
3008 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 68, 2020

Compressed Sensing Using Binary Matrices of
Nearly Optimal Dimensions

Mahsa Lotfi and Mathukumalli Vidyasagar

Abstract—In this paper, we study the problem of compressed
sensing using binary measurement matrices and �1-norm mini-
mization (basis pursuit) as the recovery algorithm. We derive new
upper and lower bounds on the number of measurements to achieve
robust sparse recovery with binary matrices. We establish sufficient
conditions for a column-regular binary matrix to satisfy the robust
null space property (RNSP) and show that the associated sufficient
conditions for robust sparse recovery obtained using the RNSP are
better by a factor of (3

√
3)/2 ≈ 2.6 compared to the sufficient

conditions obtained using the restricted isometry property (RIP).
Next we derive universal lower bounds on the number of measure-
ments that any binary matrix needs to have in order to satisfy the
weaker sufficient condition based on the RNSP and show that bipar-
tite graphs of girth six are optimal. Then we display two classes of
binary matrices, namely parity check matrices of array codes and
Euler squares, which have girth six and are nearly optimal in the
sense of almost satisfying the lower bound. In principle, randomly
generated Gaussian measurement matrices are “order-optimal.”
So we compare the phase transition behavior of the basis pursuit
formulation using binary array codes and Gaussian matrices and
show that (i) there is essentially no difference between the phase
transition boundaries in the two cases and (ii) the CPU time of basis
pursuit with binary matrices is hundreds of times faster than with
Gaussian matrices and the storage requirements are less. Therefore
it is suggested that binary matrices are a viable alternative to
Gaussian matrices for compressed sensing using basis pursuit.

Index Terms—Compressed sensing, phase transition, binary
matrices, array codes, robust null space property.

I. INTRODUCTION

COMPRESSED sensing refers to the recovery of high-
dimensional but low-complexity entities from a limited

number of measurements. The specific problem studied in this
paper is to recover a vector x ∈ R

n, where only k � n compo-
nents are significant and the rest are either zero or small, based
on a set of linear measurements y = Ax, where A ∈ R

m×n.

Manuscript received October 29, 2018; revised October 10, 2019 and April
18, 2020; accepted April 21, 2020. Date of publication April 27, 2020; date of
current version May 29, 2020. The associate editor coordinating the review of this
manuscript and approving it for publication was Prof. Jarvis Haupt. This work
was supported in part by the National Science Foundation, USA under Award
#ECCS-1306630, and in part by the Department of Science and Technology,
Government of India. (Corresponding author: Mathukumalli Vidyasagar.)

Mahsa Lotfi was with the Erik Jonsson School of Engineering and Computer
Science, The University of Texas at Dallas, Richardson, TX 75080 USA. She is
now with the Department of Statistics, Stanford University, Stanford, CA 94305
USA (e-mail: lotfi@stanford.edu).

Mathukumalli Vidyasagar was with the Erik Jonsson School of Engineering
and Computer Science, The University of Texas at Dallas, Richardson, TX 75080
USA. He is now with the Indian Institute of Technology Hyderabad, Telangana
502285, India (e-mail: m.vidyasagar@iith.ac.in).

Digital Object Identifier 10.1109/TSP.2020.2990154

A variant is when y = Ax+ η, where η denotes measurement
noise and a prior bound of the form ‖η‖ ≤ ε is available. By far
the most popular solution methodology for this problem is basis
pursuit in which an approximation x̂ to the unknown vector x is
constructed via

x̂ := argmin
z

‖z‖1 s.t. ‖y −Az‖ ≤ ε. (1)

The basis pursuit approach (with η = 0 so that the constraint
in (1) becomes y = Az) was proposed in [1], [2], but with-
out guarantees on its performance. Much of the subsequent
research in compressed sensing has been focused on the case
where A consists of mn independent samples of a zero-mean,
unit-variance Gaussian or sub-Gaussian random variable, nor-
malized by 1/

√
m. With this choice, it is shown in [3] that,

with high probability with respect to the process of generating
A, m = O(k ln(n/k)) measurements suffice to ensure that x̂
defined in (1) equals x, provided x is sufficiently sparse. It
is also known that any compressed sensing algorithm requires
m = Ω(k ln(n/k)) samples; see [4] for an early result and [5]
for a simpler and more explicit version of this bound. Thus
random Gaussian matrices are “order optimal” in the sense that
the number of measurements is within a fixed universal constant
of the minimum required.

In recent times, there has been a lot of interest in the use of
sparse binary measurement matrices for compressed sensing.
One of the main advantages of this approach is that it allows one
to connect compressed sensing to fields such as graph theory
and algebraic coding theory. There are also some computational
advantages. At present, a popular alternative is to choose the
measurement matrix A to consist of mn independent samples
of a Gaussian random variable. A Gaussian random variable
is nonzero with probability one; therefore every element of A
will be nonzero with probability one. Moreover, in solving the
minimization problem in (1), each element of A needs to be
stored to high precision. In contrast, sparse binary matrices
require less storage both because they are sparse and also
because every nonzero element equals one. For this reason,
binary matrices are also said to be “multiplication-free.” As a
result, popular compressed sensing approaches such as (1) can
be applied effectively for far larger values of m and n and with
greatly reduced CPU time, when A is a sparse binary matrix
instead of a random Gaussian matrix. Of course, the previous
discussion assumes that the unknown vector is sparse in the
canonical basis. There are situations, where the unknown vector
is sparse with respect to some other basis, such as the Fourier
basis. Our remarks would not apply in such a situation.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-0587-0323
https://orcid.org/0000-0003-1057-1942
mailto:lotfi@stanford.edu
mailto:m.vidyasagar@iith.ac.in

LOTFI AND VIDYASAGAR: COMPRESSED SENSING USING BINARY MATRICES OF NEARLY OPTIMAL DIMENSIONS 3009

At present, the best available bounds for the number
of measurements required by a binary matrix are m =
O(max{k2,√n}). This contrasts with m = O(k ln(n/k)) for
random Gaussian matrices. However, in the latter case, the O
symbol hides a very large constant. It is shown in this paper that
for values of n � 105, the known bounds with binary matrices
are in fact smaller than with random Gaussian matrices. The
preceding discussion refers to the case where a particular matrix
A is guaranteed to recover all sufficiently sparse vectors. A
parallel approach is to study conditions under which “most”
sparse vectors are recovered. Specifically, in this approach, n,m
are fixed and k is varied from 1 to m. For each choice of k, a
large number of vectors with exactly k nonzero components are
generated at random and the fraction that is recovered accurately
is computed. Clearly, as k is increased, this fraction decreases.
One might expect that the fraction of recovered randomly gener-
ated vectors equals 1 when k is sufficiently small and decreases
gradually to 0 as k approaches m. In reality there is a sharp
boundary below which almost all k-sparse vectors are recovered
and above which almost no k-sparse vectors are recovered.
This phenomenon is known as phase transition and has been
established theoretically for the case, where A consists of ran-
dom samples from a Gaussian distribution in [6]–[8]. A very
general theory is derived in [9], where the measurement matrix
still consists of random Gaussians, but the objective function is
changed from the �1-norm to an arbitrary convex function. In a
recent paper [10], phase transitions are studied empirically for
several classes of deterministic measurement matrices and it is
verified that there is essentially no difference between the phase
transitions of of deterministic measurement matrices and the
phase transitions of random Gaussian measurement matrices.

Here we describe the organization of the paper, as well as its
contributions. Section II contains background material, but also
includes some improvements over known results. In particular,
we review the current literature on the construction of binary
matrices for compressed sensing. The original contributions of
the paper begin with Section III. In this section we derive a
sufficient condition for a binary matrix to satisfy the robust null
space property (RNSP). In turn this leads to a new upper bound
on the sparsity count k for which robust sparse recovery can be
guaranteed using a column-regular binary matrix.1 In Section IV
we derive a lower bound on the number of measurements m as
a function of the girth of the bipartite graph associated with the
measurement matrix; it is shown that graphs of girth six are
optimal in terms of minimizing the number of measurements.
In Section V, we construct binary matrices of girth six, where
the number of measurements is nearly equal to the lower bound
derived in Section IV; this explains the title of the paper. In
Section VI, we attempt to reconcile two seemingly conflicting
observations, namely: For compressed sensing, graphs of girth
six are optimal, whereas in coding, graphs of high girth are
preferred. In Section VII, we carry out some numerical exper-
iments and establish that the basis pursuit approach together
with our binary matrices exhibits a phase transition. The paper
is concluded with some discussion in Section VIII.

1This term is defined in Section III.

II. BACKGROUND

A. Definition of Compressed Sensing

Let Σk ⊆ R
n denote the set of k-sparse vectors in R

n; i.e.,

Σk := {x ∈ R
n : ‖x‖0 ≤ k},

where, as is customary, ‖ · ‖0 denotes the number of nonzero
components of x. Given a norm ‖ · ‖ on R

n, the k-sparsity
index of x with respect to that norm is defined by

σk(x, ‖ · ‖) := min
z∈Σk

‖x− z‖.

Now we are in a position to define the compressed sensing prob-
lem precisely. Note that A ∈ R

m×n is called the measurement
matrix and Δ : Rm → R

n is called the “decoder map.”
Definition 1: The pair (A,Δ) is said to achieve stable sparse

recovery of order k and indices p, q if there exists a constant C
such that

‖Δ(Ax)− x‖p ≤ Cσk(x, ‖ · ‖q), ∀x ∈ R
n. (2)

The pair (A,Δ) is said to achieve robust sparse recovery of
order k and indices p, q (and norm ‖ · ‖) if there exist constants
C and D such that, for all η ∈ R

m with ‖η‖ ≤ ε, it is the case
that

‖Δ(Ax+ η)− x‖p ≤ Cσk(x, ‖ · ‖q) +Dε, ∀x ∈ C
n. (3)

The above definitions apply to general norms. In this paper
and indeed in much of the compressed sensing literature, the
emphasis is on the case, where q = 1 and p ∈ [1, 2]. However,
the norm on η is still arbitrary.

B. Approaches to Compressed Sensing – I: RIP

Next we present some sufficient conditions for basis pursuit as
defined in (1) to achieve robust or stable sparse recovery. There
are two widely used sufficient conditions, namely the restricted
isometry property (RIP) and the stable (or robust) null space
property (SNSP or RNSP). We begin by discussing the RIP.

Definition 2: A matrix A ∈ R
m×n is said to satisfy the re-

stricted isometry property (RIP) of order k with constant
δ if

(1− δ)‖u‖22 ≤ ‖Au‖22 ≤ (1 + δ)‖u‖22, ∀u ∈ Σk. (4)

The RIP is formulated in [3]. It is shown in a series of
papers [3], [11], [12] that the RIP of A is sufficient for (A,ΔBP)
to achieve robust sparse recovery. The best known and indeed
the “best possible,” result relating RIP and robust recovery is
given below:

Theorem 1: If A satisfies the RIP of order tk with con-
stant δtk <

√
(t− 1)/t for t ≥ 4/3, or δtk < t/(4− t) for

t ∈ (0, 4/3), then (A,ΔBP) achieves robust sparse recovery of
order k. Moreover, both bounds are tight.

The first bound is proved in [13] while the second bound is
proved in [14]. Note that both bounds are equal when t = 4/3.
Hence the theorem provides a continuous tight bound on δtk for
all t > 0.

This theorem raises the question as to how one may go about
designing measurement matrices that satisfy the RIP. There are

3010 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 68, 2020

two popular approaches, one probabilistic and one deterministic.
In the probabilistic method, the measurement matrix A equals
(1/

√
m)Φ, where Φ consists of mn independent samples of a

Gaussian random variable, or more generally, a sub-Gaussian
random variable. In this paper we restrict our attention to the
case, where A consists of random samples from a Gaussian
distribution and refer the reader to [15] for the more general case
of sub-Gaussian samples. The relevant bound on m to ensure
that A satisfies the RIP with high probability is given next; it is
a fairly straight-forward modification of [15, Theorem 9.27].

Theorem 2: Suppose an integer k and real numbers δ, ξ ∈
(0, 1) are specified and that A = (1/

√
m)Φ, where Φ ∈ R

m×n

consists of independent samples of a normal Gaussian random
variable X . Define

g = 1 +
1

√
2 ln(en/k)

, η =

√
1 + δ − 1

g
. (5)

Then A satisfies the RIP of order k with constant δ with proba-
bility at least 1− ξ provided

m ≥ 2

η2

(
k ln

en

k
+ ln

2

ξ

)
. (6)

Proof: We start with [15, Theorem 9.27]. In that theorem, it
is shown that, if the measurement matrix A ∈ R

m×n consists of
independent samples of Gaussian random variables and if

m ≥ 2

η2

(
k ln

en

k
+ ln

2

ξ

)
,

where η satisfies

δ ≤ 2gη + g2η2,

then A satisfies the RIP of order k with constant δ, with proba-
bility at least 1− ξ. The above equation can be rewritten as

δ + 1 ≤ 1 + 2gη + g2η2 = (1 + gη)2.

Rearranging this equation leads to (5). �
Equation (6) leads to an upper bound of the form m =

O(k ln(n/k)) for the number of measurements that suffice for
the random matrix to satisfy the RIP with high probability. It is
shown in [5, Theorem 3.1] that any algorithm that achieves sta-
ble sparse recovery requires m = O(k ln(n/k)) measurements.
See [4, Theorem 5.1] for an earlier version. For the convenience
of the reader, we restate the theorem from [5]. Note that it is
assumed in [5] that p = q = 1, but the proof requires only that
p = q. In order to state the theorem, we introduce the entropy
with respect to an arbitrary integer θ. Suppose θ ≥ 2 is an integer.
Then the θ-ary entropy Hθ : (0, 1) → (0, 1] is defined by

Hθ(u) := −u logθ
u

θ − 1
− (1− u) logθ(1− u). (7)

Theorem 3: Suppose A ∈ R
m×n and that, for some map Δ :

R
m → R

n, the pair (A,Δ) achieves stable k-sparse recovery
with constant C. Define θ = �n/k�. Then

m ≥ 1−Hθ(1/2)

ln(4 + 2 C)
k ln θ (8)

Because robust k-sparse recovery implies stable k-sparse re-
covery, the bound in (8) applies also to robust k-sparse recovery.

Comparing Theorems 2 and 3 shows that m = O(k ln(n/k))
measurements are both necessary and sufficient for robust k-
sparse recovery. For this reason, the probabilistically generated
measurement matrices are considered to be “order-optimal.”
However, this statement is misleading because the O symbol
in the upper bound hides a very large constant, as shown next.

Example 1: Suppose n = 22, 201 = 1492 and k = 69,
which is a problem instance studied later in Section VII. Then
the upper and lower bounds from Theorems 2 and 3 imply that

14 ≤ m ≤ 44, 345.

Thus the spread between the upper and lower bounds is more
than three orders of magnitude. Also, the upper bound for the
number of measurements is more than the dimension n.

There is another factor as well. As can be seen from Theorem
2, probabilistic methods lead to measurement matrices that
satisfy the RIP only with high probability, that can be made
close to one but never exactly equal to one. Moreover, as shown
in [16], once a matrix has been generated, it is NP-hard to test
whether that particular matrix satisfies the RIP.

These observations have led the research community to ex-
plore deterministic methods to construct matrices that satisfy the
RIP. A popular approach is based on the coherence of a matrix.

Definition 3: Suppose A ∈ R
m×n is column-normalized, so

that ‖aj‖2 = 1 for all j ∈ [n], where aj denotes the j-column
of A. Then the coherence of A is denoted by μ(A) and is
defined as

μ(A) := max
i=j

|〈ai, aj〉|. (9)

The following result is an easy consequence of the
Gerschgorin circle theorem.

Lemma 1: A matrix A ∈ R
m×n satisfies the RIP of order k

with constant

δk = (k − 1)μ, (10)

provided that (k − 1)μ < 1, or equivalently, k < 1 + 1/μ.

C. Approaches to Compressed Sensing – II: RNSP

An alternative to the RIP approach to compressed sensing
is provided by the stable (and robust) null space property. The
SNSP is formulated in [17], while, to the best of the authors’
knowledge, the RNSP is formulated for the first time in [18];
see also [15, Definition 4.17].

Definition 4: Suppose A ∈ R
m×n and let N (A) denote the

null space of A. Then A is said to satisfy the stable null space
property (SNSP) of order k with constant ρ < 1 if, for every
set S ⊆ [n] with |S| ≤ k, we have that

‖vS‖1 ≤ ρ‖vSc‖1, ∀v ∈ N (A). (11)

The matrix A is said to satisfy the robust null space property
(RNSP) of order k for the norm ‖ · ‖ with constants ρ < 1 and
τ > 0 if, for every set S ⊆ [n] with |S| ≤ k, we have that

‖hS‖1 ≤ ρ‖hSc‖1 + τ‖Ah‖, ∀h ∈ R
n. (12)

It is obvious that RNSP implies the SNSP. The utility of these
definitions is brought out in the following theorems.

LOTFI AND VIDYASAGAR: COMPRESSED SENSING USING BINARY MATRICES OF NEARLY OPTIMAL DIMENSIONS 3011

Theorem 4: (See [15, Theorem 4.12].) Suppose A satisfies
the stable null space property of order k with constant ρ. Then
the pair (A,ΔBP) achieves stable k-sparse recovery with

C = 2
1 + ρ

1− ρ
. (13)

Theorem 5: (See [15, Theorem 4.22].) Suppose A satisfies
the robust null space property of order k for the norm ‖ · ‖ with
constants ρ and τ . Then the pair (A,ΔBP) achieves robust k-
sparse recovery with

C = 2
1 + ρ

1− ρ
,D =

4τ

1− ρ
. (14)

D. Best Bounds on the Sparsity Count Using the RIP

Until recently, the twin approaches of RIP and RNSP had
proceeded along parallel tracks. However, it is shown in [19,
Theorem 9] that if A satisfies the RIP of order tk with constant
δtk <

√
(t− 1)/t for some t > 1, then it satisfies the RSNP of

order k. Note that if A has coherence μ, then by Lemma 1, we
have that δtk ≤ (tk − 1)μ for all t. Next by [19, Theorem 9],
basis pursuit achieves robust k-sparse recovery whenever

(tk − 1)μ <

√
t− 1

t
(15)

for any t > 1. So let us ask: What is an “optimal” choice of t?
To answer this question, we neglect the 1 in comparison to tk
and rewrite the above inequality as

kμ <

√
t− 1

t3
.

Thus we get the best bound by maximizing the right side with
respect to t. It is an easy exercise in calculus to show that
the maximum is achieved with t = 3/2 and the corresponding
bound

√
(t− 1)/t = 1/

√
3. Hence by combining with Lemma

1 we can derive the following bound.
Theorem 6: Suppose A ∈ R

m×n has coherence μ. Then
(A,ΔBP) achieves robust k-sparse recovery whenever

((3/2)k − 1)μ < 1/
√
3, (16)

or equivalently

k <

⌊
2

3
√
3μ

+
2

3

⌋
. (17)

Moreover, the bound is nearly optimal when applying [19,
Theorem 9].

If we retain the term tk − 1 instead of replacing it by tk, we
would get a more complicated expression for the optimal value
of t. However, it can be verified that if (16) is satisfied, then so
is (15).

E. Binary Matrices for Compressed Sensing: A Review

In this section we present a brief review of the use of binary
matrices as measurement matrices in compressed sensing. The
first construction of a binary matrix that satisfies the RIP is
due to DeVore and is given in [20]. The DeVore matrix has
dimensions q2 × qr+1, where q is a power of a prime number and

r ≥ 2 is an integer, has exactly q elements of 1 in each column
and has coherence μ ≤ r/q. This construction is generalized
to algebraic curves in [21], but does not seem to offer much
of an advantage over that in [20]. A construction that leads to
matrices of order 2m × 2m(m+1)/2 based on Reed-Muller codes
is proposed in [22]. Because the number of measurements is
restricted to be a power of 2, this is not a very practical method.
A construction in [23] is based on a method to generate Euler
squares from nearly a century ago [24]. The resulting binary
matrix has dimensions lq × q2, where q is an arbitrary integer,
making this perhaps the most versatile construction. The integer
l is bounded as follows: Let q = 2r0pr11 . . . prss be the prime num-
ber decomposition of q. Then l + 1 ≤ min{2r0 , pr11 , . . . , prss }.
In particular if q is itself a power of a prime, we can have
l = q − 1. Each column of the resulting binary matrix has
exactly l ones and the matrix has coherence 1/l. All of these
matrices can be used to achieve robust k-sparse recovery via the
basis pursuit formulation, by combining Lemma 1 with Theorem
1. Another method found in [25] constructs binary matrices
using the Chinese remainder theorem and achieves probabilistic
recovery.

There is another property that is sometimes referred to as the
�1-RIP, introduced in [26], which makes a connection between
expander graphs and compressed sensing. However, while this
approach readily leads to stable k-sparse recovery, it does not
lend itself readily to robust k-sparse recovery. One of the main
contributions of [27] is to show that the construction of [20]
can also be viewed as a special case of an expander graph
construction proposed in [28].

Yet another direction is initiated in [29], in which a general
approach is presented for generating binary matrices for com-
pressed sensing using algebraic coding theory. In particular, it
is shown that binary matrices which, when viewed as elements
over the binary field F2, have good properties in decoding, will
also be good measurement matrices when viewed as matrices of
real numbers. In particular, several notions of “pseudo-weights”
are introduced and it is shown that these pseudo-weights can be
related to the satisfaction of the stable (but not robust) null space
property of binary matrices. These bounds are improved in [30]
to prove the stable null space property under weaker conditions
than in [29].

III. ROBUST NULL SPACE PROPERTY OF BINARY MATRICES

In this section we commence presenting the new results of this
paper on identifying a class of binary matrices for compressed
sensing that have a nearly optimal number of measurements.

Suppose A ∈ {0, 1}m×n with m < n. Then A can be viewed
as the bi-adjacency matrix of a bipartite graph with n input (or
“left”) nodes and m output (or “right”) nodes. Such a graph is
said to be left-regular if each input node has the same degree, say
dL. This is equivalent to saying that each column of A contains
exactly dL ones. Given a bipartite graph with E edges, n input
nodes and m output nodes, define the “average left degree” and
“average right degree” of the graph as d̄L = E/n and d̄R =
E/m. Note that these average degrees need not be integers. Then
it is clear that nd̄L = md̄R. The girth of a graph is defined as

3012 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 68, 2020

the length of the shortest cycle. Note that the girth of a bipartite
graph is always an even number and in so-called simple graphs
(not more than one edge between any pair of vertices), the girth
is at least four.

Hereafter, we will not make a distinction between a binary
matrix and the bipartite graph associated with the matrix. Specif-
ically, the columns correspond to the “left” nodes while the rows
correspond to the “right” nodes. So an expression such as “A
is a left-regular binary matrix of degree dL” means that the
associated bipartite graph is left-regular with degree dL. This
usage will permit us to avoid some tortuous sentences.

Theorems 7 and 8 are the starting point for the contents of
this section.

Theorem 7: (See [30, Theorem 2].) Suppose A ∈ {0, 1}m×n

is left-regular with left degree dL and suppose that the maximum
inner product between any two columns ofA isλ. Then for every
v ∈ N (A), we have that

|vi| ≤ λ

2dL
‖v‖1, ∀i ∈ [n], (18)

where [n] denotes {1, . . . , n}.
If the matrix A has girth six or more, then the maximum inner

product between any two columns of A is at most equal to one.
Therefore (18) gives the bound

|vi| ≤ 1

2dL
‖v‖1, ∀i ∈ [n].

However, if the girth is equal to 10 or more, then it is possible
to improve the bound (18).

Theorem 8: (See [30, Theorem 3].) Suppose A ∈ {0, 1}m×n

and that A has girth g ≥ 6. Then for every v ∈ N (A), we have
that

|vi| ≤ ‖v‖1
C ′ , ∀i ∈ [n], (19)

where, if g = 4t+ 2, then

C ′ := 2

t∑

i=0

(dL − 1)i, (20)

and if g = 4t, then

C ′ := 2

t−1∑

i=0

(dL − 1)i, (21)

Note that if the girth of the graph equals 6, then C ′ as defined
in (20) becomesC ′ = 2 and the bound in (19) becomes the same
as that in (18) after noting that λ = 1. Similarly, if g = 8, then
C′ in (21) also becomes just C ′ = 2. Therefore Theorem 8 is an
improvement over Theorem 7 only when the girth of the graph
is at least equal to 10.

In [30], the bounds (18) and (19) are used to derive sufficient
conditions for the matrix A to satisfy the stable null space
property. However, it is now shown that the same two bounds
can be used to infer the robust null space property of A. This is a
substantial improvement, because with such an A matrix, basis
pursuit would lead to robustness against measurement noise,
which is not guaranteed with the SNSP. We derive our results
through a series of preliminary results.

Lemma 2: Suppose A ∈ R
m×n and let ‖ · ‖ be any norm on

R
m. Suppose there exist constants α > 2, β > 0 such that

|hi| ≤ ‖h‖1
α

+ β‖Ah‖, ∀i ∈ [n], ∀h ∈ R
n. (22)

Then, for all k < α/2, the matrix A satisfies the RNSP of order
k. Specifically, whenever S ⊆ [n] with |S| ≤ k, Equation (12)
holds with

ρ =
k

α− k
, τ =

αkβ

α− k
. (23)

Proof: Let S ⊆ [n] with |S| ≤ k be arbitrary. Then

‖hS‖1 =
∑

i∈S
|hi|

≤ k

α
‖h‖1 + kβ‖Ah‖

=
k

α
(‖hS‖1 + ‖hSc‖1) + kβ‖Ah‖.

Therefore
(
1− k

α

)
‖hS‖1 ≤ k

α
‖hSc‖1 + kβ‖Ah‖,

or

‖hS‖1 ≤ k

α− k
‖hSc‖1 + αkβ

α− k
‖Ah‖,

which is the desired conclusion. �
Next, let A ∈ R

m×n be arbitrary and let ‖ · ‖ be any norm on
R

n. Recall that N (A) ⊆ R
n denote the null space of A and let

N⊥ := [N (A)]⊥ denote the orthogonal complement of N (A)
in R

n. Then for all u ∈ N⊥, it is easy to see that

‖u‖2 ≤ 1

σmin
‖Au‖2,

where σmin is the smallest nonzero singular value of A. Because
all norms on a finite-dimensional space are equivalent, there
exists a constant c that depends only on the norm ‖ · ‖ on R

m

such that

‖y‖2 ≤ c‖y‖, ∀y ∈ R
m. (24)

(In particular, ‖y‖2 ≤ ‖y‖1, so we can take c = 1 in this case.)
Therefore, by Schwarz’ inequality, we get

‖u‖1 ≤ √
n‖u‖2 ≤ c

√
n

σmin
‖Au‖, ∀u ∈ N⊥. (25)

At this point, we can state the main result of this section.
Theorem 9: Suppose A ∈ {0, 1}m×n is left-regular with left

degree dL and let λ denote the maximum inner product between
any two columns of A (and observe that λ ≤ dL). Next, let
σmin denote the smallest nonzero singular value of A and for
an arbitrary norm ‖ · ‖ on R

m, choose the constant c such that
(24) holds. Then A satisfies (22) with

α =
2dL
λ

, β =

(
λ

2dL
+ 1

)
c
√
n

σmin
. (26)

LOTFI AND VIDYASAGAR: COMPRESSED SENSING USING BINARY MATRICES OF NEARLY OPTIMAL DIMENSIONS 3013

Consequently, for all k < α/2 = dL/λ, A satisfies the RNSP of
order k with

ρ =
λk

2dL − λk
, τ =

2dLk

2dL − λk
β. (27)

Proof: Let h ∈ R
n be arbitrary and express h as h = v + u,

where v ∈ N (A) and u ∈ N⊥. Then clearly

|hi| = |vi + ui| ≤ |vi|+ |ui|, ∀i ∈ [n].

We will bound each term separately.
As shown in Theorem 7, we have that

|vi| ≤ λ

2dL
‖v‖1

≤ λ

2dL
(‖h‖1 + ‖u‖1)

≤ λ

2dL
‖h‖1 + λc

√
n

2dLσmin
‖Au‖

=
λ

2dL
‖h‖1 + λc

√
n

2dLσmin
‖Ah‖,

where the last step follows from the fact that Ah = Au because
Av = 0. Next

|ui| ≤ ‖u‖1 ≤ c
√
n

σmin
‖Ah‖, ∀i ∈ [n].

Combining these two inequalities shows that

|hi| ≤ |vi|+ |ui| ≤ λ

2dL
‖h‖1 +

(
λ

2dL
+ 1

)
c
√
n

σmin
‖Ah‖.

This establishes (26). The (27) follows from Lemma 2, specifi-
cally (23). �

Remarks:
� In the above proof, we make use of the inequality |ui| ≤
‖u‖1. At a certain level, this estimate is conservative.
However, if we wish to have a bound on |ui| in terms of
‖u‖1 that is applicable to all vectors u, then the bound is
tight.

� Note that the bound |ui| ≤ ‖u‖1 is used only to derive a
bound on the constant β. In turn the bound on β leads to a
bound on the constant τ in the definition of the robust null
space property. It can be seen from Theorem 5 and (14)
that robust k-sparse recovery occurs whenever ρ < 1 and
the only appearance of τ is in the constantD in (14), which
gives the amplification factor of the noise.

Theorem 10: Suppose A ∈ {0, 1}m×n is left-regular with
left-degree dL and has girth at least six. Define the constant
C ′ as in (20) or (21) as appropriate. Then for all k < C ′/2, the
matrix A satisfies the RNSP of order k, with constants

ρ =
k

C ′ − k
, τ =

C ′ − k

C ′k
β. (28)

The proof of Theorem 10 is entirely analogous to that of
Theorem 9, with the bound in Theorem 8 replacing that in
Theorem 7. Therefore the proof is omitted.

The results in Theorem 9 lead to sharper bounds for the
sparsity count compared to using RIP and coherence bounds.
This is illustrated next.

Example 2: Suppose A ∈ {0, 1}m×n is left-regular with de-
gree dL and with the inner product between any two columns
bounded above by λ. Then it is easy to see that the coherence
μ of A is bounded by λ/dL. Therefore, if we use Theorem 6,
then it follows that (A,ΔBP) achieves robust k-sparse recovery
whenever

k <

⌊
2dL

3
√
3λ

+
2

3

⌋
.

In contrast, if we use Theorem 9, it follows that (A,ΔBP)
achieves robust sparse recovery whenever k < dL/λ, which is
an improvement by a factor of roughly 3

√
3/2 ≈ 2.6.

IV. LOWER BOUNDS ON THE NUMBER OF MEASUREMENTS

Theorem 8 shows that, for a fixed left degree dL, as the girth
of the graph corresponding to A becomes larger, so does the
constant C ′. Therefore, as the girth of A increases, so does the
upper bound on k as obtained from Theorem 10. This suggests
that, for a given left degree dL and number of input nodes n, it is
better to choose graphs of large girth. However, as shown next,
as the girth of a graph is increased, the number of measurements
m also increases. As shown below, the “optimal” choice for the
girth is actually 6.

Observe from Theorem 10 and specifically (28), that the pair
(A,ΔBP) achieves robust k-sparse recovery whenever ρ < 1,
or equivalently k < C ′/2. From the definition of C ′, this bound
on the sparsity count for which robust k-sparse recovery is
guaranteed can be written as

k <

t∑

i=0

(dL − 1)i, (29)

if g = 4t+ 2 and

k <

t−1∑

i=0

(dL − 1)i, (30)

and if g = 4t. Let us define

k̄ :=

{
(dL − 1)t if g = 4t+ 2,

(dL − 1)t−1 if g = 4t.
(31)

It is recognized that k̄ is just the last term in the summations in
(29) and (30). Moreover, unless dL is quite small, the difference
between k̄ and the summations in (29) and (30) will be rather
small. Thus we use k < k̄ as an easily analyzable and quite
reasonable, approximation to the actual upper bounds on the
sparsity count k given in (29) and (30).

It is clear that if we choose the matrix A to have higher
and higher girth, the bound k̄ also becomes higher. So the
question therefore becomes: What happens to m, the number
of measurements, as the girth is increased? The answer is given
next.

Theorem 11: Suppose A ∈ {0, 1}m×n is dL-left regular
graph with m ≤ n and that every row and every column of A
contains at least two ones. If the girth g of A equals 4t+ 2, then

m ≥ k̄2/(t+1)nt/(t+1), (32)

3014 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 68, 2020

whereas if g = 4t for t ≥ 2, then

m ≥ k̄(2t−1)/[t(t−1)]n(t−1)/t. (33)

The proof of Theorem 11 is based on the following result [31,
Equations (1) and (2)]:

Theorem 12: SupposeA ∈ {0, 1}m×n withm < n. Suppose
further that in the bipartite graph associated with A, every node
has degree ≥ 2.2 Let E denote the total number of edges of
the graph and define d̄L = E/n, d̄R = E/m to be the average
left-node degree and average right-node degree, respectively.
Suppose finally that the graph has girth g = 2r. Then

m ≥
r−1∑

i=0

(d̄L − 1)�i/2�(d̄R − 1)�i/2�. (34)

It is important to note that the above theorem does not require
any assumptions about the underlying graph (e.g., regularity).
The only assumption is that every node has degree two or more,
so as to rule out trivial cases. Usually such theorems are used to
find upper bounds on the girth of a bipartite graph in terms of
the numbers of its nodes and edges (as in Theorem 13 below).
However, we turn it around here and use the theorem to find
a lower bound on m, given the integers n and g. Note that if
g = 4, then r = 2 and the bound (34) becomes m ≥ d̄L, which
is trivial. In fact m has to exceed the maximum degree of any
left node. However, for g ≥ 6, the bound in (34) is meaningful.

Proof: (Of Theorem 11:) The bound (34) implies that m is
no smaller than the last term in the summation; that is

m ≥ d̄
�(r−1)/2�
L d̄

�(r−1)/2�
R . (35)

Because A is assumed to be left-regular, actually d̄L = dL,
but we do not make use of this and will carry the symbol
d̄L throughout. By definition, we have that d̄R = (nd̄L)/m.
Therefore, if n ≥ m, then it follows that

d̄R − 1 =
nd̄L
m

− 1 ≥ nd̄L
m

− n

m
=

n

m
(d̄L − 1).

Therefore (35) implies that

m ≥ (d̄L − 1)α
(n

m

)�(r−1)/2�
, (36)

where

α = �(r − 1)/2�+ �(r − 1)/2�.
We treat the cases g = 4t+ 2 and g = 4t separately. If g =

4t+ 2, then r = g/2 = 2t+ 1, so that

�(r − 1)/2� = �(r − 1)/2� = t, α = 2t.

Therefore (36) becomes

m ≥ (d̄L − 1)2t
(n

m

)t

= k̄2
(n

m

)t

.

This can be rearranged as

mt+1 ≥ ntk̄2,

2This is equivalent to the requirement that every row and every column of A
contains at least two ones.

or

m ≥ k̄2/(t+1)nt/(t+1),

which is (32). In case g = 4t, the proof proceeds along entirely
parallel lines and is omitted. �

It is obvious from (32) that the lower bound is minimized (for
a fixed choice of n and k̄) with t = 1, or g = 6. Similarly, the
lower bound in (33) is minimized when t = 2, or g = 8. Higher
values of g would lead to more measurements being required.
We can also compare g = 6 with g = 8 and show that g = 6 is
better. Let us substitute t = 1 in (32) and t = 2 in (33). This
gives

m ≥
{
k̄n1/2 if g = 6,

k̄3/2n1/2 if g = 8.
(37)

If we wish to have fewer measurements than the dimension
of the unknown vector, we can set m < n. Substituting this
requirement into (37) leads to

k̄ < n1/2 if g = 6, k̄ < n1/3 if g = 8.

Hence graphs of girth 6 are preferable to graphs of girth 8,
because the upper limit on the recoverable sparsity count k̄ is
higher with a graph of girth 6 than with a graph of girth 8.

V. CONSTRUCTION OF NEARLY OPTIMAL GRAPHS OF

GIRTH SIX

The discussion of the preceding section suggests that we must
look for bipartite graphs of girth six, where the integerm satisfies
the bound (34) with the ≥ replaced by an equality, or at least,
close to it. In this section it is shown that a certain class of binary
matrices has girth six. Then we give two specific constructions.
The first of these is based on array codes, which are a class of
low density parity check (LDPC) codes and the second is based
on Euler squares.The first construction is easier to explain, but
the second one gives far more flexibility in terms of the number
of measurements. Here is the general theorem.

Theorem 13: Suppose A ∈ {0, 1}lq×q2 for some integers
4 ≤ l ≤ q − 1. Suppose further that

1) d̄L ≥ l, where d̄L is the average left degree of A.
2) The maximum inner product between any two columns of

A is one.
3) Every row and every column of A have at least two ones.
Then the girth of A is six.
Remark: Before proving the theorem, let us see how closely

such a matrix satisfies the inequality (34). In the constructions
below we have that d̄L = dL = l, g = 6 and r = 3. Therefore
the bound in (34) becomes

m ≥ 1 + (l − 1) + (l − 1)(q − 1) = q(l − 1) + 1.

Sincem = lq, we see that the actual value ofm exceeds the lower
bound for m by a factor of l/(l − 1) (after neglecting the last
term of 1 on the right side). Note that there is no guarantee that the
lower bound in Theorem 9 is actually achievable. So the class of
matrices proposed above (if they could actually be constructed),
can be said to be “near optimal.” In applying this theorem, we
would choose q such thatn ≤ q2 and choose any desired l ≤ q −

LOTFI AND VIDYASAGAR: COMPRESSED SENSING USING BINARY MATRICES OF NEARLY OPTIMAL DIMENSIONS 3015

1. With such a measurement matrix, basis pursuit will achieve
robust k-sparse recovery up to k < �√n�p, where �x� denotes
the smallest prime number larger than or equal to x.

Proof: Let g denote the girth of A. Then Condition (2)
implies that g ≥ 6. Condition (3) implies that the bound (34)
applies withm = lq,n = q2,n/m = q/l. Let g = 2r and define

α = �(r − 1)/2�+ �(r − 1)/2�, β = �(r − 1)/2�.
Then the inequality (34) implies that

lq ≥ (d̄L − 1)α(q/l)β ≥ (l − 1)α(q/l)β .

This can be rewritten as

(l − 1)α
qβ−1

lβ+1
≤ 1. (38)

Note that g ≥ 6, so that r ≥ 3, due to Condition (2). We study
two cases separately.

Case (1): g = 4t for some t ≥ 2. In this case

(r − 1)/2 = t− 1/2, �(r − 1)/2� = t, �(r − 1)/2� = t− 1,

α = 2t− 1, β = t− 1.

Therefore (38) becomes

(l − 1)2t−1 q
t−2

lt
≤ 1, (39)

or

qt−2(l − 1)t−1 ≤
(

l

l − 1

)t

≤ 2t,

because l/(l − 1) ≤ 2 for l ≥ 2. Also

qt−2(l − 1)t−1 ≥ qt−2(l − 1)t−2 = [q(l − 1)]t−2.

Combining these inequalities gives

[q(l − 1)]t−2 ≤ 2t,

or
[
q(l − 1)

2

]t−2

≤ 22 = 4. (40)

It is shown that (40) cannot hold if t ≥ 3. If t ≥ 3, then

q(l − 1)

2
≤

[
q(l − 1)

2

]t−2

≤ 4,

or q(l − 1) ≤ 8. However, q ≥ 5 and l − 1 ≥ 3, so this inequal-
ity cannot hold. At this point, let us consider the possibility that
g = 8, i.e., that t = 2. In this case (39) becomes

(l − 1)3
1

l2
≤ 1, or (l − 1)3 ≤ l2.

This inequality can hold only for l = 1, 2, 3 and not if l ≥ 4.
Hence A cannot have girth 4t for any t ≥ 2.

Case (2): g = 4t+ 2 for some t ≥ 1. In this case

�(r − 1)/2� = �(r − 1)/2� = t, α = 2t, β = t.

So (38) becomes

(l − 1)2t
qt−1

lt+1
≤ 1. (41)

As before, this can be rewritten as

qt−1(l − 1)t−1 ≤
(

l

l − 1

)t+1

≤ 2t+1,

or
[
q(l − 1)

2

]t−1

≤ 22 = 4. (42)

This inequality can hold if t = 1 because the left side equals 1.
However, if t > 1, then (42) implies that

q(l − 1)

2
≤

[
q(l − 1)

2

]t−1

≤ 4,

or q(l − 1) ≤ 8, which is impossible. Hence (42) implies that
t = 1, or that g = 6. �

In what follows, we present two explicit constructions of
binary matrices that satisfy the conditions of Theorem 13. The
first construction is taken from the theory of low density parity
check (LDPC) codes and is a generalization of [32]. This type
of construction for Low Density Parity Check codes (LDPC)
was first introduced in [33]. Let q be a prime number and let
P ∈ {0, 1}q×q be any cyclic permutation of [q]. In [32] P is
taken as the shift permutation matrix defined by Pi,i−1 = 1
and the rest zeros, where i− 1 is interpreted modulo q. Then
P q = I , the identity matrix. Let l < q be any integer and define
the matrix H(q, l) ∈ {0, 1}lq×q2 as the block-partitioned matrix
[Mij], i ∈ [l], j ∈ [q], where

Mij = P (i−1)(j−1). (43)

More elaborately, the matrix H(q, l) is given by

H(q, l) =

⎡

⎢⎢⎢⎢⎢
⎢⎢
⎣

I I I . . . I

I P P 2 . . . P q−1

I P 2 P 4 . . . P 2(q−1)

...
...

. . .
...

...

I P l−1 P 2(l−1) . . . P (l−1)(q−1)

⎤

⎥⎥⎥⎥⎥
⎥⎥
⎦

. (44)

The matrix H(q, l) is bi-regular, with left (column) degree l
and right (row) degree q. It is rank-deficient, having rank (q −
1)l + 1. In principle we could drop the redundant rows, but that
would destroy the left-regularity of the matrix, thus rendering
the theory in this paper inapplicable. (However, the resulting
matrix would still be right-regular.) Moreover, due to the cyclic
nature of P , it follows that the inner product between any two
columns of H(q, l) is at most equal to one.

It is shown in [32, Proposition 1] that H(q, l) has girth six,
but here that statement follows from Theorem 13.

The second construction is based on Euler squares. In [24],
a general recipe is given for constructing generalized Euler
squares. This is used in [23] to construct an associated binary
matrix of order lq × q2, where q is any arbitrary integer (in
contrast with the construction of [32], which requires q to be a
prime number), such that the maximum inner product between
any two columns is at most equal to one. Again, by Theorem
13, such matrices have girth six and are thus nearly optimal for
compressed sensing. The upper bound on l is defined as follows:

3016 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 68, 2020

Let q = 2r0pr11 . . . prss be the prime number decomposition of q.
Then l < min{2r0 , pr11 , . . . , prss }. In particular if q is a prime
or a power of a prime, then we can have l < q − 1. It is easy
to verify that, if q is a prime, then the construction in [23] is
the same as the array code construction of [32] with permuted
columns. For the case, where q is a prime power, the construction
is more elaborate and is not pursued further here.

Example 3: In this example we compare the number of sam-
ples required when using the DeVore construction of [20] and
a matrix that satisfies the hypotheses of Theorem 13, such as
the array code matrix or the Euler square matrix. The conclu-
sions are that: (i) When k <

√
n/4, the Devore construction

requires fewer measurements than the array code, whereas when√
n/4 < k <

√
n, the array code type of matrix requires fewer

measurements. (ii) When k >
√
n/2, the DeVore construction

requires more measurements than n, the dimension of the un-
known vector, whereas the array code construction has m < n
whenever k <

√
n.

To see this, recall that the DeVore construction produces a ma-
trix of dimensions q2 × qr+1 with the maximum inner product
between columns equal to r and each column contains q ones.
So if we choose r = 2, then λ in Theorem 10 equals 2, while
dL = q. Consequently the DeVore matrix satisfies the RNSP of
order k whenever k < q/2 and the number of measurementsmD

equals q2 = 4k2, Thus mD < n requires that 4k2 < n, or k <√
n/2. In contrast, a matrix of the type discussed in Theorem

13 has dimensions lq × q2, where n = q2 and l = k + 1. For
this class of matrices, we have λ = 1 and dL = q. This matrix
satisfies the RNSP whenever k = l − 1 < q and the number of
measurements equals lq = (k + 1)q. Now 4k2 < kq if and only
if k < q/4 =

√
n/4. Also mA = (k + 1)q < n = q2 whenever

k + 1 < q =
√
n. Here, in the interests of simplicity, we ignore

the fact that q has to be a prime number in both cases and various
rounding up operations.

VI. LOW GIRTH IN COMPRESSED SENSING VS. HIGH GIRTH IN

CODING THEORY

As shown in the previous section, in compressed sensing
left-regular bipartite graphs of girth six are preferable to graphs
with higher girths. It is easy to understand why graphs of girth
four are undesirable. For left-regular graphs of column degreedL
and girth four, recovery is guaranteed only for k < (dL − 1)/2,
whereas for left-regular graphs of column degree dL and girth
six, recovery is guaranteed for k < dL, or twice as large a
bound. However, it is counter-intuitive that graphs of still higher
girth are also inferior to graphs of girth six when it comes to
compressed sensing, because in LDPC coding, the higher the
girth, the better the decoding performance.

In order to explain this disparity, we quote verbatim a com-
ment by one of the reviewers, who said:

Although it is correct that in the area of LDPC codes large girth
helps in the limit n → ∞, in practice people use mostly parity-check
matrices with girth six. The reason for this is that most of the gain
is by going from girth four to girth six. Going to larger girth is

mostly not worthwhile because of the loss of flexibility in designing
parity-check matrices for the typical values of n of interest.

Intuitively, it is clear that for a given code length, given variable
node degree distribution and given check node distribution, the larger
the required girth, the fewer Tanner graphs there will be. (Clearly,
if the girth requirement is beyond some bound, there will be no
Tanner graph.) Writing down the relevant constraints is particularly
convenient for the popular class of quasi-cyclic LDPC codes. See,
for example [34], [35].

Many papers have empirically observed that going from girth four
to girth six brings the most benefit, with limited payoff beyond that.
A mathematical approach to understand this can be found in [36,
Section 8.3], which is the extended version of [37].

The fact is that, while both coding and compressed sens-
ing use binary matrices, there are some significant differences
between them. In coding, the number of bit-flipping errors k
(which is analogous the sparsity count in compressed sensing)
is a linear multiple of n, say k = αn for some α ∈ (0, 1). In
this case the universal lower bound from Theorem 3 becomes
m = O(nα ln(1/α)) and the challenge is to design codes, where
the number m of parity check bits grows linearly with n. In
contrast, in compressed sensing, the emphasis is on the case,
where k grows sub-linearly with respect to n and the objective
is to ensure that the number of measurementsm also grows more
slowly than n, though faster than k. In this setting, the rate of
the code defined as 1−m/n approaches 1 as n grows. For this
setting, as shown here, the optimal girth of the bipartite graph
is six.

VII. NUMERICAL EXPERIMENTS

In this section we carry out various numerical experiments to
illustrate the use of the array code binary matrices proposed
in this paper. The experiments include a comparison of the
array code binary matrix and the DeVore construction of binary
matrices from [20], with random Gaussian matrcies. In Sec-
tion VII-A, we compute the number of measurements that are
sufficient to guarantee the recovery of k-sparse n-dimensional
vectors, for each of these classes of measurement matrices. We
also compute the CPU time for �1-norm minimization to be
performed using each class of matrices. While the absolute
CPU time is not meaningful, the relative values are indeed
meaningful. In Section VII-B we study the phenomenon of
“phase transition” in �1-norm minimization, whereby for fixed
n and m and increasing values of k, the probability of success
on randomly generated k-sparse n-vectors suddenly goes from
100% to 0%. We compare numerical results for Array code
binary matrices and DeVore binary matrices with randomly
generated Gaussian matrices, for which a formal theory is
available.

A. Guaranteed Recovery

In this subsection, we compare the number of measurements
m and the CPU time for �1-norm minimization, when n =
1492 = 22, 201, for two different values of k, namely k = 14
and k = 69. Note that both values of k are smaller than

√
n. For

each of the array code matrix, the DeVore matrix and a random

LOTFI AND VIDYASAGAR: COMPRESSED SENSING USING BINARY MATRICES OF NEARLY OPTIMAL DIMENSIONS 3017

TABLE I
COMPARISON OF DEVORE, ARRAY CODE AND RANDOM GAUSSIAN MATRICES

FOR n = 1492 = 22, 201 AND k = 14, 69

Gaussian matrix, the number of measurements m is chosen so
as to guarantee robust k-sparse recovery using basis pursuit. In
the case of the random Gaussian matrix, the failure probability
ξ is chosen as 10−9 and the number of samples m is chosen in
accordance with Theorem 2, specifically (6).

When n = 1492 and k = 14, with the array code matrix we
choose q =

√
n = 149 and dL = k + 1 = 15, which leads to

m = dL
√
n = 2, 235 measurements. With DeVore’s construc-

tion, we choose q to be the next largest prime after 2k, namely
q = 29 and m = 292 = 841. Because k <

√
n/4, the DeVore

construction requires fewer measurements than the array code
matrix, as shown in Example 3. When k = 69, with the array
code matrix we choose dL = k + 1 = 70 and m = dL

√
n =

10, 430 measurements. In contrast, with the DeVore construc-
tion, we choose q to be the next largest prime after 2k, namely
139, which leads to m = q2 = 19, 321. Because k >

√
n/4, the

DeVore construction requires more measurements than the array
code matrix, as shown in Example 3. For the random Gaussian
matrix, when k = 14, Equation (6) gives m = 11, 683. When
k = 69, Equation (6) gives m = 44, 345, that is, more than n.
Therefore using random Gaussian matrices is not meaningful in
this case.

The results are shown in Table I. From this Table it can be
seen that both classes of binary matrices (DeVore and array
code) require significantly less CPU time compared to random
Gaussian matrices. As shown in Example 3, the DeVore matrix
is to be preferred when k <

√
n/4while the array code matrix is

to be preferred when k >
√
n/4. But in either case, both classes

of matrices are preferable to random Gaussian matrices.

B. Phase Transition Study

In this subsection we compare the phase transition behavior of
the basis pursuit formulation with both classes of binary matrices
(DeVore and array code) and random Gaussian matrices.

Suppose we choose integers n,m < n, together with a matrix
A and use basis pursuit as the decoder. If a k-sparse vector
is chosen at random, we can ask: What is the probability that
(A,ΔBP) recovers the vector and how does it change as k is
increased? We would naturally expect that the probability of
success would be 100% for k sufficiently small (because various
sufficient conditions for guaranteed recovery would be satisfied)
and 0% for k sufficiently large. Further, we would expect a
gradual drop-off for in-between values of k. The reality however
is quite different. There is a sharp transition between success and
failure, which is known as a phase transition.

To make the discussion precise, let us define two quantities:
θ := m/n, which is known as the under-sampling ratio andφ :=

k/m, which is known as the oversampling ratio.3 For fixedm,n,
let us vary k and make a plot of θ versus φ. We can compute
three quantities: φ95, which is the value at which the probability
of recovering a random k-sparse vector is 95%, φ50 and φ5,
with obvious definitions. The difference φ5 − φ95 is called the
transition width and is denoted by w.

The phase transition phenomenon is analyzed theoretically in
a series of papers, for the case, where the measurement matrix
A consists of mn independent samples of Gaussian random
variables, using convex polytope theory [6], [38]. A formula
is derived for φ50 as a function θ, which might be referred to
as the “transition boundary.” However, this is not a closed-form
formula. It is further shown that the transition width is roughly
equal to C/

√
n, where C is a constant that does not depend on

n. In addition, it is shown through numerical simulations in [10],
[38], [39] that a large class of random and deterministic mea-
surement matrices display the same phase transition behavior
as Gaussian matrices, even though there is as yet no theoretical
analysis for anything other than random Gaussian matrices.

Against this background, it is of interest to study whether the
two classes of binary matrices studied here, namely the array
code matrix and the DeVore construction, also display the same
phase transition behavior as Gaussian matrices. Specifically, we
study the following questions through numerical simulations:

1) For a given θ, is the 50% recovery value of φ50 more or
less the same for all three types of matrices?

2) Is the phase transition width w more or less the same for
all three types of matrices?

3) As n is varied, does the phase transition width vary as
C/

√
n for some constant C that is independent of the

method used to generate the measurement matrix?
4) What is the CPU time with each type of binary matrix?
Here we give details of the study. For Gaussian measurement

matrices and the DeVore measurement matrices, the dimension
of the vector n is chosen to be 1024, to match the previous
literature on the topic. The phase transition boundary for the
Gaussian case is computed using the software provided by Prof.
David Donoho. For the array code class, we chose n = 961 =
312, which is the nearest square of a prime number to 1024.
Once n is chosen, for the Gaussian matrices, every value of m
(the number of measurements) is permissible. However, for each
class of binary matrix, there are only certain values of m that
are permissible. For the DeVore class, m equals the square of
a prime power q such that m = q2 < n. Thus the permissible
choices for q are

{11, 13, 16, 17, 19, 23, 25, 29, 31}.
Note that we omitted the possibility of q = 8 as being too small.
In the case of array matrices n = 312 = q2 and the permissible
values of m are lq as l ranges from 2 to q − 1 = 30, that
is, {62, 93, . . . , 930}. For each permissible choice of m, an
appropriate measurement matrix A is generated. Once this is

3This terminology is introduced in [6] with m/n denoted by δ and k/m
denoted by ρ. Since these symbols are used to denote different quantities in the
compressed sensing literature, we use θ and φ instead.

3018 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 68, 2020

Fig. 1. Phase transition diagram with success, transition and failure regions
for n = 1024 using DeVore measurement matrix.

Fig. 2. Phase transition diagram with success, transition and failure regions
for n = 961 using array LDPC parity check matrix.

done, 100 random k-sparse vectors are generated and �1-norm
minimization (basis pursuit) is applied to each random k-sparse
vector with the measurement matrix of each class. The optimiza-
tion is carried out using the CVX package of Matlab.

Since there is a great deal of information to be presented,
we first show the results for the DeVore construction of [20]
in Fig. 1 and then the results for the array code construction in
Fig. 2. These figures show φ5, φ50 and φ95 for the two methods.

Then in Fig. 3, we plot the numerically determined median
values φ50 for the two classes of binary matrices (DeVore and
array code), together with the theoretically determined values
from [40, Fig. 1].4 Note that there are two theoretical curves
here, corresponding to the case, where the unknown vector x is
k-sparse with each nonzero value equal to ±1 (blue curve) and
where each nonzero value is uniformly distributed over [−1, 1]
(magenta curve). The first case is known as “random signed
vector” and the second case is known as “random bounded
vector.” From Fig. 3, it can be seen that the observed transition
boundary in each of the two binary matrices closely matches

4We thank Prof. David Donoho for providing the software to reproduce the
curve.

Fig. 3. Phase transition boundaries for array code binary, DeVore binary and
Gaussian matrices. For the latter, two boundaries are shown: For signed (±1)
vectors and vectors assuming values in [−1, 1]. Theoretical curves for real and
bounded inputs and 95% recovery curve using array LDPC parity check matrix
and DeVore matrix.

TABLE II
COMPARISON OF TRANSITION WIDTHS w, 50% SUCCESS RATE VALUE φ50,

AND CPU TIME T FOR n = 1024, USING BINARY DeVore MATRIX AND

GAUSSIAN MEASUREMENT MATRIX (SUBSCRIPT b AND g RESPECTIVELY)

TABLE III
PHASE TRANSITION WIDTHS w, 50% SUCCESS RATE WIDTH φ50, AVERAGE

WIDTH w̄ FOR n = 961 USING ARRAY LDPC PARITY CHECK MATRIX

TABLE IV
PHASE TRANSITION WIDTHS w, 50% SUCCESS RATE VALUE φ50 AND THE

CONSTANT C1 FOR THREE DIFFERENT VALUES, n = 256, 512, 1024 USING

DeVore’S BINARY MEASUREMENT MATRIX

LOTFI AND VIDYASAGAR: COMPRESSED SENSING USING BINARY MATRICES OF NEARLY OPTIMAL DIMENSIONS 3019

TABLE V
COMPARISON OF THE NUMBER OF MEASUREMENTS FOR THE DeVore BINARY MATRIX, THE ARRAY CODE BINARY MATRIX, AND THE RANDOM GAUSSIAN

MATRIX. NOTE THAT mD = q2D AND mA = (k + 1)qA. THE QUANTITY mG IS COMPUTED ACCORDING TO (6)

the theoretical transition boundary with Gaussian matrices and
random signed vectors. In contrast, the transition boundary value
of φ (at which the success ratio is 50%) with random vectors
taking arbitrary values in [−1, 1] is much lower with Gaussian
matrices than with either of the two binary matrices.

Next we analyze the results shown in these figures. To make
the comparisons between methods readable, we dispay the re-
sults in two separate tables. Table II gives a comparison between
the DeVore binary matrices and random Gaussian matrices.
Table III gives a comparison between the array code binary
matrices and random Gaussian matrices.

Next, we compute the transition width (φ5−φ95) for various
values of θ, for three different values of n namely 256, 512
and 1,024, using the DeVore binary matrix. The objective is
to determine whether the transition width varies as C1/

√
n for

some constant C1 that is independent of n. For a fixed choice of
n, for each (permissible) value of θ, we compute the transition
width w and see how constant it is with respect to θ. It can be
seen from the table that indeed w is relatively constant even as
θ varies. Then we averaged the various values of w over θ for
each fixed n, to arrive at an average transition width, shown as
w̄ in the table. Then we computed the ratio w̄/

√
n for the three

values of n and called it C1. The expectation is that this constant
C1 should be independent of n. In reality, the values of C1 for
n = 256 and 512 are quite close, while that for n = 1, 024 is
noticeably higher.

VIII. DISCUSSION

In this paper we have built upon previously proven sufficient
conditions for stable k-sparse recovery and showed that they
actually guarantee robust k-sparse recovery, that is, enable basis
pursuit to achieve k-sparse recovery in the presence of mea-
surement noise. We then derived a universal lower bound on the
number of measurements in order for binary matrix to satisfy this
sufficient condition. Ideally, we would like to prove a universal
necessary condition along the following lines: If a left-regular
binary measurement matrixA achieves robust k-sparse recovery
of order k, then dL ≥ φ(k), where φ(·) is some function that is
waiting to be discovered. In such a case, the bounds in Theorem
10 would truly be universal. At present, there are no known uni-
versal necessary conditions for binary measurement matrices,
other than Theorem 3, which is applicable to all matrices, not
just binary matrices.

Note that, as shown in [15, Problem 13.6], a binary matrix
does not satisfy the RIP of order k with constant δ unless

m ≥ min

{
1− δ

1 + δ
n,

(
1− δ

1 + δ

)2

k2

}

.

This negative result has often been used to suggest that binary
matrices are not suitable for compressed sensing. However, RIP
is only a sufficient condition for robust sparse recovery and
as shown here, it is possible to provide far weaker sufficient
conditions for robust sparse recovery in terms of the RNSP,
when the measurement matrix is binary. This is consistent with
the results of [19], which show that RIP implies RNSP. Hence
any sufficient condition that is derived using the RIP can also
be derived using the RNSP. The present paper goes farther by
deriving a sufficient condition based on the RNSP that is strictly
weaker than the best available condition based on the RIP.

Moreover, it is possible to compare the sample complexities
implied by (6) for random Gaussian matrices with those corre-
sponding to the DeVore class and the array code class, to see
that when n < 105 and k <

√
n, in fact binary matrices require

fewer measurements, as shown in Table V.
One might argue that the bound in (6) is only a sufficient

condition for the number of measurements and that in actual
examples, far fewer measurements suffice. This is precisely
the motivation behind studying the phase transition of basis
pursuit with binary matrices. As shown in Section VII-B, in
fact there is no difference between the phase transition behavior
of random Gaussian matrices and binary matrices. This obser-
vation reinforces earlier observations in [10]. In other words,
the fraction of randomly generated k-sparse vectors that can
be recovered using m measurements is the same whether one
uses Gaussian matrices or binary matrices. Given that basis
pursuit can be implemented much more efficiently with binary
measurement matrices than with random Gaussian matrices
and both classes of matrices exhibit similar phase transition
properties, there appears to be a very strong case for preferring
binary measurement matrices over random Gaussian matrices,
notwithstanding the “order-optimality” of the latter class. In this
connection, it would be worthwhile to explore whether other
classes of measurements also exhibit phase transition behavior
that is quantitatively similar to that of Gaussian and binary
matrices.

There is one final point that we wish to make. Theorem 11
suggests that, in order to use binary matrices for compressed
sensing, it is better to use graphs with small girth, in fact, of girth
six. This runs counter to the intuition in LDPC decoding, where
one wishes to design binary matrices with large girth. Indeed,
in [41], the authors build on an earlier paper [42] and develop a
message-passing type of decoder that achieves order-optimality
using a binary matrix. The binary matrices that are used in [41]
all have large girthΩ(lnn), which is the theoretical upper bound.
One possible explanation for this discrepancy is that the model
for compressed sensing using in [41] is different from the one
used here and in most of the compressed sensing literature.
Specifically (to paraphrase a little bit), in [41] in the unknown

3020 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 68, 2020

vector, each component is binary and the probability that the
component equals one is k/n. Thus, the expected value of
nonzero bits is k, but it could be larger or smaller. Accordingly,
the actual sparsity count is a random number that could exceed
k. The recovery results proved in [41] are also probabilistic
in nature. It is worth further study to determine whether this
difference is sufficient to explain why, in compressed sensing,
graphs of low girth are to be preferred.

ACKNOWLEDGMENT

The authors thank Prof. David Donoho of Stanford University
for his helpful suggestions on phase transitions and for providing
the code to enable us to reproduce his computational results.
They also thank Prof. Phanindra Jampana of IIT Hyderabad for
helpful discussions on the construction of Euler squares. Finally,
they thank the reviewers for their careful reading of the previous
draft and for detailed comments that have greatly improved the
readability of the paper.

REFERENCES

[1] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition
by basis pursuit,” SIAM J. Scientific Comput., vol. 20, no. 1, pp. 33–61,
1998.

[2] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition
by basis pursuit,” SIAM Rev., vol. 41, no. 1, pp. 129–159, 2001.

[3] E. J. Candès and T. Tao, “Decoding by linear programming,” IEEE Trans.
Inf. Theory, vol. 51, no. 12, pp. 4203–4215, Dec. 2005.

[4] A. Cohen, W. Dahmen, and R. DeVore, “Compressed sensing and best
k-term approximation,” J. Amer. Math. Soc., vol. 22, no. 1, pp. 211–231,
Jan. 2009.

[5] K. D. Ba, P. Indyk, E. Price, and D. P. Woodruff, “Lower bounds for sparse
recovery,” in Proc. ACM-SIAM Symp. Discrete Algorithms, Jan. 2010,
pp. 1190–1197.

[6] D. L. Donoho, “For most large underdetermined systems of linear equa-
tions, the minimal �1-norm solution is also the sparsest solution,” Commun.
Pure Appl. Math., vol. 59, no. 6, pp. 797–829, 2006.

[7] D. L. Donoho and J. Tanner, “Neighborliness of randomly projected sim-
plices in high dimensions,” Proc. Nat. Academy Sci., vol. 102, pp. 9452–
9457, Jul. 2005.

[8] D. L. Donoho and J. Tanner, “Counting faces of randomly projected
polytopes when the projection radically lowers dimension,” J. Amer. Math.
Soc., vol. 22, no. 1, pp. 1–53, Jan. 2009.

[9] D. Amelunxen, M. Lotz, M. B. McCoy, and J. A. Tropp, “Living on
the edge: Phase transitions in convex programs with random data,” Inf.
Inference, vol. 3, no. 3, pp. 224–294, 2014.

[10] H. Monajemi, S. Jafarpour, M. Gavish, and D. Donoho, “Deterministic
matrices matching the compressed sensing phase transitions of Gaus-
sian random matrices,” Proc. Nat. Academy Sci. United States America,
vol. 110, no. 4, pp. 1181–1186, 2013.

[11] E. J. Candès, J. Romberg, and T. Tao, “Stable signal recovery from
incomplete and inaccurate measurements,” Commun. Pure Appl. Math.,
vol. 59, no. 8, pp. 1207–1223, Aug. 2006.

[12] E. Candès, “The restricted isometry property and its implications for
compresed sensing,” Comptes Rendus de l’Académie Des Sci., Série I,
vol. 346, pp. 589–592, 2008.

[13] T. T. Cai and A. Zhang, “Sparse representation of a polytope and recovery
of sparse signals and low-rank matrices,” IEEE Trans. Inf. Theory, vol. 60,
no. 1, pp. 122–132, Jan. 2014.

[14] R. Zhang and S. Li, “A proof of conjecture on restricted isometry property
constants δtk(0 < t < 4

3),” IEEE Trans. Inf. Theory, vol. 64, no. 3,
pp. 1699–1705, Mar. 2018.

[15] S. Foucart and H. Rauhut, A Mathematical Introduction to Compressive
Sensing. Berlin, Germany: Springer-Verlag, 2013.

[16] A. S. Bandeira, E. Dobriban, D. G. Mixon, and W. F. Sawin, “Certifying
the restricted isometry property is hard,” IEEE Trans. Inf. Theory, vol. 59,
no. 6, pp. 3448–3450, Jun. 2013.

[17] W. Xu and B. Hassibi, “Compressed sensing over the Grassmann manifold:
A unified analytical framework,” in Proc. 46th Allerton Conf., 2008,
pp. 562–567.

[18] S. Foucart, “Stability and robustness of �1-minimizations with Weibull
matrices and redundant dictionaries,” Linear Algebra Appl., vol. 441,
pp. 4–21, 2014.

[19] S. Ranjan and M. Vidyasagar, “Tight performance bounds for compressed
sensing with conventional and group sparsity,” IEEE Trans. Signal Pro-
cess., vol. 67, no. 11, pp. 2854–2867, Jun. 2019.

[20] R. DeVore, “Deterministic construction of compressed sensing matrices,”
J. Complexity, vol. 23, pp. 918–925, 2007.

[21] S. Li, F. Gao, G. Ge, and S. Zhang, “Deterministic construction of com-
pressed sensing matrices via algebraic curves,” IEEE Trans. Inf. Theory,
vol. 58, no. 8, pp. 5035–5041, Aug. 2012.

[22] S. D. Howard, A. R. Calderbank, and S. J. Searle, “A fast reconstruc-
tion algorithm for deterministic compressive sensing using second order
reedmuller codes,” in Proc. 42nd IEEE Annu. Conf. Inf. Sci. Syst., 2008,
pp. 11–15.

[23] R. R. Naidu, P. Jampana, and C. S. Sastry, “Deterministic compressed
sensing matrices: Construction via euler squares and applications,” IEEE
Trans. Signal Process., vol. 64, no. 14, pp. 3566–3575, Jul. 2016.

[24] H. F. MacNeish, “Euler squares,” Ann. Math., vol. 23, no. 3, pp. 221–227,
Mar. 1922.

[25] Y. Erlich, A. Gordon, M. Brand, G. J. Hannon, and P. P. Mitra, “Com-
pressed genotyping,” IEEE Trans. Inf. Theory, vol. 56, no. 2, pp. 706–723,
Feb. 2010.

[26] P. Indyk and M. Ruvzić, “Near-optimal sparse recovery in the �1-norm,”
in Proc. 49th Annu. IEEE Symp. Found. Comput. Sci., 2008, pp. 199–207.

[27] M. Lotfi and M. Vidyasagar, “A fast noniterative algorithm for compressive
sensing using binary measurement matrices,” IEEE Trans. Signal Process.,
vol. 66, no. 15, pp. 4079–4089, Aug. 1 2018.

[28] V. Guruswami, C. Umans, and S. Vadhan, “Unbalanced expanders and
randomness extractors from ParvareshVardy codes,” J. ACM, vol. 56, no. 4,
pp. 20:1–20:34, 2009.

[29] A. G. Dimakis, R. Smarandache, and P. O. Vontobel, “LDPC codes for
compressed sensing,” IEEE Trans. Inf. Theory, vol. 58, no. 5, pp. 3093–
3114, May 2012.

[30] X.-J. Liu and S.-T. Xia, “Reconstruction guarantee analysis of binary
measurement matrices based on girth,” in Proc. Int. Symp. Inf. Theory,
2013, pp. 474–478.

[31] S. Hoory, “The size of bipartite graphs with a given girth,” J. Combinatorial
Theory, Series B, vol. 86, pp. 215–220, 2002.

[32] K. Yang and T. Helleseth, “On the minimum distance of array codes as
LDPC codes,” IEEE Trans. Inf. Theory, vol. 49, no. 12, pp. 3268–3271,
Dec. 2003.

[33] J. L. Fan, “Array codes as LDPC codes,” in Proc. 2nd Int. Symp. Turbo
Codes, 2000, pp. 543–546.

[34] M. Fossorier, “Quasicyclic low-density parity-check codes from circulant
permutation matrices,” IEEE Trans. Inf. Theory, vol. 50, no. 8, pp. 1788–
1793, 2004.

[35] R. Smarandache and P. O. Vontobel, “Quasi-cyclic ldpc codes: Influence of
proto- and Tanner-graph structure on minimum Hamming distance upper
bounds,” IEEE Trans. Inf. Theory, vol. 58, no. 2, pp. 585–607, Feb. 2012.

[36] P. O. Vontobel and R. Koetter, “Graph-cover decoding and finite-length
analysis of message-passing iterative decoding of LDPC codes,” 2005,
arXiv:cs/0512078.

[37] R. Koetter and P. O. Vontobel, “Graph-covers and iterative decoding of
finite-length codes,” in Proc. 3rd Int. Symp. Turbo Codes Related Topics
(Brest, France), 2003.

[38] D. Donoho and J. Tanner, “Observed universality of phase transitions in
high-dimensional geometry, with implications for modern data analysis
and signal processing,” Philosoph. Trans. Roy. Soc., Part A: Math., Phys.
Eng. Sci., vol. 367, no. 1906, pp. 4273–4293, Nov. 2009.

[39] M. Bayati, M. Lelarge, and A. Montanari, “Universality in polytope phase
transitions and message passing algorithms,” Ann. Appl. Probab., vol. 25,
no. 2, pp. 753–822, Apr. 2015.

[40] D. L. Donoho, A. Maleki, and A. Montanari, “Message-passing algo-
rithms for compressed sensing,” Proc. Nat. Acad. Sci., vol. 106, no. 45,
pp. 18 914–18 919, 2009.

[41] A. Khajehnejad, A. S. Tehrani, A. G. Dimakis, and B. Hassibi, “Explicit
matrices for sparse approximation,” in Proc. Int. Symp. Inf. Theory, 2011,
pp. 469–473.

[42] S. Arora, C. Daskalakis, and D. Steurer, “Message-passing algorithms and
improved LP decoding,” in Proc. 41st Annu. ACM Symp. Theory Comput.,
2009, pp. 3–12.

LOTFI AND VIDYASAGAR: COMPRESSED SENSING USING BINARY MATRICES OF NEARLY OPTIMAL DIMENSIONS 3021

Mahsa Lotfi received both B.Sc. and M.Sc. degrees
in electrical engineering from Isfahan University of
Technology, Isfahan, Iran, in 2012 and 2015, re-
spectively. She received Ph.D. degree in electrical
engineering at the University of Texas at Dallas, TX,
USA in 2018 and her doctoral thesis was focused on
developing recovery algorithms using deterministic
measurement matrices in compressive sensing with
near-optimal compression rate. Besides compressive
sensing, she has done several research projects on
classification and regression problems in machine

learning and biomedical image processing as well. Currently, she is a Postdoc-
toral Scholar with Professor David Donoho at Stanford University, Statistics
Department, where she works on different data science projects including
developing super-resolution algorithms for biomedical imaging.

Mathukumalli Vidyasagar was born in Guntur, In-
dia on September 29, 1947. He received the B.S., M.S.
and Ph.D. degrees in electrical engineering from the
University of Wisconsin in Madison, in 1965, 1967
and 1969 respectively. Between 1969 and 1989, he
was a Professor of electrical engineering at Marquette
University, Concordia University, and the University
of Waterloo. In 1989, he returned to India as the
Director of the newly created Centre for Artificial
Intelligence and Robotics (CAIR) in Bangalore. In
2000, he moved to the Indian private sector, and joined

India’s largest software company, Tata Consultancy Services, as an Executive
Vice President, and was posted in Hyderabad. In 2009, he retired from TCS
and joined the Erik Jonsson School of Engineering & Computer Science at the
University of Texas at Dallas, as a Cecil & Ida Green Chair in Systems Biology
Science. He retired from UT Dallas at the end of 2017, and joined the Indian
Institute of Technology Hyderabad, where he is a National Science Chair and a
Distinguished Professor. His current research interests are in the areas of machine
learning, and compressed sensing. On the applications front, he is interested in
applying ideas from machine learning to problems in computational biology with
emphasis on cancer. Vidyasagar has received a number of awards in recognition
of his research contributions, including Fellowship in The Royal Society, the
world’s oldest scientific academy in continuous existence, the IEEE Control
Systems (Technical Field) Award, the Rufus Oldenburger Medal of ASME, the
John R. Ragazzini Education Award from AACC, and others. He is the author
of 13 books and about 150 papers in peer-reviewed journals.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

