558 research outputs found

    A study of Radiation-Tolerant Voltage-Controlled Oscillators designs in 65 nm bulk and 28 nm FDSOI CMOS technologies

    Get PDF
    Phase-locked loop (PLL) systems are widely employed in integrated circuits for space analog devices and communications systems that operate in radiation environments, where significant perturbations, especially in terms of phase noise, can be generated due to radiation particles. Among all the blocks that form a PLL system, previous research suggests the voltage-controlled oscillator (VCO) is one of the most critical components in terms of radiation tolerance and electric performance. Ring oscillators (ROs) and LC-tank VCOs have been commonly employed in high-performance PLLs. Nevertheless, both structures have drawbacks including a limited tuning range, high sensitivity to phase noise, limited radiation tolerance, and large design areas. In order to fulfill these high-performance requirements, a current-model logic (CML) based RO-VCO is presented as a possible solution capable of reducing the limitations of the commonly used structures and exploiting their advantages. The proposed hybrid VCO model includes passive components in its design which are the key parameters that define oscillation frequency of this structure. This tunable oscillator has been designed and tested in 65nm Bulk and 28 nm Fully depleted silicon-on-insulator (FDSOI) CMOS technologies The 65nm testchip was designed to compare the behavior of the proposed CML VCO with a current-starved RO and a radiation hardened by design (RHBD) LC-tank VCO in terms of tuning range, phase noise, Single event effect (SEE) sensitivity and design area. Simulations were carried out by applying a double exponential current pulse into different sensitive nodes of the three VCOs. In addition, SEE tests were conducted using pulsed laser experiments. Simulation and test results show that a CML VCO can effectively overcome the limitations presented by a RO-VCO and LC-tank VCO, achieving a wide range of tuning, and low sensitivity to noise and SEEs without the need for a large cross-section. Further studies of the proposed CML VCO were done on 28nm FDSOI in order to reduce the leakage current and increase the switching speed. the same current-starved VCO and CML VCO were implemented on this testchip, and simulations were performed by injecting a double exponential current pulse energy into the previously defined sensitive nodes. The results show SEE sensitivity improvement without narrowing the tuning range or affecting the phase noise response

    Advanced CMOS Integrated Circuit Design and Application

    Get PDF
    The recent development of various application systems and platforms, such as 5G, B5G, 6G, and IoT, is based on the advancement of CMOS integrated circuit (IC) technology that enables them to implement high-performance chipsets. In addition to development in the traditional fields of analog and digital integrated circuits, the development of CMOS IC design and application in high-power and high-frequency operations, which was previously thought to be possible only with compound semiconductor technology, is a core technology that drives rapid industrial development. This book aims to highlight advances in all aspects of CMOS integrated circuit design and applications without discriminating between different operating frequencies, output powers, and the analog/digital domains. Specific topics in the book include: Next-generation CMOS circuit design and application; CMOS RF/microwave/millimeter-wave/terahertz-wave integrated circuits and systems; CMOS integrated circuits specially used for wireless or wired systems and applications such as converters, sensors, interfaces, frequency synthesizers/generators/rectifiers, and so on; Algorithm and signal-processing methods to improve the performance of CMOS circuits and systems

    A Charge-Recycling Scheme and Ultra Low Voltage Self-Startup Charge Pump for Highly Energy Efficient Mixed Signal Systems-On-A-Chip

    Get PDF
    The advent of battery operated sensor-based electronic systems has provided a pressing need to design energy-efficient, ultra-low power integrated circuits as a means to improve the battery lifetime. This dissertation describes a scheme to lower the power requirement of a digital circuit through the use of charge-recycling and dynamic supply-voltage scaling techniques. The novel charge-recycling scheme proposed in this research demonstrates the feasibility of operating digital circuits using the charge scavenged from the leakage and dynamic load currents inherent to digital design. The proposed scheme efficiently gathers the “ground-bound” charge into storage capacitor banks. This reclaimed charge is then subsequently recycled to power the source digital circuit. The charge-recycling methodology has been implemented on a 12-bit Gray-code counter operating at frequencies of less than 50 MHz. The circuit has been designed in a 90-nm process and measurement results reveal more than 41% reduction in the average energy consumption of the counter. The total energy savings including the power consumed for the generation of control signals aggregates to an average of 23%. The proposed methodology can be applied to an existing digital path without any design change to the circuit but with only small loss to the performance. Potential applications of this scheme are described, specifically in wide-temperature dynamic power reduction and as a source for energy harvesters. The second part of this dissertation deals with the design and development of a self-starting, ultra-low voltage, switched-capacitor (SC) DC-DC converter that is essential to an energy harvesting system. The proposed charge-pump based SC-converter operates from 125-mV input and thus enables battery-less operation in ultra-low voltage energy harvesters. The charge pump does not require any external components or expensive post-fabrication processing to enable low-voltage operation. This design has been implemented in a 130-nm CMOS process. While the proposed charge pump provides significant efficiency enhancement in energy harvesters, it can also be incorporated within charge recycling systems to facilitate adaptable charge-recycling levels. In total, this dissertation provides key components needed for highly energy-efficient mixed signal systems-on-a-chip

    RF CMOS Oscillators Design for autonomous Connected Objects

    Get PDF
    Voltage controlled oscillator (VCO) is an integral part of IoT wireless transceiver components. In this paper, VCOs operating around 2.4 GHz have been designed in CMOS technology. The relation between their components and specifications is studied for their performance optimization. Ultra-low power, less than 270 µW, has been obtained, while performing a frequency tuning range of about 10% between 2.1 and 2.4 GHz. Investigations on phase noise performance have been also achieved

    Biosensors and CMOS Interface Circuits

    Get PDF
    abstract: Analysing and measuring of biological or biochemical processes are of utmost importance for medical, biological and biotechnological applications. Point of care diagnostic system, composing of biosensors, have promising applications for providing cheap, accurate and portable diagnosis. Owing to these expanding medical applications and advances made by semiconductor industry biosensors have seen a tremendous growth in the past few decades. Also emergence of microfluidics and non-invasive biosensing applications are other marker propellers. Analyzing biological signals using transducers is difficult due to the challenges in interfacing an electronic system to the biological environment. Detection limit, detection time, dynamic range, specificity to the analyte, sensitivity and reliability of these devices are some of the challenges in developing and integrating these devices. Significant amount of research in the field of biosensors has been focused on improving the design, fabrication process and their integration with microfluidics to address these challenges. This work presents new techniques, design and systems to improve the interface between the electronic system and the biological environment. This dissertation uses CMOS circuit design to improve the reliability of these devices. Also this work addresses the challenges in designing the electronic system used for processing the output of the transducer, which converts biological signal into electronic signal.Dissertation/ThesisM.S. Electrical Engineering 201

    Phase Noise Analyses and Measurements in the Hybrid Memristor-CMOS Phase-Locked Loop Design and Devices Beyond Bulk CMOS

    Get PDF
    Phase-locked loop (PLLs) has been widely used in analog or mixed-signal integrated circuits. Since there is an increasing market for low noise and high speed devices, PLLs are being employed in communications. In this dissertation, we investigated phase noise, tuning range, jitter, and power performances in different architectures of PLL designs. More energy efficient devices such as memristor, graphene, transition metal di-chalcogenide (TMDC) materials and their respective transistors are introduced in the design phase-locked loop. Subsequently, we modeled phase noise of a CMOS phase-locked loop from the superposition of noises from its building blocks which comprises of a voltage-controlled oscillator, loop filter, frequency divider, phase-frequency detector, and the auxiliary input reference clock. Similarly, a linear time-invariant model that has additive noise sources in frequency domain is used to analyze the phase noise. The modeled phase noise results are further compared with the corresponding phase-locked loop designs in different n-well CMOS processes. With the scaling of CMOS technology and the increase of the electrical field, the problem of short channel effects (SCE) has become dominant, which causes decay in subthreshold slope (SS) and positive and negative shifts in the threshold voltages of nMOS and pMOS transistors, respectively. Various devices are proposed to continue extending Moore\u27s law and the roadmap in semiconductor industry. We employed tunnel field effect transistor owing to its better performance in terms of SS, leakage current, power consumption etc. Applying an appropriate bias voltage to the gate-source region of TFET causes the valence band to align with the conduction band and injecting the charge carriers. Similarly, under reverse bias, the two bands are misaligned and there is no injection of carriers. We implemented graphene TFET and MoS2 in PLL design and the results show improvements in phase noise, jitter, tuning range, and frequency of operation. In addition, the power consumption is greatly reduced due to the low supply voltage of tunnel field effect transistor

    Techniques for low power analog, digital and mixed signal CMOS integrated circuit design

    Get PDF
    With the continuously expanding of market for portable devices such as wireless communication devices, portable computers, consumer electronics and implantable medical devices, low power is becoming increasingly important in integrated circuits. The low power design can increase operation time and/or utilize a smaller size and lighter-weight battery. In this dissertation, several low power complementary metal-oxide-semiconductor (CMOS) integrated circuit design techniques are investigated. A metal-oxide-semiconductor field effect transistor (MOSFET) can be operated at a lower voltage by forward-biasing the source-substrate junction. This approach has been investigated in detail and used to designing an ultra-low power CMOS operational amplifier for operation at ± 0.4 V. The issue of CMOS latchup and noise has been investigated in detail because of the forward biasing of the substrates of MOSFETs in CMOS. With increasing forward body-bias, the leakage current increases significantly. Dynamic threshold MOSFET (DTMOS) technique is proposed to overcome the drawback which is inherent in a forward-biased MOSFET. By using the DTMOS method with the forward source-body biased MOSFET, two low-power low-voltage CMOS VLSI circuits that of a CMOS analog multiplexer and a Schmitt trigger circuits are designed. In this dissertation, an adaptive body-bias technique is proposed. Adaptive body-bias voltage is generated for several operational frequencies. Another issue, which the chip design community is facing, is the development of portable, cost effective and low power supply voltage. This dissertation proposes a new cost-effective DC/DC converter design in standard 1.5 um n-well CMOS, which adopts a delay-line controller for voltage regulation

    500mV low-voltage operational amplifier design

    Get PDF
    With the dramatic increase in the number of transistors on a chip and the increasing needs for battery-powered applications, low-voltage circuit design techniques have been widely studied in recent year. However, these low supply voltage research efforts have been focused mainly on digital circuits, especially on high density memory circuits. Reported success in achieved high performance low voltage operation in analog circuits lags far behind. Recent results have been presented on CMOS low-voltage operational amplifiers, where the supply voltage has been reduced to less than 2.5V in which the complementary input stages were used to keep the gm constant [SI95] [HL85]. Recently, the floating gate MOS transistor has attracted considerable interest as a nonvolatile analog storage device and as a precision analog trim element because it has threshold voltage programming ability [YU93] [RC95].;The particular focus of this work is on implementing very low voltage analog and mixed-signal integrated circuit in a standard CMOS process. As a proof-of-concept vehicle, this work concentrates on the design of very low voltage operational amplifiers in standard CMOS processes. By connecting a DC reference voltage source in series with the gate of all MOS transistors, the equivalent threshold voltage of all transistors can be electrically lowered. This technique makes it possible to decrease the power supply voltage. The DC reference voltage sources are realized by using a switched capacitor charged periodically and switched between the actual circuit and a reference precharge circuit. By extracting the reference voltage source directly from the threshold voltage itself, the threshold voltage variations due to the process and temperature variations can be compensated, since large threshold variations are intolerable for very low threshold voltage applications.;In a proof-of-concept two-stage operational amplifier designed to operate with a single 5OOmV power supply in a standard 2[Mu] process, the tail current is kept the same as in a 3.3V design, thus the key performance parameters are expected to be maintained at reasonable values. The dramatic decrease of the power supply possible with this approach is paralleled with a corresponding reduction in the power dissipation. Simulation results of this 5OOmV operational amplifier show a 7OdB DC gain, 7.8MHz unity gain bandwidth and a 650 phase margin. Power dissipation is reduced by more than 90% from that of the corresponding 3.3V design. Although the specific implementation is focused on the implementation of an operational amplifier with comparable performance parameters to those with larger supply voltage, the dominant applications of this technique are for designing a variety of analog and mixed-signal systems that operate at very low voltages and with low power dissipation
    • …
    corecore