84 research outputs found

    Interference Localization for Uplink OFDMA Systems in Presence of CFOs

    Full text link
    Multiple carrier frequency offsets (CFOs) present in the uplink of orthogonal frequency division multiple access (OFDMA) systems adversely affect subcarrier orthogonality and impose a serious performance loss. In this paper, we propose the application of time domain receiver windowing to concentrate the leakage caused by CFOs to a few adjacent subcarriers with almost no additional computational complexity. This allows us to approximate the interference matrix with a quasi-banded matrix by neglecting small elements outside a certain band which enables robust and computationally efficient signal detection. The proposed CFO compensation technique is applicable to all types of subcarrier assignment techniques. Simulation results show that the quasi-banded approximation of the interference matrix is accurate enough to provide almost the same bit error rate performance as that of the optimal solution. The excellent performance of our proposed method is also proven through running an experiment using our FPGA-based system setup.Comment: Accepted in IEEE WCNC 201

    Multi-user interference cancellation schemes for carrier frequency offset compensation in uplink OFDMA

    Get PDF

    Timing and Carrier Synchronization in Wireless Communication Systems: A Survey and Classification of Research in the Last 5 Years

    Get PDF
    Timing and carrier synchronization is a fundamental requirement for any wireless communication system to work properly. Timing synchronization is the process by which a receiver node determines the correct instants of time at which to sample the incoming signal. Carrier synchronization is the process by which a receiver adapts the frequency and phase of its local carrier oscillator with those of the received signal. In this paper, we survey the literature over the last 5 years (2010–2014) and present a comprehensive literature review and classification of the recent research progress in achieving timing and carrier synchronization in single-input single-output (SISO), multiple-input multiple-output (MIMO), cooperative relaying, and multiuser/multicell interference networks. Considering both single-carrier and multi-carrier communication systems, we survey and categorize the timing and carrier synchronization techniques proposed for the different communication systems focusing on the system model assumptions for synchronization, the synchronization challenges, and the state-of-the-art synchronization solutions and their limitations. Finally, we envision some future research directions

    Carrier Frequency Offset Compensation for OFDMA Systems Using Circular Banded Matrices

    Get PDF
    Orthogonal frequency division multiple access (OFDMA) is a multiuser communication technique that allocates to each user a set of orthogonal carriers. In the presence of carrier frequency offset (CFO) the orthogonality among carriers is lost and it is impossible to recover the information of the users without CFO compensation. The resulting multiple access interference (MAI) can be described as an interference matrix of large dimensions. In order to compensate for the CFO, this matrix must be inverted, what is computationally complex. Therefore, a banded matrix approximation is usually introduced. In this paper we propose a circular banded matrix which is a better approximation to the actual interference matrix. Also, by means of numerical simulation, we show that neither banded nor circular banded matrices approximations work well for normalized CFO close to 0.5.Fil: González, Gustavo José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Investigación en Ingeniería Eléctrica; Argentina. Universidad Nacional del Sur; ArgentinaFil: Gregorio, Fernando Hugo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Investigación en Ingeniería Eléctrica; Argentina. Universidad Nacional del Sur; ArgentinaFil: Cousseau, Juan Edmundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Investigación en Ingeniería Eléctrica; Argentina. Universidad Nacional del Sur; Argentin

    Analysis and mitigation of carrier frequency offset for uplink of OFDMA

    Get PDF
    Orthogonal Frequency Division Multiplexing (OFDM) is being used in many wireless standards because of its immunity to multipath fading, high spectral efficiency and simple implementation, making it suitable for high data rate multimedia wireless applications. One of the significant drawbacks of the OFDM is its sensitivity to Carrier Frequency Offset (CFO). CFO causes Inter Carrier Interference (ICI) between subcarriers and Multiple User Interference (MUI) at Uplink between different users. ICI and MUI at uplink cause significant degradation in the performance of the receiver, therefore, to improve the receiver performance up to acceptable level, compensation of the CFO becomes necessary. In this research, Suppression of MUI by Minimum Mean Squared Error (MMSE) Feedback Equalizer in frequency domain which was originally proposed for Single Carrier- Frequency Domain Multiple Access (SC-FDMA) has been studied for Uplink of Orthogonal Frequency Division Multiple Access (OFDMA). However, calculation of MUI power required in this algorithm for all users impose very high computational burden on the receiver. In the proposed Low Complexity MUI Suppression by MMSE Equalization for Uplink of OFDMA approximation to the calculation of MUI power is applied to reduce its complexity. Simulation result & calculated complexity show that proposed method obtains good performance with much lower complexity
    corecore