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Abstract— Orthogonal frequency division
multiple access (OFDMA) is a multiuser com-
munication technique that allocates to each
user a set of orthogonal carriers. In the pres-
ence of carrier frequency offset (CFO) the or-
thogonality among carriers is lost and it is
impossible to recover the information of the
users without CFO compensation. The result-
ing multiple access interference (MAI) can be
described as an interference matrix of large di-
mensions. In order to compensate for the CFO,
this matrix must be inverted, what is compu-
tationally complex. Therefore, a banded ma-
trix approximation is usually introduced. In
this paper we propose a circular banded matrix
which is a better approximation to the actual
interference matrix. Also, by means of numer-
ical simulation, we show that neither banded
nor circular banded matrices approximations
work well for normalized CFO close to 0.5.

Keywords— OFDMA, CFO compensation,
Banded Matrix.

I. INTRODUCTION

Orthogonal frequency division multiple access
(OFDMA) is considered one of the most promising
techniques to deliver high data rate in a multiuser
wireless system. OFDMA is based on the inherited
orthogonality of the orthogonal frequency-division
multiplexing (OFDM) modulation. Then, a subset of
subcarriers are assigned to each user according to a
carrier allocation scheme (CAS).

The usual CASs are: subband, interleaved and gen-
eralized. In subband CAS, each user take a contiguous
set of subcarriers. In interleaved CAS, the carriers of
each user are uniformly distributed over the entire sig-
nal bandwidth to exploit the frequency diversity. Nev-
ertheless, the more advantageous scheme is generalized
CAS since it allows users to be allocated in the best
subcarriers currently available for each one of them.

OFDMA provides high spectrum efficiency, robust-
ness against multipath fading, simple equalization and
low multiple access interference (MAI). On the other

hand, as OFDM, OFDMA is highly sensitive to fre-
quency synchronization errors. The carrier frequency
offset (CFO) between the transmitter and the receiver
destroys the orthogonality among carriers and, there-
fore, produces MAI. Downlink synchronization is a
single parameter estimation problem and many algo-
rithms proposed for OFDM can be used in that case
[11, 6, 8]. On the other hand, synchronization in the
uplink is more challenging since it is a multiparameter
estimation problem. The reason is that each user is
characterized by particular CFO and channel param-
eters.

Frequency synchronization depends on the CAS and
results in a two step procedure: 1) CFO estimation
and 2) CFO compensation. Considering generalized
CAS, CFO estimation employs a training sequence in-
serted at the beginning of the frame [9]. On the other
hand, CFO compensation uses iterative interference
cancellation [5, 12] or linear cancellation [4]. Despite
its larger computational complexity, the later compen-
sation scheme is preferred since it leads to a better
performance in bit error rate (BER) [9].

In [4] the authors model the MAI as an interference
matrix with the same dimension as the OFDMA sys-
tem. Considering nowadays systems, this value could
be as large as 2048 [1]. To compensate the CFO, the
authors propose to use either the least squares (LS)
or the minimum mean squared error (MMSE) criteria.
Unfortunately, LS and MMSE requires the interfer-
ence matrix inversion and a multiplication with the
received symbol that results in a huge computational
load. As a consequence, [4] also proposes a banded sys-
tem simplification to reduce the complexity of the lin-
ear cancellation. This simplification leaves some resid-
ual MAI which degrades the system performance. Ad-
ditionally, as the nature of CFO interference is cyclic
(depends on trigonometric functions), the actual in-
terference matrix is circular banded. This means that
the first and last carriers interfere with each other in
case that the bandwidth of the banded matrix is less
than the amount of virtual carriers of the system.

In this paper we propose a novel approximation of
the interference matrix with cyclic banded structure



that takes into account the interference at the edges
of the OFDMA symbol if the virtual or null system
carriers are not enough. As a consequence, it results
in a better approximation than the banded matrix.
Also, we derive low-complexity versions of the LU fac-
torization, the forward and backward substitution for
the inversion of the cyclic banded matrix. Addition-
ally, we show by simulations that, as long as the CFO is
close to 0.5, neither the banded nor the circular banded
approximations are good, what makes frequency com-
pensation impossible.

The paper is presented as follows: In Section 2 we
describe the uplink OFDMA system and introduce the
interference matrix. The CFO compensation criteria,
the interference matrix structure and its approxima-
tions are introduced in Section 3. In Section 4 the
numerical simulations are presented. Finally, Section
5 concludes the paper.

II. UPLINK SIGNAL DESCRIPTION

A. OFDMA signal

Consider an OFDMA symbol of N subcarriers, where
M of them are used for data transmission (M < N)
and the remaining are virtual carriers located at the
edge of the band, i.e. Nvc = (N−M)/2, with (N−M)
even. Virtual carriers (VC) avoid frequency leakage to
the neighbor bands [1]. Useful subcarriers are divided
in K subchannels of Nk = M/K carriers, each cor-
responding to a different user. In order to allow a
tractable carrier assignment scheme, each subchannel
is composed by an entire number of tiles of size Nt.
Figure 1 illustrates an example of generalized CAS.

Figure 1: Generalized CAS with N = 20, M = 16,
K = 2 and Nt = 2.

The subcarrier index of each user is defined as
Ik = {I(k)

0 , . . . , I(k)
Nk

} according to the CAS, where

(·)(k) denotes assignment to user k. From the above
definitions, the sets of carrier indexes are complete
(contain the M carriers) and disjoint, then

I =

K⋃
k=1

Ik (1)

and,

Ik
⋂

Ik′ = ∅ if k �= k′. (2)

Each user transmits a frequency domain symbol de-

fined as X(k) = {X(k)
0 , · · · , X(k)

N−1}, where

X(k)
m =

{
A

(k)
m if m = Ik

0 otherwise
for 0 ≤ m ≤ N − 1, (3)

and A
(k)
m is the symbol sent by the user k at carrier m.

By applying the inverse fast Fourier transform (IFFT)

to X
(k)
m , we obtain the N time domain samples of the

OFDMA symbol corresponding to user k

x(k)(n) =
1√
N

∑
m∈Ik

X(k)
m ej

2πmn
N . (4)

A cyclic prefix (CP) of length Ncp is inserted at the be-
ginning of the OFDMA symbol. The CP is assumed
long enough to contemplate both the channel delay
spread and the timing offset of each user. This is
known as quasi-synchronous scenario and allow us to
separate time and frequency estimation [2].

At the base station, after discarding the CP, the
received signal is the superposition of the signals of
each user, and it can be described as

r(n) =

K∑
k=1

r(k)(n) + w(n), (5)

where

r(k)(n) =
ej

2πξ(k)n
N√
N

∑
m∈Ik

X(k)
m H(k)

m ej
2πmn

N , (6)

w(n) is the AWGN, H
(k)
m is the channel frequency re-

sponse between the user k and the base station, ξ(k)

is the normalized CFO defined as ξ(k) = Δf (k)/ΔF ,
where Δf (k) is the CFO between the user k and the
base station and ΔF is the intercarrier spacing. Then,
the FFT is applied to the signal (5) to demodulate it.
The output of the FFT block can be written as

Ym = Gm +Wm (7)

where

Gm =
∑

m′∈Ik

K∑
k=1

X
(k)
m′ H

(k)
m′

N

(
N−1∑
n=0

ej2π
(m′−m+ξ(k))n

N

)
.

(8)
and Wm is the noise in each subcarrier.

B. Interference matrix

For the sake of clarity, lets express some of the
previous equations in matrix form discarding VC.
Define the received signal of a single OFDMA user
as r(k) = [r(k)(0) . . . r(k)(N − 1)]T. Considering that

D(k) = diag{1, ej2πξ(k)/N , . . . , ej2πξ
(k)(N−1)/N}



is a diagonal matrix of N × N , s(k) =

[X
(k)
Nvc

H
(k)
Nvc

. . .X
(k)
N−Nvc−1H

(k)
N−Nvc−1]

T and F is
the M ×N FFT matrix with elements

[F]p,q =
1√
N

e
−j2π(p+Nvc−1)(q−1)

N (9)

for 1 ≤ p ≤ M and 1 ≤ q ≤ N , we can express (5) in
matrix form as

r =

K∑
k=1

r(k) +w, (10)

where

r(k) = D(k)FHs(k) (11)

and w is the AWGN vector. The ideal received signal
in frequency, i.e. without CFO interference, is s =

[SNvc . . . SN−Nvc−1]
T where Sm =

∑K
k=1 X

(k)
m H

(k)
m for

Nvc ≤ m ≤ N −Nvc − 1. Considering s(k), the signal
of each user, we can write

s(k) = Ψ(k)s (12)

where Ψ(k) = diag{Ψ(k)
0 , . . . ,Ψ

(k)
M−1}, and

Ψ(k)
m =

{
1 if m ∈ Ik
0 otherwise.

(13)

Then, the signal after the OFDM demodulation re-
sults

y = g + z, (14)

where

g = Fr =

K∑
k=1

FD(k)FHs(k) (15)

and z = [WNvc . . .WN−Nvc−1]
T. Defining Π(k) =

FD(k)FH and considering (12), we have

g =

K∑
k=1

Π(k)s(k) = Πs (16)

where

Π =

K∑
k=1

Π(k)Ψ(k) (17)

The m-th row of the matrix Π describes the inter-
ference that each sent symbol produces on the m-th re-
ceived carrier. As a consequence, Π can be interpreted
as an interference matrix which relates the orthogonal
frequency symbol s, with g the actual received symbol
in the presence of CFO. For further details see [4].

III. CFO COMPENSATION

In order to compensate the CFO effect we need to
estimate s, denoted as ŝ, from (14). Two estimation
methods are proposed in [3]: least squares (LS) and
minimum mean squared error (MMSE).

The LS is defined as

ŝLS = (ΠHΠ)−1ΠHy = Π−1y. (18)

when the right hand side expression is valid only if Π
is full range. This compensation eliminates all inter-
ference caused by the CFO, at expense of increasing
noise effects.

The solution based on the MMSE minimizes the
overall effect of interference and noise. Lets define
the autocorrelation matrix of s as R = E{ssH}, the
AWGN variance over each subcarrier as σ2

n such that
E{zzH} = σ2

nI, where I is the M ×M identity matrix.
E{·} denotes the expectation operator. The compen-
sated symbol is defined as

ŝMMSE = RΠH(ΠRΠH + σ2
nI)

−1y

= ΠH(ΠΠH +
σ2
n

σ2
s

I)−1y (19)

where in the second expression is considered that the
average power over all subcarriers is σ2

s , and therefore
R = σ2

sI.
The LS and MMSE compensations require the in-

version of Π, as noted from (18) and (19). As stated
in IEEE 802.16 [1], N can be as large as 2048. This
implies that the matrix inversion involves a significant
computational complexity in real OFDMA systems.
In the following sections we show that the structure
of the interference matrix can be used to obtain an
approximate solution of the CFO compensation.

A. Structure of the Interference Matrix

The interference of each user is described by the ma-
trix Π(k) and depends on the CFO of this user. The
elements of this matrix are [12]

[Π(k)]p,q =
1

N

1− ej2π(q−p+ξ(k))

1− ej2π(q−p+ξ(k))/N
= I(k)p,q (20)

for 1 ≤ p, q ≤ M . As noted from (17), the l-th col-

umn of Π is the l-th column of Π(k), where l ∈ Ik.
Figure 2 illustrates an example of the structure of Π.
Particularly, we emphasize the following aspects: 1) In
the columns of Π, it can be noted the discontinuities
due to the different CFO of each user, 2) the periodic
structure of (20) makes Π a quasi-circulant matrix,
and 3) the energy of the interference is concentrated
for |q − p| close to 0 or N .

B. Banded and Circular Banded
Approximations

In [4], the authors propose an approximated interfer-
ence matrix ΠB . This matrix with banded structure
is defined as

[ΠB]p,q =

{
[Π]p,q if |q − p| ≤ τ

0 if |q − p| > τ.
(21)

where τ is the matrix bandwidth. Due to the periodic
structure of Π, τ ≤ 2Nvc in order to discard the el-
ements with the largest interference power. Banded
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Figure 2: Interference matrix with N = 16, K = 2,
Nt = 2, ξ(1) = 0.2 and ξ(2) = −0.3.

matrix inverse requires much less computation com-
pared with a complete matrix inverse [7]. Efficient
LU decomposition and forward \backward substitu-
tion algorithms for banded matrices are available in
that case [7]. As a consequence, this approximation
allows a trade off between complexity and interference
cancellation. In the following we refer this method
as banded compensation (BC) However, if τ > 2Nvc,
there are some significant interference terms not con-
sidered in ΠB. In this work we propose an alterna-
tive matrix approximation with cyclic banded struc-
ture that takes into account the terms discarded by
the banded approximation. The novel matrix is de-
fined as

[ΠCB]p,q =

⎧⎪⎪⎨
⎪⎪⎩

[Π]p,q if |q − p| ≤ τ

[Π]p,q if N − τ ≤ |q − p| ≤ M − 1

& τ ≥ 2Nvc + 1
0 otherwise.

(22)
Roughly speaking, the circular matrix considers the

replicated terms with the same interference power that
those in BC, in case the VC do not mask them. In or-
der to keep low compensation complexity, in Table 1
we propose a novel LU decomposition algorithm for
ΠCB based on the algorithm for banded matrix pro-
posed in [7]. In the algorithms τ2 = τ − 2Nvc. This
method is referred to as circular banded compensation
(CBC). Similarly, we derive the backward and forward
substitution algorithm for ΠCB which are shown in
Tables 2 and 3.

C. Computational Complexity

In this section we compare the computational com-
plexity needed to compensate the CFO using the com-
plete interference matrix, BC and CBC. In the Table 4
is the approximate number of flops (floating point op-
erations) needed for each method, where μ = τ + τ2.

Let consider ΠM as full, BC or CBC interference

Table 1 LU factorization for cyclic banded matrices
for k = 1 to N − 1 do

for i = k + 1 to min(k + τ, N) do
[ΠCB ]i,k = [ΠCB ]i,k/[ΠCB ]k,k

end for
for i = max(k + τ + 1) to N do

[ΠCB ]i,k = [ΠCB ]i,k/[ΠCB ]k,k
end for{Gauss multipliers}
for j = k + 1 to min(k + τ,N) do

for i = k + 1 to min(k + τ, N) do
[ΠCB ]i,j = [ΠCB ]i,j − [ΠCB ]i,k[ΠCB ]k,j

end for
for i = max(k + τ + 1, N − τ2 + 1) to N do

[ΠCB ]i,j = [ΠCB ]i,j − [ΠCB ]i,k[ΠCB ]k,j
end for

end for
for j = max(k + τ + 1, N − τ2 + 1) to N do

for i = k + 1 to k + τ do
[ΠCB ]i,j = [ΠCB ]i,j − [ΠCB ]i,k[ΠCB ]k,j

end for
for i = max(k + τ + 1, N − τ2 + 1) to N do

[ΠCB ]i,j = [ΠCB ]i,j − [ΠCB ]i,k[ΠCB ]k,j
end for

end for{Outer products}
end for
The lower triangular of ΠCB is LCB .
The upper triangular of ΠCB is UCB .

Table 2 Backward Substitution
This algorithm solve the system UCBx = b
for j = N down to N − τ2 + 1 do

b(j) = b(j)/[UCB ]j,j
b(1 : j − 1) = b(1 : j − 1) − b(j)[UCB ]1:j−1,j

end for
for j = N − τ2 down to 2 do

b(j) = b(j)/[UCB ]j,j
b(1 : j − 1) = b(1 : j − 1) − b(j)[UCB ]1:j−1,j

end for
b(1) = b(1)/[UCB ]1,1
x = b

Table 3 Forward Substitution
This algorithm solve the system LCBx = b
for j = 1 to N − τ2 do

b(j) = b(j)− [L]j,max(1,j−τ):j−1b(max(1, j − τ) : j − 1)
end for
for j = N − τ2 + 1 to N do

b(j) = b(j)− [L]j,1:j−1b(1 : j − 1)
end for
x = b



Table 4: Complexity comparison
Compensation flops N = 512, τ = 10

Full (LS) 2/3M3 66.6 Mflops
Full (MMSE) 8/3M3 266.4 Mflops
BC (LS) M(2τ2 + 5τ + 1) 905 kflops
BC (MMSE) M(16τ2 + 26τ + 5) 7 Mflops
CBC (LS) M(2μ2 + 5μ + 1) 1.28 Mflops
CBC (MMSE) M(16μ2 + 26μ + 5) 10 Mflops

matrix. Then, the LS compensation can be broken
down in: 1) LU factorization of ΠM , 2) forward sub-
stitution and, 3) backward substitution. On the other
hand, the procedure to MMSE compensation is: 1) ob-
tain A = ΠMΠH

M + σ2
n/σ

2
sI (note A is banded or cir-

cular banded with double bandwidth if ΠM is banded
or circular banded), 2) LU factorization of A, 3) for-
ward substitution, 4) backward substitution; and, 5)
multiplication by matrix ΠH

M .

IV. SIMULATIONS AND DISCUSSION

In this section we make performance comparisons be-
tween full, BC and CBC considering different τ and
Nvc, for LS and MMSE criteria.

We chose an OFDMA symbol with N = 128, Ncp =
16, Nt = 4, K = 4 and Q-PSK for the modulation of
the carriers. The GCAS is used to distribute the users
among subcarriers. The static propagation channel
{hk(l)}L−1

l=0 has length L = 6, and exponential decay

profile E{|hk(l)|2} = Ge−l/β , where G is chosen such

that
∑L−1

l=0 E{|hk(l)|2} = 1 and β = 5. The results
are averaged over 200 user allocations and 200 noise
realization. For each assignment the CFO of each user
is chosen randomly from the interval |ξ(k)| < 0.5.

In Fig. 3 we show the overall (considering all subcar-
riers) uncoded bit error rate (BER) versus SNR for the
OFDMA system. The modulated symbols are equal-

ized using LS as X̂
(k)
m = Ŝ

(k)
m /Ĥ

(k)
m for m ∈ Ik, where

X̂
(k)
m are the equalized symbols, Ŝ

(k)
m the compensated

symbols (using either LS or MMSE) and Ĥ
(k)
m is the

channel frequency response. In this case M = 128,
i.e. there is no VC. As τ increases, CBC outperforms
BC since more significant interference terms are con-
sidered.

The same is shown for MMSE criterion in Fig. 4.
As can be noted, there is not a notable improvement
in the performance for this SNR range.

From the structure of the interference, shown in
Fig. 2, it can be noted that for BC the subcarriers at
the edge of the band are affected by a significant in-
terference when τ ≥ 2Nvc + 1. In Fig. 5 is illustrated
the mean squared error (MSE) for each subcarrier af-
ter BC and CBC compensation. In this case is used
GCAS, N = 64, M = 56, Nt = 4, K = 2 and τ = 15.
The CFO is restricted to |ξ(k)| < 0.1 and SNR→ ∞.
The simulation outcomes are averaged over 5000 real-
izations. From the figure, it is noted how CBC attains
a better performance at the edges of the band.
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Figure 3: Bit error rate vs SNR for the LS method.
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Figure 4: Bit error rate vs SNR for the MMSE method.

In [4] is reported the interference matrix Π is sin-
gular if

ξ(l) − ξ(m) = Z, (23)

where l and m are different users and Z is a nonzero
integer. As a consequence, Π gets ill conditioned as
ξ(l) − ξ(m) → Z. Although ΠB and ΠCB are well
conditioned in the above situation, they do not provide
a good approximation to the actual problem. Fig 6
shows the MSE for each carrier considering BC and
CBC with LS criterion, for |ξ(k)| < 0.5. The high
MSE in some carriers points out that the interference
matrix is close to be singular in some realization.

A direct consequence of the singularity of Π is that
is not possible to use the interference matrix to com-
pensate high CFO values since it is not possible to war-
ranty that the condition (23) does not occur. At the
beginning of the transmission, each receiver estimate
its CFO and compensate it. Therefore, in the uplink
the CFO is only due to the Doppler effect produced
by the mobility of the user and the oscillator accuracy
[9]. In other words, the mobility and the quality of the
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oscillator must be considered in the system design to
assure (23) does not occur.

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Carrier

M
S

E

 

 

BC
CBC

Figure 6: Mean squared error vs Carrier index. Π ill
conditioned.

As can be noted from Figs. 3 and 4, the perfor-
mance of MAI cancellation for low SNR is poor. The
same behavior also is noted in filter bank multicar-
rier (FBMC) techniques [10], which is a more complex
modulation system. The low side-lobe filters used in
FBMC does not produce MAI even with few guard
carriers, but the performance for an SNR of 10dB or
lower is similar to OFDMA. The improvement of BER
levels employing channel coding is a current topic of
research.

V. CONCLUSION

In this work we study the problem of CFO compensa-
tion in the uplink of an OFDMA system. We introduce
a novel approximation of the interference matrix with
circular banded structure and propose low-complexity
algorithms to operate with this matrix.

In simulations, our approximation outperforms the

banded approximation proposed in a recent work when
virtual carriers are not enough to cover the significant
interference term. The overall bit error rate and the
mean squared error of the subcarriers at the edges of
the OFDMA symbol are improved. If virtual carriers
mask the major interference, our proposal reduces to
the banded approximation.

Neither the circular banded nor the banded compen-
sation are useful when the CFO of the users is close to
half the normalized intercarrier spacing. Another com-
pensation technique is required in case the OFDMA
system could not be designed to assure a CFO in this
operation range.
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neither a solution proposed in the literature and their one works well.  
 
In the paper is considered an OFDMA system in the uplink direction, however, 
nowadays systems consid-er single carrier OFDM in the UL due to complexity 
reasons. Therefore, the authors should motivate this assumption.  
 
Since the results for low SNR are practically the same, the authors could 
consider a range of SNR from 5-25, for example..  
 
The authors make just a little comment about the complexity issues of the 
compared algorithms. More comments could be done about this important issue. 
 
 
The references of the paper seems to be outdated. 
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