a random 

number (rand) between zero and one is generated, and if rand ≤ exp(-delta/temp) 

then curr_sol is replaced by new_sol.



 

Algorithm 3-3 SAENS 

1 input UENDA, init-sol, δ, ᵃ�, ᵅ�� , ᵅ��, alpha, MinTemp, MaxIterSA, TimeLimitSA, StartingTemp  
2 best_sol ← init_sol 
3 while time ≤ TimeLimitSA do 

4  curr_sol ←  ����_���, ���� ← StartingTemp 
5  while time ≤  ����������� ��� ���� > MinTemp do 
6  

 

for i = 1 to MaxIterSA do 

7  

 

 (UENDA, curr_sol, new_sol) ≔ ENS (UENDA, curr_sol, ᵯ�, ᵃ� , ᵅ�� , ᵅ��) 
8  

 

 if obj1(curr_sol) > ᵅ�� then 
9  

 

  GT ≔ Split-inv (curr_sol) 
10  

 

  (UENDA,split_sol) ≔ LA-Split (OBJ3, GT, RemPol,RemCon, UENDA)  
11  

 

  (UENDA,MT_sol) ≔ BF-MTO (split_sol, UENDA) 
12  

 

  if obj1(MT_sol) ≤  ���1(����_���) �� ���3(��_���)  ≤ obj3(curr_sol) then  
13  

 

   curr_sol ← MT_sol 
14  

 

  end if 

15  

 

 end if 

16  

 

 if obj2(curr_sol) > ᵅ�� then 
17  

 

  (RP_sol, UENDA) ≔ Route-path-opt (OBJ3, curr_sol, load(Curr_sol), ᵃ��, UENDA) 
18  

 

  if obj1(RP_sol) ≤  ���1(����_���) �� ���3(��_���)  ≤ obj3(curr_sol) then 
19  

 

   curr_sol ← RP_sol 
20  

 

  end if 

21  

 

 end if 

22  

 

 (curr_sol, best_sol) ≔ sol-update (new_sol, curr_sol, best_sol, temp, ᵅ�� , ᵅ��) 
23   end for 

24   temp = alpha × temp 

25  end while 

26 end while 

27 UENDA ≔ best_eval (Obj3, best_sol, UENDA) 
28 return UENDA 
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After the termination criteria are met and the best_sol is returned, a best-

eval function is called to apply a final touch of improvement on the solution. This 

function takes a solution to the SPRP as input and provides the best evaluation of 

the solution by finding the optimal allocation of available resources to it with 

respect to the objective function of concern. To this end, this function first converts 

the solution into a GT using the Split-inv function and then, if the solution is 

already feasible with regard to the upper bounds on the other two objectives, 

applies the LA-Split function with no RP; otherwise, the same RP explained 

above is applied. Then, the route-paths and departure times of the tours in the 

solution and the vehicles types operating them are optimised using the RTO 

procedure. After this, the solution as it is returned by the LA-Split function, also 

undergoes the BF-MTO algorithm to find the optimal MTs. Observe that, as always 

the UENDA is archiving all ND solutions found in the meantime. 

Note that, the best_sol is not explicitly returned by the SAENS as the solution 

for the first IP; instead the required solution is extracted from the UENDA (line 

28). This is because it is possible that a solution with same third objective value as 

the best_sol, but better objective values for the first and the second objectives 

exist in the UENDA, and if no such solution is there, then definitely best_sol is in 

the UENDA, since it is non-dominated.  

The proposed ENS which is described in algorithm 3-4 is inspired by the 

successful neighbourhood exploration strategy used by Bent and Van Hentenryck 

(2004) in applying a SA algorithm on the VRPTW. Bent and Van Hentenryck 

(2004) consider 5 well- known local search operators in their study; i.e. 2-opt, Or-

opt, Relocation, Swap, and Crossover. In each iteration of their SA algorithm, they 

focus on a sub-neighbourhood of a given neighbourhood by randomly choosing a 

move operator and a customer, and then considering all the possible moves for this 

customer using the selected operator, to see if any improvement could be found. 

While we also use the same 5 operators, our ENS differs with that of Bent and Van 
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Hentenryck (2004) in two respects. Firstly, while they only focus on a sub-

neighbourhood of a given neighbourhood, in ENS the entire neighbourhood is 

searched exhaustively by exploring all possible moves of all customers based on a 

randomly selected operator (lines 4 to 18). Furthermore, unlike Bent and Van 

Hentenryck (2004) we keep updating curr_sol every time the operator is applied. 

That is, during the ENS exploration after each iteration if new_sol is better than 

curr_sol, then curr_sol is replaced by the new_sol (lines 13 to 17), and in the next 

iteration the new curr_sol is submitted as the input to the selected operator. While 

this sounds like an expensive search, it often returns a nicely improved solution 

that is indeed worth the computational burden and a few iterations of the algorithm 

usually suffice for finding a near optimal solution. Furthermore, it greatly 

contributes to the implicit identification of many useful ND solutions, as the entire 

operation is accompanied by the UENDA. We demonstrate the benefits of using 

the ENS in the computational study section of the paper.  

Following the termination of the first IP optimiser, the best solution to this 

IP, with regard to the bounds on the objective functions, is extracted from UENDA 

and submitted to the second IP optimiser that is described next. 

Given the description of the two stage solvers, the pseudo-code of the full 

HQSM-SA-MA algorithm is presented in Algorithm 3-5.



 

 

Algorithm 3-4 ENS 

1 input UENDA, curr_sol, ᵯ�, ᵃ� , ᵅ��, ᵅ�� 
2 OP ≔ Random (Operators) 
3 Sltd ≔ a random integer between 1 and ᵅ� 
4 for i = 1 to ᵅ� do 
5  (UENDA, new_sol) ≔ OP (UENDA, curr_sol) 
6  if RTO threshold for new_sol is met then 
7  

 

GT≔  Split-inv (new_sol) 
8  

 

(UENDA,split_sol) ≔ LA-Split (OBJ, GT, No RemPol, No RemCon, UENDA) 
9  

 

if obj3(split_sol) ≤  ���3(���_���)  ���� ���_��� ← split_sol end if 
10  

 

Call the RTO for new_sol while updating the UENDA 
11  end if 
12  if i = sltd then sltd_sol ← new_sol end if 
13  if obj3(new_sol) < obj3(curr_sol)  then 

14  

 

curr_sol ← new_sol 
15  else if (obj1(curr_sol) >  ᵅ�1 �� ���2(����_���)  >  ᵅ�2) ��� (���1(���_���)  ≤  ᵅ�1 ��� ���2(���_���)  ≤  ᵅ�2) then 
16  

 

curr_sol ← new_sol 
17  end if 

18 end for 

19 new_sol ← sltd_sol 
20 return UENDA, curr_sol, new_sol 

 

 

 

 

 

 



 

 

 

Algorithm 3-5 HQSM-SA-MA 

1 Initialise the UENDA to be empty and a double-ended linked list D with (+∞,+∞)    

2 while D is not empty do 

3  Right_boundry_not_treated←True 

4  while Right_boundry_not_treated = True do 

5   Pop the front element of D and denote it by u 

6   (ᵃ�ᵃ�ᵅ�ᵅ�ᵅ�, �����)  ≔2D-NDP-Search (u, UENDA)   // SAENS and OFSS-MA are used here 

7   if ᵃ�ᵃ�ᵅ�ᵅ�ᵅ� = Null then 

8    Right_boundry_not_treated = False 

9   Else 

10    if ᵅ��
� < ᵃ�ᵃ�ᵅ�ᵅ�ᵅ�� + ᵕ�� − ᵱ�� or D is empty then 

11     Add (ᵃ�ᵃ�ᵅ�ᵅ�ᵅ�� + ᵕ�� − ᵱ��, ᵅ��) to the front of D 

12    end if 

13    Add (ᵅ��,ᵃ�ᵃ�ᵅ�ᵅ�ᵅ�� + ᵕ�� − ᵱ��) to the front of D 

14   end if 

15  end while 

16 

 

Top_boundry_not_treated←True 
17 

 

while Top_boundry_not_treated = True do 

18 

 

 Pop the back element of D and denote it by u 

19 

 

 (ᵃ�ᵃ�ᵅ�ᵅ�ᵅ�, �����)  ≔2D-NDP-Search (u, UENDA)   // SAENS and OFSS-MA are used here 

20 

 

 if ᵃ�ᵃ�ᵅ�ᵅ�ᵅ� = Null then 

21    Top_boundry_not_treated = False 

22   Else 

23    if ᵅ��
� < ᵃ�ᵃ�ᵅ�ᵅ�ᵅ�� + ᵕ�� − ᵱ�� or D is empty then 

24     Add (ᵅ��,ᵃ�ᵃ�ᵅ�ᵅ�ᵅ�� + ᵕ�� − ᵱ��) to the back of D 

25    end if 

26    Add (ᵃ�ᵃ�ᵅ�ᵅ�ᵅ�� + ᵕ�� − ᵱ��, ᵅ��) to the back of D 
27   end if 

28  end while 

29 end while 

30 POS ← UENDA 

31 return POS 
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3.4.2.1.2 IP-II optimiser: OFSS-MA 

The second IP in the 2D-NDP-Search focuses on minimising a composite 

scalar objective of all the three objective functions of the SPRP and this is assigned 

to the OFSS-MA that uses a slightly modified version of the SAENS in its education 

and intensification phases. Fleet size and mix, and multi-trip optimisation 

contribute significantly to the minimisation of this objective and a modified version 

of the best-eval function described earlier plays a key role in this regard. As 

before, the UENDA appears in all levels of the algorithm and stores all ND solutions 

encountered during the search. The overall framework of the proposed OFSS-MA is 

shown in the flowchart in Figure 3-3. 

As it can be seen in this figure, after the initialisation phase, until the stopping 

criterion of the algorithm, i.e. a maximum number of iterations (MaxIter), is not 

met, the four phases of parent selection and crossover, education, intensification, 

and survivor selection are carried out on each generation to return the best feasible 

solution to the second IP in the 2D-NDP-Search. These steps are explained in 

more detail in the sequel. 

To initialise the algorithm and generate the first population, we first refer to 

the UENDA. All solutions in the UENDA are sorted based on their third objective 

values. If the number of solutions in the UENDA is larger than ᵅ��, then the first 

ᵅ�� solutions from the top of the UENDA are selected to be included in the initial 

population. This provides a nice kick-start for the second solver, as solutions in the 

UENDA are all of a high quality. Otherwise, if ᵅ�� is larger than the number of 

solutions in the UENDA, all solutions in the UENDA are included in the population 

and then the remaining required solutions are generated using an extension of the 

init-sol-gen heuristic with the composite objective function.



 

 

Start

Initialisation: initialise a population with size np (use 
UENDA and/or the init-sol-gen heuristic)

Iter = 1

Iter ≤ MaxIter?

Tune  Ped and Pin and select a child

Yes

rand ≤ Pcr?

Parent selection and crossover: apply 
OX crossover and get a new offspring

Yes

Use best_eval to evaluate the offspring, and 
child ← offspring

rand ≤ Ped?

Education: educate the 
child using SAENS

Yes

rand ≤ Pin?
No

No

Intensification: select an elite individual 
and intensify it  using SAENS

Yes

Survivor selection: couple the UENDA 

and the population and select survivors

No

Iter ++No
Return the best feasible 

solution to MIP-II
Finish

UENDA

UENDA UENDA

UENDA

UENDA

 

Figure 3-3 OFSS-MA for MIP-II in 2D-NDP-Search 
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 One solution from the initial population is always randomly selected as a child 

in the beginning of each iteration of the algorithm to ensure that if crossover is not 

taking place, there is a selected child in the population to undergo education if 

required. Subsequently, a random number is generated and if it is smaller than Pcr 

(crossover probability), parents are selected using the binary tournament method 

for crossover; i.e. two chromosomes are randomly selected from the population and 

the least-cost one becomes the first parent, and the same procedure is repeated to 

get the second parent. These chromosomes are solutions from the population that 

are converted into giant tours without trip delimiters using the Split-inv 

function. The classical OX crossover is used to generate two new offsprings; 

however, only one of them is randomly selected in our algorithm. In the OX 

crossover, two positions are randomly selected in the first parent and the substring 

between the selected positions is copied into the first offspring, at the same 

positions. The second parent is then swept cyclically from the second position 

onwards to fill the empty positions in the offspring. The second offspring is 

generated likewise by exchanging the roles of the two parents. The selected offspring 

is then evaluated using a modified best-eval function which changes the given 

giant tour into a high quality SPRP solution. To this end, the given chromosome 

is first split into a feasible set of vehicle trips using the LA-Split function with 

the same RC and RP described in the previous section. The route-path and 

departure times of the trips in the deduced solution are then optimised using the 

TB-RTO procedure and the corresponding cost is recorded. Then, the BF-MTO 

procedure is also called and the optimal MT scenario is found and compared with 

the solution found by the TB-RTO (without MTs) and the best solution is accepted 

as the performance of the chromosome. Observe that all lower-level optimisation 

problems are now carried out as single objective optimisation problems, which 

minimise the composite scalar objective of all the three objective functions of the 
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SPRP, and throughout the entire process all encountered ND solutions are archived 

in the UENDA. 

The education and the intensification phases are both based on the SAENS 

algorithm, with the difference that the threshold verified block in the ENS (lines 7 

to 10 in Algorithm 3-4) is replaced with the modified best-eval function 

described above. In the intensification phase, an elite solution is randomly selected 

from the top 1/3 of the population and is intensified using the SAENS algorithm. 

Notice that, at each iteration of the algorithm, education and intensification are 

applied on a candidate chromosome (an offspring or an elite solution) with 

probabilities Ped and Pin, respectively. However, in certain circumstances these 

probabilities are tuned adaptively from inside the algorithm. That is, when the 

algorithm finds no feasible solutions in the population with regard to the upper 

bounds assigned on the objectives, it increases these probabilities (especially Pin) 

to benefit from the built-in features in the SAENS algorithm that are designed for 

changing an infeasible solution into a feasible one (see the previous section). Once 

a feasible solution is found, these probabilities retrieve their original values. 

Remember that, unlike when an exact solver is used in the QSM, there are two sets 

of bounds on the objectives for the second IP in the heuristic 2D-NDP-Search; 

firstly, the values of each of the three objective functions should not exceed the 

corresponding values already found by the first IP, and secondly, the upper bounds, 

ᵅ�� and ᵅ�� which are not essentially satisfied by the solution to the first IP should 

be observed. We remind that when an exact solver is used, once these bounds are 

not satisfied by the solution of the first IP, it is guaranteed that the second IP is 

also infeasible. However, in a heuristic case this could be attributed to the inability 

of the first solver in finding a feasible solution to the first IP, and chances are that 

the second IP solver can find a feasible solution. 

All offsprings and new solutions found through the crossover, education and 

the intensification phases are added to the population, and at the end of each 
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iteration of the algorithm, in the survivor selection step, a coupling function puts 

all the solutions in the population and the UENDA into a same pool of solutions. 

The pool is then sought for feasible solutions with regard to the upper bounds on 

the objective functions, and these feasible solutions are sorted in the non-decreasing 

order of their composite scalar objective value. Infeasible solutions are then sorted 

after this set based on the non-decreasing order of their third objective value. After 

this the top ᵅ�� solutions in this sorted pool are selected as the surviving generation. 

3.4.2.2 MOOH II: A Hybrid Multi-Objective Evolutionary Algorithm 
with a Generational-Target Attainment (HMOEA-GTA) 

MOEAs are known to be very well-performing in solving multi-objective 

optimisation problems. They incorporate the concept of Pareto optimality to evolve 

a generation of solutions at multiple points along the Pareto front, without the 

need of linearly combining multiple objectives into a composite scalar objective 

function (Tan et al., 2006), and can generate several elements of the Pareto optimal 

set in a single run. The hybridisation of global search MOEAs with LS techniques, 

known as hybrid or memetic MOEAs, makes them more beneficial to real-world 

applications by driving the search towards the Pareto front more effectively and 

efficiently (Coello et al., 2007). The LS process in the decision space, and the 

selection of associated objective space points to explore and exploit constitutes the 

heart of the hybridised approach (Coello et al., 2007). In order to select points in 

objective space based upon LS in decision space, hybrid MOEA techniques are 

usually based on either: (i) only a single objective, (ii) the weighted vector methods, 

or (iii) the dominance methods (Coello et al., 2007). Our approach exploits 

somehow the advantages of all these three methods. 

The proposed HMOEA-GTA solution methodology has a general structure 

similar to that of the OFSS-MA we proposed for solving IP-II in the 2D-NDP-

Search in the previous section; that is, we have the same steps of initialisation, 

parent selection and crossover, education, intensification, and survivor selection, 
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and we recycle the SAENS algorithm as the LS in the education and intensification 

stages. However, here in the ENS used within the SAENS we relax the requirement 

that all customers should go through the randomly selected operator, and instead 

only five customers are randomly selected for this purpose. This way by using a 

faster neighbourhood search strategy, we are able to carry out sufficient EA 

iterations.  

Similar to the case of the HQSM-SA-MA, the UENDA scheme plays a crucial 

role in the proposed HMOEA-GTA and appears literally everywhere in the algorithm. 

The main difference, however, is clearly in the fitness assignment schemes used in 

the global search MOEA and within the LS technique. In the sequel we focus on 

the main differences of the HMOEA-GTA algorithm with OFSS-MA; hence, all other 

aspects of the algorithm that are not given a detailed mention here are similar to 

the OFSS-MA. 

The HMOEA-GTA uses the ND sorting criterion of Deb et al. (2002) in its global 

search MOEA. Based on this ND sorting criterion the population is divided into 

ND fronts and all individuals on the same front are given a similar fitness value 

(normally a rank), such that the lower is the front, the fitter is the solution. In 

order to carry out fitness assignment inside the LS, a Generational Target 

Attainment (GTA) scheme (along with the UENDA) is proposed. The GTA scheme 

works based on ideal and nadir values selected for each objective function in each 

generation as the algorithm evolves, where ideal values are considered as “targets 

to attain”. Starting from the initial population the minimum value found for each 

objective times ᵰ�, where 0 ≤ ᵰ� ≤ 1, is selected as the current ideal value for that 

objective (ᵃ��
+, ᵅ� ∈ {1,2,3}), and the maximum value is selected as the current nadir 

value (ᵃ��
−, ᵅ� ∈ {1,2,3}); then during the local search the fitness value of any newly 

generated solution (ᵃ����) is calculated as its normalised closeness to the ideal 

solution as follows: 
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ᵃ��

��� − ᵃ��
+

ᵃ��
− − ᵃ��

+

�

�=�
 (3-4) 

This fitness assignment scheme is also used by the global search MOEA for 

breaking ties whenever in the parent selection and crossover step fitness sharing 

occurs and two candidate chromosomes have a same rank. 

The main benefit of using the proposed GTA scheme is that it reinforces the 

exploitation ability of the algorithm and its convergence towards the true front by 

pursuing a target-oriented search. Moreover, compared with most scalarisation and 

weighted vector methods which are usually very sensitive to the weights assigned 

to the objectives, expression (3-4) that is used within GTA, assigns a normalised 

fitness value to each solution and does not require the determination of weights. It 

is worth reiterating that in our algorithm the LS is always accompanied by the 

UENDA which archives all ND solutions encountered during the search, and this 

partially resembles the role played by the dominance methods.  

To ensure that the exploration ability of the algorithm is not affected 

significantly by the GTA scheme, a new approach for assigning objective functions 

to lower-level optimisation problems within LS is employed. Unlike in the OFSS-

MA that we always assign a composite scalar objective of all the three objective 

functions of the SPRP to the lower-level problems, in the HMOEA-GTA three 

candidate objective functions: (i) fuel consumption, (ii) travel time, and (iii) the 

scalarisation of vehicle cost, fuel consumption and travel time, are put in a pocket 

with equal chances to be picked, and one of them is randomly selected based on 

roulette wheel selection for each lower-level optimisation problem. This approach 

has turned out to be contributing to the exploration ability of the proposed HMOEA-

GTA, and in experimentations with different alternative schemes we have observed 

that it consistently leads to a much better performance than selecting an objective 

function deterministically.   

In order to initialise the algorithm and generate the first population, the 

proposed HMOEA-GTA algorithm uses the init-sol-gen heuristic described 
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earlier. Similar to the case of the proposed OFSS-MA in the previous section, at 

crossover, parents are converted into chromosomes without trip delimiters using 

the Split-inv function, and offsprings are evaluated using the previously 

described best-eval function, but based on the GTA fitness scheme described 

above.  

Throughout the entire process of the HMOEA-GTA, all encountered ND 

solutions are archived in the UENDA and this set acts independently from the 

HMOEA population. At the end of each iteration of the algorithm, in the survivor 

selection step, a coupling function puts all the solutions in the population and the 

UENDA into a same set, and applies the ND sorting on the entire solutions in the 

set and selects the ᵅ�� solutions of the best ranks. Ties are broken based on the 

GTA fitness, and if any solution of rank one is left outside the survived population, 

it is reinserted back into the UENDA; otherwise, the UENDA is empty at the 

beginning of the next iteration. 

3.4.2.3 MOOH III: A Simple Order-First-Split-Second MOEA (SOFSS-
MOEA) 

The main motivation behind introducing the SOFSS-MOEA is in fact to deal with 

a possible limitation of the HMOEA-GTA in terms of its computational cost. Indeed, 

due to the intensification and the education phases of the algorithm that are carried 

out by the SAENS, if one intends to exploit fully the generational evolution ability 

of MOEAs by conducting a sufficient number of EA iterations, the overall runtime 

of the algorithm is inevitably increased. Instead, as the third alternative MOOH to 

solve the SPRP we present here the SOFSS-MOEA which is much simpler to 

implement and can carry out a large number of MOEA iterations in a reasonable 

computational time. 

The general steps of the proposed SOFSS-MOEA comprise population 

initialization, ND sorting of the individuals in the population based on the ND 

sorting criterion of Deb et al. (2002), parent selection, crossover and mutation, and 
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recombination and survivor selection. Like the previous MOOHs, this algorithm is 

also accompanied by the UENDA scheme. The steps of SOFSS-MOEA are 

summarised in the sequel. 

To generate the first population of solutions in the SOFSS-MOEA a simple 

heuristic called the MOEA_Init_Gen, with a structure similar to the init-sol-

gen heuristic is used. In the first step of the MOEA_Init_Gen ᵅ�� (population size) 

GTs are generated as random permutation of all customers, where 2/3 of them 

undergo the 2-opt heuristic for distance minimisation. The resulting population of 

the GTs from the first step then goes through a 3-phase best evaluation function 

called the 3P_best_eval.  This function first splits a GT based on the first 

objective of the SPRP, i.e. vehicle hiring cost, using the LA-split function with 

the following RC and PP:  if an arc in the auxiliary graph has a third objective 

value less than or equal to 1/3 (or 1/2) of ᵃ� , then reduce its first objective value 

to zero (or 1/2 of its actual value). The resulting set of trips from LA-split then 

undergoes the RTO algorithm for the minimisation of the first objective, following 

which, the solution goes through the BF-MTO procedure. The attributes of this 

solution are stored and the algorithm proceeds to phases two and three, where the 

same steps are repeated based on the second and third objective functions of the 

SPRP, respectively, with the difference that no RC and RP is used for the LA-

split. Note that throughout these steps and lower-level heuristics all ND solutions 

are identified and stored in the UENDA. Following the completion of the three 

phases in the 3P_best_eval, the solutions from the phases are compared based 

on their composite scalar objective of all the three objective functions of the SPRP 

and the one that has the minimum of all the three is selected as the best 

performance of the GT under consideration. 

Parent selection and crossover in the SOFSS-MOEA are done the same way as 

in the HMOEA-GTA, with the difference that the 3P_best_eval is used whenever 

evaluation is required. 
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In the mutation step of the SOFSS-MOEA, three fast and simple heuristics are 

employed to improve a given solution. The first heuristic is based on the well-

known 2-opt heuristic for the TSP. Every route in a given solution (Sol) undergoes 

a complete 2-opt (i.e. for all customers on the route). The resulting solution is 

checked in the optimal departure times of the tours and if better than the given 

Sol, replaces it; otherwise, the same Sol is returned. The second heuristic is called 

the route-elim heuristic, which is a routes elimination and reinsertion heuristic 

with two competing insertion schemes. In this heuristic, all vehicle tours in the Sol 

that have a smaller size (i.e. the number of customers served by the vehicle) than 

a decided parameter minSize, are eliminated from the solution, and all customers 

on these eliminated routes are put into a non-routed pocket and then are attempted 

to be reinserted into the remaining routes. If they could not be served by any of 

the routes, a new route is initiated to accommodate them. Two insertion algorithms 

compete for re-inserting the customers back into the routes. One of them is based 

on the best insertion point that positions the customer in its best position of all 

tours, and the second one is a new 2-opt re-insertion algorithm that adds the 

customer to the end of each route, and then applies 2-opt on the customer to find 

the best sequence of visits for the route when the new customer is added, and then 

this is repeated for all routes and the best insertion is returned. The performance 

of the two re-insertion algorithms is checked against one another and the one with 

the lowest cost is accepted. The quality of the proposed route-elim algorithm is 

sensitive to the value decided for the minSize parameter, and without user 

interference, the best value is selected regarding the characteristics of the instance 

under consideration, by changing this value in a well-defined range. Note that again 

new ND solutions might be encountered which are archived in the UENDA.          

The last heuristic in the mutation phase, is the node-elim heuristic. This 

algorithm begins from the first customer in the first route, and ejects the customer 

from its current position and tries to reinsert it in its best position in any of the 
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routes using the best reinsertion algorithm. The algorithm continues like this for 

all the subsequent customers and only terminates when no improvement is gained 

after ᵅ� consequent ejections. 

Finally, in the recombination and survivor selection step of the algorithm, the 

same coupling function used within the HMOEA-GTA is used. The SOFSS-MOEA has 

a much lighter mutation step than that of the HMOEA-GTA, and thus it is expected 

to be more agile. 

3.5 Computational study 

To analyse the performance of the proposed MOOHs experiments are carried out 

on three sets of test problems. The first set of experiments are based on a set of 25 

small sized test instances specifically designed as the benchmark for evaluating the 

performance of MOOHs for the SPRP by Raeesi and Zografos (2019). These 

instances are defined on networks with 100 nodes out of which five nodes are 

selected as customer nodes. Raeesi and Zografos (2019) generate the full set of the 

ND solutions to these instances using a method based on the QSM that uses a 

PEP-based MILP formulation of the SPRP as the core optimisation problem. The 

solutions to these instances provide a basis for comparing the approximate fronts 

generated by the proposed MOOHs with the true fronts. 

The second set of test instances are based on the publicly available network 

of Chicago’s arterial streets (https://data.cityofchicago.org) with time-dependent 

speed observations (Figure 3-4). We use the graph and the traffic updates provided 

by Dokka and Goerigk (2017) based on this database. We have considered a 

planning horizon of 8 hours from 08:00 to 16:00 (i.e. 480 minutes) in their considered 

day, and generated a set of 10 test instances by randomly selecting 100 nodes of 

the graph as customer nodes. In all test instances, service times and the reloading 

time at the depot for vehicles executing an extra round of trip are assumed 20 

minutes. Feasible time-windows and demands are induced for the customers using 
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a procedure based on a nearest neighbour algorithm where a heavy-duty truck is 

dispatched to visit the nearest customer in each iteration of the algorithm, until 

capacity or time constraints are violated. Customers’ demands are drawn randomly 

from the discrete uniform distribution on the interval [1000kg, 15000kg], and 

relatively wide time-windows covering up to 40% of the planning horizon are 

generated around the arrival time of the dispatched trucks. For all instances, 

synthetic driving cycles denoting the second-by-second speed variations and thus 

A/D rates are constructed from the available macroscopic traffic speed records 

using the model proposed in Raeesi and Zografos (2019), and corresponding RTM 

and UTM values for road-links in the network are computed and stored.  

 

Figure 3-4 Chicago’s arterial streets 

The third set of test instances are large sized test instances of size 500 and 

1000 where 10% of the nodes (i.e. 50 and 100 nodes) are selected as customer nodes. 

The set of the time-dependent road networks generated in these instances resemble 

real-life urban road networks and the way the time-dependent traffic congestion 

occurs in them during a given day. The desired raw graphs of these instances are 

created using the procedure proposed by Letchford et al. (2013). The centre of the 
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generated road networks is assumed to be representing a city centre, which is 

usually the most congested part of an urban road network during rush hour, and 

as we get distant from the centre, traffic congestion gradually softens. Based on 

this assumption, each road-link in the network is classified as an inner, 

intermediate, or outer road, such that every road segment that has an end-point 

within 40% of the radius of the generated graphs is categorised as an inner road, 

all road segments with an endpoint between 40% and 70% of the radius are 

categorised as intermediate roads, and the remaining roads (farther than 70% of 

the radius) are categorised as outer roads. This classification of roads is essential 

for defining realistic time-dependent traffic congestion scenarios. In Figure 3-5, an 

example time-dependent road network with 1000 nodes where 100 of these are 

customers is illustrated. In this figure road segments in red, yellow, and green are 

of classes inner, intermediate and outer roads, respectively. Green nodes represent 

customer locations on the graph, and yellow nodes are network junctions.  

 

Figure 3-5 An example time-dependent road network with 1000 nodes 

Determination of the time-dependent traffic congestion and its spread over the 

arcs over time has been carried out by incorporating observations from real world 

traffic patterns. One such observation is that peak hours do not occur to all road 
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segments in the network at the same time. For example, early in the morning inner 

roads in major cities experience less traffic congestion compared to other road 

categories as many people are commuting from outer roads towards the 

intermediate ones and then towards the inner roads. Based on this, for each road 

category a certain traffic pattern during the day is defined, and 15-minute data 

series of average speed observations are generated randomly within the designated 

patterns. Figure 3-6 shows one of such randomly generated speed levels within the 

defined traffic patterns for a given instance. As it can be seen, in the beginning of 

the working day outer roads have the slowest congestion speed, but later in the 

day they constitute the fastest road-links in the road network, while inner roads 

are the most congested roads from around 09:00 a.m. onward with a morning traffic 

peak at around 10:00, and an afternoon one at around 15:00.  

 

Figure 3-6 An example of randomly generated speed profiles for different road 

categories 

Similar to the case of the Chicago instances, a time-horizon equal to 8 hours 

is used, and service times of 20 minutes are assumed for all customers. Driving 

cycles are also constructed for all road-links in these networks as explained earlier. 

In total 15 instances of size 500 with 50 customers, and 15 instances of size 1000 
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with 100 customers are generated. Note that while the problem features considered 

in this paper are considerably more complicated and comprehensive, the problem 

size of the instances compare favourably with the existing related studies. All the 

test instances developed in this paper along with the reported solutions in this 

section are available at http://www.lancaster.ac.uk/staff/raeesi/MOOHsforSPRP-

DAT.zip, or could be requested from the authors via email. 

In a pre-processing stage, the PEP is applied on all the 65 test instances 

considered by the paper and the resulting reduced networks are submitted to the 

proposed MOOHs for the generation of Pareto fronts.  

All algorithms were implemented in MATLAB and run on a computer with 

Intel Core™ i5 3.20 GHz processor with 8 GB RAM. The description and the 

determined values for the parameters used in the algorithms are provided in Table 

3-2. To fine-tune the parameters on all categories of instances considered, we have 

conducted a preliminary set of empirical analyses. While the chosen settings 

generally work well on the considered test problems, no claim is made that our 

choice of parameter values is the best possible.  

Not that the total time budget of all algorithms for all instance sizes is set to 

45 minutes, and all algorithms are run 10 times on each instance and all reported 

measures and runtimes are based on the average of the 10 runs.



 

Table 3-2 

Description and the determined values for parameters in each algorithm 

Algorithm Parametres Description Values* 

HQSM-SA-MA 

ᵱ�� QSM parameter 1 

ᵱ�� QSM parameter 0.1 

TimeLimitSA Time budget given to SAENS for IP-1 (second) 5 

MaxIterSA Maximum number of allowed iterations in SAENS for IP-1 10 

MaxIterMA Maximum number of allowed iterations in OFSS-MA 5 

np Population size in OFSS-MA 30 

TimeLimited Time budget given to SAENS for education in OFSS-MA (second) 2 

MaxItered Maximum number of allowed iterations in SAENS for education in OFSS-MA 3 

TimeLimitin Time budget given to SAENS for intensification in OFSS-MA (second) 2 

MaxIterin Maximum number of allowed iterations in SAENS for intensification in OFSS-MA 3 

    

HMOEA-GTA 

ᵅ�� Population size 50 

MaxIterHMOEA Maximum number of allowed iterations in HMOEA-GTA 1000 

TimeLimited Time budget given to SAENS for education (second) 5 

TimeLimitin Time budget given to SAENS for intensification (second) 5 

MaxItered Maximum number of allowed iterations in SAENS for education 3 

MaxIterin Maximum number of allowed iterations in SAENS for intensification in OFSS-MA 3 

    

SOFSS-MOEA 
ᵅ�� Population size 50 

MaxIterSOFSS-MOEA Maximum number of allowed iterations in SOFSS-MOEA 3000 

    
Common parameters for all algorithms and instance sizes: Ped = 0.5, Pin = 0.5, Pcr = 0.9, ᵰ� = 0.75, δ = 0.95, S=10, alpha = 0.92, MinTemp = 300, StartingTemp 
= 500. Total time budget of all algorithms for all instance sizes is set to 45 minutes. 
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Unlike single objective heuristics, evaluating the performance of a MOOH is 

not a straightforward task, since approximated sets of ND solutions are yielded by 

MOOHs which are not easy to compare. Therefore, a set of performance metrics 

tailored for the evaluation of the quality of MOOHs are usually used. These metrics 

are described next. 

3.5.1 Performance metrics 

We use the following multi-objective performance metrics that measure the two 

criteria of convergence and uniform diversity (Durillo & Nebro, 2011): 

 Generational Distance (GD) (Van Veldhuizen & Lamont, 1998). This 

performance metric measurs how far the solutions in the Pareto 

appoximation are from those in the optimal Pareto front and is defined as 

follows:  

ᵃ�ᵃ� =
�∑ ��

��

�=�

�
 (3-5) 

where � is the number of the solutions in the approximation and �� is the 

Euclidean distance between each solution and the nearest member in the 

optimal Pareto front in the objective space. Clearly, if all the solutions in 

the approximated front are in the true front, then we have GD = 0. 

 Inverse Generational Distance (IGD) (Zitzler et al., 2000). As a variant of 

GD, IGD is aslo computed using the same expression (3-5), with the 

difference that � in IGD represents the number of solutions in the true front 

and �� is the Euclidean distance between each point of that true front and 

the nearest member in the approximation.  

 Hypervolume (HV) (Zitzler & Thiele, 1999): This metric calculates the 

volume enclosed by the set of ND points ᵊ� in the objective space, such that 

for each point ᵅ� ∈ ᵊ�, a hyper-cube �� is computed with a reference point ᵊ� 

and the point ᵅ� as the diagonal corners of the hypercube. The reference 
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point can be found by constructing a vector of maximal objective functions 

values. A union of all hypercubes is determined as the hypervolume (HV): 

ᵃ�ᵃ� = ᵅ�ᵅ�ᵅ�ᵅ�ᵅ�ᵃ��� ��

|�|

�=�
� (3-6) 

A larger value of HV is more desirable. 

The calculation of these performance measures, however, requires a knowledge 

of the true front, which is not available in case of large sized instances. In such 

cases, following a common practice in the pertinent literature (Coello et al., 2007; 

Fonseca et al., 2005), we construct a ‘Reference Set’ (RS) by putting all Pareto 

fronts found by the MOOHs over all runs in a pool of solutions, and then extracting 

all ND solutions from this pool. This set constitutes the basis of comparison for all 

proposed algorithms. Having RSs available, as another useful performance 

indicator, we use the HV% metric that represents the ratio of the HV of each 

algorithm to the HV of the RS in the corresponding instance. 

3.5.2 Performance of the MOOHs 

In this section, we begin by analysing the performance and the scalability of the 

proposed algorithms in solving large sized instances based on the Chicago road 

network, and the graphs with 500 and 1000 nodes with 50 and 100 customer 

locations, respectively. The summary performance of the proposed MOOHs against 

the true POSs of the small sized instances is presented afterwards.  

Table 3-3 to Table 3-5 present the average runtime, and the average 

performance of the MOOHs under the performance metrics of GD, IGD, HV and 

HV%, for each instance of size |ᵃ�| = 500, |ᵃ��| = 50 (called I500,50 instances 

hereafter), |ᵃ�| = 1000, |ᵃ��| = 100 (called I1000,100 instances hereafter), and Chicago 

test instances with |ᵃ��| = 100 (called Ichicago,100 instances hereafter), respectively. 

The HV% in these tables represents the ratio of the HV of each method to the HV 

of the RS in the corresponding instance. 
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It is observed in these tables that the HQSM-SA-MA is consistently able to 

provide a very good approximation of the RSs in all cases. However, the 

performance of the HMOEA-GTA degrades significantly with the increasing size of 

instances. The SOFSS-MOEA, on the other hand, has a rather satisfactory 

performance in case of the I500,50 instances, and the Ichicago,100 instances, but its 

performance in case of the I1000,100 instances is not as good. Note also that while the 

HMOEA-GTA uses the entire allocated computational budget in all cases (i.e. 45 

minutes), the other two algorithms only consume the whole budget in case of the 

larger instances. 

In Table 3-6, we summarise all results obtained from the application of the 

three proposed MOOHs on all test instances of the paper. The las two columns of 

this table, i.e. Avg. All and Avg. Large, show the average performance over all test 

instances and over large sized test instances, respectively.  

It is obvious from the table that the proposed MPT-based algorithm, i.e. 

HQSM-SA-MA, is placed on top of the other two MOEA-based algorithms in almost 

all multi-objective performance metrics over the considered libraries of instances 

and can provide a consistently good solution quality while preserving the required 

scalability. The HMOEA-GTA, on the other hand, might be considered as the least 

favourable algorithm to solve the SPRP; while it can deliver almost the best 

performance in the case of the small sized instances (at a higher computational 

cost, though), its ability to deal with large sized SPRP instances is much degraded 

by the increasing size and difficulty of these instances. On the contrary, while the 

performance of the SOFSS-MOEA is not very promising in case of the small sized-

test instances, it can deliver a much better performance than the HMOEA-GTA (but 

not as good as the HQSM-SA-MA) when the instance sizes increase.    



 

Table 3-3 

Multi-objective performance measures for I500,50 test instances 

Inst. # 
 HQSM-SA-MA  HMOEA-GTA  SOFSS-MOEA 

 Time m GD IGD HV HV%  Time m GD IGD HV HV  Time m GD IGD HV HV 

1  31 0.02 0.02 0.78 86.21%  45 0.03 0.03 0.58 63.75%  18 0.03 0.03 0.66 72.78% 

2  23 0.02 0.05 0.71 79.75%  45 0.05 0.06 0.49 54.59%  22 0.03 0.03 0.63 70.74% 

3  12 0.04 0.03 0.56 69.40%  45 0.03 0.03 0.49 60.13%  21 0.02 0.03 0.68 84.02% 

4  30 0.02 0.02 0.65 72.09%  45 0.04 0.03 0.52 57.13%  20 0.08 0.03 0.45 50.39% 

5  23 0.03 0.04 0.55 66.40%  45 0.04 0.04 0.40 48.47%  20 0.02 0.03 0.51 61.03% 

6  29 0.03 0.03 0.59 66.15%  45 0.03 0.03 0.52 58.08%  19 0.07 0.03 0.39 43.95% 

7  11 0.03 0.02 0.82 86.14%  45 0.03 0.04 0.54 56.50%  21 0.13 0.04 0.52 54.81% 

8  10 0.02 0.04 0.61 74.67%  45 0.03 0.03 0.42 51.25%  22 0.04 0.03 0.60 73.38% 

9  38 0.01 0.01 0.84 90.34%  45 0.04 0.03 0.50 54.18%  21 0.09 0.06 0.26 27.55% 

10  29 0.03 0.03 0.56 66.55%  45 0.03 0.03 0.53 63.19%  17 0.02 0.03 0.54 64.08% 

11  37 0.01 0.01 0.83 88.35%  45 0.03 0.02 0.60 63.84%  23 0.07 0.04 0.38 40.67% 

12  15 0.03 0.05 0.61 72.57%  45 0.04 0.05 0.48 57.18%  14 0.04 0.04 0.70 82.84% 

13  30 0.02 0.03 0.73 82.88%  45 0.04 0.04 0.47 53.63%  18 0.05 0.04 0.51 58.32% 

14  20 0.01 0.03 0.64 74.02%  45 0.06 0.06 0.30 34.77%  15 0.05 0.03 0.62 71.66% 

15  30 0.02 0.03 0.74 82.95%  45 0.05 0.04 0.46 51.02%  16 0.05 0.03 0.62 69.57% 

Avg.  24 0.02 0.03 0.68 77.23%  45 0.04 0.04 0.49 55.18%  19 0.05 0.03 0.54 61.72% 

 

 

 

 

 

 

 

 

 

 



 

 

 

Table 3-4 

Multi-objective performance measures for I1000,100 test instances 

Inst. # 
 HQSM-SA-MA  HMOEA-GTA  SOFSS-MOEA 

 Time m GD IGD HV HV%  Time m GD IGD HV HV  Time m GD IGD HV HV 

1  46 0.03 0.04 0.73 74.44%  45 0.12 0.17 0.17 17.72%  34 0.11 0.10 0.41 41.34% 

2  46 0.01 0.02 0.76 
80.07

% 
 45 0.09 0.07 0.25 26.33%  43 0.11 0.03 0.55 57.84% 

3  46 0.03 0.05 0.49 51.74%  45 0.09 0.10 0.26 27.82%  30 0.09 0.05 0.55 58.22% 

4  46 0.02 0.03 0.56 65.75%  45 0.05 0.04 0.38 44.25%  35 0.02 0.03 0.69 
79.99

% 

5  46 0.02 0.04 0.83 
87.68

% 
 45 0.04 0.09 0.33 34.93%  42 0.10 0.10 0.32 33.64% 

6  46 0.02 0.02 0.74 77.36%  45 0.12 0.10 0.22 22.51%  45 0.10 0.05 0.47 48.53% 

7  46 0.03 0.04 0.76 76.53%  45 0.11 0.18 0.19 18.75%  36 0.06 0.06 0.66 66.19% 

8  45 0.02 0.02 0.75 78.53%  45 0.11 0.11 0.22 22.67%  45 0.08 0.05 0.58 60.83% 

9  46 0.01 0.02 0.81 
87.80

% 
 45 0.11 0.10 0.12 13.45%  35 0.04 0.03 0.57 62.13% 

10  45 0.02 0.04 0.70 76.74%  45 0.05 0.04 0.36 39.03%  45 0.12 0.05 0.37 40.91% 

11  45 0.02 0.02 0.77 
79.69

% 
 45 0.08 0.06 0.35 36.15%  45 0.13 0.06 0.32 33.10% 

12  44 0.02 0.01 0.78 82.99%  45 0.10 0.08 0.23 24.76%  45 0.10 0.04 0.45 47.36% 

13  45 0.01 0.04 0.81 87.20%  45 0.04 0.07 0.25 27.39%  34 0.07 0.04 0.63 67.82% 

14  37 0.02 0.02 0.77 
79.89

% 
 45 0.12 0.11 0.18 18.46%  43 0.17 0.09 0.26 27.08% 

15  42 0.02 0.02 0.81 81.77%  45 0.13 0.15 0.16 16.41%  29 0.11 0.08 0.44 44.89% 

Avg.  45 0.02 0.03 0.74 
77.88

% 
 45 0.09 0.10 0.25 26.04%  39 0.09 0.06 0.48 51.32% 

 

 

 

 



 

 

 

 

 

 

 

 

 

 
Table 3-5 

Multi-objective performance measures for Ichicago,100 test instances 

Inst. # 
 HQSM-SA-MA  HMOEA-GTA  SOFSS-MOEA 

 Time m GD IGD HV HV%  Time m GD IGD HV HV  Time m GD IGD HV HV 

1  46 0.03 0.06 0.62 
66.68

% 
 45 0.06 0.07 0.33 35.36%  43 0.01 0.01 0.91 

98.99

% 

2  46 0.02 0.02 0.77 80.62%  45 0.06 0.06 0.36 37.65%  45 0.04 0.02 0.64 
66.89

% 

3  46 0.02 0.02 0.78 83.79%  45 0.04 0.05 0.39 42.19%  45 0.09 0.03 0.55 59.10% 

4  46 0.02 0.04 0.60 72.89%  45 0.04 0.05 0.27 32.95%  45 0.01 0.02 0.65 
78.87

% 

5  46 0.03 0.05 0.67 74.10%  45 0.04 0.06 0.42 46.23%  45 0.05 0.04 0.52 57.90% 

6  46 0.03 0.07 0.63 
69.06

% 
 45 0.08 0.09 0.26 28.34%  45 0.04 0.03 0.63 68.48% 

7  46 0.02 0.04 0.71 77.38%  45 0.06 0.06 0.29 31.55%  45 0.03 0.02 0.59 64.72% 

8  46 0.01 0.02 0.68 74.93%  45 0.05 0.05 0.34 37.76%  45 0.02 0.01 0.71 78.24% 

9  46 0.01 0.02 0.76 87.26%  45 0.04 0.05 0.38 43.92%  45 0.02 0.02 0.59 68.44% 

10  46 0.03 0.05 0.70 
76.09

% 
 45 0.06 0.07 0.34 36.57%  45 0.05 0.02 0.60 65.08% 

Avg.  46 0.02 0.04 0.69 76.28%  45 0.05 0.06 0.34 37.25%  45 0.04 0.02 0.64 
70.67

% 

 

 
 Table 3-6 



 

 

 

Summary results of all algorithms over all instances 

 Alg. Performance measures 

 Instance type and size 

Avg. All Avg. Large 
 

Small-

sized 
I500,50 I1000,100 Ichicago,100 

H
Q

S
M

-S
A

-M
A

 
Deviation from global minima 

f1  1.43% 3.98% 2.66% 4.39% 3.35% 3.45% 

f2  1.29% 3.38% 1.54% 13.86% 3.79% 3.85% 

f3  0.07% 1.06% 1.01% 3.14% 1.44% 1.48% 

Runtime (min)  4.34 24.47 44.74 46.05 24.73 37.47 

NDsetSize    15.34 27.83 27.71 36.34 24.31 29.91 

TrueNDsize    5.80 5.10 4.32 4.36 5.08 4.62 

GD    0.02 0.02 0.02 0.02 0.02 0.02 

IGD    0.02 0.03 0.03 0.04 0.03 0.03 

HV    0.70 0.68 0.74 0.69 0.70 0.71 

HV%   
 

90.13% 77.23% 
77.88

% 
76.28% 82.19% 77.24% 

 
                 

H
M

O
E

A
-G

T
A

 

Deviation from global minima 

f1  1.00% 4.44% 4.10% 5.54% 4.41% 4.59% 

f2  0.25% 4.45% 6.44% 34.18% 9.95% 10.21% 

f3  0.22% 7.90% 14.22% 19.64% 13.49% 13.89% 

Runtime (min)  43.58 45.02 45.05 45.05 44.48 45.04 

NDsetSize    28.49 47.07 38.55 49.73 38.37 44.54 

TrueNDsize    15.21 1.82 1.00 0.10 6.52 1.08 

GD    0.01 0.04 0.09 0.05 0.04 0.06 

IGD    0.01 0.04 0.10 0.06 0.05 0.07 

HV    0.75 0.49 0.25 0.34 0.51 0.36 

HV%    96.6% 55.2% 26.0% 37.3% 61.63% 39.77%  
                 

S
O

F
S
S
-

M
O

E
A

 

Deviation from global minima 

f1  48.17% 6.97% 2.73% 8.23% 7.40% 5.24% 

f2  0.00% 0.89% 2.68% 1.00% 1.95% 2.00% 

f3  0.09% 3.16% 5.41% 9.70% 5.63% 5.80% 

Runtime (min)  6.84 19.23 39.15 44.71 22.98 33.07 

NDsetSize    6.80 22.80 19.27 33.01 17.40 24.03 



 

 

 

TrueNDsize    3.40 3.20 0.43 7.54 3.30 3.25 

GD    0.02 0.05 0.09 0.04 0.05 0.06 

IGD    0.05 0.03 0.06 0.02 0.05 0.04 

HV    0.36 0.54 0.48 0.64 0.47 0.54 

HV%    46.89% 61.72% 51.32% 70.67% 54.99% 60.06% 
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These findings are in line with the similar findings by Becerra and Coello 

(2006) that also demonstrate the MPT-based heuristics perform better than 

MOEAs in approximating the true POS of hard optimisation problems. 

In the next section, we carry out some RS analyses to gain useful insights. 

3.5.3 Reference sets analyses 

The RSs found in the case of the considered instances are analysed further in this 

section to represent better the trade-offs among the three objectives of the SPRP 

and to observe the overall fleet size and mix, multiple trips and the routing patterns 

of the solutions. For representation, the RS of a selected instance (i.e. instance 11 

in I500,50) is illustrated in the 3-dimensional (3D) space in Figure 3-7. 

 

Figure 3-7 The RS of a selected SPRP instance 

While visualisation of the Pareto front in case of multi-objective problems with 

more than two objective functions is not very easy, heat maps like the one presented 

in Figure 3-8, are appropriate visual aids for the decision maker to select a solution 

that provides a suitable compromise among the objective values. In this figure, the 

RS of instance 7 in I500,50 is selected and the percentage deviations from the absolute 

minimum in case of each objective function for all the 40 solutions on the considered 
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RS is shown. While it can be observed that there exists a significant trade-off 

among the three objectives of the SPRP and the minimisation of one objective can 

significantly deteriorate the value of the other two, with the help of colour gradient, 

this figure makes it possible to visually locate the more balanced solutions. It is 

also worth noting that while the minimisation of vehicle hiring cost does not have 

a large negative impact on the travel time in the case of this instance, it has led to 

a significant increase in the fuel consumption objective. This common observation 

is mainly due to the fleet size and mix in emissions-efficient solutions where the use 

of a less environment-friendly truck of type heavy-duty is usually refrained and 

compensated by allocating several more light or medium duty trucks to the routes. 

However, due to capacity-efficiency, heavy-duty trucks can accommodate many 

customers in one go and lead to a smaller hiring cost and makespan. 

 

Figure 3-8 Heat map illustrating the ND solutions to a given SPRP instance 

As an average of all the solutions on all RSs, Table 3-7 provides a summary 

report of a set of routing characteristics contained in the ND solutions. In this 

table, the avg. no. of MT light/medium/ heavy-duty rows indicate the average 

number of light, medium, and heavy duty trucks used for multiple-trips. 
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Table 3-7  Average characteristics of solutions on the RSs of the large sized instances 

Characteristics 
Instance type 

Avg. 
I500,50 I1000,100 Ichicago,100 

Avg. no. of routes 9.88 19.17 19.26 16.10 

Avg. no. of light-duty 0.15 0.11 0.69 0.32 

Avg. no. of medium-duty 3.05 4.35 3.61 3.67 

Avg. no. of heavy-duty 6.69 14.70 14.96 12.12 

Avg. truck capacity utilisation 88.71% 86.73% 88.29% 87.74% 

Avg. no. of MT light-duty 0.03 0.06 0.06 0.05 

Avg. no. of MT medium-duty 0.90 0.58 0.39 0.62 

Avg. no. of MT heavy-duty 0.72 0.36 1.37 0.82 

Avg. no. of customers per route 5.12 5.24 5.37 5.25 

Avg. makespan of each trip (min) 322.89 372.43 242.59 312.63 

Avg. fuel consumption of each trip (lit) 61.87 80.80 34.83 59.16 

Mean departure time from the depot 09:18 08:50 10:49 09:40 

In this table, the rather large number of routes in the solutions, and 

consequently the rather small number of customers per route and the higher 

utilisation of heavy-duty trucks, is mainly due to the large size of the demands 

requested by the customers in the developed instances. This is confirmed by the 

row indicating the average truck capacity utilisation, which is indeed quite satisfactory. 

The table shows that as instances become larger, the heavy-duty trucks are the 

most preferred truck type in both cases of a single or multiple trips. The mean 

departure time from the depot, which is on average around 9:40 a.m., suggests that 

trucks are usually dispatched almost after the first morning peak congestion, and 

when the overall traffic speed starts to rise, to make the best use of the fastest 

period of the day. Note also in this table the smaller fuel consumption and 

makespan of each trip in the case of Chicago instances that indicates the travel 

times of network road-links in the case of these instances are comparatively higher. 

3.5.4 Performance of the proposed neighbourhood exploration 
strategy 

In this section, we analyse the performance of the neighbourhood exploration 

strategy introduced by the paper, i.e. the ENS. In order to do this, the first instance 

in I500,50 is selected and 50 different feasible SPRP solutions are randomly generated. 
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These feasible solutions are then submitted as initial solutions to the neighbourhood 

exploration strategy of Bent and Van Hentenryck (2004) (denoted by BVH-NS), 

discussed in section 4 of the paper, and the ENS, for the improvement of total travel 

time. Both algorithms are given an equal time budget of 30 seconds and the 

improved solutions returned by them are compared. Figure 3-9 illustrates the result 

of these experiments.   

 
Figure 3-9 Comparison of the ENS and the BVH-NS 

While both neighbourhood exploration strategies can very efficiently improve 

the initial solution by over 76%, the ENS is able to provide a better solution in 34 

cases out of the entire 50 cases. 

3.6 Discussion and concluding remarks 

In this paper, we focused on solving a new realistic variant of the well-known PRP, 

called the SPRP, which is a tri-objective, time and load dependent, fleet size and 

mix PRP, with time windows, flexible departure times, and multiple-trips on 

congested urban road networks. The SPRP is a very difficult problem to solve as 

it contains several hard variants of the VRPTW, and entails addressing the 

problem of intermediate road-paths identification between truck visits on the 
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original roadway graph, and solving several multi-objective lower level optimisation 

problems. In order to be able to approximate the true POS of practical real-life 

sized instances of the SPRP within a reasonable computational cost, the paper 

developed a multi-phase hybridised exact and heuristic solution framework 

comprising three different higher-level MOOHs that benefit from new lower-level 

heuristics designed to address the emerging optimisation problems that arise in the 

course of the SPRP solution evaluation. A new scheme of UENDA was incorporated 

into all algorithms, and a new neighbourhood exploration strategy was introduced 

in the paper.  

The main MOOH proposed by the paper, i.e. the HQSM-SA-MA, hybridises 

successfully a recent efficient MPT to address tri-objective MOIP problems with a 

two-stage LS-based heuristic. With this approach, all difficult lower level multi-

objective optimisation problems that must be addressed in the SPRP are reduced 

to easier single objective problems, and the search for ND solution progresses 

systematically along the non-inferior surface. The other two competing MOOHs 

developed by the paper are based on the well-known MOEAs, where a hybrid and 

simple MOEAs were implemented and compared with each other and the HQSM-

SA-MA.    

A new comprehensive library of large-sized SPRP test instances were 

developed by the paper and the performance of the proposed MOOHs were 

examined in addressing them. The computational results of the paper confirm the 

superior performance of the HQSM-SA-MA over the other two proposed MOEA-

based MOOHs. The algorithm demonstrates a satisfactory scalability and is 

consistently able to obtain remarkable results on all test instances considered. Our 

findings confirm the findings by Becerra and Coello (2006) that also demonstrate 

MPT-based heuristics outperform MOEAs when tackling hard optimisation 

problems. The comparison of the other two MOEA-based heuristics, on the other 

hand, interestingly conveys that, as the problems become larger and more difficult 
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to solve, the proposed simple MOEA is in general better performing than the hybrid 

MOEA, despite its more sophisticated design.  

A more in-depth analysis of the obtained SPRP Pareto fronts reveals the 

significant trade-offs among the three objectives of the SPRP, and particularly 

show that the mere minimisation of the emissions can be so costly. Therefore, to 

enable decision makers to strike a balance between business and environmental 

objectives, it is always more realistic to provide them with a set of ND solutions 

that reflect the corresponding trade-offs efficiently.  

While there are multiple research opportunities relevant to the study of VRPs 

directly on the roadway networks, future research can use the proposed benchmark 

test instances and solution algorithms as platform for investigating the effect of 

different perturbations in various characteristics of a logistics system like 

customers’ demands, locations, and time-windows, depot location, and vehicle fleet 

characteristics, and carry out various scenario and what-if analyses. In addition to 

this, the proposed algorithms in this paper are SPRP dedicated and despite the 

fact that the SPRP per se includes different variants of the VRPTW, such as the 

TDVRPTW, the fleet size and mix VRPTW, the MT-VRPTW, and the MO-

VRPTW, extra programming effort and parameter tuning is required to modify the 

algorithms to solve specific instances related to those variants. To address this 

limitation, in further research, the proposed algorithms can be extended to be used 

as unified general multi-objective solvers that can address these rich variants with 

minimum user interference.



 

4. THE ELECTRIC VEHICLE 
ROUTING PROBLEM WITH 

SYNCHRONISED AMBULANT 
BATTERY SWAPPING OR 

RECHARGING 

4.1 Introduction 

With the ever-increasing concerns about Greenhouse Gas (GHG) emissions from 

Urban Freight Distribution (UFD), the European Commission has set a target for 

“essentially CO2-free city logistics in urban centres by 2030” (European 

Commission, 2011). Meeting such target would inevitably entail facilitating the 

conversion of conventionally fuelled logistics fleet into Electric Commercial 

Vehicles (ECVs) with zero local emissions. This conversion of the fleet, however, is 

still so much constrained by ECVs’ reduced driving range, long recharging time, 

and scarce and unevenly scattered Charging Stations (CSs). While reports 

(Committee on Climate Change, 2010) suggest a high uptake of ECVs will be 

possible by 2030 as electric Light Goods Vehicles (LGVs) will be then cost-saving 

compared to conventionally fuelled vehicles (Allen et al., 2017), for a smooth 

transition phase short term operational solutions are crucial. 

The Electric Vehicle Routing Problem with Time-Windows (EVRPTW) 

(Schneider et al., 2014) is a variant of the VRP that aims at aiding companies 

operating on ECVs to overcome “range anxiety” by developing solutions that 

comprise the introduction of minimal detour in the vehicle route to visit CSs. The 

primary challenge in addressing the EVRPTWs, that distinguishes them from their 

Green-VRP (G-VRP) (Erdoğan & Miller-Hooks, 2012) counterpart, is in the 

significantly larger recharging time required to refill ECVs’ batteries as compared 

to other alternative fuel vehicles. This limitation has implications mainly with 
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regards to meeting customers’ time-windows, and thus in the presence of realistic 

time windows the solutions yielded by EVRPTWs might be either infeasible or too 

expensive in terms of the number of ECVs required and the total distance travelled. 

While partial recharging strategies instead of recharging the ECV battery fully 

upon arrival at a CS (Bruglieri et al., 2015; Desaulniers et al., 2016; Keskin & 

Çatay, 2016) can be helpful to a limited extent to address the large recharging time 

required, a more fundamental shift of paradigm is indeed needed to entice logistics 

companies to acquire ECVs in their fleet. One such attempt in recent years has 

been the idea of swapping the ECV’s depleted battery with a fully charged one at 

a Battery Swapping Station (BSS). Leading EV companies such as the Chinese 

company NIO® are promising a 3-minute-long battery swapping experience and 

are making an investment to roll out at least 1100 power swap stations for battery 

swapping in main cities of China by 2020 (Manthey, 2017). This potential 

technological development has already motivated vehicle routing research and few 

studies have approached the problem as a Battery Swap Station Location-Routing 

Problem (BSS-LRP), where the location of BSSs and the ECV routes considering 

their limited range must be determined (Hof et al., 2017; Yang & Sun, 2015). While 

BSS-LRPs might ultimately incur a smaller number of ECVs required to assign to 

delivery routes, and a shorter overall distance travelled, their application is 

inhibited by two major limitations. Firstly, opening a BSS can be significantly 

costly and the trade-off between acquiring more ECVs to operate the routes via 

visiting CSs and opening a BSS is yet unknown and very much problem dependent. 

The second issue is due to the nature of the business context in which ECVs are 

already operationalised; given their current payload restrictions, ECVs are mainly 

used in the small-package shipping industry by logistics companies like UPS, DHL, 

and DPD for last-mile deliveries (Schneider et al., 2014), and in such context 

customers locations changes on a daily basis and the location optimisation aspect 

of the BSS-LRP might not be deemed much pertinent.    
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To address the aforementioned limitations, in this study we introduce a new 

paradigm shift in EVRPTWs by exploiting new relevant technological 

developments that make mobile battery swapping or mobile rapid recharging 

possible. The development of a new fast battery swapping device installed on a 

Battery Swapping Van (BSV), documented in patents Lu and Zhou (2013) and Gao 

et al. (2012), and justified and corroborated by the study of Shao et al. (2017), 

opens up new possibilities to logistics by providing an ‘ambulant’ battery swapping 

mode, as opposed to the ‘stationary’ battery swapping mode as in BSS-LRP. On 

par with this technology, the mobile recharging option developed by companies like 

NIO® and FREEWIRE TECHNOLOGIES® (Figure 4-1), implies many new 

possibilities, and of course unprecedented attractive research directions. For 

example, NIO® claims that their Power Mobile can travel anywhere to any EV in 

need of battery recharging and provide an extra 100 km with 10 min of charging.  

a.  b.  

Figure 4-1 (a) NIO Power Mobile and (b) MOBI GEN TWS 

Hence, in this study we introduce a new class of the EVRPTWs called the 

Electric Vehicle Routing Problem with Synchronised Ambulant Battery 

Swapping/Recharging (EVRP-SABS) that is motivated by these new technological 

developments. It is worth explaining our intentional choice of the word ‘ambulant’ 

over the word ‘mobile’ to name this class of the problem, as to connote the 

‘emergency’ sense in the application of the BSVs in the design of delivery routes. 

In fact, we are aware that acquiring a BSV has its own acquisition cost and 

dispatching a BSV to visit an ECV in need of battery swapping/recharging incurs 
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cost (e.g. proportional to the distance travelled). Moreover, keeping an inventory 

of spare electric batteries constitutes another cost element in the system. Hence, it 

is not sensible to entirely eliminate the option of recharging at a CS in the road 

network and replace it by mobile battery swapping/recharging, and instead this 

option is only kept as a last resort when a feasible solution via visiting CSs is not 

obtainable. Therefore, the proposed EVRP-SABS includes the EVRPTW with CSs 

and retains recharging at CSs as the primary solution to routing a fleet of ECVs.  

Following the introduction of the EVRP-SABS, we focus on a key complication 

arising in the context of the EVRPTWs with CSs that corresponds to the optimal 

selection and placement of the CSs in energy infeasible delivery routes. To tackle 

this situation efficiently, we propose new combinatorial results that lead to the 

development of an exact Eligible Paths Identification Procedure (EPIP) that is 

used in a pre-processing stage to identify a priori all ‘eligible’ paths that pass 

through one or several CSs between a pair of required nodes and eliminate all 

redundant ones. The paper further develops closed form expressions for the 

precomputation of the required attributes of the identified paths and uses them in 

a significantly easier to solve EPIP-based formulation of the EVRP-SABS and its 

related variants, i.e. EVRPTW and GVRP, where all CSs are eliminated from the 

working multi-graph. It is demonstrated that by just putting the strengthened 

EPIP-based formulation into a standard branch-and-bound solver, one can solve 

and improve many of the test instances that were solved previously only using a 

sophisticated branch-price-and-cut algorithm (Desaulniers et al., 2016). Finally, to 

find near optimal solutions to practical-sized instances of the hard to solve EVRP-

SABS, the paper proposes a two-Stage MatHeuristic (2S-MatHeu) algorithm that 

exploits the EPIP paths in its input and uses an exact Dynamic Programming 

(DP) algorithm at its core as the routine to solve the iteratively emerging route-

path optimisation problem. 
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The contribution of this paper is multi-fold: (i) the EVRP-SABS is introduced 

and formulated as a Mixed Integer Linear Programming (MILP) model; in 

particular, the proposed formulation includes new synchronisation constraints that 

ensure a BSV and an ECV will be present at a designated time and location to 

perform a planned swap/recharge, (ii) an exact EPIP is proposed based on new 

combinatorial results that allow the identification of the set of the paths that must 

be retained between a pair of customers or a customer and the depot a priori, and 

closed form expressions are developed for the pre-computation of the paths 

attributes, (iii) a significantly strengthened EPIP-based formulation of the EVRP-

SABS and the other related problem classes is developed and its performance 

against the existing formulations and algorithms is evaluated, and (iv) a new 2S-

MatHeu algorithm is proposed to tackle practical sized instances of the EVRP-

SABS; the proposed algorithm incorporates new neighbourhood exploration 

strategies in an Intensified Large Neighbourhood Search (ILNS) algorithm and uses 

a DP model for the route-path optimisation at its core. 

In the remainder of this chapter, in section 4.2, a survey of the most pertinent 

literature is presented. Section 4.3 of the paper describes the EVRP-SABS formally 

and establishes the required notation, definitions and assumptions. Section 4.4 

discusses the EPIP and the EPIP-based formulation. Section 4.5 introduces the 

proposed 2S-MatHeu. Section 4.6 presents the computational results of the EVRP-

SABS and the proposed algorithms, while section 4.7 summarises the research 

conclusions. 

4.2 Previous related work 

The significant share of the road freight distribution in the global emissions of 

Greenhouse Gases (GHGs) and other environmental pollutants has motivated a 

surge of interest in the study of Vehicle Routing and Scheduling Problems (VRSPs) 

with environmental considerations in recent years. Research work in this area might 
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be broadly categorised into: (i) the Emissions minimising VRPs (EM-VRPs) 

comprising the pollution routing problem (Bektaş & Laporte, 2011) and its variants 

(Androutsopoulos & Zografos, 2017; Demir et al., 2012; Franceschetti et al., 2017; 

Koç et al., 2014; Raeesi & Zografos, 2019), that aim at minimising the fuel 

consumption incurred by the delivery routes as a proxy for emissions, and (ii) the 

Green-VRPs (G-VRPs) that are concerned with routing a fleet of vehicles that run 

on a cleaner alternative fuel (Erdoğan & Miller-Hooks, 2012; Raeesi & O'Sullivan, 

2014; Salimifard & Raeesi, 2014) or electric batteries (Bruglieri et al., 2015; Conrad 

& Figliozzi, 2011; Desaulniers et al., 2016; Hiermann et al., 2016; Schneider et al., 

2014). There is also recent research that bridges these two categories by routing a 

mixed fleet of electric and conventional vehicles (Goeke & Schneider, 2015; Macrina 

et al., 2018). The interested reader is referred to Bektaş et al. (2019) for an up-to-

date review of the key papers in the field. We also refer the reader to the paper by 

Pelletier et al. (2016) on goods distribution with ECVs that serves as a good 

starting point to discover the fundamentals of the ECV technology and its relevant 

economic and operational aspects. In what follows, a concise review of the papers 

that are most pertinent to this study is presented. This includes a brief discussion 

on a class of routing problems that may not be explicitly classified under VRSPs 

with environmental considerations but share some key features with the problem 

considered in this paper.    

The EVRPTW (Schneider et al., 2014) can be viewed as a special case of the 

G-VRP (Erdoğan & Miller-Hooks, 2012) where capacity constraints and time-

windows are added to the problem, and significantly larger refuelling (recharging) 

time is assumed. In the variant considered by Schneider et al. (2014) a minimum 

number of ECVs must be assigned to energy-feasible delivery routes (potentially 

visiting one or several CSs) that visit each customer exactly once during their pre-

defined time-windows, such that the total capacity constraint of the ECV is not 

violated and the total distance travelled is minimised. Due to the limited driving 
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range of ECVs, the core complication in the EVRPTW is related to the 

introduction of minimal detours in the vehicle routes to visit available CSs on the 

working graph to fully recharge their battery and carry on the delivery task.  They 

formulate this problem as a MILP on an augmented graph of the customers and 

CSs which includes ‘sufficient’ dummy copies of the CSs to allow several visits to 

the same CS, but since the graph grows quickly in size with the increasing size of 

the instances, the formulation can only handle small-sized instances of 10, and few 

instances of 15 customer nodes and 5 CSs. An algorithm based on the hybridisation 

of a Variable Neighbourhood Search (VNS) algorithm with a Tabu Search (TS) 

heuristic is further developed by Schneider et al. (2014), where to handle the 

selection and placement of CSs into energy-infeasible routes, some of the exiting 

neighbourhood operators, such as 2-opt, relocate, and exchange are customised and 

used in their TS, and a new dedicated move operator called the stationInRe 

operator that performs insertions and removals of CSs is introduced. 

To allow more flexibility in the design of the ECV delivery routes, Keskin and 

Çatay (2016) relax the full recharging restriction and allow partial recharging at a 

CS. To accommodate the decision on charging level upon arrival at a CS in the 

MILP proposed by Schneider et al. (2014), they introduce a new decision variable 

to represent the battery state of charge on departure from a CS. An Adaptive Large 

Neighbourhood Search (ALNS) algorithm that comprises new heuristics for station 

removal and station insertion is employed to solve the proposed problem. Their 

station insertion procedure in particular tries to repair an energy-infeasible solution 

by using one of the three different insertion algorithms they propose. Their 

computational results demonstrate that with partial recharging instead of full 

recharging, the solution to a few test instances can be improved. 

Other variants of the EVRPTW considering different recharging strategies, 

recharging functions and fleet composition have been also explored in the literature. 

Felipe et al. (2014) propose a heuristic to solve a variant in which in addition to 
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the decision on the charging level at a CS, the technology used for recharging e.g. 

regular or fast recharging is considered. Montoya et al. (2017) argue that the 

recharging level of the battery is a non-linear function of the recharging time and 

study the EVRP (without time windows) with a nonlinear recharging function. 

Hiermann et al. (2016) consider the fleet size and mix in the EVRPTWs where the 

available vehicle types in the fleet differ in terms of their capacity, battery size and 

acquisition cost. Goeke and Schneider (2015) study the EVRPTW with a mixed 

fleet of ECVs and conventional internal combustion commercial vehicles. A 

distinctive feature of their study is that instead of simply assuming energy 

consumption is a linear function of the distance travelled, they utilise an energy 

consumption model that takes speed, road slope and vehicle payload into account. 

In the same vein, Basso et al. (2019) incorporate into the routing decision an 

improved and more accurate energy consumption estimation model comprising 

detailed topography and speed profiles. 

As regards exact solutions to the EVRPTW, Desaulniers et al. (2016) develop 

a branch-price-and-cut algorithms for the problem that is able to solve instances 

with up to 100 customers and 21 recharging stations. To deal with their Column 

Generation (CG) subproblem that corresponds to a variant of the Elementary 

Shortest-Path Problem with Resource Constraints (ESPPRC), they develop mono-

directional, as well as, bi-directional labelling algorithms, and they extend these 

algorithms to deal with four different variants of the EVRPTW that are 

distinguished from one another on the basis of the recharging strategy at a CS 

employed, and the recharging frequency over a delivery route allowed.  

In the proposed work in this study, we demonstrate that through new 

analytical findings and using a simple EPIP in a fast pre-processing stage, it is 

possible to work on a multi-graph of customer nodes only and eliminate the CSs 

altogether from consideration. The benefits of such an approach is multi-fold and 

can address several limitations in the state-of-the-art literature on EVRP, and 
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GVRP, in general. Firstly, there is no need to formulate the problem on an 

augmented graph with dummy copies of CSs that soon becomes intractable. We 

will demonstrate that by just putting a strengthened EPIP-based formulation of 

the problem in CPLEX, not only many of the problem instances that are intractable 

for existing formulations are handled very efficiently, but also it is possible to solve 

and improve some of the instances with 100 customers and 21 CSs that have been 

only possible to approach using a sophisticated branch-price-and-cut algorithm 

previously (Desaulniers et al., 2016). Secondly, using the set of EPIP paths we 

address a shorcoming of the heuristic algorithms in the papers discussed above, 

corresponding to the exact evaluation of a sequence of customer visits in an ECV 

route. Indeed, to the best of our knowledge, in all heuristic algorithms for the 

EVRPTW the problem of the selection and placement of a CS in an energy-

infeasible ECV route can be only dealt with in a rather stochastic fashion through 

the application of random neighbourhood exploration operators. Whereas, using 

the EPIP paths, one is only solving a VRPTW on a multi-graph instead of an 

EVRPTW with CSs, and any heuristic developed for the VRPTWs is applicable, 

and thus exact evaluation of ECV routes is possible. 

While the problem introduced by this paper, i.e. the EVRP-SABS, has not 

been previously studied, due to the existence of spatial and temporal 

synchronisation requirement of an ECV with a BSV in the model, it has some 

similarities with a class of VRPs known as the two-Echelon VRP with Satellite 

Synchronisation (2E-VRP-SS). In 2E-VRPSSs (Anderluh et al., 2017; Crainic et 

al., 2009; Grangier et al., 2016) the required temporal synchronisation of the 

vehicles in the first echelon with the vehicles of the second echelon at an 

intermediate site, called satellites, resembles the kind of synchronisation one must 

establish for a planned battery swap in EVRP-SABS. The main complication that 

arises in establishing such synchronisation is due to the fact that unlike the 

standard VRPs where vehicles are independent of one another, in VRPs with 
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temporal synchronisation constraints a change in one route may affect other routes, 

and in the worst case, a change in one route may render all other routes infeasible. 

This problem is known as the ‘interdependence problem’ (Drexl, 2012), and to 

address it, Grangier et al. (2016) propose to represent the time constraints as a 

directed acyclic graph called a precedence graph. They use this graph in their route 

scheduling and feasibility algorithm which is placed at the heart of their proposed 

ALNS algorithm for the problem. Anderluh et al. (2017) consider temporal and 

spatial synchronisation between cargo bikes and vans, and propose a heuristic based 

on a greedy randomized adaptive search procedure with path relinking for the 

problem. 

In this paper, we exploit the proposed EPIP to address the synchronisation 

requirement efficiently by decomposing the problem into two stages, where any 

need for a battery swapping is recognised in the first stage of the algorithm that 

solves an EVRPTW on the EPIP multi-graph, and the second stage algorithm only 

has to deal with a very simple VRPTW that can be solved to optimality. 

4.3 The EVRP-SABS: formal description and 
formulation  

In this section, we first provide a formal description of the EVRP-SABS and discuss 

the notation, definitions and key assumptions used in this paper. Next, a small 

illustrative example of the problem is presented to establish a case for it, and 

following that, the mathematical formulation of the problem is provided. It is worth 

noting that without any loss of generality in the rest of this paper we focus on the 

ambulant battery swapping rather than ambulant recharging. It is evident from 

the context that all arguments throughout the paper hold true in the case of 

ambulant recharging, too. 
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4.3.1 Formal description of the problem  

The EVRP-SABS is defined on a complete, directed graph ᵃ� = (ᵃ�, ᵃ�), where ᵃ� is 

the set of network nodes and ᵃ� = {(ᵅ�, ᵅ�)|ᵅ�, ᵅ� ∈ ᵃ�, ᵅ� ≠ ᵅ�} is the set of directed arcs. 

The set ᵃ� = {ᵃ� ∪ ᵃ� ∪ ᵃ�} is comprised of the depot ᵃ� = {0, ᵅ� + ᵅ� + 1}, with {ᵅ� +

ᵅ� + 1} being a dummy copy of {0}, customer nodes ᵃ� = {1,2,… , ᵅ�}, and CSs ᵃ� =

{ᵅ� + 1, ᵅ� + 2,… , ᵅ� + ᵅ�}. Each customer ᵅ� ∈ ᵃ� is associated with a certain 

demand ᵅ�� to be delivered within its pre-determined hard time window, denoted 

by [ᵃ��, ᵅ��], with service time ᵅ��. The depot working hours, which define the planning 

horizon, is denoted by ᵃ� = [ᵃ��, ᵅ��]. To each arc (ᵅ�, ᵅ�) ∈ ᵃ�, a distance ᵃ���, and a 

travel time ᵅ��� is attributed. There is a fleet of homogeneous ECVs and a fleet of 

homogenous electric BSVs that are all fully charged and located in the central 

depot. To each ECV a maximum payload ᵃ��, a battery capacity ᵃ��, and an energy 

consumption rate per unit distance travelled ᵅ�� is attributed. Each BSV, on the 

other hand, can carry a maximum number of batteries ᵃ��, has a battery capacity 

ᵃ��, and an energy consumption rate ᵅ��. Moreover, the following key assumptions 

are made in the proposed EVRP-SBS:   

o The tasks of ECVs and BSVs are not interchangeable. That is, ECVs are only 

meant to deliver the requests of customers, and BSVs are only used when 

battery swapping is required by an ECV, and they cannot be used for delivery. 

o ECVs are allowed to visit CSs for recharging their batteries for the difference 

between their present charge level and ᵃ�� (full recharge). Recharging time is 

assumed proportional to the amount of energy recharged at a recharging rate 

of ᵃ�. While it is not restrictive to also allow BSVs to visit CSs, it is reasonable 

to ban them from doing so. 

o Battery swapping must be carried out at a customer location and realistically 

it cannot be done simultaneously with the ECV providing service at the 

customer. Hence, battery swapping can only start once ECV service is over. 



 

 

Chapter 4: The EVRP-SABS     174 

 

 

The arrival time of the BSV at the swapping site must be therefore 

synchronised with the ECV’s service finish time. However, the BSV can arrive 

earlier and wait till swapping starts. It is assumed that swapping takes � time 

units. Note that fixing the spatial aspect of the required spatiotemporal 

synchronisation between an ECV and a BSV to a customer location is not a 

restrictive assumption, and it is possible to introduce other separate designated 

points of swapping to ᵃ�. 

o BSVs are not allowed to require a battery swap from other BSVs during their 

trip. 

o An ECV can ask for a battery swap for as many times required during its trip, 

and there is no restriction for a BSV to serve the same ECV several times. 

The aim of the EVRP-SABS is to determine an optimal composition of ECVs 

and BSVs in the fleet to operate routes that start and finish at the depot, and serve 

every customer exactly once within their pre-defined time-windows, without 

violating vehicles’ payload and battery capacities and working day limits, such that 

the following two objectives are minimised lexicographically: (i) the total number 

of ECVs and BSVs required, and (ii) the total travelled distance of ECVs and 

BSVs. 

Prior to the presentation of an initial formulation for the EVRP-SABS, for 

illustration, an example of the EVRP-SABS is provided in the next subsection. 

4.3.2 An illustrative example 

An instance of the EVRPTW with 25 customer nodes and 21 CSs is selected from 

Desaulniers et al. (2016) (i.e. instance C106) to illustrate the EVRP-SABS against 

the EVRPTW. To modify this instance such that battery swaps might be required 

by ECVs we need to either increase the recharging time or decrease the battery 

capacity, and hence we have only multiplied the ᵃ� value by three. The optimal 

delivery routes resulted by solving the resulting problem as an EVRPTW versus 
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an EVRP-SABS are illustrated in Figure 4-2.a and Figure 4-2.b, respectively. The 

optimal solution yielded by the EVRPTW formulation (Figure 4-2.a) requires 8 

ECVs, incurs a total distance of 778.07, and involves 7 visits to CSs. The EVRP-

SABS solution, on the other hand (Figure 4-2.b), requires 6 ECVs that travel a 

total distance of 597.63, visit 3 times the CSs and call for 3 battery swaps. To 

provide the requested swaps, one BSV is needed to travel a distance equal to 45.71. 

Hence, the EVRP-SABS requires 7 vehicles in total (6 ECVs + 1 BSV) to travel a 

total distance of 643.35.  

It is also interesting to further investigate the planned route of the BSV. The 

total 3 battery swaps requested in this example, are only called for by two ECVs, 

such that the BSV executes one battery swap for ECV1 and goes to a designated 

customer location to visit ECV2 after it completes its service at the customer in 

that location; in the meantime, following its first requested swap, ECV1 has 

completed service at 6 more customer locations and needs another round of battery 

swap which is provided by the same BSV. 

 

a. 
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b. 

 

 Figure 4-2 Optimal routes returned by (a) EVRPTW and (b) EVRP-SABS 

It is important to note that in this example a feasible solution for the 

EVRPTW was obtainable. It is possible that in real life cases one cannot even find 

a feasible solution to the EVRPTW by just visiting CSs. Indeed, all exiting 

benchmark instances of the EVRPTW are forced feasible by design. For example, 

in the description of their proposed benchmark instances, Schneider et al. (2014) 

state that “the detours for visits to recharging stations and the recharging times 

incurred make it impossible to comply with the customer time windows given in 

the original Solomon instances, i.e., some instances become infeasible because no 

possibility exists to reach certain customers within their original time window”. 

Note that, using CSs only, instances with a fixed size fleet might be also infeasible. 

Hence, the key justification for the EVRP-SABS is indeed its ‘necessity’ rather 

than its ‘benefits’ only. 

In the next subsection, we provide an initial formulation of the EVRP-SABS 

that is built upon the original EVRPTW formulation by Schneider et al. (2014). 

Obviously, such formulation is not able to handle problem instances like the one 

presented in this section. Later in the paper, we will discuss how this initial 

formulation can be strengthened using new combinatorial results to solve such 

instances within a reasonable computational time. 
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4.3.3 Mathematical formulation of the problem  

Prior to discussing the mathematical formulation of the problem, the following 

auxiliary sets are defined for ease of reference: ᵃ�� = ᵃ� ∪ ᵃ��, ᵃ�� = {0} ∪ ᵃ�, ᵃ�� =

ᵃ� ∪ {ᵅ� + ᵅ� + 1}, ᵃ�� = {0} ∪ ᵃ� ∪ ᵃ��, ᵃ�� = ᵃ� ∪ ᵃ�� ∪ {ᵅ� + ᵅ� + 1}, ᵃ�� = {0} ∪ ᵃ��, 

and ᵉ� = {(ᵅ�, ᵅ�)|ᵅ� ∈ ᵃ��, ᵅ� ∈ ᵃ��, ᵅ� ≠ ᵅ�} . In these sets, ᵃ�� is a sufficiently large set of 

dummy nodes generated to allow several visits to each CS in the set ᵃ�. Note that 

following these definitions, the set of directed arcs ᵃ� could be better written as ᵃ� =

{(ᵅ�, ᵅ�)|ᵅ� ∈ ᵃ��, ᵅ� ∈ ᵃ��, ᵅ� ≠ ᵅ�}. 

The MILP formulation of the EVRP-SABS works with the following decision 

variables:  

 ᵅ���: Binary variable equal to 1 iff arc (ᵅ�, ᵅ�) ∈ ᵃ� is traversed by an ECV.  

 ᵅ���: Binary variable equal to 1 iff arc (ᵅ�, ᵅ�) ∈ ᵉ� is traversed by a BSV. 

 ᵅ��: Continuous variable denoting the time of arrival of an ECV at node ᵅ� ∈

ᵃ� . 

 ᵅ��: Continuous variable denoting the time of arrival of a BSV at node ᵅ� ∈

ᵃ�\ᵃ��. 

 ᵃ��: Continuous variable denoting the remaining load on an ECV upon 

arrival at node ᵅ� ∈ ᵃ� . 

 ℎ�: Integer variable denoting the number of the remaining fully-charged 

batteries on the BSV upon arrival at node ᵅ� ∈ ᵃ�\ᵃ��. 

 ᵅ��: Continuous variable denoting the remaining battery charge level of an 

ECV on arrival at node ᵅ� ∈ ᵃ� . 

 ᵅ��: Continuous variable denoting the remaining battery charge level of a 

BSV on arrival at node ᵅ� ∈ ᵃ�\ᵃ��. 

The mathematical formulation of the EVRP-SABS is given by (4-1)-(4-20). 

ᵃ�ᵅ�ᵅ� � ᵃ���ᵅ���
(���)∈�

+ � ᵃ���ᵅ���
(���)∈�

 (4-1) 



 

 

Chapter 4: The EVRP-SABS     178 

 

 

Subject to:  

� ᵅ���
�∈��

= 1,          ∀ᵅ� ∈ ᵃ� (4-2) 

� ᵅ���
�∈��

≤ 1,          ∀ᵅ� ∈ ᵃ�� (4-3) 

� ᵅ���
�∈��

− � ᵅ���
�∈��

= 0,          ∀ᵅ� ∈ ᵃ�� (4-4) 

� ᵅ���
�∈��

− � ᵅ���
�∈��

= 0,          ∀ᵅ� ∈ ᵃ�  (4-5) 

ᵅ�� + �ᵅ��� + ᵅ���ᵅ��� + � � ᵅ��ℴ
ℴ∈��

− (ᵅ�� + �)�1 − ᵅ���� ≤ ᵅ��,   ∀ᵅ� ∈ ᵃ��, ᵅ�

∈ ᵃ��, ᵅ� ≠ ᵅ� 
(4-6) 

ᵅ�� + ᵅ���ᵅ��� + ᵃ�(ᵃ�� − ᵅ��) − (ᵅ�� + ᵃ�ᵃ��)�1 − ᵅ���� ≤ ᵅ��,          ∀ᵅ� ∈ ᵃ��, ᵅ�

∈ ᵃ��, ᵅ� ≠ ᵅ� 
(4-7) 

ᵅ�� ≤ ᵅ�� + ᵅ��,          ∀ᵅ� ∈ ᵃ�� (4-8) 

ᵅ�� + �ᵅ��� + ᵅ�� + ��ᵅ��� − ᵅ���1 − ᵅ���� ≤ ᵅ��,        ∀ᵅ� ∈ ᵃ��, ᵅ� ∈ ᵃ��, ᵅ� ≠ ᵅ� (4-9) 

ᵃ�� ≤ ᵅ�� ≤ ᵅ��,          ∀ᵅ� ∈ ᵃ�  (4-10) 

0 ≤ ᵃ�� ≤ ᵃ�� − (ᵅ��ᵅ���) + ᵃ���1 − ᵅ����,          ∀ᵅ� ∈ ᵃ��, ᵅ� ∈ ᵃ��, ᵅ� ≠ ᵅ� (4-11) 

0 ≤ ᵃ�� ≤ ᵃ�� (4-12) 

0 ≤ ℎ� ≤ ℎ� − ᵅ��� + ᵃ���1 − ᵅ����,          ∀ᵅ� ∈ ᵃ��, ᵅ� ∈ ᵃ��, ᵅ� ≠ ᵅ� (4-13) 

0 ≤ ℎ� ≤ ᵃ�� (4-14) 

0 ≤ ᵅ�� ≤ ᵅ�� − (ᵅ��ᵃ���ᵅ���) + (ᵃ�� � ᵅ�ℴ�
ℴ∈����∈�

) + ᵃ���1 − ᵅ����,

∀ᵅ� ∈ ᵃ�, ᵅ� ∈ ᵃ��, ᵅ� ≠ ᵅ� 
(4-15) 
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0 ≤ ᵅ�� ≤ ᵃ��,          ∀ᵅ� ∈ ᵃ� (4-16) 

0 ≤ ᵅ�� ≤ ᵃ�� − �ᵅ��ᵃ���ᵅ���� + (ᵃ�� � ᵅ�ℴ�
ℴ∈����∈�

),   ∀ᵅ� ∈ ᵃ��, ᵅ� ∈ ᵃ��, ᵅ� ≠ ᵅ� (4-17) 

ᵅ�� ≥ � ᵅ��ᵃ���ᵅ���
�∈��

,          ∀ᵅ� ∈ ᵃ�  (4-18) 

0 ≤ ᵅ�� ≤ ᵅ�� − (ᵅ��ᵃ���ᵅ���) + ᵃ���1 − ᵅ����,          ∀ᵅ� ∈ ᵃ��, ᵅ� ∈ ᵃ��, ᵅ� ≠ ᵅ� (4-19) 

0 ≤ ᵅ�� ≤ ᵃ��,          ∀ᵅ� ∈ ᵃ�\ᵃ�′ (4-20) 

Expressions (4-1) is the objective function that minimises the total distance 

travelled by the ECVs and the BSVs assigned to the routes. Constraints (4-2) to 

(4-5) are routing constraints, constraints (4-6) to (4-10) are scheduling and 

temporal synchronisation constraints, constraints (4-11) to (4-14) are capacity 

constraints, and finally, constraints (4-15) to (4-20) are battery level control and 

swapping determination constraints. These constraints are further detailed below. 

Constraints (4-2) indicate that each customer must be visited exactly once by 

an ECV for delivery. Constraints (4-3) ensure that a CS is not visited more than 

once by an ECV. Recall that extra visits to a same CS has been made possible by 

extending the set ᵃ� to ᵃ��. Constraints (4-4) and (4-5) together guarantee that if a 

vehicle (i.e. an ECV or a BSV) enters a node, it should exit the node. Constraints 

(4-6) determine the arrival time of an ECV at each node taking into account the 

arrival time at the upstream node, its service time, and possibly its required time 

for a requested swap by a BSV. Constraints (4-7) do so when the upstream node 

is a CS and take into account the time required to fully charge the battery. 

Constraints (4-8) and (4-9) together are synchronisation constraints and ensure 

that a planned swap service by a BSV takes place after service at the customer is 

completed by the ECV. Constraints (4-10) are time-windows constraints.  

Constraints (4-11) and (4-12) ensure demand fulfilment while guaranteeing 

that the capacity of the ECVs is not violated, and constraints (4-13) and (4-14) do 
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the same for BSVs. Constraints (4-15) to (4-18) determine the battery charge level 

of ECVs after visiting a customer and/or a CS. Note that both constraints (4-15) 

and (4-16) are needed to determine the battery level of an ECV if a battery 

swapping by a BSV is scheduled. The mere use of constraints (4-15) is not sufficient, 

as in the case of non-zero ᵅ��, by battery swapping the battery capacity will be 

exceeded without (4-16). Finally, constraints (4-19) and (4-20) ensure that the 

battery charge of a BSV never falls below 0. 

In the next section, we discuss new important combinatorial results that make 

the development of much more compact and strengthened formulations for the 

EVRP-SABS, as well as the EVRPTW and the GVRP possible. These results are 

also very useful for exact solution evaluation in the course of a heuristic solution 

algorithm. 

4.4 The exact Eligible Paths Identification Procedure 
(EPIP) 

A major complication arising in the context of the EVRPTWs with CSs corresponds 

to the exact evaluation of an energy infeasible sequence of customer visits (an ECV 

route) that must be made feasible by imposing optimal visits to available CSs in 

the network. To get a picture of the source of this complication, consider only the 

number of paths that can connect an origin customer ℴ to a destination customer 

� by passing through one or several of the available CSs in the graph. Indeed, given 

that there exists ᵅ� CSs in ᵃ�, there are  ∑ ᵃ��
�
�=�  (where ᵃ�� = ᵃ��−�(ᵅ� − ᵅ� + 1), and 

ᵃ�� =  1) different distinct paths between ℴ and � that pass through at least one 

CS. That is, for a value of ᵅ� as small as 6, there are 1,956 different paths between 

ℴ and �; needless to say, that this increases exponentially; e.g. when ᵅ� = 10, the 

number of paths increases to 9,864,100 paths. With this complication the problem 

formulation gets very soon intractable when introducing also dummy copies of CSs 

into the model. Note that this complication is not only present when one intends 
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to use the MILP formulation in a standard branch-and-bound solver to find an 

optimal solution, but also it appears, for example, in the lower level Shortest Path 

Problem with Resource Constraint (SPPRC) that emerges when developing CG-

based exact solutions, or when evaluating new solutions generated in the course of 

a heuristic algorithm.  

It is, however, possible to identify many of the paths that cannot be part of an 

optimal solution to the EVRPTW with CSs or the EVRP-SABS and eliminate 

them from consideration. In this section we introduce new combinatorial results to 

do so efficiently using an exact Eligible Paths Identification Procedure (EPIP). We 

will show that by just putting an EPIP-based version of the problem formulation 

in a solver, EVRPTW instances that are well-beyond the previously accessible 

problem sizes and get as large as 100 customer nodes with 21 CSs, could be solved 

to optimality.  

Prior to presenting these results, some terms that are used in the rest of this 

section are defined below: 

o Required nodes: required nodes (ᵃ��) are the nodes on ᵃ� that represent the 

location of the depot and the customers; i.e. ᵃ�� =  ᵃ� ∪ ᵃ�. 

o Direct edge: a direct edge ᵱ���, or simply an edge, is hereafter an arc (ᵅ�, ᵅ�) ∈

ᵃ�|ᵅ�, ᵅ� ∈ ᵃ��, ᵅ� ≠ ᵅ�. 

o CS-path: a CS-path ᵅ���, is a sequence of arcs in ᵃ� that passes through at 

least one CS on ᵃ� and connects a pair of required nodes ᵅ�, ᵅ� ∈ ᵃ��, ᵅ� ≠ ᵅ�; i.e. 

ᵅ��� = [(ᵅ�, 1), (1,2),… , (ℓ, ᵅ�)], 1. . ℓ ∈ ᵃ�. By convention, let us assume that ��� 

is the set of all possible CS-paths between a pair of required nodes, i.e. 

��� = {ᵅ�����, ᵅ�����, … , ᵅ�����} (remember that identifying this set can be 

intractable). 

o Battery Charge Level (BCL): The BCL indicates the remaining battery 

charge level of an ECV when departing from node ᵅ� ∈ ᵃ�� and is denoted by 

ᵅ��. 
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o Path attributes: to each CS-path ᵅ����� ∈ ���, several attributes such as 

distance and travel time could be attached, that we henceforth call path 

attributes. 

Most of the arguments and results presented in the sequel rely on the BCL at 

the origin node of a pair of required nodes ᵅ� and ᵅ�, and hence a notion called ‘BCL-

dependency’ is introduced below: 

Definition 1 BCL-dependent and BCL-independent path attributes: a given path 

attribute of a CS-path ᵅ����� ∈ ��� is called a BCL-dependent path attribute if for its 

computation a knowledge of ᵅ�� is required, and its value depends on the value of 

ᵅ��; on the contrary, if the value of the path attribute is unaffected by ᵅ�� it is called 

a BCL-independent path attribute.  

We use a small example, shown in Figure 4-3, to illustrate better this notion 

of the BCL-dependency and the forthcoming arguments of this section. Assume the 

number on each arc in this figure represents both the distance and the travel time 

of each arc. Also, assume ᵃ�� = 10, ᵅ�� = 1, and ᵃ� = 2. Now, considering the CS-

path (ᵅ�, ᵅ�, ᵅ�) (which we call ᵅ�����), it is clear that, while its distance ᵃ�(ᵅ�����) is BCL-

independent, and regardless of the BCL at node ᵅ�, is equal to 10, its travel time 

ᵰ���(ᵅ�����) is BCL-dependent and is determined based on the value of ᵅ��. For 

example, for ᵅ�� = 7, we have ᵰ��(ᵅ�����) = 22, while for ᵅ�� = 4, we have ᵰ��(ᵅ�����) =

28. 

 

Figure 4-3 A small example of two required nodes and one CS 



 

 

Chapter 4: The EVRP-SABS     183 

 

 

Proposition 1 Regardless of the number of CSs visited on the CS-path ᵅ����� ∈ ���, 

knowing ᵅ�� is sufficient to compute ᵰ���(ᵅ�����) using the closed form expression 

ᵰ���(ᵅ�����) = ᵕ����� + ᵃ�(ᵃ�� − ᵅ��), where ᵕ����� is the travel time of ᵅ����� when ᵅ�� = ᵃ��.  

To demonstrate the application of the closed form expression presented in 

Proposition 1, we refer back to the example in Figure 4-3. In this example, ᵕ����� =

16, and hence for ᵅ�� = 7, we have ᵰ��(ᵅ�����) = 16 + 2(10 − 7) = 22.  

Definition 2 Endpoint Battery Discharge Level (EBDL): EBDL is a BCL-

independent path attribute for a given CS-path ᵅ����� ∈ ���, i.e. ᵰ�(ᵅ�����), that denotes 

the discharged level of the ECV’s battery upon arrival at the endpoint of the CS-

path ᵅ�����.  

Proposition 2 Regardless of the number of CSs visited on the CS-path ᵅ����� ∈ ���, 

we always have ᵰ�(ᵅ�����) = ᵅ��ᵃ���, where ᵃ��� is the distance of the last arc in ᵅ�����. 

In the case of the example in Figure 4-3, we have ᵰ�(ᵅ�����) = 7. 

Definition 3 Minimum Required BCL (MR-BCL): MR-BCL is a BCL-independent 

path attribute for a given CS-path ᵅ����� ∈ ���, i.e. ᵱ�(ᵅ�����), that denotes the 

minimum value of ᵅ��, below which it is not possible to traverse the CS-path ᵅ�����. 

Hence, ᵱ�(ᵅ�����) = ᵅ��ᵃ���, where ᵃ��� denotes the distance of the first arc in ᵅ�����. 

Obviously, in the case of the example in Figure 4-3, we have ᵱ�(ᵅ�����) = 3. 

Lemma 1 Given two different CS-paths ᵅ�����, ᵅ����� ∈ ���, if ᵰ�
��(ᵅ�����) ≤ ᵰ���(ᵅ�����), 

then ᵰ���(ᵅ�����) ≤ ᵰ���(ᵅ�����),∀ᵅ�� ∈ [ᵱ�(ᵅ�����),ᵃ��].  

Proof. The condition that ᵰ���(ᵅ�����) ≤ ᵰ���(ᵅ�����) means that the travel time of ᵅ����� 

when ᵅ�� = ᵃ��, i.e. ᵕ�����, is less than or equal to the travel time of ᵅ����� when ᵅ�� =
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ᵃ��, i.e. ᵕ�����. Hence, for any given ᵅ�� ∈ [ᵱ�(ᵅ�����),ᵃ��], we have ᵕ����� + ᵃ�(ᵃ�� − ᵅ��) ≤

ᵕ����� + ᵃ�(ᵃ�� − ᵅ��), and thus, ᵰ���(ᵅ�����) ≤ ᵰ���(ᵅ�����). �           

Lemma 1 presents a useful result in the development of any path identification 

algorithm as it implies that the comparison between the travel time of different 

CS-paths would be sufficient at only one BCL, i.e. the fully charged battery level. 

Note, however, that this lemma does not cover values of ᵅ�� < ᵱ�(ᵅ�����), as for such 

values path ᵅ����� could not be traversed. As a result, if ᵱ�(ᵅ�����) < ᵱ�(ᵅ�����), there are 

some ᵅ�� for which path ᵅ����� is preferred over path ᵅ����� as regards the travel time 

attribute. 

Definition 4 Eligibility vector: To every CS-path ᵅ����� ∈ ��� a 4-dimensional (4D) 

vector of attributes, corresponding to ᵮ�(ᵅ�����):=

[ᵃ�(ᵅ�����), ᵰ���(ᵅ�����), ᵰ�(ᵅ�����), ᵱ�(ᵅ�����)], is attributed that is called its eligibility vector. 

Definition 5 Eligibility vector dominance: The eligibility vector ᵮ�(ᵅ�����) of a CS-

path ᵅ����� ∈ ��� is said to dominate another eligibility vectors ᵮ�(ᵅ�����) of a CS-path 

ᵅ����� ∈ ��� (denoted by ᵮ�(ᵅ�����) ≼ ᵮ�(ᵅ�����)) iff ᵃ�(ᵅ�����) ≤ ᵃ�(ᵅ�����), ᵰ���(ᵅ�����) ≤

ᵰ���(ᵅ�����), ᵰ�(ᵅ�����) ≤ ᵰ�(ᵅ�����) and ᵱ�(ᵅ�����) ≤ ᵱ�(ᵅ�����). Consequently, if ᵮ�(ᵅ�����) is not 

dominated by the eligibility vector of any other CS-path in ���, it is said to be a 

non-dominated eligibility vector. 

Definition 6 An Eligible Path: A CS-path ᵅ����� ∈ ��� with a non-dominated eligibility 

vector ᵮ�(ᵅ�����) is called an eligible path, and any other CS-path connecting required 

nodes ᵅ�, ᵅ� ∈ ᵃ�� with dominated eligibility vector is called a redundant path. We 

denote the set of all eligible paths between a pair of required nodes ᵅ�, ᵅ� ∈ ᵃ�� by ᵑ���. 

Theorem 1 Suppose ᵊ� = (ᵃ��,ᵊ�), with ᵊ� = ⋃ ᵊ������∈��
, and ᵊ��� = �ᵑ��� ∪ ᵱ���|ᵅ�, ᵅ� ∈

ᵃ���, is a multi-graph constructed from required nodes only and the direct edges 
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and eligible paths between them. Then, any optimal solution found for an instance 

of the EVRPTW with CSs on ᵃ�, could be found on ᵊ�. 

Proof. Suppose ᵊ� = ℛ�,ℛ�, … . , ℛ� indicates an optimal solution to an instance of 

the EVRPTW with CSs that is solved on ᵃ�, where each ℛ�, ∀� ∈ {1,… , ᵅ�}, 

denotes an ECV route in ᵊ�. Each route ℛ� ∈ ᵊ� could be viewed as a path that 

starts at the depot 0, visits a set of customers ᵃ�� ⊆ ᵃ� (and possibly some 

intermediate CSs), and terminates at the depot ᵅ� + ᵅ� + 1. Since ᵊ� is an optimal 

solution to the problem, each route ℛ� ∈ ᵊ� is resource feasible and has a smaller 

total distance than any other path visiting the same sequence of customers in ᵃ��. 

Hence, we must prove that the elimination of redundant paths between each pair 

of required nodes ᵅ� and ᵅ� in ℛ� has no implications regarding the resource-feasibility 

and optimality of ℛ�. To do so, suppose that a set of labels are maintained at each 

required node along ℛ�, each one corresponding to a partial path issued from 0 

and containing the cumulative consumption level of each resource at the end of the 

corresponding partial path. The three resources we need to keep track of are 

distance, time and the BCL, with the latter two being constrained. Note that 

vehicle capacity is irrelevant as ℛ� is already capacity feasible and elimination of 

CS-paths has no effect on its capacity feasibility. For both of the constrained 

resources time and BCL, at each required node ℊ in ℛ�, resource windows could 

be defined, where for the time resource, we have customers’ time-windows �ᵃ�ℊ, ᵅ�ℊ�, 

and for the BCL resource we have BCL-windows  � ᵅ�ᵅ�ᵅ�
�ℊ���∈�

ℊ�

ᵱ��ᵅ�ℊ���� , ᵃ���. Note that 

the CS-path with ᵅ�ᵅ�ᵅ�
�ℊ���∈�

ℊ�

ᵱ��ᵅ�ℊ���� already exists in ᵑ�ℊ�, and elimination of 

redundant paths has had no effect on the resource windows. Hence, let the label 

ᵃ�ℊ = [ᵕ�ℊ
����, ᵕ�ℊ

����, ᵅ�ℊ] denote the consumption level of distance, time, and the BCL 

up to the required node ℊ in ℛ�, respectively. Note that the larger values of ᵅ�ℊ are 

desirable. The initial label is ᵃ�� = [0, ᵃ��, ᵃ��], and the extension of a label along a 
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CS-path ᵅ�ℊ��� ∈ �
ℊ�

 from ℊ to � in ℛ� is performed using the following Resource 

Extension Functions (REFs) (note that we just need to focus on CS-paths rather 

than direct edges as they are already present in both ᵊ� and ᵃ�): 

ᵕ��
���� = ᵕ�ℊ

���� + ᵃ�(ᵅ�ℊ���) (4-21) 

ᵕ��
���� = ᵕ�ℊ

���� + ᵕ�ℊ��� + ᵃ�(ᵃ�� − ᵅ�ℊ)  (4-22) 

ᵅ�� = ᵃ�� − ᵅ��ᵃ��� (4-23) 

Using these REFs we can prove that the labels extended by any redundant path 

along ℛ� are always dominated by the labels extendend using eligible paths. To do 

so, assume ᵅ�ℊ��� is an eligible path that is present in ᵊ�, whereas ᵅ�ℊ��� is a redundant 

path discarded from ᵊ�. Since the eligibility of ᵅ�ℊ��� and the redundancy of ᵅ�ℊ��� 

implies that ᵮ�(ᵅ�ℊ���) ≼ ᵮ�(ᵅ�ℊ���) (Definition 5), it is easy to see that for any given 

ᵕ�ℊ
����, we always have  ᵕ�ℊ

���� + ᵃ�(ᵅ�ℊ���) ≤ ᵕ�ℊ
���� + ᵃ�(ᵅ�ℊ���), and also we always have 

ᵃ�� − ᵅ��ᵃ����� ≥ ᵃ�� − ᵅ��ᵃ������. Moreover, based on Lemma 1, as long as ᵅ�ℊ ≥

ᵱ�(ᵅ�ℊ���), the fact that ᵰ���(ᵅ�ℊ���) ≤ ᵰ���(ᵅ�ℊ���) (Definition 5), implies that ᵕ�ℊ��� +

ᵃ�(ᵃ�� − ᵅ�ℊ) ≤ ᵕ�ℊ��� + ᵃ�(ᵃ�� − ᵅ�ℊ), and hence ᵕ�ℊ
���� + ᵕ�ℊ��� + ᵃ�(ᵃ�� − ᵅ�ℊ) ≤ ᵕ�ℊ

���� +

ᵕ�ℊ��� + ᵃ�(ᵃ�� − ᵅ�ℊ). On the other hand, for values of ᵅ�ℊ < ᵱ�(ᵅ�ℊ���) when path ᵅ�ℊ��� 

is infeasible, path ᵅ�ℊ��� is also definitely infeasible as ᵮ�(ᵅ�ℊ���) ≼ ᵮ�(ᵅ�ℊ���) implies 

ᵱ�(ᵅ�ℊ���) ≤ ᵱ�(ᵅ�ℊ���). � 

Corollary 1 Any optimal solution found for an instance of the EVRP-SABS on ᵃ�, 

could be found on ᵊ�. 

Proof. In the EVRP-SABS in addition to ECV routes, BSV routes are also planned 

on ᵃ�. However, BSV routes only use ᵱ��� between every pair of required nodes ᵅ� and 

ᵅ� (as they are banned from visiting CSs), and these are already present in ᵊ�. � 

Theorem 1. and Corollary 1 suggest that we can identify all eligible paths 

between required nodes a priori in a pre-processing stage and solve the problem on 
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a reduced multi-graph. With this transformation, instead of solving the EVRPTW 

with CSs, one can solve a much easier VRPTW on a multi-graph.  

The identification of the eligible paths could be done rather quickly as it must 

be done on a very small graph of only two customers and CSs; however, before 

introducing an algorithm for doing so, we exploit a property, that is observed in all 

existing VRPTW and EVRPTW benchmark test instances, to speed up the 

procedure by reducing the 4D eligibility vector ᵮ�(ᵅ�����):=

[ᵃ�(ᵅ�����), ᵰ���(ᵅ�����), ᵰ�(ᵅ�����), ᵱ�(ᵅ�����)] to a 3D eligibility vector ℰ(ᵅ�����): =

[ᵰ���(ᵅ�����), ᵰ�(ᵅ�����), ᵱ�(ᵅ�����)]. This property corresponds to the linear dependency 

between travel time and distance for all arcs (ᵅ�, ᵅ�) ∈ ᵃ� in the form ᵅ��� = ᵃ��� ᵅ� ̅⁄ , where 

ᵅ� ̅ could be viewed as the average speed in the network (in Solomon benchmark 

problems (1987), test instances developed by Schneider et al. (2014) and also used 

in Desaulniers et al. (2016), and all test instances considered in this paper, ᵅ�̅ = 1). 

An important implication of this dependency assumption that we use is that ᵃ��� ≤

ᵃ��� ⟺ ᵅ��� ≤ ᵅ���, ∀(�, �), (�, ℓ) ∈ ᵃ�. Hence, the following Lemma allows us to use 

ℰ(ᵅ���) instead of ᵮ�(ᵅ���) as eligibility vector: 

Lemma 2 If ℰ(ᵅ�����) ≼ ℰ(ᵅ�����) for two CS-paths ᵅ�����, ᵅ����� ∈ ���, then ᵃ�(ᵅ�����) ≼

ᵃ�(ᵅ�����). 

Proof. To prove the lemma, we need to show that if ℰ(ᵅ�����) ≼ ℰ(ᵅ�����), then 

ᵃ�(ᵅ�����) ≤ ᵃ�(ᵅ�����). Suppose ᵅ����� = [(ᵅ�, ��),… , (���, ᵅ�)], ��. . ��� ∈ ᵃ�, and ᵅ����� =

[(ᵅ�, ��),… , (���, ᵅ�)], ��. . ��� ∈ ᵃ�. We may write the distance and the travel time 

(at full BCL) of each of these CS-paths as: ᵃ�(ᵅ�����) = ᵃ����
+ ᵃ���������

+ ᵃ����� and 

ᵰ���(ᵅ�����) = ᵅ����
+ ᵅ���������

+ ᵅ����� + ᵃ�ᵅ��(ᵃ����
+ ᵃ���������

), ∀� ∈ {1,2}, respectively, 

where ᵃ���������
 and ᵅ���������

 denote the total distance and travel time of the arcs 

between the first and the last CS on ᵅ�����. If there is only one CS on ᵅ�����, then both 
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ᵃ���������
 and ᵅ���������

  are 0. We use a proof by contradiction, where we assume 

despite ℰ(ᵅ�����) ≼ ℰ(ᵅ�����), we have (4-24) below: 

ᵃ�(ᵅ�����) > ᵃ�(ᵅ�����) (4-24) 

The condition that ℰ(ᵅ�����) ≼ ℰ(ᵅ�����), yields: 

ᵅ����
+ ᵅ���������

+ ᵅ����� + ᵃ�ᵅ��(ᵃ����
+ ᵃ���������

)

≤ ᵅ����
+ ᵅ���������

+ ᵅ����� + ᵃ�ᵅ��(ᵃ����
+ ᵃ���������

) 
(4-25) 

On the other hand, based on the linear dependency assumption between travel time 

and distance, following (4-24) we have: 

ᵅ����
+ ᵅ���������

+ ᵅ����� > ᵅ����
+ ᵅ���������

+ ᵅ����� (4-26) 

Considering (4-25) and (4-26), for (4-25) to hold true, we must have: 

ᵃ�ᵅ��(ᵃ����
+ ᵃ���������

) ≤ ᵃ�ᵅ��(ᵃ����
+ ᵃ���������

) (4-27) 

Which means: 

ᵃ����
+ ᵃ���������

≤ ᵃ����
+ ᵃ���������

 (4-28) 

At the same time, as another implication of ℰ(ᵅ�����) ≼ ℰ(ᵅ�����), we know ᵱ�(ᵅ�����) ≤

ᵱ�(ᵅ�����), which means ᵅ��ᵃ����� ≤ ᵅ��ᵃ�����, and hence: 

ᵃ����� ≤ ᵃ����� (4-29) 

The combination of (4-28) and (4-29) results in ᵃ�(ᵅ�����) ≤ ᵃ�(ᵅ�����), which is in 

contradiction with (4-24). � 

Based on these results we can propose an implementation of the EPIP which 

in practice must search for tri-objective shortest paths between a pair of required 

nodes on a very small auxiliary graph of the given origin and destination and CSs 

only. However, using an intuitive rule it is still possible to speed up the 

implementation further by searching for bi-criterion shortest paths instead. Indeed, 

we have extensively observed in our experiments that almost always when we only 

look for CS-paths with non-dominated [ᵰ���(ᵅ���), ᵰ�(ᵅ���)], the CS-path with 

minimum ᵱ�(ᵅ���) already exists in the returned set, and this means we do not need 

to carry out any further search, as it is provable that any other path will have a 
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dominated eligibility vector. In case this is not satisfied, it is very simple to find 

the ‘next’ CS-path with minimum ᵱ�(ᵅ���) iteratively until we see it in the set. 

Hence, the implementation of the EPIP is given in Algorithm 4-1. This 

algorithm finds the set of eligible paths between a pair of required nodes ᵊ�, ᵉ� ∈ ᵃ�� 

using a modified extension of the label setting algorithm proposed by Martins 

(1984) for the multi-criteria shortest path problem (we adapt the implementation 

proposed by Ehrgott (2005)). In this algorithm ᵃ�′ = (ᵃ�′,ᵃ�′) is an auxiliary graph 

where ᵃ�′ = �{ᵊ�,ᵉ�} ∪ ᵃ��, and ᵃ�′ = {(ᵅ�, ᵅ�)|ᵅ�, ᵅ� ∈ ᵃ�′, ᵅ� ≠ ᵅ�}. A label ᵃ� of a node ᵅ� ∈

ᵃ�′ is denoted using a tuple ᵃ� = [ᵰ��, ᵰ��, ᵅ��, ᵃ� , ℓ� , ᵅ�], where ᵰ�� stores the travel time 

attribute of the path represented by the label up to node ᵅ�, ᵰ�� is its EBDL attribute,  

ᵅ�� is the BCL at the node �, ᵃ�  represents the node from which the label was 

obtained, ℓ�  indicates the identifier of the label in the list of labels at node ᵃ�  from 

which ᵃ� was obtained, and ᵅ� is the identifier of the current label in the list of labels 

at node ᵅ�. Note that domination rules used in lines 13 and 14 of the algorithm, are 

based on the first two components of the label, i.e. ᵰ�� and ᵰ��. The last while loop 

of the algorithm (lines 20 to 24) is only executed if the path with minimum MR-

BCL does not exist already in ᵑ���. It is worth mentioning that any shortest path 

algorithm could be used in line 20 for the identification of the minimum MR-BCL 

path.



 

Algorithm 4-1 The EPIP 

1 Input ᵃ�′, origin node ᵊ� ∈ ᵃ�′, destination node ᵉ� ∈ ᵃ�′, [ᵃ��, ᵅ��], ᵅ��, [ᵃ��, ᵅ��] ᵃ���, ᵅ���, ∀(ᵅ�, ᵅ�) ∈ ᵃ�′, ᵃ��, ᵅ��, ᵃ�  
2 Initialise ᵑ��� = {}, ᵊ�ℒ = {}, and ᵊ�ℒ = {}.  
3 Create label ᵃ�� = [ᵃ��, 0, ᵃ��, 0,0,1]  at node ᵊ� and let ᵊ�ℒ: = { ᵃ��}.  
4 while ᵊ�ℒ ≠ ∅ do 

5 Let label ᵃ�� = [ᵰ��, ᵰ��, ᵅ��, �, ℓ�, �] of node ᵅ� be the lexicographically smallest label in ᵊ�ℒ. 

6 Remove ᵃ�� from ᵊ�ℒ and add it to ᵊ�ℒ. 

7 for all ᵅ� ∈ ᵃ�′ such that (ᵅ�, ᵅ�) ∈ ᵃ�′ do  

8 if ᵅ� = ᵊ� then ᵰ�� = ᵰ�� + ᵅ��� else ᵰ�� = ᵰ�� + ᵃ�(ᵃ�� − ᵅ��) + ᵅ��� end if   

9 if ᵅ� = ᵉ� then ᵰ�� = ᵰ�� + ᵅ��ᵃ��� else ᵰ�� = 0 end if   

10 ᵅ�� = ᵃ�� − ᵅ��ᵃ��� 

11 if  ᵃ�� + ᵅ�� + ᵰ�� ≤ ᵅ�� and ᵰ�� ≤ ᵃ�� then 

12 Create label ᵃ�′ = [ᵰ��, ᵰ��, ᵅ��, ᵅ�, ℓ�, �] as the next label (�th label) at node ᵅ� and add it to ᵊ�ℒ. 

13 Delete all temporary labels of node ᵅ� dominated by ᵃ�′.  
14 Delete ᵃ�′ if it is dominated by another label of node ᵅ�. 
15 end if  

16 end for 

17 end while 

18 Use the predecessor labels in ᵊ�ℒ to recover all efficient paths and add them to ᵑ���. 

19 ᵕ�⃑ ← the shortest outgoing arc from ᵊ�  

20 while ᵕ�⃑ is not the first arc in any of the paths in ᵑ��� do 

21 Find the CS-path p�� with minimum φ(p��) and add it to ᵑ���   

22 Remove ᵕ�⃑ from ᵃ�′  
23 ᵕ�⃑ ← the shortest outgoing arc from ᵊ� 

23 end while 

24 return ᵑ��� 
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In the next sub-section, we show how these results could be used to develop a 

strengthened formulation of the EVRPTW with CSs and the EVRP-SABS. It is 

worth mentioning that all the results presented in this section could be simply 

generalised to the case of G-VRP, as well. 

4.4.1 An EPIP-based formulation of the problem 

The alternative EPIP-based formulation is defined on the multi-graph ᵊ� = (ᵃ��,ᵊ�) 

(refer to Theorem 1). Let us place ᵱ��� on top of the eligible paths in ᵊ���, ∀ᵅ�, ᵅ� ∈ ᵃ��, 

and refer to each member of the set ᵊ��� by (ᵅ�, ᵅ�, ᵅ�), where ᵅ� ∈ �1, . . , �ᵊ�����. Hence, 

(ᵅ�, ᵅ�, 1) is always the direct edge (ᵅ�, ᵅ�) in ᵃ�. As a generalisation of the closed form 

expression for the BCL-dependent travel time attribute, we can use the expression 

of the form ᵯ����ᵅ�� + ᵯ���� for each (ᵅ�, ᵅ�, ᵅ�) ∈ ᵊ���, where parameters ᵯ���� and ᵯ���� are 

parameters that could be computed as follows and used as model input: 

ᵯ���� = �0,        ᵅ� = 1
−ᵃ�, ᵅ�ᵅ�ℎᵃ�ᵅ�ᵅ�ᵅ�ᵅ�ᵃ� (4-30) 

ᵯ���� = �
ᵅ���,              ᵅ� = 1
ᵕ� +  ᵃ�ᵃ��, ᵅ�ᵅ�ℎᵃ�ᵅ�ᵅ�ᵅ�ᵅ�ᵃ�

 (4-31) 

We also define here another BCL-dependent attribute for each path, called the 

Charge Gained and Gone (CGG) attribute. CGG takes into account the BCL at 

the origin of the path and any refuelling over the path, and in practice denotes the 

difference between the BCL at the origin node and the BCL upon the arrival at 

the destination using an expression of the form ᵯ����ᵅ�� + ᵯ���� for each (ᵅ�, ᵅ�, ᵅ�) ∈ ᵊ���, 

where parameters ᵯ���� and ᵯ���� are parameters that could be pre-computed as 

follows and used as model input: 

ᵯ���� = �0,      ᵅ� = 1
1, ᵅ�ᵅ�ℎᵃ�ᵅ�ᵅ�ᵅ�ᵅ�ᵃ� (4-32) 

ᵯ���� = �
ᵅ��ᵃ���,              ᵅ� = 1
ᵅ��ᵃ��� − ᵃ��, ᵅ�ᵅ�ℎᵃ�ᵅ�ᵅ�ᵅ�ᵅ�ᵃ� 

(4-33) 

Note that CGG is not essentially non-negative.  
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Now recycling some of the notations used in section 3.3 of the paper, we 

redefine two of the previous decision variables to use in the EPIP-based formulation 

as follows: 

o ᵅ����: Binary variable equal to 1 iff path (ᵅ�, ᵅ�, ᵅ�) ∈ ᵊ�, is traversed by an ECV.  

o ᵅ����: Binary variable equal to 1 iff path (ᵅ�, ᵅ�, 1) ∈ ᵊ� is traversed by a BSV. 

The extension of the formulation in (4-1)-(4-20) to the alternative EPIP-based 

formulation using these variables is presented in (4-34)-(4-52) below. Note also that 

it is easy to deduce an EPIP-based formulation for the EVRPTW and the GVRP 

from the proposed formulation. We use an implementation of the EPIP-based 

EVRPTW against an exact CG-based solution algorithm for the problem in the 

‘computational results’ section of the paper to demonstrate the added value of the 

proposed formulation. 

ᵃ�ᵅ�ᵅ� � ᵃ����ᵅ����
(�����)∈�

+ � ᵃ����ᵅ����
(�����)∈�

 (4-34) 

Subject to:  

� � ᵅ����
�∈����∈��

= 1,          ∀ᵅ� ∈ ᵃ� (4-35) 

� ᵅ����
�∈��

≤ 1,          ∀ᵅ� ∈ ᵃ�  (4-36) 

� � ᵅ����
�∈����∈��

− � � ᵅ����
�∈����∈��

= 0,          ∀ᵅ� ∈ ᵃ� (4-37) 

� ᵅ����
�∈��

− � ᵅ����
�∈��

= 0,          ∀ᵅ� ∈ ᵃ�  (4-38) 

ᵅ�� + ᵯ����ᵅ�� + �ᵯ���� + ᵅ���ᵅ���� +  � � ᵅ���1
�∈�2

− (ᵅ�� + �)�1 − ᵅ����� ≤ ᵅ��,

∀(ᵅ�, ᵅ�, ᵅ�) ∈ ᵊ� 

(4-39) 

ᵅ�� ≤ ᵅ�� + ᵅ��,          ∀ᵅ� ∈ ᵃ�� (4-40) 

ᵅ�� + ᵯ����ᵅ�� + �ᵯ���� + � + ᵅ���ᵅ���� − ᵅ���1 − ᵅ����� ≤ ᵅ��,

∀(ᵅ�, ᵅ�, 1) ∈ ᵊ� 
(4-41) 

ᵃ�� ≤ ᵅ�� ≤ ᵅ��,          ∀ᵅ� ∈ ᵃ��  (4-42) 
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0 ≤ ᵃ�� ≤ ᵃ�� − (ᵅ�� � ᵅ����
�∈���

) + ᵃ��(1 − � ᵅ����
�∈���

),          ∀ᵅ� ∈ ᵃ��, ᵅ�

∈ ᵃ��, ᵅ� ≠ ᵅ� 
(4-43) 

0 ≤ ᵃ�� ≤ ᵃ�� (4-44) 

0 ≤ ℎ� ≤ ℎ� − ᵅ���� + ᵃ���1 − ᵅ�����,          ∀(ᵅ�, ᵅ�, 1) ∈ ᵊ� (4-45) 

0 ≤ ℎ� ≤ ᵃ�� (4-46) 

0 ≤ ᵅ�� ≤ ᵅ�� − ᵯ����ᵅ�� − ᵯ����ᵅ���� + (ᵃ�� � ᵅ����
�∈����≠�+�+�

)

+ ᵃ���1 − ᵅ�����,     ∀(ᵅ�, ᵅ�, ᵅ�) ∈ ᵊ� 

(4-47) 

ᵱ����ᵅ���� ≤ ᵅ�� ≤ ᵃ��,          ∀(0, ᵅ�, ᵅ�) ∈ ᵊ� (4-48) 

� � ᵱ����ᵅ����
�∈����∈��

≤ ᵅ�� ≤ ᵃ��,          ∀ᵅ� ∈ ᵃ�  (4-49) 

0 ≤ ᵅ�� ≤ ᵅ�� − ᵯ����ᵅ�� − ᵯ����ᵅ���� + ᵃ���1 − ᵅ�����,          ∀(ᵅ�, ᵅ�, 1) ∈ ᵊ� (4-50) 

ᵱ����ᵅ���� ≤ ᵅ�� ≤ ᵃ��,          ∀(0, ᵅ�, 1) ∈ ᵊ� (4-51) 

� ᵱ����ᵅ����
�∈��

≤ ᵅ�� ≤ ᵃ��,          ∀ᵅ� ∈ ᵃ� (4-52) 

While the interpretation of most of the constraints is equivalent to those in 

(4-1)-(4-20), constraints (4-48) and (4-52) respectively denote that the BCL of an 

ECV and a BSV at departure from the origin of a selected path is larger than the 

MR-BCL of the corresponding path.    

4.5 The 2S-MatHeu algorithm for the EVRP-SABS 

The EVRP-SABS is very difficult to solve to optimality in case of realistically sized 

test instances and hence development of a tailored heuristic solution algorithm is 

important to tackle practical problem sizes within a reasonable computational time. 

In this section, we propose a 2S-MatHeu solution algorithm for the EVRP-SABS 

that is based upon the proposed EPIP. This algorithm decomposes the problem 

into two easier to solve problems and deals with each one in two separate stages. 

In the first stage, the algorithm tries to find a feasible solution to the problem 
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without requesting any swapping services and by just visiting the available CSs. If 

such solution exists, the algorithm terminates and there is no need to invoke the 

second stage solver. Otherwise, owing to the EPIP and its resultant graph ᵊ�, the 

first stage solver still returns a solution specifying exactly at which customer 

node(s) and at what time a BSV should be present for a swapping service. With 

this information returned by the first stage solver, the second stage solver needs 

only to solve a very small and simple VRPTW to route the BSV(s) that could be 

even solved to optimality.  

It is important to note that an independent decomposition of the two levels of 

routing that must be determined for the ECVs and the BSVs can create issues 

regarding the interdependence problem that is inherent to problems with 

spatiotemporal synchronisation requirements. To avoid this, the ‘communication’ 

between the two levels must be preserved through an appropriate ‘medium’. In this 

study we employ and examine with the intuition that a smaller number of swapping 

services requested by ECVs in the first level would potentially lead to a smaller 

number and total distance of the BSVs in the second level. Hence, the first stage 

problem will minimise the total number of swapping services requested and the 

total distance of the ECVs in a lexicographical order. 

The details of each of these stages and the associated algorithms are discussed 

in the sequel. 

4.5.1 The first stage problem: the EVRPTW with CSs 

The objective of the first stage solver is to find a feasible solution to the problem 

without requesting any swapping services by just visiting the available CSs, and 

this corresponds to solving an EVRPTW with CSs. In the event that no feasible 

solution to the problem in hand in this stage could be found without requesting 

battery swaps, the algorithm is still instructed to return a solution enhanced by 

information regarding the minimum number of battery swapping required at the 
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customer nodes visited by the ECV routes. This is made possible by placing a 

tailored EPIP-based DP at the heart of the first stage solver, which is described in 

the sequel.  

As a result of the application of the proposed EPIP on a given instance of 

EVRP-SABS in the pre-processing phase, the first stage problem of the EVRPTW 

with CSs can be dealt with as a VRPTW on the multi-graph ᵊ� (where all CSs are 

eliminated). Not only this problem transformation allows an exact evaluation of 

any ECV route that requires visits to CSs, but also, with few algorithmic 

enhancements that are shortly described, it is possible to derive very useful 

information on the need for BSV visits and send this information to the second 

stage solver. An optimal evaluation of an ECV route on ᵊ�, on the other hand, 

corresponds to solving a Fixed Sequence Arc Selection Problem (FSASP) (Garaix 

et al., 2010) to optimality. Garaix et al. (2010) propose a DP to solve FSASP, 

which can be extended and used to evaluate an ECV route on ᵊ�. However, if there 

is no feasible evaluation for the ECV without requesting a battery swap, this DP 

can only return null. We enrich this DP by also exploring the possibility of battery 

swaps when extending labels.  

The proposed EPIP-based DP is hence presented in Algorithm 4-2. This 

algorithm takes the multi-graph ᵊ�, an ECV route (a sequence of customer visits) 

ℛ = {��, ��, … , ��} (where �� and �� are the depot), and the time-windows and 

service times of the customers on the route in its input (line 1), and returns an 

optimal evaluation (deduced from labels at the destination node ℒ�) of the given 

route such that: (i) the total number of swapping services needed, and (ii) the total 

distance of the routes are minimised lexicographically. As discussed before, priority 

is given to the minimisation of the number of swapping services required as it is 

expected that a larger number of requested swapping services should lead to a 

larger number of BSVs needed and BSV distance travelled in the second stage. 

Along with ℒ�, the algorithm returns also information about the customers that 
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require a swapping service in ��, and the time at which these customers need the 

service to be available in ᵊ�� (line 34). To this end, the algorithm retains and 

extends a set of labels ℒ��
, ���

, and ᵊ���
 at each node �� along ℛ. Each label ℓ ∈ ℒ��

 

is a tuple of length 4, where ℓ� stores the accumulated distance, ℓ� stores the 

accumulated travel time, ℓ� stores the available BCL, and ℓ� stores the total 

number of swaps requested up to the current node in ℛ. Each label ℊ ∈ ᵉ��ᵅ� and 

� ∈ ᵊ��ᵅ�, on the other hand, is an open-ended list of customers requiring swaps and 

their requested service time, respectively. The first set of labels at �� is initiated in 

line 2 of the algorithm and it is extended in lines 3 to 32 of the algorithm. The 

distinctive feature of the proposed DP that particularly leads to extra information 

regarding the need to swapping services corresponds to lines 25 to 30 of the 

algorithm, where the restriction on the available BCL is lifted and it is assumed 

that the ECV is ready to depart the node using a fully charged battery as a result 

of a potential battery swapping service by a BSV. 

The working of the proposed EPIP-based DP is illustrated using a small 

example in Figure 4-4. Figure 4-4.a shows an ECV route ℛ = {��, ��, �2, �3} visiting 

2 customers �� and �� on ᵃ�. Identified by the EPIP, there is only one eligible CS-

path between consecutive visits �� and �� in this example. The number above each 

arrow in this figure denotes the distance (=travel time) of each arc, and we assume 

that the service time at all customers on the route is equal to zero, and while there 

is no time-windows on ��, there is a time-window on �� corresponding to [0,11]. 

Moreover, suppose that ᵃ�� =  10, ᵅ�� =  1, � = 1 and ᵃ� =  1. Figure 4-4.b shows the 

resulting multi-graph ᵊ�, and all parameters related to the attributes of paths A to 

D in this multi-graph are computed based on the previous expressions and 

presented in Table 4-1. 



 

 Algorithm 4-2 The EPIP-based DP 

1 Input ᵊ�, ℛ, ᵃ��, ᵅ��, and ᵃ���
, ᵅ���

, ᵅ���
∀�� ∈ ℛ   

2 Initialise ℒ� = {0,0, ᵃ��, 0} = {},ᵊ�� = {}, and ᵉ�� = {};  

3 for � = 0 to ᵊ� − 1 do 

4  foreach: label ℓ ∈ ℒ� do 

5   for � = 1 to |ᵊ�����+�
| do 

6    if ℓ� ≥ ᵱ�(ᵊ�����+���) then 

7     ᵕ� = max {ℓ� + ᵅ���
+ ᵯ�����+���ℓ� + ᵯ�����+���, ᵃ���+�

}; 
8     if ᵕ� ≤ ᵅ���+�

 then 

9      dominated := false, ᵕ� = ℓ� + ᵃ�����+��� 

10       ᵕ� = ℓ� − ᵯ�����+���ℓ� − ᵯ�����+���, ᵕ� = ℓ�,  

11      ᵕ� = �, ᵕ� =  ℊ,    // � and ℊ are the ℓth lablels in ᵊ�� and ᵉ��, 

12      ℓ� = {ᵕ�, ᵕ�, ᵕ�, ᵕ�, }; 
13      foreach: label ℓ′′ ∈ ℒ�+� do  

14       if ℓ�
� ≤ ℓ�

�� and ℓ�
� ≤ ℓ�

�� and ℓ�
� ≥ ℓ�

�� and ℓ�
� ≤ ℓ�

�� then 

15        ℒ�+� ≔ ℒ�+�\{ℓ′′},ᵊ��+� ≔ ᵊ��+�\{�′′}, ᵉ��+� ≔ ᵉ��+�\{ℊ′′};  
16       elseif ℓ�

�� ≤ ℓ�
�  and ℓ�

�� ≤ ℓ�
�  and ℓ�

�� ≥ ℓ�
�  and ℓ�

�� ≤ ℓ�
�  then 

17        dominated := true, break; 

18       end if 

19      end for 

20      if dominated = false then   

21       ℒ�+� ≔ ℒ�+� ∪ {ℓ′},ᵊ��+� ≔ ᵊ��+� ∪ {ᵕ�}, ᵉ��+� ≔ ᵉ��+� ∪ {ᵕ�} ; 
22      end if 

23     end if 

24    end if 

25    if ᵃ�� ≥ ᵱ�(ᵊ�����+���) then 



 

 

 

 

26     Repeat lines  7 to 22 with following modifications: 

27     In line 7: ᵕ� = max {ℓ� + ᵅ���
+ � + ᵯ�����+���ᵃ�� + ᵯ�����+���, ᵃ���+�

} 
28     In line 10: ᵕ� = ᵃ�� − ᵯ�����+���ᵃ�� − ᵯ�����+���, 

29     In line 11: , ᵕ� = � ∪ {ℓ� + ᵅ���
}, ᵕ� =  ℊ ∪ {��}; 

30    end if 

31   end for  

32  end for 

33 end for 

34 return ℒ�, ᵊ��, and ᵉ��. 

 

Table 4-1 Parameters related to the attributes of the paths in Figure 4-4  

Paths ᵃ���� ᵱ���� ᵯ���� ᵯ���� ᵯ���� ᵯ���� 

A 2 2 0 2 0 2 
B 4 4 0 4 0 4 

C 5 2 -1 17 1 -7 

D 8 8 0 8 0 8 
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c. 

 

Figure 4-4 An illustrative example for the EPIP-based DP 
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Figure 4-4.c shows the extension of the labels along the given ECV route. At 

the final node, we must choose between the first and the last label at ��, i.e. 

{14,15, 3, 1} and {15, 20, 3, 1} resulted respectively from resource feasible paths A-

B-D and A-C-D, with a requested swapping service only at �� at time 6. Clearly, 

A-B-D has a smaller total distance and hence is selected. Note that despite its 

shorter distance, the middle label {14,16, 3, 2} is not preferred over the last label 

due to its larger number of swapping services required. 

It is worth noting that while in this study we tend to solve the core problem 

of FSASP to optimality, to speed up the overall algorithm, several alternative 

approaches could be used which will be left as perspectives here. One such approach 

is to use a fast heuristic algorithm like the one proposed in Lai et al. (2016) to solve 

the iteratively emerging FSASP problem approximately for newly generated 

solutions, and only run the exact algorithm at local optima. It is also possible to 

introduce a built-in memory with limited size in the algorithm to store frequently 

evaluated routes (or partial paths with their labels) in a hash table with a key. 

With this memory, before evaluating any route the algorithm will check with the 

hash table if an evaluation could be directly obtained without solving the incurred 

FSASP. 

Placing the proposed EPIP-based DP at the heart of the first stage solver as 

the routine for solution evaluation, any of the many available solution algorithms 

for the VRPTW could be used to deal with EVRPTW with CSs as a VRPTW on 

a multi-graph. We use an Intensified LNS (ILNS) algorithm for this purpose. The 

LNS developed by Shaw (1998), and its adaptive extension, i.e. ALNS, developed 

by Ropke and Pisinger (2006), is a conceptually simple metaheuristic and has 

proven successful in solving different variants of routing problems, particularly the 

VRPTW. The LNS is based on large rearrangements in a current solution by 

applying several removal and re-insertion heuristics and hence moving from one 

area within the feasible region to another using rather large steps. For brevity, we 
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avoid elaborating on the details of the LNS and ALNS here and refer the reader to 

the original studies of Shaw (1998) and Ropke and Pisinger (2006) for that purpose.  

In order to achieve a better exploitation capability, we equip further the 

proposed algorithm with an intensification procedure based on a Simulated 

Annealing (SA) metaheuristic with a new neighbourhood exploration strategy. This 

algorithm is invoked upon finding local optima to seek the possibility of going 

downhill further.  

An overview of the proposed ILNS algorithm is given in Algorithm 4-3. In the 

first step of the proposed algorithm (line 1) a feasible solution is generated using a 

simple heuristic. This heuristic puts all customers into a non-routed pocket and 

initiates an empty ECV route in the beginning, and then in each iteration extracts 

a customer from the pocket and tries to insert it at its best location in the current 

route, or if impossible, in a new route until the pocket is empty. Following the 

generation of the initial solution, the proposed ILNS takes a fixed number of 

iterations (ᵅ�ᵃ�ᵅ�ᵃ�ᵅ�ᵃ�ᵅ����) to return a near optimal solution ᵃ�����. In each iteration, 

a removal heuristic is selected from a set of available removal heuristics and is 

applied on the current solution ᵃ����� to remove a certain number of customers from 

the routes in the solution (line 6). We are using three removal heuristics: (i) Shaw 

removal (Shaw, 1998), (ii) random removal (Ropke & Pisinger, 2006), and (iii) 

worst removal (Ropke & Pisinger, 2006), all with equal chances to be selected. For 

all these removal heuristics, the number of customers to remove is determined by 

selecting a random integer in the interval [4, ᵅ�ᵰ����], where ᵰ���� ∈ [0,1] is a user 

defined parameter. In addition to this parameter, there is a ᵰ����� ∈ ℝ+ parameter 

for the Shaw removal which controls determinism in the relatedness function (see 

Shaw, 1998), and there is a ᵰ������ ∈ ℝ+ parameter for the worst removal that 

controls the degree of randomisation (see Ropke and Pisinger, 2006).  

The destroyed solution ᵃ���� after applying the selected removal heuristic, and 

the pocket containing removed customers are then submitted to a selected re-
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insertion algorithm to repair ᵃ���� and retrieve a possibly new ᵃ����� (line 7). We 

use two insertion heuristics adopted from Ropke and Pisinger (2006) for this 

purpose: (i) regret-2 heuristic, and (ii) regret-2 heuristic with noise (see Ropke and 

Pisinger, 2006 for details). There is only one parameter here (i.e. ᵰ�) associated with 

the second heuristic to control the amount of noise. 

Following the application of the destroy and repair mechanisms in lines 6 and 

7 of the algorithm, the intensification procedure is invoked if the new resulting 

ᵃ����� is ‘better’ than the existing ᵃ����� (line 8). It is important to note that in our 

algorithm a solution with smaller number of battery swaps required is always 

prefered over a solution with smaller total distance but larger number of swaps 

required. Hence, whenever we compare the cost of two solutions this is observed. 

After updating ᵃ����� (line 9), while ᵃ����� can be improved, the intensification 

procedure is repeatedly applied on ᵃ�����.  

The structure of the intensification procedure is similar to the successful SA 

algorithm proposed by Bent and Van Hentenryck (2004) for VRPTW, and mainly 

differs in its neighbourhood exploration strategy, which is indeed the special feature 

of their SA. In each iteration of their SA algorithm, Bent and Van Hentenryck 

(2004) choose randomly a move operator and a customer, and then consider all the 

possible moves for this customer using the selected operator to see if any 

improvement could be found. While we use the same 5 well- known local search 

operators that Bent and Van Hentenryck (2004) use in their study; i.e. 2-opt, Or-

opt, Relocation, Swap, and Crossover, we explore a wider sub-neighbourhood by 

selecting ᵰ�ᵅ� customers instead of only one customer, where the rate ᵰ� ∈ [0,1] is a 

user defined parameter. The closer is the selected ᵰ� to 1, the wider will be the 

explored sub-neighbourhood, and thus the better might be the ultimate solution, 

but also the slower would be the overall algorithm. Note that the SA algorithm 

used in the intensification procedure requires 5 other input parameters 
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corresponding to ᵅ�ᵅ�ᵅ�ᵃ�ᵃ�ᵅ�ᵅ�ᵅ�ᵅ���� , ᵉ���� , ᵅ�ᵃ�ᵅ�ᵅ�ᵃ�ᵅ�ᵅ�ᵅ�ᵅ���� , ᵅ�ᵅ�ᵃ�ᵅ�ᵅ�ᵅ�ᵅ�ᵃ�ᵃ�ᵃ�ᵅ�ᵅ���� , and 

ᵅ�ᵃ�ᵅ�ᵃ�ᵅ�ᵃ�ᵅ����  (see Bent and Van Hentenryck, 2004 for details). 

In lines 15 to 19 of the algorithm,  ᵃ����� is compared with ᵃ�������, and if ᵃ����� 

cannot improve ᵃ�������, a SA-wise acceptance criterion is used to examine if  ᵃ������� 

could be updated. Note that the temperature ᵅ�ᵃ�ᵅ�ᵅ���� in the algorithm starts out 

at ᵅ�ᵅ�ᵃ�ᵅ�ᵅ�ᵅ�ᵅ�ᵃ�ᵃ�ᵃ�ᵅ�ᵅ���� (line 3) and is decreased at the end of every iteration using 

the expression ᵅ�ᵃ�ᵅ�ᵅ���� ← ᵅ�ᵃ�ᵅ�ᵅ���� × ᵉ���� (line 20), where 0 < ᵉ���� < 1 is the 

cooling rate. 

The solution returned at the termination of the proposed ILNS algorithm, i.e. 

ᵃ�����, (line 22), is either a feasible solution that contains no requests to battery 

swaps, or otherwise it is a solution that includes at least one requested swapping 

service by a known customer at a known time. In the former case there is no need 

to go to the second stage of the algorithm, but in the latter case the second stage 

solver is run which is described next.



 

Algorithm 4-3 ILNS 

1 Generate an initial solution and denote it by ᵃ�������; 

2 ᵃ����� ← ᵃ�������; 

3 ᵅ�ᵃ�ᵅ�ᵅ���� ← ᵅ�ᵅ�ᵃ�ᵅ�ᵅ�ᵅ�ᵅ�ᵃ�ᵃ�ᵃ�ᵅ�ᵅ���� ; 

4 for ᵅ�ᵅ�ᵃ�ᵅ� = 1 to ᵅ�ᵃ�ᵅ�ᵃ�ᵅ�ᵃ�ᵅ���� do 

5  ᵃ����� ← ᵃ�������; 
6  ᵃ���� ← Select a removal heuristic and apply it on ᵃ�����; 

7  ᵃ����� ← Select an insertion heuristic and apply it on ᵃ����; 

8  if ᵃ�ᵅ�ᵅ�ᵅ�(ᵃ�����) < ᵃ�ᵅ�ᵅ�ᵅ�(ᵃ�����) then 

9   ᵃ����� ← ᵃ�����;  

10   while ᵅ�ᵅ�ᵅ�ᵃ� do 

11    ᵃ���� ← Apply the intensification procedure on ᵃ�����; 

12    if ᵃ�ᵅ�ᵅ�ᵅ�(ᵃ����) < ᵃ�ᵅ�ᵅ�ᵅ�(ᵃ�����) then ᵃ����� ← ᵃ���� and ᵃ����� ← ᵃ���� else break end if 

13   end while 

14  end if 

15  if ᵃ�ᵅ�ᵅ�ᵅ�(ᵃ�����) < ᵃ�ᵅ�ᵅ�ᵅ�(ᵃ�������) then 

16   ᵃ������� ← ᵃ�����; 

17  else if ᵅ�ᵃ�ᵅ�ᵃ� < ᵃ�ᵅ�ᵅ�(− (ᵃ�ᵅ�ᵅ�ᵅ�(ᵃ�����) − ᵃ�ᵅ�ᵅ�ᵅ�(ᵃ�������)) ᵅ�ᵃ�ᵅ�ᵅ����⁄ ) then 

18   ᵃ������� ← ᵃ�����; 
19  end if 

20  ᵅ�ᵃ�ᵅ�ᵅ���� ← ᵅ�ᵃ�ᵅ�ᵅ���� × ᵉ���� 

21 end for 

22 return ᵃ����� 
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4.5.2 The second stage problem: the VRPTW 

As discussed above and illustrated using the example in Figure 4-4, the solution to 

the first stage problem (i.e. ᵃ�����) clearly identifies the spatial and temporal 

characteristics of the required synchronisation between the BSV and the ECV with 

a depleted battery. This valuable information could be used to deduce a very small 

and simple to solve VRPTW for the BSV(s). To describe the resulting VRPTW, 

assume ℂ = {1, . . . , ᵕ�} denotes the set of the customers that require a battery 

swapping service as deduced by ᵃ�����. Also, suppose that ᵕ�� denotes the swapping 

service start time at customer ᵅ� ∈ ℂ in ᵃ����� (this is the time when ECV has finished 

serving customer ᵅ� ∈ ℂ). Then, the second stage problem is defined on a graph ᵓ� =

(ℕ, ᵓ�), where ℕ = ᵃ� ∪ ℂ, and ᵓ� = {(ᵅ�, ᵅ�)|ᵅ�, ᵅ� ∈ ℕ, ᵅ� ≠ ᵅ�}. Recall that each BSV can 

arrive at a customer before ᵕ��, but it needs to wait until swapping can take place. 

Also, note that the second stage problem is no longer solved on a multi-graph as 

BSVs are banned from visiting CSs.  

The second stage problem is hence a conventional VRPTW with an additional 

constraint on the BSV charge availability as given below: 

ᵃ�ᵅ�ᵅ� � ᵃ���ᵅ���
(���)∈ᵓ�

 (4-53) 

Subject to:  

� ᵅ���
�∈��

= 1,          ∀ᵅ� ∈ ᵃ�  (4-54) 

(ᵕ�� + �)ᵅ��� + ᵃ���ᵅ��� − ᵅ���1 − ᵅ���� ≤ ᵅ��,          ∀ᵅ� ∈ ᵃ��, ᵅ� ∈ ᵃ��, ᵅ� ≠ ᵅ� (4-55) 

ᵅ�� = ᵕ�� + �,          ∀ᵅ� ∈ ᵃ� (4-56) 

and (4-5), (4-13), (4-14) and (4-19).  
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The second stage VRPTW is very ‘small’ as ℂ is only a small fraction of ᵃ�, 

and it is very ‘simple’ to solve as time-windows are very tight. Therefore, this 

problem can be simply solved to optimality using an off-the-shelf solver.  

We demonstrate the performance of the proposed 2S-MatHeu algorithm in the 

next section of the paper. 

4.6 Computational results 

In this section, we present the numerical experiments conducted to gain insights 

on the newly proposed problem of the EVRP-SABS and to evaluate the 

effectiveness of the proposed EPIP and the 2S-MatHeu algorithm. The section 

begins by introducing the developed EVRP-SABS benchmark instances and is then 

followed by the evaluation of the proposed EPIP-based formulation in finding exact 

solutions to the EVRP-SABS and its closely related class of the EVRPTW with 

CSs. Small EVRP-SABS instances with up to 25 customers and 21 CSs are solved 

to optimality using the proposed EPIP-based formulation and it is shown that 

without the application of the proposed EPIP, and using the original formulation, 

the problem becomes very soon intractable. Moreover, the exact solution to these 

small test instances provides a benchmark for the evaluation of the proposed 2S-

MatHeu algorithm. We also apply an EPIP-based formulation of the EVRPTW on 

the instances developed by Schneider et al. (2014) in this section, and demonstrate 

that by just putting the formulation directly into a standard branch-and-bound 

solver, one can solve and improve several of the instances (up to 100 customer 

nodes) that were only possible to solve previously using a sophisticated CG-based 

solution algorithm (Desaulniers et al., 2016). The experiments are completed by 

evaluating the proposed 2S-MatHeu against the optimal and near optimal solutions 

found to small-sized instances, and by its application on EVRP-SABS instances 

with 100 customers.        
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All the experiments were performed on a computer with Intel Core™ i5 3.40 

GHz processor with 8 GB RAM. The branch-and-bound solver of CPLEX™ 12.6.3 

was used as the exact solver, and all other algorithms were coded in MATLAB™. 

4.6.1 Generation of EVRP-SABS test instances 

The EVRP-SABS test instances developed in this paper are created by applying 

several modifications on the EVRPTW instances by Schneider et al. (2014) such 

that battery swaps might be potentially required. The test problems in Schneider 

et al. (2014) are developed based on the well-known benchmark instances for the 

VRPTW proposed by Solomon  (1987) which comprises six sets of test problems 

(C1, R1, RC1, C2, R2, and RC2). Instances in the sets C1 and C2 are with clustered 

geographical data, instances in R1 and R2 are generated by a random uniform 

distribution, and instances in RC1 and RC2 are semi-clustered instances that 

contain a mix of randomly generated data and clusters. Problem sets in the first 

group (i.e. R1, C1, and RC1) have a short scheduling horizon, whereas the second 

group instances (i.e. R2, C2, and RC2) have a longer scheduling horizon. To extend 

these instances to their intended EVRPTW test problems, Schneider et al. (2014) 

introduce to each one the locations of a set of 21 CSs, one at the depot, and the 

other 20 ones at randomly selected locations, such that every customer can be 

reached from the depot using at most two different CSs. Since the detours for visits 

to CSs and the resulting recharging times make it impossible to comply with the 

customer time windows given in the original Solomon instances, they generate new 

time-windows to obtain feasible EVRPTW instances. 

We apply three main modifications on the test problems proposed in Schneider 

et al. (2014) as follows: (i) the time-windows in their instances are reverted to the 

original Solomon instances, (ii) an inverse recharging rate which is three times the 

recharging rate they use for each instance is used, and (iii) battery capacity has 

been reduced to the extent that the feasibility of instances is not affected. These 
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extra configurations make the problems harder to solve, and potentially lead to the 

use of BSVs in the solution. To ensure feasibility, however, BSVs’ battery capacity 

has been set more than twice the battery capacity of an ECV in each instance, but 

the consumption rate of a BSV has been set equal to that of the ECVs. Each BSV 

is assumed to be able to carry a maximum of 5 batteries, and swapping service 

time across all instances is assumed to be 3 time units.  In general, EVRP-SABS 

instances of sizes 5, 10, 15, 25, and 100 customers are generated, where instances 

with 25 and 100 customer locations comprise 21 CS locations. 

4.6.2 The performance of the proposed EPIP 

To evaluate the proposed EPIP, we initially solve EVRP-SABS instances of size 5, 

10, and 15 to optimality (or near optimality) using the original formulation of the 

EVRP-SABS given in (4-1)-(4-20), and compare it with the solution of the EPIP-

based formulation in (4-34)-(4-52). Since the original formulation cannot handle 

instances with more than 15 customers, we also solve some of the instances with 

25 customers using the EPIP-based formulation for benchmarking purposes. This 

provides a basis for the performance evaluation of the proposed 2S-MatHeu 

algorithm in approximating the optimal solutions in the next section. Note that the 

solver is given a maximum of 3600 seconds for each instance, and upon this 

termination criterion, if there is any MIP gap, it is reported.  

The results of the experiments on instances with 5, 10 and 15 customers are 

presented in Table 4-2. In this table the headings denote the following: VT: total 

number of vehicles (ECVs and BSVs) used in the solution; DT: total distance 

travelled by all vehicles (ECVs and BSVs); VE: total number of ECVs used in the 

solution; DE: total distance travelled by ECVs; VB: total number of BSVs used in 

the solution; DB: total distance travelled by BSVs; S: total number of battery swaps 

requested, C: total number of visits to CSs; and t (s): total computing time in 

seconds. The table also reports the average number of CS-paths retained between 
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every pair of required nodes after the application of the EPIP under the column 

with ‘Avg. paths’ heading. 

While the original formulation is not able to solve instances with 25 customers 

and 21 CSs, we present the obtained solutions to these problems using the EPIP-

based formulation in Table 4-3. In addition to demonstrating the effectiveness of 

the proposed EPIP, the solution to these instances provide a basis for the evaluation 

of the performance of the proposed 2S-MatHeu solution algorithm for the EVRP-

SABS in the next sub-section. 

In order to further investigate the effectiveness of the proposed EPIP in 

problem classes that are closely related to the EVRP-SABS (e.g. the EVRPTW 

and the GVRP), we demonstrate that by just putting an EPIP-based formulation 

of the EVRPTW into CPLEX, one can obtain results that are not only very well 

comparable with a sophisticated CG-based algorithm proposed by Desaulniers et 

al. (2016), but are also improving several of their results in terms of the number of 

vehicles required. In Desaulniers et al. (2016) four variants of the EVRPTW 

resulting from the combination of the adopted recharging strategy (i.e. full or 

partial) and recharging frequency (single or multiple recharge per route) are 

considered and for each variant, an exact branch-price-and-cut algorithms is 

presented. They mainly concentrate on the first group of test problems developed 

by Schneider et al. (2014) (i.e. test sets R1, C1, and RC1), which are characterized 

by narrow time windows, and show that they can solve instances with up to 100 

customers and 21 recharging stations. We also use the same set of 25, 50 and 100 

test instances they use and show that the EPIP-based formulation can handle a 

majority of them. Note that the EPIP-based formulation can tackle the second 

variant of the EVRPTW they consider, i.e. multiple recharges per route, with full 

recharges only. Similar to their study we have applied a maximum computational 

time of 3600 s on CPLEX.



 

Table 4-2 Comparison of the original formulation for the EVRP-SABS with the EPIP-based formulation 

No. Inst. 
Original formulation  EPIP-based formulation 

VT DT t (s)  MIP gap  Avg. paths  VE DE VB DB S C VT DT t (s) MIP gap  

1 C101-5 4 334.34 1.68 0.00  0.30 3 228.18 1 106.16 2 0 4 334.34 1.13 0.00 

2 C103-5 2 220.67 1.13 0.00  1.60 1 159.06 1 61.61 1 1 2 220.67 1.28 0.00 

3 C206-5 2 294.49 0.69 0.00  2.10 1 229.72 1 64.78 1 3 2 294.49 0.95 0.00 

4 C208-5 2 257.96 0.69 0.00  1.60 1 165.77 1 92.18 2 3 2 257.96 0.80 0.00 

5 R104-5 4 209.00 0.75 0.00  1.80 3 161.81 1 47.19 2 2 4 209.00 0.47 0.00 

6 R105-5 3 235.83 1.03 0.00  0.90 2 180.26 1 55.57 1 2 3 235.83 0.08 0.00 

7 R202-5 2 215.86 0.89 0.00  2.75 1 146.03 1 69.83 2 2 2 215.86 0.38 0.00 

8 R203-5 2 340.50 3.23 0.00  1.90 1 257.54 1 82.9616 2 7 2 340.50 0.14 0.00 

9 RC105-5 4 366.45 0.64 0.00  0.45 3 252.03 1 114.42 2 3 4 366.45 0.05 0.00 

10 RC108-5 5 469.22 3600.00 0.22  1.40 4 418.23 1 50.99 1 7 5 469.22 0.14 0.00 

11 RC204-5 2 289.14 4.19 0.00  2.50 1 204.65 1 84.50 2 3 2 289.14 0.20 0.00 

12 RC208-5 2 228.20 0.73 0.00  1.65 1 177.62 1 50.59 1 4 2 228.20 0.16 0.00 

13 C101-10 5 488.59 1.14 0.00  0.60 4 398.78 1 89.80 2 3 5 488.59 0.23 0.00 

14 C104-10 3 370.99 35.55 0.00  2.72 2 273.92 1 97.08 4 2 3 370.99 65.06 0.00 

15 C202-10 4 351.76 8.91 0.00  1.59 3 311.64 1 40.12 2 6 4 351.76 0.58 0.00 

16 C205-10 2 461.27 694.76 0.00  1.37 1 355.31 1 105.96 4 3 2 461.27 1.38 0.00 

17 R102-10 - - 3600.00 -  1.10 4 323.09 1 96.42 3 5 5 419.51 3.44 0.00 

18 R103-10 3 228.40 3600.00 0.00  2.09 2 162.35 1 64.06 2 0 3 226.40 13.49 0.00 

19 R201-10 2 373.36 3600.00 0.32  1.74 1 302.75 1 70.61 3 7 2 373.36 1.51 0.00 

20 R203-10 2 334.25 83.95 0.00  3.39 1 232.68 1 101.57 2 4 2 334.25 48.77 0.00 

21 RC102-10 5 485.08 4.25 0.00  0.56 4 414.40 1 70.68 1 3 5 485.08 0.19 0.00 

22 RC108-10 4 502.10 482.77 0.00  1.33 3 369.73 1 132.37 3 2 4 502.10 219.95 0.00 

23 RC201-10 3 383.82 5.13 0.00  1.83 2 325.51 1 58.31 1 5 3 383.82 1.41 0.00 

24 RC205-10 3 462.77 61.00 0.00  1.67 2 394.97 1 67.80 2 5 3 462.77 1.91 0.00 

25 C103-15 5 516.40 3600.00 0.31  2.15 3 338.81 2 175.47 5 2 5 514.28 1167.33 0.00 

26 C106-15 4 481.84 49.88 0.00  0.73 3 342.21 1 139.63 4 2 4 481.84 4.33 0.00 

27 C202-15 4 456.72 18.00 0.00  1.78 3 355.91 1 100.81 3 4 4 456.72 1.77 0.00 

28 C208-15 3 335.71 25.73 0.00  1.61 2 288.68 1 47.02 2 4 3 335.71 2.94 0.00 

29 R102-15 5 383.26 1107.44 0.00  2.69 4 338.19 1 45.07 2 3 5 383.26 48.41 0.00 
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30 R105-15 5 460.89 121.55 0.00  0.83 4 372.16 1 88.73 3 4 5 460.89 2.08 0.00 

31 R202-15 5 704.35 54.65 0.00  1.89 2 494.60 3 209.75 7 13 5 704.35 45.83 0.00 

32 R209-15 3 368.88 3600.00 0.18  3.14 2 318.88 1 50 1 6 3 368.88 319.84 0.00 

33 RC103-15 7 635.71 4.75 0.00  1.03 5 459.89 2 175.8185 4 4 7 635.71 1.52 0.00 

34 RC108-15 - - 3600.00   1.42 4 438.00 1 103.0326 3 4 5 541.04 3600.00 0.41 

35 RC202-15 3 398.94 3600.00 0.23  2.90 2 357.70 1 41.231 1 5 3 398.94 95.56 0.00 

36 RC204-15 3 438.25 3600.00 0.24  4.16 2 346.58 1 91.671 2 7 3 438.25 3600.00 0.20 

 

 

Table 4-3 Solutions to instances with 25 customers and 21 CSs using the EPIP-based formulation  

No. Inst. 
EPIP-based formulation 

Avg. paths  VE DE VB DB S C VT DT t (s) MIP gap  

1 C101-25 1.01 6 693.96 2 212.74 2 8 8 906.70 30.14 0.00 

2 C102-25 1.50 5 534.58 2 213.29 2 6 7 747.87 566.66 0.00 

3 C105-25 1.02 8 761.48 1 105.86 1 4 9 867.35 84.95 0.00 

4 C106-25 1.34 8 787.07 0 0.00 0 0 8 787.07 67.66 0.00 

5 C205-25 2.40 3 431.54 1 51.37 1 2 4 482.91 8.53 0.00 

6 C208-25 2.93 3 470.12 0 0.00 0 0 3 470.12 43.47 0.00 

7 R101-25 0.73 10 699.15 3 258.66 3 7 13 957.81 1.05 0.00 

8 R105-25 1.28 8 662.13 1 99.59 1 4 9 761.72 488.81 0.00 

9 RC101-25 0.93 9 865.39 1 125.6398 1 3 10 991.03 42.98 0.00 

10 RC102-25 1.77 9 815.68 1 119.10 1 3 10 934.78 3600.00 0.04 

11 RC201-25 2.82 2 948.21 0 0.00 0 0 2 948.21 115.56 0.00 

12 RC206-25 3.88 3 593.81 1 72.62 1 3 4 666.43 3299.53 0.00 
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The results of this comparison is presented in Table 4-4. In this table, solutions 

obtained using the EPIP-based formulation are compared with the solutions 

reported by Desaulniers et al. (2016) (under the heading Des. et al) for EVRPTW 

instances with 25, 50 and 100 customers and 21 CSs. EPIP-based solutions in italic 

are matching with Des. et al solutions, and solutions in bold are improving their 

solutions. Note that the improvements are either in the total number of ECVs 

required, or they are solutions to problems that had remained unsolved using the 

branch-price and-cut algorithm of Desaulniers et al. (2016). It must be mentioned 

that the algorithm proposed by Desaulniers et al. (2016) does not include features 

to minimise total number of ECVs and can only minimise distance.



 

Table 4-4 The EPIP-based formulation for the EVRPTW instances with 25, 50 and 100 customers and 21 CSs 

Inst. 
25   50   100 
Des. et al   EPIP-   Des. et al   EPIP-based   Des. et al   EPIP-based 
k d   k d   k d  k d   k d  k d 

C101 7 626.90   5 708.90   9 783.59  7 904.71   12 1053.83  12 1093.98 
C102 5 526.24   5 526.24   8 784.67  9 788.39   12 1022.58  - - 
C103 4 345.41   4 345.41   7 656.67  7 677.38   - -  - - 
C104 4 449.75   4 449.53   5 582.68  6 600.00   - -  13 1226.23 
C105 6 541.35   4 620.13   9 736.76  8 777.59   12 1033.93  12 1062.39 
C106 5 562.27   4 619.38   9 754.95  9 763.98   12 1027.25  - - 
C107 6 505.73   4 628.98   7 708.70  7 708.70   12 1025.63  - - 
C108 5 508.27   5 508.27   8 725.97  8 725.97   - -  - - 
C109 4 473.41   4 475.28   7 677.02  7 686.36   - -  12 1030.12 
R101 9 662.15   9 662.80   12 939.87  11 961.76   20 1601.76  18 1639.9 
R102 6 452.90   5 470.18   10 866.67  - -   18 1454.91  - - 
R103 6 494.45   6 494.45   9 803.16  10 818.99   - -  17 1350.61 
R104 4 351.99   4 351.99   - -  7 633.56   - -  14 1254.76 
R105 6 584.41   6 584.41   10 842.41  10 842.41   15 1340.18  - - 
R106 5 480.06   5 480.06   9 793.95  9 797.55   14 1229.21  - - 
R107 5 416.33   5 417.23   8 691.35  - -   - -  17 1422.08 
R108 4 429.19   - -   6 543.49  7 585.04   - -  14 1251.22 
R109 5 462.05   5 462.05   8 789.35  - -   - -  - - 
R110 4 419.49   4 427.21   7 713.43  - -   - -  - - 
R111 4 382.86   4 382.86   7 745.12  - -   - -  16 1336.75 
R112 4 397.24   4 397.24   6 602.81  7 659.12   - -  15 1352.16 
RC101 7 737.98   6 791.60   11 1074.13  11 1074.13   - -  17 1706.17 
RC102 7 648.34   7 649.31   10 897.21  10 922.79   16 1531.77  - - 
RC103 6 560.73   6 560.73   8 829.42  9 873.25   - -  - - 
RC104 4 516.28   4 516.28   7 689.97  7 693.97   - -  14 1465.81 
RC105 6 589.68   6 589.68   10 983.94  - -   15 1482.19  16 1650.58 
RC106 5 557.08   5 557.08   8 887.99  9 911.92   - -  - - 
RC107 4 497.48   4 497.48   7 786.18  8 811.81   - -  - - 
RC108 4 479.58   4 479.58   - -  7 751.36   - -  - - 
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4.6.3 The performance of the proposed 2S-MatHeu  

In this section, we first compare the solutions obtained using the proposed 2S-

MatHeu with the optimal (or near optimal) solutions found for the EVRP-SABS 

instances of size 5, 10, 15, and 25 in the previous section, and then report the 

solutions to instances with 100 customers and 21 CSs. To determine the value of 

the parameters used inside 2S-MatHeu, we have conducted a preliminary set of 

empirical analyses and chosen the following values: ᵰ����= 0.4, ᵰ����� = 6, ᵰ������ = 

3, ᵰ� = 0.025, ᵰ� = n/150, ᵅ�ᵃ�ᵅ�ᵃ�ᵅ�ᵃ�ᵅ���� = 30n, ᵅ�ᵅ�ᵃ�ᵅ�ᵅ�ᵅ�ᵅ�ᵃ�ᵃ�ᵃ�ᵅ�ᵅ���� = 100, 

ᵃ�ᵅ�ᵅ�ᵅ�ᵅ�ᵅ�ᵃ�ᵃ�ᵃ�ᵅ�ᵃ���� = 0.997, ᵅ�ᵃ�ᵅ�ᵃ�ᵅ�ᵃ�ᵅ����  = number of routes in the solution, 

ᵅ�ᵅ�ᵅ�ᵃ�ᵃ�ᵅ�ᵅ�ᵅ�ᵅ����  = 0.5, ᵅ�ᵅ�ᵃ�ᵅ�ᵅ�ᵅ�ᵅ�ᵃ�ᵃ�ᵃ�ᵅ�ᵅ����  = 500, and ᵃ�ᵅ�ᵅ�ᵅ�ᵅ�ᵅ�ᵃ�ᵃ�ᵃ�ᵅ�ᵃ����  = 0.992. 

Table 4-5 presents the solutions obtained by applying the proposed 2S-MatHeu 

algorithm on instances with 5, 10, 15, and 25 customers. While in over 81% of the 

cases the solution returned by the 2S-MatHeu matches exactly with the optimal 

solution, and in one case (instance number 36) it improves the solution returned 

by CPLEX after 3600 seconds, in 9 cases the 2S-MatHeu solution does not match 

with the exact solution. Further investigation of the reason for this, however, can 

be insightful for future solution developments for the EVRP-SABS. In Figure 4-5, 

a visual comparison between these non-matching solutions is presented in terms of 

ECV and BSV distance, ECV and BSV numbers assigned to routes, and total 

number of batteries required by the solution. This figure reveals that this non-

matching is due to the ‘interdependence problem’ (Drexl, 2012) discussed earlier 

that is inherent to the EVRP-SABS . While using the “total number of batteries” 

as the medium of communication between the two stages in our proposed 2S-

MatHeu algorithms turns out to be successful in most of the cases, it is not always 

guaranteed to lead to the best solution. Figure 4-5 shows that in case of all these 

instances the solution returned by the 2S-MatHeu always returned an equal or 

smaller number of batteries required (what the first stage problem was intended to 
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do). In the case of these instances, the minimisation of the number of batteries has 

usually led to a larger ECV distance, or even BSV distance. The figure also suggests 

that even in the case that the number of batteries in case of the 2S-MatHeu and 

the exact do match, the minimisation of the ECV distance in the first stage can 

lead to a larger BSV distance in the second stage. For example, in case of inst #26, 

while in both exact and the 2S-MatHeu 4 batteries are needed, the minimisation of 

the ECV distance in the first stage of the 2S-MatHeu (15% smaller than the ECV 

distance in the exact) has led to 5% increase in the total BSV distance and incurred 

need to an extra BSV for completing the delivery. However, it must be noted that 

the overall difference between the solutions returned by the proposed 2S-MatHeu 

and the exact solutions in case of these instances and in terms of the total number 

of vehicles needed and distance travelled is only marginally different. 

Finally, the proposed 2S-MatHeu algorithm has been applied on the instances 

with 100 customers and 21 CSs. The result of this experiment is presented in Table 

4-6. These results indicate that in case of instances in the sets R2 and RC2, which 

have a longer scheduling horizon, swapping service has never been requested and 

optimisation has been completed in the first stage. This also shows the effectiveness 

of 2S-MatHeu in driving the search towards solutions with no need to swapping 

services. In case of the other instances, the ratio of number of batteries swapped 

and the number of BSVs utilised indicates that on average each BSV delivers 1.9 

batteries over its delivery route.  

In summary, results presented in this section show that the performance of the 

2S-MatHeu as an initial algorithm to tackle the newly introduced problem of 

EVRP-SABS sounds acceptable and can provide a benchmark for future solution 

developments for the problem.



 

Table 4-5 2S-MatHeu solutions to the EVRP-SABS instances with 5, 10, 15, and 25 customers 

No. Inst. 
The 2S-MatHeu 

VE DE VB DB S VT DT t (s) 

1 C101-5 3 228.18 1 106.16 2 4 334.34 0.16 

2 C103-5 1 159.06 1 61.61 1 2 220.67 0.19 

3 C206-5 1 229.72 1 64.78 1 2 294.49 0.14 

4 C208-5 1 165.77 1 92.18 2 2 257.96 0.11 

5 R104-5 3 174.39 1 36.77 1 4 211.16 0.39 

6 R105-5 2 180.26 1 55.57 1 3 235.83 0.27 

7 R202-5 1 146.03 1 69.83 2 2 215.86 0.15 

8 R203-5 1 257.54 1 82.96 2 2 340.50 0.27 

9 RC105-5 3 252.03 1 114.42 2 4 366.45 0.65 

10 RC108-5 4 418.23 1 50.99 1 5 469.22 0.37 

11 RC204-5 1 218.88 1 72.11 1 2 290.99 0.16 

12 RC208-5 1 177.62 1 50.59 1 2 228.20 0.53 

13 C101-10 4 398.78 1 89.80 2 5 488.59 0.41 

14 C104-10 2 272.32 1 126.37 3 3 398.69 1.64 

15 C202-10 3 311.64 1 40.12 2 4 351.76 0.69 

16 C205-10 1 353.01 1 129.10 4 2 482.11 1.44 

17 R102-10 4 323.09 1 96.42 3 5 419.51 0.73 

18 R103-10 2 162.35 1 64.06 2 3 226.40 0.82 

19 R201-10 1 302.75 1 70.61 3 2 373.36 2.64 

20 R203-10 1 232.68 1 101.57 2 2 334.25 3.99 

21 RC102-10 4 414.40 1 70.68 1 5 485.08 0.84 

22 RC108-10 3 369.73 1 132.37 3 4 502.10 1.26 

23 RC201-10 2 325.51 1 58.31 1 3 383.82 1.56 

24 RC205-10 2 394.97 1 67.80 2 3 462.77 0.95 

25 C103-15 3 338.81 2 175.47 5 5 514.28 2.69 

26 C106-15 3 290.02 2 146.60 4 5 436.62 1.78 

27 C202-15 3 355.91 1 100.81 3 4 456.72 2.60 

28 C208-15 2 288.68 1 47.02 2 3 335.71 5.40 

29 R102-15 4 338.19 1 45.07 2 5 383.26 2.65 



 

 

 

 

30 R105-15 5 386.12 1 52.50 1 6 438.62 1.96 

31 R202-15 2 494.60 3 209.75 7 5 704.35 6.18 

32 R209-15 2 318.88 1 50.00 1 3 368.88 41.90 

33 RC103-15 5 459.89 2 175.82 4 7 635.71 2.56 

34 RC108-15 4 438.00 1 103.03 3 5 541.04 3.62 

35 RC202-15 2 348.79 1 54.92 1 3 403.71 15.16 

36 RC204-15 1 377.50 1 91.67 2 2 469.17 119.98 

37 C101-25 6 693.96 2 212.74 8 8 906.70 7.70 

38 C102-25 5 529.70 3 286.95 5 8 816.66 6.39 

39 C105-25 8 761.48 1 105.86 4 9 867.35 6.05 

40 C106-25 8 787.07 0 0.00 0 8 787.07 60.22 

41 C205-25 3 431.54 1 51.37 2 4 482.91 76.72 

42 C208-25 3 470.12 0 0.00 0 3 470.12 45.06 

43 R101-25 11 761.03 3 242.44 3 14 1003.47 6.70 

44 R105-25 8 662.13 1 99.59 4 9 761.72 7.51 

45 RC101-25 9 865.39 1 125.64 3 10 991.03 6.96 

46 RC102-25 9 815.68 1 119.10 3 10 934.78 6.96 

47 RC201-25 2 948.21 0 0.00 0 2 948.21 68.61 

48 RC206-25 3 584.29 1 114.02 1 4 698.31 107.04 
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Figure 4-5 Comparison of the exact and the 2S-MatHeu algorithm in non-

matching instances 



 

Table 4-6 2S-MatHeu solutions to the EVRP-SABS instances with 100 customers and 21 CSs 

No. Inst.  Avg. paths  2S-MatHeu 
 VE DE VB DB S VT DT t (m) 

1 C101 1.00  13 1068.33 5 444.90 7 18 1513.23 25.22 
2 C102 2.17  12 1002.88 3 357.99 9 15 1360.87 22.68 
3 C103 3.46  11 948.63 5 459.85 10 16 1408.48 23.47 
4 C104 4.81  10 841.51 4 434.44 10 14 1275.95 21.27 
5 C105 1.18  12 964.10 4 429.98 8 16 1394.08 23.23 
6 C106 1.31  12 953.91 4 416.86 8 16 1370.77 22.85 
7 C107 1.39  12 939.26 5 453.81 8 17 1393.07 23.22 
8 C108 1.62  12 1002.72 5 476.75 8 17 1479.47 24.66 
9 C109 2.15  10 869.15 5 466.11 11 15 1335.26 22.25 
10 C201 2.76  4 771.24 2 182.09 6 6 953.33 15.89 
11 C202 4.22  5 967.40 2 161.92 2 7 1129.32 18.82 
12 C203 5.31  4 760.88 2 206.73 4 6 967.61 16.13 
13 C204 6.02  4 807.23 2 242.57 5 6 1049.80 17.50 
14 C205 3.03  4 838.42 3 259.85 5 7 1098.27 18.30 
15 C206 3.35  4 786.41 3 264.97 6 7 1051.38 17.52 
16 C207 3.61  4 798.93 3 321.29 6 7 1120.22 18.67 
17 C208 3.64  4 809.04 2 166.11 4 6 975.15 16.25 
18 R101 0.83  23 3125.04 0 0.00 0 23 3125.04 52.08 
19 R102 2.31  20 2761.56 0 0.00 0 20 2761.56 46.03 
20 R103 3.85  17 2222.68 0 0.00 0 17 2222.68 37.04 
21 R104 5.14  15 1224.49 5 386.34 10 20 1610.83 26.85 
22 R105 1.15  23 1816.32 5 369.46 6 28 2185.78 36.43 
23 R106 2.53  19 1623.45 5 396.92 10 24 2020.37 33.67 
24 R107 3.91  17 1428.44 5 437.12 8 22 1865.56 31.09 
25 R108 5.30  15 1227.00 5 402.32 7 20 1629.32 27.16 
26 R109 1.81  18 1511.76 5 379.58 8 23 1891.34 31.52 
27 R110 2.91  18 1459.61 5 354.74 6 23 1814.35 30.24 
28 R111 3.24  18 1468.13 4 348.17 8 22 1816.30 30.27 
29 R112 4.38  15 1240.66 4 357.42 7 19 1598.08 26.63 
30 R201 3.89  6 1212.63 0 0.00 0 6 1212.63 20.21 
31 R202 5.18  5 1114.26 0 0.00 0 5 1114.26 18.57 
32 R203 6.30  4 908.60 0 0.00 0 4 908.60 15.14 
33 R204 6.87  4 794.14 0 0.00 0 4 794.14 13.24 
34 R205 4.94  4 976.25 0 0.00 0 4 976.25 16.27 



 

 

 

 

35 R206 5.86  5 917.34 0 0.00 0 5 917.34 15.29 
36 R207 6.44  4 862.32 0 0.00 0 4 862.32 14.37 
37 R208 7.00  3 761.77 0 0.00 0 3 761.77 12.70 
38 R209 5.91  5 878.22 0 0.00 0 5 878.22 14.64 
39 R210 5.88  4 959.74 0 0.00 0 4 959.74 16.00 
40 R211 6.83  4 776.47 0 0.00 0 4 776.47 12.94 
41 RC101 0.83  21 2048.80 6 573.53 12 27 2622.33 43.71 
42 RC102 2.14  19 1788.52 6 520.97 11 25 2309.49 38.49 
43 RC103 3.52  16 1598.74 5 511.56 9 21 2110.30 35.17 
44 RC104 4.95  13 1363.72 6 592.10 11 19 1955.82 32.60 
45 RC105 1.39  20 1814.21 6 616.65 12 26 2430.86 40.51 
46 RC106 1.40  17 1659.43 7 683.00 12 24 2342.43 39.04 
47 RC107 2.24  15 1522.86 7 629.32 11 22 2152.18 35.87 
48 RC108 3.26  15 1404.08 5 543.98 10 20 1948.06 32.47 
49 RC201 3.98  6 1520.70 0 0.00 0 6 1520.70 25.35 
50 RC202 5.43  5 1210.20 0 0.00 0 5 1210.20 20.17 
51 RC203 6.48  5 960.39 0 0.00 0 5 960.39 16.01 
52 RC204 7.23  4 818.20 0 0.00 0 4 818.20 13.64 
53 RC205 4.97  6 1267.47 0 0.00 0 6 1267.47 21.12 
54 RC206 5.09  5 1077.20 0 0.00 0 5 1077.20 17.95 
55 RC207 6.08  5 1010.89 0 0.00 0 5 1010.89 16.85 
56 RC208 7.32  4 850.16 0 0.00 0 4 850.16 14.17 
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4.7 Discussion and conclusion 

To address the issue of range anxiety in goods distribution with ECVs, in this paper 

a new paradigm shift in EVRPTWs was proposed by exploiting new relevant 

technological developments that make mobile battery swapping or mobile rapid 

recharging possible. The new problem class of the EVRP-SABS in which an ECV 

can request a battery swapping service from a BSV on-the-fly was introduced and 

formulated. Using BSVs in the design of the ECV routes brings about savings in 

costs incurred by the total number of vehicles required and the total travelling 

distance. More importantly, it becomes an indispensable solution when ECV’s 

driving range is so much restrictive to the extent that a feasible solution to the 

problem in hand is unobtainable. Hence, keeping recharging at available CSs in the 

network as the primary solution to EVRPTWs, we introduced ambulant battery 

swapping as the last resort when a feasible route cannot be retrieved by just visiting 

CSs.  

To address the proposed problem, we developed new combinatorial results 

leading to an exact EPIP that allows the identification of all CS-paths that can 

contribute to an optimal solution, and eliminate all redundant paths from 

considerations in a pre-processing stage. Using the proposed EPIP, a strengthened 

EPIP-based MILP formulation was proposed for the problem and it was 

demonstrated that by just putting the formulation into a standard branch-and-

bound solver one can solve larger size instances of the EVRP-SABS and its related 

class of the EVRPTW with CSs. Furthermore, exploiting the proposed EPIP, a 

two-stage matheuristic was proposed for the EVRP-SABS. Benefiting from an 

EPIP-based DP at its core, the first stage of the proposed solution algorithm tries 

to find feasible delivery routes for the employed ECVs without requesting any 

ambulant battery swapping services from a BSV; however, if such solution is not 

found, the first stage solver transfers spatiotemporal information of the requested 
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swapping services to the second stage solver where a simple and small VRPTW is 

solved to optimality to route the required number of BSVs to provide the requested 

swapping services at the designated points and times. 

The paper derived new benchmark instances for the EVRP-SABS from the 

available EVRPTW test instances and several numerical experiments where 

conducted to demonstrate the effectiveness of the proposed EPIP and the 2S-

MatHeu. It was shown that the EPIP-based formulation can solve and improve 

several of the EVRPTW instances that were only solved previously using a 

dedicated branch-price-and-cut algorithm. The efficiency of the proposed 2S-

MatHeu was also demonstrated against the available optimal (or near optimal) 

solutions and by its application on large sized test instances with 100 customers 

and 21 CSs. The numerical experiments of the proposed matheuristic provided also 

an insight on the complexity of the EVRP-SABS due to the inherent problem of 

interdependence that usually emerges in problems with spatiotemporal 

synchronisation requirements. In the case of the EVRP-SABS there is a significant 

trade-off between different attributes of the problem and a slight change in the 

delivery route and schedule of an ECV can have a considerable impact on the route 

of the BSV, and vice versa. One way to address these trade-offs is to integrate both 

stages of the problem and instead of postponing the evaluation of a solution until 

the termination of the first stage, one can conduct a full integrated ECV and BSV 

evaluation for every newly generated solution. However, this is evidently a very 

computationally expensive task. Alternatively, one can approach the first stage 

problem as a multi-objective optimisation problem and instead of returning one 

solution only, return a pool of trading off solutions to choose from for the second 

stage. In any case, it is a significant open research direction to develop new 

sophisticated algorithms for the EVRP-SABS. 

Along with the development of tailored solution algorithms for the EVRP-

SABS, there are several other important future research directions to extend the 
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proposed problem in this paper. For example, in EVRPTWs the availability of a 

planned to visit CS on an ECV route is very crucial to the attainment of a feasible 

solution to complete the distribution task; if for any reason, the planned CS 

becomes unavailable upon the arrival of the ECV, the entire routing plan can be 

disrupted and yielded infeasible. The use of ambulant BSVs in this context can be 

quite helpful. Moreover, to reuse the expensive resources in the fleet, multi-trip 

planning of ECVs and BSVs can help cutting down on vehicle hiring costs and can 

be an important future line of research.



 

5. CONCLUSION 

5.1 Summary 

Urban freight distribution plays a vital role in the functioning of urban economies 

and is growing at a rapid pace due to the process of urbanisation. However, it is 

contributing significantly to problems such as traffic congestion and environmental 

pollution. Since its advent in the 1950s, the vehicle routing problem has contributed 

rather implicitly to reducing emissions from delivery routes by minimising the total 

distance travelled, and it has been recently enriched to incorporate environmental 

considerations more explicitly in the design of emissions-aware trips for distribution 

vehicles. 

The main goal of this research is to contribute to greening urban freight 

distribution by developing new mathematical models and solution algorithms 

pertaining to the two major steams in VRPs with environmental considerations; 

i.e.: (i) VRPs with an explicit fuel consumption estimation component as a proxy 

for emissions, aka emissions minimising VRPs, and (ii) VRPs with vehicles in the 

fleet that run on a cleaner alternative fuel such as electricity, natural gas, hydrogen-

gas, biofuel, etc., aka green VRPs. In the first stream, this thesis developed and 

solved a new realistic multi-objective variant of the pollution-routing problem that 

is studied directly on the original urban roadway network, and in the latter stream 

a paradigm shift in routing of ECVs was proposed by introducing the electric 

vehicle routing problem with ambulant battery swapping/recharging that exploits 

new technological developments corresponding to the possibility of mobile battery 

swapping (or recharging) of ECVs using a battery swapping van. The outcome of 

this research has been the study of 3 research topics that are briefly summarised in 

the sequel. 
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In chapter 2 of the thesis, the multi-objective Steiner PRP on congested urban 

road networks was introduced. This variant of the PRP is capable of incorporating 

the real operating conditions of urban freight distribution, and striking a balance 

between traditional business and environmental objectives. The proposed model 

integrates all factors that have a major impact on fuel consumption including the 

time-varying congestion speed, vehicle load, vehicle’s physical and mechanical 

characteristics, and acceleration and deceleration rates. For the latter factor that 

has been proven to have a significant impact on the fuel consumption of the vehicle 

and consequently the emissions (Turkensteen, 2017), a new model was proposed to 

synthetize spatiotemporal driving cycles that can effectively represent the expected 

second-by-second speed profile of a vehicle travelling over a given road-link at a 

given time of the day. The chapter also showed that using multiple trips can bring 

in significant cost and emissions savings by using energy efficient resources in the 

fleet more than once. In addition to integrating all major factors that contribute to 

fuel consumption in an integrated modelling and solution scheme, the main added 

value of the study in this chapter is to develop techniques to overcome the difficulty 

of studying the proposed problem directly on the road network and to make the 

incorporation of important data contained in the original roadway network into the 

model possible. Last but not the least, the study of the problem as a multi-objective 

optimisation problem puts forth useful implications for decision making by 

providing a clear picture of the real trade-offs between business and environmental 

objectives.   

While the problem proposed in the second chapter of the thesis is capable of 

providing a rather accurate exposition of the real conditions freight distributers 

face in urban areas, the resulting problem is significantly challenging to solve even 

in the case of small test instances. This problem unifies several hard variants of the 

VRP including the time-and-load dependent VRP, the multi-trip VRP, and the 

fleet size and mix VRP in a multi-objective optimisation setting and under the 
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compound situation of solution development on the original roadway network 

where multiple paths between consecutive visits of a truck must be identified and 

considered. Therefore, in chapter 3, I focused on the development of tailored 

solution algorithms for the SPRP that can put forward a reasonable set of trading 

off solutions within a reasonable computational time. Three different multi-

objective optimisation heuristics were hence developed for the SPRP and were 

compared against one another. Along with the introduction of innovative 

approaches to decompose and simplify the lower-level problems that arise in the 

context of the SPRP, the proposed solution algorithms have the added value of 

solving a unification of several hard and rich variants of the VRP. The outcome of 

these algorithms provides the decision maker with a pool of solutions representing 

clear trade-offs between the business and environmental objectives. The chapter 

also proposed an archive of benchmark test instances that resemble real world 

congested urban road networks. These test instances could be used for future 

algorithmic developments and examination with different logistics solutions and 

scenarios.  

The third research topic presented in chapter 4 of the thesis turns attention 

towards the ultimate viable solution to combatting emissions from UFD in urban 

centres, i.e. to use electric commercial vehicle for last-mile delivery. To tackle the 

significantly impeding problem of range anxiety in the face of goods distribution 

using ECVs, the article presented in this chapter introduces the electric vehicle 

routing problem with synchronised battery swapping/recharging. The proposed 

problem is motivated by new technological developments that make mobile battery 

swapping or recharging of ECVs on-the-fly possible. In the EVRP-SABS, routing 

takes place in two levels for the ECVs that carry out delivery tasks, and for the 

BSVs that provide the running ECVs with fully charged batteries on their route. 

There is, therefore, a need to establish temporal and spatial synchronisations 

between the vehicles in the two levels and to do so a dedicated two-stage 
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matheuristic was proposed that while decomposes the two levels into two 

independent stages, retains the communication between the two stages using the 

medium of “the total number of batteries required”. The paper demonstrated that 

through the exploitation of the new technologies pertinent to mobile battery 

swapping in the routing of ECVs, it is not only possible to achieve savings in costs, 

but also in realistic situations when completing the delivery tasks by merely visiting 

the available CSs in the network is impossible, the use of BSVs can be quite helpful. 

Moreover, along with its significant application in practice, the proposed problem 

puts forward several theoretical challenges that will motivate future research.  

5.2 Perspectives for further research 

While a large number of research articles has appeared in the area of VRPs with 

explicit environmental considerations in a rather short time over the past 10 years, 

there are still multiple promising research directions in the field. Given the rapid 

pace at which technologies relevant to transportation are advancing, a natural 

direction for future research would be to exploit further these developments in the 

design of delivery routes to improve their business and environmental performance. 

To name a few of these advancements and their connection with VRPs, one can 

refer to the widespread availability of a large number of real-time data on traffic 

congestion from across the roadway network that makes real-time routing and re-

routing easier than ever. Technologies related to the alternative fuel vehicles are 

also making a fast progress and new ideas are right now being investigated to 

significantly improve their driving range and to facilitate their refuelling. 

Furthermore, some of the new ideas and directions for future research that 

each chapter of this thesis puts forward are as follows: 

 The incorporation of the effect of non-recurrent congestion in the routing 

decisions through the development of real-time or stochastic variants of the 

SPRP is a significant line for future research. 
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 The proposed benchmark test instances and solution algorithms in chapter 

3 of the paper could serve as a platform for investigating the effect of 

different perturbations in various characteristics of a logistic system, like 

customers’ demands, locations, and time-windows, depot location, and 

vehicle fleet characteristics, and for carrying out various scenarios and 

what-if analyses. 

 The proposed algorithms in chapter 3 are SPRP dedicated and despite the 

fact that the SPRP per se includes different variants of the VRPTW, such 

as the TDVRPTW, the fleet size and mix VRPTW, the MT-VRPTW, and 

the MO-VRPTW, extra programming effort and parameter tuning is 

required to modify the algorithms to solve specific instances related to those 

variants. To address this limitation, in further research, the proposed 

algorithms can be extended to be used as unified general multi-objective 

solvers that can address these rich variants with minimum user interference. 

 Time-dependent VRPs are often based on the assumption that historical 

traffic data represent a rather repeating pattern of congestion. However, a 

key missing part is to validate the data prior to feeding them into the model. 

Hence, an attractive and promising line of future research would be to 

couple forecasting techniques with time-dependent routing tools to make 

the best out of both. 

 In EVRPTWs the availability of a planned to visit CS on an ECV route is 

very crucial to the attainment of a feasible solution to complete the 

distribution task; if for any reason, the planned to visit CS becomes 

unavailable upon the arrival of the ECV, the entire routing plan can be 

disrupted and yielded infeasible. The use of ambulant BSVs in this context 

can be quite helpful. In this vein, future research can investigate a variant 

of EVRPTW with disruption. 
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As a solution to the high acquisition cost of ECVs and BSVs, multi-trip planning 

of ECVs and BSVs can help cutting down on vehicle hiring costs and can be an 

important future line of research.
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