2,677 research outputs found

    On the structure of graphs without short cycles

    Get PDF
    The objective of this thesis is to study cages, constructions and properties of such families of graphs. For this, the study of graphs without short cycles plays a fundamental role in order to develop some knowledge on their structure, so we can later deal with the problems on cages. Cages were introduced by Tutte in 1947. In 1963, Erdös and Sachs proved that (k, g) -cages exist for any given values of k and g. Since then, large amount of research in cages has been devoted to their construction. In this work we study structural properties such as the connectivity, diameter, and degree regularity of graphs without short cycles. In some sense, connectivity is a measure of the reliability of a network. Two graphs with the same edge-connectivity, may be considered to have different reliabilities, as a more refined index than the edge-connectivity, edge-superconnectivity is proposed together with some other parameters called restricted connectivities. By relaxing the conditions that are imposed for the graphs to be cages, we can achieve more refined connectivity properties on these families and also we have an approach to structural properties of the family of graphs with more restrictions (i.e., the cages). Our aim, by studying such structural properties of cages is to get a deeper insight into their structure so we can attack the problem of their construction. By way of example, we studied a condition on the diameter in relation to the girth pair of a graph, and as a corollary we obtained a result guaranteeing restricted connectivity of a special family of graphs arising from geometry, such as polarity graphs. Also, we obtained a result proving the edge superconnectivity of semiregular cages. Based on these studies it was possible to develop the study of cages. Therefore obtaining a relevant result with respect to the connectivity of cages, that is, cages are k/2-connected. And also arising from the previous work on girth pairs we obtained constructions for girth pair cages that proves a bound conjectured by Harary and Kovács, relating the order of girth pair cages with the one for cages. Concerning the degree and the diameter, there is the concept of a Moore graph, it was introduced by Hoffman and Singleton after Edward F. Moore, who posed the question of describing and classifying these graphs. As well as having the maximum possible number of vertices for a given combination of degree and diameter, Moore graphs have the minimum possible number of vertices for a regular graph with given degree and girth. That is, any Moore graph is a cage. The formula for the number of vertices in a Moore graph can be generalized to allow a definition of Moore graphs with even girth (bipartite Moore graphs) as well as odd girth, and again these graphs are cages. Thus, Moore graphs give a lower bound for the order of cages, but they are known to exist only for very specific values of k, therefore it is interesting to study how far a cage is from this bound, this value is called the excess of a cage. We studied the excess of graphs and give a contribution, in the sense of the work of Biggs and Ito, relating the bipartition of girth 6 cages with their orders. Entire families of cages can be obtained from finite geometries, for example, the graphs of incidence of projective planes of order q a prime power, are (q+1, 6)-cages. Also by using other incidence structures such as the generalized quadrangles or generalized hexagons, it can be obtained families of cages of girths 8 and 12. In this thesis, we present a construction of an entire family of girth 7 cages that arises from some combinatorial properties of the incidence graphs of generalized quadrangles of order (q,q)

    Bounds for identifying codes in terms of degree parameters

    Full text link
    An identifying code is a subset of vertices of a graph such that each vertex is uniquely determined by its neighbourhood within the identifying code. If \M(G) denotes the minimum size of an identifying code of a graph GG, it was conjectured by F. Foucaud, R. Klasing, A. Kosowski and A. Raspaud that there exists a constant cc such that if a connected graph GG with nn vertices and maximum degree dd admits an identifying code, then \M(G)\leq n-\tfrac{n}{d}+c. We use probabilistic tools to show that for any d3d\geq 3, \M(G)\leq n-\tfrac{n}{\Theta(d)} holds for a large class of graphs containing, among others, all regular graphs and all graphs of bounded clique number. This settles the conjecture (up to constants) for these classes of graphs. In the general case, we prove \M(G)\leq n-\tfrac{n}{\Theta(d^{3})}. In a second part, we prove that in any graph GG of minimum degree δ\delta and girth at least 5, \M(G)\leq(1+o_\delta(1))\tfrac{3\log\delta}{2\delta}n. Using the former result, we give sharp estimates for the size of the minimum identifying code of random dd-regular graphs, which is about logddn\tfrac{\log d}{d}n

    Compressed Sensing Using Binary Matrices of Nearly Optimal Dimensions

    Get PDF
    In this paper, we study the problem of compressed sensing using binary measurement matrices and 1\ell_1-norm minimization (basis pursuit) as the recovery algorithm. We derive new upper and lower bounds on the number of measurements to achieve robust sparse recovery with binary matrices. We establish sufficient conditions for a column-regular binary matrix to satisfy the robust null space property (RNSP) and show that the associated sufficient conditions % sparsity bounds for robust sparse recovery obtained using the RNSP are better by a factor of (33)/22.6(3 \sqrt{3})/2 \approx 2.6 compared to the sufficient conditions obtained using the restricted isometry property (RIP). Next we derive universal \textit{lower} bounds on the number of measurements that any binary matrix needs to have in order to satisfy the weaker sufficient condition based on the RNSP and show that bipartite graphs of girth six are optimal. Then we display two classes of binary matrices, namely parity check matrices of array codes and Euler squares, which have girth six and are nearly optimal in the sense of almost satisfying the lower bound. In principle, randomly generated Gaussian measurement matrices are "order-optimal". So we compare the phase transition behavior of the basis pursuit formulation using binary array codes and Gaussian matrices and show that (i) there is essentially no difference between the phase transition boundaries in the two cases and (ii) the CPU time of basis pursuit with binary matrices is hundreds of times faster than with Gaussian matrices and the storage requirements are less. Therefore it is suggested that binary matrices are a viable alternative to Gaussian matrices for compressed sensing using basis pursuit. \end{abstract}Comment: 28 pages, 3 figures, 5 table

    Generalized Tur\'an problems for even cycles

    Full text link
    Given a graph HH and a set of graphs F\mathcal F, let ex(n,H,F)ex(n,H,\mathcal F) denote the maximum possible number of copies of HH in an F\mathcal F-free graph on nn vertices. We investigate the function ex(n,H,F)ex(n,H,\mathcal F), when HH and members of F\mathcal F are cycles. Let CkC_k denote the cycle of length kk and let Ck={C3,C4,,Ck}\mathscr C_k=\{C_3,C_4,\ldots,C_k\}. Some of our main results are the following. (i) We show that ex(n,C2l,C2k)=Θ(nl)ex(n, C_{2l}, C_{2k}) = \Theta(n^l) for any l,k2l, k \ge 2. Moreover, we determine it asymptotically in the following cases: We show that ex(n,C4,C2k)=(1+o(1))(k1)(k2)4n2ex(n,C_4,C_{2k}) = (1+o(1)) \frac{(k-1)(k-2)}{4} n^2 and that the maximum possible number of C6C_6's in a C8C_8-free bipartite graph is n3+O(n5/2)n^3 + O(n^{5/2}). (ii) Solymosi and Wong proved that if Erd\H{o}s's Girth Conjecture holds, then for any l3l \ge 3 we have ex(n,C2l,C2l1)=Θ(n2l/(l1))ex(n,C_{2l},\mathscr C_{2l-1})=\Theta(n^{2l/(l-1)}). We prove that forbidding any other even cycle decreases the number of C2lC_{2l}'s significantly: For any k>lk > l, we have ex(n,C2l,C2l1{C2k})=Θ(n2).ex(n,C_{2l},\mathscr C_{2l-1} \cup \{C_{2k}\})=\Theta(n^2). More generally, we show that for any k>lk > l and m2m \ge 2 such that 2kml2k \neq ml, we have ex(n,Cml,C2l1{C2k})=Θ(nm).ex(n,C_{ml},\mathscr C_{2l-1} \cup \{C_{2k}\})=\Theta(n^m). (iii) We prove ex(n,C2l+1,C2l)=Θ(n2+1/l),ex(n,C_{2l+1},\mathscr C_{2l})=\Theta(n^{2+1/l}), provided a strong version of Erd\H{o}s's Girth Conjecture holds (which is known to be true when l=2,3,5l = 2, 3, 5). Moreover, forbidding one more cycle decreases the number of C2l+1C_{2l+1}'s significantly: More precisely, we have ex(n,C2l+1,C2l{C2k})=O(n21l+1),ex(n, C_{2l+1}, \mathscr C_{2l} \cup \{C_{2k}\}) = O(n^{2-\frac{1}{l+1}}), and ex(n,C2l+1,C2l{C2k+1})=O(n2)ex(n, C_{2l+1}, \mathscr C_{2l} \cup \{C_{2k+1}\}) = O(n^2) for l>k2l > k \ge 2. (iv) We also study the maximum number of paths of given length in a CkC_k-free graph, and prove asymptotically sharp bounds in some cases.Comment: 37 Pages; Substantially revised, contains several new results. Mistakes corrected based on the suggestions of a refere

    Balanced Allocation on Graphs: A Random Walk Approach

    Full text link
    In this paper we propose algorithms for allocating nn sequential balls into nn bins that are interconnected as a dd-regular nn-vertex graph GG, where d3d\ge3 can be any integer.Let ll be a given positive integer. In each round tt, 1tn1\le t\le n, ball tt picks a node of GG uniformly at random and performs a non-backtracking random walk of length ll from the chosen node.Then it allocates itself on one of the visited nodes with minimum load (ties are broken uniformly at random). Suppose that GG has a sufficiently large girth and d=ω(logn)d=\omega(\log n). Then we establish an upper bound for the maximum number of balls at any bin after allocating nn balls by the algorithm, called {\it maximum load}, in terms of ll with high probability. We also show that the upper bound is at most an O(loglogn)O(\log\log n) factor above the lower bound that is proved for the algorithm. In particular, we show that if we set l=(logn)1+ϵ2l=\lfloor(\log n)^{\frac{1+\epsilon}{2}}\rfloor, for every constant ϵ(0,1)\epsilon\in (0, 1), and GG has girth at least ω(l)\omega(l), then the maximum load attained by the algorithm is bounded by O(1/ϵ)O(1/\epsilon) with high probability.Finally, we slightly modify the algorithm to have similar results for balanced allocation on dd-regular graph with d[3,O(logn)]d\in[3, O(\log n)] and sufficiently large girth
    corecore