19,365 research outputs found

    A bibliography on parallel and vector numerical algorithms

    Get PDF
    This is a bibliography of numerical methods. It also includes a number of other references on machine architecture, programming language, and other topics of interest to scientific computing. Certain conference proceedings and anthologies which have been published in book form are listed also

    Dynamic modelling and estimation of the error due to asynchronism in a redundant asynchronous multiprocessor system

    Get PDF
    The use of Redundant Asynchronous Multiprocessor System to achieve ultrareliable Fault Tolerant Control Systems shows great promise. The development has been hampered by the inability to determine whether differences in the outputs of redundant CPU's are due to failures or to accrued error built up by slight differences in CPU clock intervals. This study derives an analytical dynamic model of the difference between redundant CPU's due to differences in their clock intervals and uses this model with on-line parameter identification to idenitify the differences in the clock intervals. The ability of this methodology to accurately track errors due to asynchronisity generate an error signal with the effect of asynchronisity removed and this signal may be used to detect and isolate actual system failures

    Investigation of the Heating Processes and Temperature Field of the Frequency-controlled Asynchronous Engine Based on Mathematical Models

    Get PDF
    The study of the temperature field of the engine for non-stationary modes is done. A numerical simulation of a non-stationary thermal process using dynamic EHD, the characteristic of the rate of rise of temperatures is done. An increase in the temperature of individual parts in the idle interval, when the power of heat release is significantly reduced, is established, and the reverse of the heat flow through the air gap is established. It is shown that the EHD method, in contrast to the FEM, is self-sufficient, which determines its practical value. In various parts of the speed control range in the implementation of various laws of regulation. At the same time, the main electrical, magnetic and additional losses associated with the fundamental voltage harmonics (FVH), and mechanical losses, as well as additional electrical and magnetic losses associated with the higher voltage harmonics, change. When using serial asynchronous engines as frequency-controlled. Permissible under the conditions of heating power is significantly reduced by the power of serial engines. Depending on the synchronous speed, the reduction is from 10 % to 20 %. Given the additional overheating due to higher voltage harmonics, as well as the deterioration of the cooling conditions when adjusting the rotational speed "down" from the nominal, it seems very relevant

    A Class of Parallel Tiled Linear Algebra Algorithms for Multicore Architectures

    Full text link
    As multicore systems continue to gain ground in the High Performance Computing world, linear algebra algorithms have to be reformulated or new algorithms have to be developed in order to take advantage of the architectural features on these new processors. Fine grain parallelism becomes a major requirement and introduces the necessity of loose synchronization in the parallel execution of an operation. This paper presents an algorithm for the Cholesky, LU and QR factorization where the operations can be represented as a sequence of small tasks that operate on square blocks of data. These tasks can be dynamically scheduled for execution based on the dependencies among them and on the availability of computational resources. This may result in an out of order execution of the tasks which will completely hide the presence of intrinsically sequential tasks in the factorization. Performance comparisons are presented with the LAPACK algorithms where parallelism can only be exploited at the level of the BLAS operations and vendor implementations

    Solution of partial differential equations on vector and parallel computers

    Get PDF
    The present status of numerical methods for partial differential equations on vector and parallel computers was reviewed. The relevant aspects of these computers are discussed and a brief review of their development is included, with particular attention paid to those characteristics that influence algorithm selection. Both direct and iterative methods are given for elliptic equations as well as explicit and implicit methods for initial boundary value problems. The intent is to point out attractive methods as well as areas where this class of computer architecture cannot be fully utilized because of either hardware restrictions or the lack of adequate algorithms. Application areas utilizing these computers are briefly discussed
    corecore