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Abstract

In this article, we develop a new subspace-based multiuser joint carrier frequency offset (CFO) and direction-of-
arrival (DOA) estimation scheme for orthogonal frequency division multiple access uplink transmissions. We
leverage multi-antenna at the receiver and consider that the signals transmitted by each user arrive at the
receiving antenna array from multiple DOAs after bouncing from both surrounding and far scatterers. The rank
reduction approach is then exploited to estimate the multiple CFOs and DOAs. Specifically, for each user, after the
CFO estimation from one-dimensional search, its multiple DOAs can be obtained simultaneously via polynomial
rooting. The proposed method supports generalized subcarrier assignment scheme and fully loaded transmissions.
Both performance analysis and numerical results are provided to corroborate the proposed studies.

Keywords: carrier frequency offset (CFO), direction-of-arrival (DOA), orthogonal frequency division multiple access
(OFDMA)

Introduction
As has widely been studied in recent years [1-3], orthogo-
nal frequency division multiple access (OFDMA) is
deemed as a promising technique for next-generation
multiuser wireless communications. The performance of
OFDMA, however, is sensitive to multiple carrier fre-
quency offsets (CFOs) introduced by the mismatch of the
transceiver oscillators or the Doppler effect. In multiuser
scenarios, the non-zero CFOs lead to both inter-carrier
interference and multiple-access interference, which
could severely degrade the system performance.
The CFO estimation scheme for OFDMA uplink trans-

missions has intensively been investigated in the past few
years. Using the frequency domain embedded pilot sym-
bols, an iterative CFO estimation approach was described
in [4] for tile structure-based OFDMA transmission [5].
The CFOs can also be estimated from the maximum like-
lihood (ML) approach by transmitting training sequences
from each user, but with very high complexity. The alter-
nating-projection algorithm was introduced in [6] to
replace the multi-dimensional search with a sequence of
one-dimensional (1D) searches. An improved approach

was later proposed in [7,8] to further reduce the com-
plexity of [6] by using the divide-and-update frequency
estimator. An interesting alternative to avoid the ML
multi-dimensional search is to use the mean likelihood
estimator combined with the importance sampling tech-
nique [9,10]. Another complexity-reduced CFO estimator
was reported in [11] by approximating the inverse of a
CFO-dependent matrix with that of a predetermined
matrix.
Blind CFO estimation methods, on the other hand,

were also developed to improve the bandwidth efficiency.
The CFOs can be computed by looking for the position
of null subcarriers within the signal bandwidth in the sys-
tem for subband subcarrier assignment scheme (SAS)
[12]. A frequency estimation scheme for uplink OFDMA
with interleaved SAS that exploits the periodic structure
of the signals from each user has been reported in [13],
where the subspace estimation theory was utilized, which
makes the scheme similar to the multiple signal classifi-
cation technique [14]. Based on the observation of [13],
several advancements have been proposed later [15,16].
Despite their good performance, both [13] and its varia-
tions [15,16] are only applicable for interleaved SAS and
cannot be used for generalized SAS. Moreover, they must
reserve null subcarriers or a much longer cyclic prefix* Correspondence: wlzhang1984@gmail.com
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(CP) to construct the noise space, which reduces the
bandwidth efficiency.
More recently, several CFO estimation schemes have

been developed for the OFDMA systems by leveraging
multi-antenna at the receiver. For instances, a CFO esti-
mation scheme for interleaved OFDMA/space division
multiple access uplink systems was developed in [17] to
support spatially separated users and to maximize the
channel throughput. Another several schemes were pro-
posed in [18,19] to support generalized SAS as well as
fully loaded transmissions. They adopted the estimation of
signal parameters via rotational invariance technique
(ESPRIT)-like approach and exploited the direction-of-
arrival (DOA) information to separate the signals from dif-
ferent users.
In this article, we develop a new subspace-based multiu-

ser joint CFO and DOA estimation scheme for OFDMA
uplink transmissions. We leverage multi-antenna at the
receiver and consider that the signals transmitted by each
user arrive at the receiver’s antenna array from multiple
DOAs, after bouncing from both surrounding and far scat-
terers [20]. The multiple CFOs and DOAs are then
derived by a rank-reduction approach. Specifically, for
each user, after the CFO estimation using 1D search, its
multiple DOAs can also be obtained simultaneously by
polynomial rooting, which is one unique property of our
scheme. In summary, the main contributions of this article
include the following:

1. With the consideration of multi-cluster channels,
we design a new joint CFO and DOA estimation
method for multiuser OFDMA uplink. The proposed
method supports generalized SAS and fully loaded
transmissions.
2. We provide the theoretical performance analysis
of our method in terms of both CFO and DOA
estimation.
3. Compared with [18,19], the simulation results
demonstrate that our method not only has the
advantage of being applicable to multi-cluster chan-
nels, but also can obtain much better performance
in single cluster channels.

Notations: Superscripts (·)*, (·)T, (·)H, [·]†, and E[·] repre-
sent conjugate, transpose, Hermitian, pseudo inverse, and
expectation, respectively; j =

√−1 is the imaginary unit;
||X|| denotes the Frobenius norm of X, and diag(·) is a
diagonal matrix with main diagonal (·); The kronecker
product is denoted by ⊗; The component-wise product is
denoted by °; IN denotes the N × N identity matrix and
1N denotes the 1 × N matrix with all entries being 1;
Matlab matrix representations are adopted, for example,
X(r1 : r2, c1 : c2) denotes the submatrix of X with the
rows from r1 to r2 and the columns from c1 to c2.

System model
We consider a multiuser OFDMA system with K users, N
subcarriers. The base station (BS) is equipped with a uni-
form linear array (ULA) with M antennas, which is ele-
vated above the rooftop. All subcarriers are sequentially
indexed with {0, 1, . . . , N - 1}. Assume that the channel
between each user and the receiver is composed of Ncl

clusters (Ncl ≥ 1). The multipath components in each
cluster exhibit similar DOAs. Among the total Ncl clus-
ters, one cluster is called surrounding cluster that corre-
sponds to the scatterers located around each user, and
the remaining Ncl - 1 clusters, called far clusters, corre-
spond to high-rise buildings in urban environments and
hills/mountains in rural environments [20,21]. As the BS
is deployed above its surrounding scatterers, following
[18,19], we further approximate that the multipath com-
ponents from one cluster have a single DOA. Here we
should note that the works in [18,19] considered only the
surrounding cluster, but ignored the existence of far clus-
ters. However, as has been reported in [20], in the typical
Urban environment, the fractions of the cases with two
and three clusters are 9 and 4%, respectively. The frac-
tions are even higher in the bad Urban environment,
which are given by 28 and 45%, respectively. We should
note that the methods developed in [18,19] may not be
applicable to these multi-cluster scenarios.
Denote c = d/l¸, where d is the antenna spacing of the

ULA, and l is the radio wavelength. Assume that in the
gth block, the multipath channel components between
the ith cluster of the kth user and the reference antenna
(1st) of ULA can be modeled by a length-Lp vector

h(k)
1,i,g =

[
h(k)i,g (0), h

(k)
i,g (1), . . . , h

(k)
i,g (Lp − 1)

]T
. (1)

We assume that the entries of h(k)
1,i,g are independent

Gaussian variables with variance 1/Lp such that the
expectation of the channel vector norm is 1, i.e.,

E [‖ h(k)
1,i,g ‖] = 1.

Let ϕ
(k)
i

denote the DOA of the ith cluster of the kth

user and then the multipath channel components
between the ith cluster of the kth user and the mth
antenna of ULA can be expressed as

h(k)
m,i,g = a(k)m,i · h(k)

1,i,g (2)

where a(k)m,i = ej2πχ(m−1) cos ϕ
(k)
i . Correspondingly, its fre-

quency domain channel is given by

H(k)
m,i,g =

√
NF · [(h(k)

m,i,g)
T ,01×(N−Lp)]

T

= a(k)m,i · [H(k)
i,g (0),H

(k)
i,g (1), . . . ,H

(k)
i,g (N − 1)]T ,

(3)
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where F stands for the N × N DFT matrix with its (i, j)

entry F(i, j) = 1√
N
e−j2π

(i−1)(j−1)
N . We denote the normal-

ized CFO of the kth user by ξ(k) = Δf(k)/Δf, where Δf is
the subcarrier spacing and Δf(k) is the CFO of the kth
user. We assume ξ(k) Î (-0.5, 0.5). Denote the number
and the index set of the subcarriers allocated to the kth
user by Nk and C(k), where

C(k) = {c(k)1 , c(k)2 , . . . , c(k)Nk
},

∑K

k=1
Nk = Nsum ≤ N. (4)

Let s(k)g = [s(k)1,g, s
(k)
2,g, . . . , s

(k)
Nk ,g

]T be the modulated sym-

bols of the kth user in the gth block. In the noise-free
environment, the received time-domain signal compo-
nents after removing CP from the kth user at the mth
antenna can be expressed as

γ
(k)
m,g(n) =

1√
N

Nk∑
p=1

ej
2π
N (c(k)p +ξ (k))n

(
Nc1∑
i=1

a(k)m,iH
(k)
i,g , (c

(k)
p )

)
s(k)p,g ,(5)

where the term in the bracket stands for the composi-

tion frequency-domain channel response at the c(k)p th

subcarrier of the kth user resulting from total Ncl clus-
ters. Then the overall received signal from K users at
the mth antenna can be expressed as

γm,g(n) =
K∑
k=1

γ
(k)
m,g(n) =

1√
N

K∑
k=1

Nk∑
p=1

Nc1∑
i=1

a(k)m,iX
(k)
i,p,ge

j2π�
(k)
p n (6)

where X(k)
i,p,g = H(k)

i,g (c
(k)
p ) s(k)p,g and �

(k)
p =

c(k)p +ξ (k)

N
denote

the effective CFO on the c(k)p th subcarrier of the kth

user.
Stacking the received signals from all M antenna ele-

ments at the nth sample, we obtain the following space-
domain snapshot vector

γn,g =
[
γ1,g(n), γ2,g(n), . . . , γM,g(n)

]T . (7)

Define the Vandermonde vector

a(k)i =
[
a(k)1,i , a

(k)
2,i , . . . , a(k)M,i

]T
(8)

which reflects the DOA of the ith cluster of the kth
user, and obtain the corresponding Vandermonde
matrix

a(k) =
[
a(k)1 , a(k)2 , . . . , a(k)Nc1

]
(9)

by collecting Ncl Vandermonde vectors. Considering
the noise item, we can then rewrite gng in the following
matrix form

γ n,g =
1√
N

��nXg + nn,g, (10)

where

� =
[
1N1 ⊗ a(1),1N2 ⊗ a(2), . . . , 1NK ⊗ a(K)

]
, X(k)

p,g =
[
X(k)
1,p,g,X

(k)
2,p,g , . . . ,X

(k)
Nc1,p,g

]T
,

X(k)
g =

[
(X(k)

1,g)
T
, (X(k)

2,g)
T
, . . . , (X(k)

Nk ,g
)
T
]T

, Xg =
[
(X(1)

g )
T
, (X(2)

g )
T
, . . . , (X(K)

g )
T
]T

,

�(k) = diag(ej2π�
(k)
1 ej2π�

(k)
2 , . . . , ej2π�

(k)
Nk ) ⊗ INc1 , � = diag(�(1),�(2), . . . ,�(K)),

and nn,g is a length-M additive white Gaussian noise
(AWGN) vector with variance matrix σ 2

n IM at the nth
sample in the gth block.

Joint CFO and DOA estimation
Properties of the subspace
Stacking L (L ≤ N) continuous space-domain snapshot vec-
tors from the nth to the (n+L-1)th sample time, we obtain

γg|n+L−1
n = [(γn,g)T , (γn+1,g)T , . . . , (γn+L−1,g)T]T

= A�nXg +Ng|N+L−1
n

(11)

where

A =
1√
N

[
(�)T , (��)T , . . ., (��L−1)

T
]T
, Ng|n+L−1

n =
[
nT
n,g,n

T
n+1,g, . . .,n

T
n+L−1,g

]T
.

The effect of the parameter L will be discussed later.
Afterwards, by defining

b(k)
p =

1√
N
[1, ej2π�

(k)
p , . . . , ej2π(L−1)�(k)

p ]T , B(k) = [b(k)
1 , b(k)

2 , . . . , b(k)
Nk
],

we can rewrite A as

A =
[
B(1) ⊗ a(1),B(2) ⊗ a(2), . . . ,B(K) ⊗ a(K)

]
. (12)

We obtain the correlation matrix of γg |n+L−1
n as fol-

lows

Rγ = E
[
γg|n+L−1

n (γg|n+L−1
n )

H
]
= ARXXAH + σ 2

n IML, (13)

where

RXX = 1
N−L+1

∑N−L
n=0 �nE[XgXH

g ](�
n)H = σ 2

s INc1Nsum
with

σ 2
s being the average power of the transmitted signals.

Then, we have Rγ = σ 2
s AA

H + σ 2
n IML . In practice, using

successive Ls OFDMA blocks, this correlation matrix
can be approximatd by

R̂γ =
1

(N − L + 1)Ls

Ls∑
g=1

∑N−L

n=0
γg|n+L−1

n (γg|n+L−1
n )

H
.(14)

Afterwards, we assume the matrix A is tall and has
full column rank, and the corresponding discussion will
be presented later. Performing singular value decompo-
sition (SVD) on Rg gives.
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Rγ = [Uγ , Vγ ]
γ [Uγ , Vγ ]H, (15)

where Ug and Vg represent the (NclNsum)-dimensional
signal space and (ML - NclNsum)-dimensional noise
space matrices, respectively. We define the following
length-L parameterized Vandermonde vector with
respect to ξ:

B
(k)
p (ξ) =

1√
N

[
1, ej2π

c(k)p +ξ

N , . . . , ej2π
(L−1)(c(k)p +ξ)

N

]T
, (16)

where ξ Î (-0.5, 0.5). Clearly, there holds

b(k)
p = B

(k)
p (ξ (k)) . For notational convenience, we denote

0 as the all-zero matrix with appropriate dimension.
Lemma 1 gives the key properties to design our joint
estimator:
Lemma 1: When the matrix A− has full column rank,

then for a non-zero length-M vector ω, there holds(
B
(k)
p (ξ (k)) ⊗ ω

)H
Vγ =

{
= 0, ω ∈ Span(a(k)),
�= 0, ω /∈ Span(a(k)),

(17)

and(
B
(k)
p (ξ) ⊗ ω

)H
Vγ �= 0, ξ �= ξ (k), (18)

where A− is the first M(L-1) rows of A which can be
expressed as

A =
[
B(1) ⊗ a(1), B(2) ⊗ a(2), . . . , B(K) ⊗ a(K)

]
,

B(k) =
[
b(k)
1 , b(k)

2 , . . . , b(k)
Nk

]
, b(k)

p =
1√
N
[1, ej2π�

(k)
p , . . . , ej2π(L−2)�(k)

p ]T .

Proof. See Appendix 1. □

Parameters estimation
CFO estimation
For any non-zero length-M vector ω, we know

∑Nk

p=1

(
B
(k)
p (ξ) ⊗ ω

)HVγVH
γ

(
B
(k)
p (ξ) ⊗ ω

)
=

Nk∑
p=1

ωH(B(k)
p (ξ) ⊗ IM)HVγVH

γ (B
(k)
p (ξ) ⊗ IM)ω

= ωH�(k)(ξ)ω

where

(k)∏
(ξ) =

Nk∑
p=1

(B(k)
p (ξ) ⊗ IM)HVγVH

γ (B
(k)
p (ξ) ⊗ IM). (19)

Lemma 1 tells us that when A has full column rank,
(1) the matrix ∏(k)(ξ) is singular at ξ = ξ (k). Mean-

while, ∏(k)( ξ (k)) has Ncl zero eigenvalues;
(2) the matrix ∏(k)(ξ) should be positive definite when

ξ ≠ ξ (k).
It implies the matrix ∏(k)(ξ) drops rank if and only if

ξ = ξ (k). Based on above observations, we design the

CFO estimation as follows. Select a trial ξ from (-0.5,
0.5) and compute the M eigenvalues of the matrix ∏(k)

(ξ), denoted by κ
(k)
1 (ξ), κ(k)

2 (ξ), . . . , κ(k)
M (ξ) in ascending

order. The CFO for the kth user can be obtained from
1D search by minimizing the following cost function:

ξ̂ (k) = argmin
ξ

Nc1∑
l=1

κ
(k)
l (ξ). (20)

DOA estimation

We denote ε
(k)
l (ξ) as the eigenvector of matrix ∏(k)(ξ)

corresponding to its lth eigenvalue κ
(k)
l (ξ) . Notice that

the first Ncl eigenvectors ε
(k)
l (ξ (k)) , l = 1, 2, . . . , Ncl,

correspond to the Ncl zero eigenvalues of ∏(k)(ξ(k)).
From Lemma 1, the Ncl column vectors of Vander-
monde matrix a(k) constitute the same column space of

[ε(k)
1 (ξ (k)), ε(k)2 (ξ (k)), . . . , ε(k)Ncl

(ξ (k))] , which implies that

a(k) should be orthogonal to the other M - Ncl eigenvec-
tors, i.e.,

(a(k))Hε
(k)
l (ξ (k)) = 0, l = Nc1 + 1, . . . , M. (21)

Thereby, after the CFO estimation for the kth user, we
can further derive the Ncl DOAs for the kth user by
finding the Ncl minimum point of the following cost
function:

ϕ̂
(k)
i = argmin

ϕ

M∑
l=Nc1+1

∥∥∥(α(ϕ))Hε
(k)
l (ξ̂ (k))

∥∥∥2 = argmin
ϕ

g(k)(ϕ), (22)

i = 1, 2, . . . , Ncl, where

α(ϕ) = [1, ej2πχ cos ϕ, . . . , ej2πχ(M−1) cosϕ]T . Note that the
polynomial rooting approach can be used to implement
this minimization problem. The basic idea is first obtain-
ing all local minimum/maximum solutions by setting the
derivative of the cost function to be zero, and then putting
these solutions back to the original cost function and
selecting the minimum after comparison [22]. Specifically,

denoting �(k)(ξ) =
∑M

l=Nc1+1 ε
(k)
l (ξ)(ε(k)l (ξ))H and Ψ =

diag(0, 1, . . . , M - 1), we obtain

∂g(k)(ϕ)
∂ϕ

= j2πχ sinϕ · (α(ϕ))H(
�(k)(ξ̂ (k)) − �(k)(ξ̂ (k))
)α(ϕ). (23)

According to [22], we know z = ej2πχ cos ϕ̂
(k)
i , i = 1, 2, . . .

, Ncl, is one of the roots for the polynomial

Q(z) =
∑M−1

m=−M+1 bmz
m where

bm =
∑

q−p=m

[
�(k)(ξ̂ (k)) − �(k)(ξ̂ (k))
]pq. (24)
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By putting the roots on the unit circle of Q(z) back to
the original cost function g(k)(�) and selecting the Ncl

minimum points after comparisons, the solution to (22) is
obtained. Afterwards, for A− with full column rank, we
obtain Lemma 2:
Lemma 2: Assume all the K users have distinct DOAs.

According to the number of subcarriers allocated, we
arrange the user in descending order, as follows

e1, e2, . . . , eK ,

such that Nek ≥ Nek+1, then when{
L ≥ Ne1 + 1, v ≥ K,
L ≥ Ne1 + 1 +

∑K
k=v+1 Nek , v < K,

(25)

where v =
⌊

M
Nc1

⌋
≥ 2 with ⌊·⌋ denoting the integer

floor operation, the matrix A− has full column rank.
Proof. See Appendix 2. □
Note that when A− has full column rank, the matrix A

will be tall and also has full column rank, which guaran-
tees the validity of the SVD operation in (15). Following
Lemmas 1 and 2, we could make the following impor-
tant observation; that is when M ≥ 2Ncl, i.e., the number
of antennas at the receivers is not less than two times of
the number of channel clusters from each user, the
validity of our method is guaranteed with L satisfying
the condition in (25).

Performance analysis
In this section, we provide theoretical performance ana-
lysis for both the CFO and DOA estimation perfor-
mance of our proposed method. Bearing in mind that

VγVH
γ = IML − UγUH

γ ,

we can rewrite Π(k)(ξ) as follows

�(k)(ξ) =
Nk∑
p=1

(
L

N
IM − (B(k)

p (ξ) ⊗ IM)
H
UγUH

γ (B
(k)
p (ξ) ⊗ IM)

)

=
NkL
N

IM − �(k)(ξ)

(26)

where

�(k)(ξ) =
∑Nk

p=1
(B(k)

p (ξ) ⊗ IM)HUγUH
γ (B

(k)
p (ξ) ⊗ IM). (27)

Denote the M eigenvalues of matrix Ξ(k)(ξ) by λ
(k)
1 (ξ) ,

λ
(k)
2 (ξ), . . . ,λ(k)

M (ξ) in ascending order. The correspond-

ing eigenvectors are denoted by ν
(k)
1 (ξ),

ν
(k)
2 (ξ), ..., ν(k)

M (ξ) . We can readily verify the following

relationships: λ
(k)
l (ξ) = NkL

N − κ
(k)
M−l+1(ξ) and

ν
(k)
l (ξ) = ε

(k)
M−l+1(ξ) .

Then, (20) and (22) can be rewritten as follows:

ξ̂ (k) = argmax
ξ

M∑
l=M−Nc1+1

λ
(k)
l (ξ) = argmax

ξ
G(k)(ξ), (28)

ϕ̂
(k)
i = argmin

ϕ

M−Nc1∑
l=1

∥∥∥(α(ϕ))Hν
(k)
l (ξ̂ (k))

∥∥∥2 = argmin
ϕ

D(k)(ϕ). (29)

CFO estimation performance
We rewrite (15) as

Rγ =
ML∑
i=1

σ 2
i eie

H
i (30)

where σ 2
i and ei, i = 1, 2, ..., NclNsum, denote the

eigenvalues and eigenvectors corresponding to signal
space, respectively, while the remaining σ 2

i = σ 2
n and ei,

i = Ncl Nsum + 1, ..., ML, correspond to the noise space.

Let η	
i = 	{ei} and η


i = 
{ei} , i.e., ei = η	
i + jη


i .Denote

ηi = [(η	
i )

T , (η

i )

T]T , and η = [ηT
1, η

T
2, . . . , η

T
Nc1Nsum

]T . Let

x̂ stand for the estimated value for x. The CFO estimation
variance of the kth user can be given by [23]:

Cov{ξ̂ (k)} =
[

∂2G(k)

∂ξ2

]−1 [
∂2G(k)

∂ξ∂η

]

Cov{η̂}
[

∂2G(k)

∂ξ∂η

]T [
∂2G(k)

∂ξ2

]−1
∣∣∣∣∣∣
ξ=ξ (k)

.

(31)

We denote �
(k)
p (ξ) = B

(k)
p (ξ) ⊗ IM for short. Then,

there is

∂�
(k)
p (ξ)

∂ξ
= D · �(k)

p (ξ) (32)

Where D = j2π

N diag(0,1,..., L − 1) ⊗ IM . In the follow-

ing, we omit the parameterized notation (ξ) for presen-
tation clarity. Then, we have

∂G(k)

∂ξ
=

M∑
l=M−Ncl + 1

(ν(k)l )
H ∂�(k)

∂ξ
ν l, (33)

∂2G(k)

∂ξ2
=

M∑
l=M−Ncl+1

[
(ν(k)l )

H ∂2�(k)
∂ξ2

ν
(k)
l

+2	
{
(ν(k)l )

H ∂�(k)

∂ξ

(
∂ν

(k)
l

∂ξ

)}](34)
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where

∂�(k)

∂ξ
=

Nk∑
p=1

(
(�(k)

p )
H
DHUγUH

γ �
(k)
p + (�(k)

p )
H
UγUH

γ D�
(k)
p

)
, (35)

∂2�(k)

∂ξ2
=

Nk∑
p=1

(
(�(k)

p )
H
DHDHUγUH

γ �
(k)
p + 2(�(k)

p )HDHUγUH
γ D�

(k)
p

+(�(k)
p )

H
UγUH

γ DD�
(k)
p

)
,

(36)

∂ν
(k)
l

∂ξ
=

M∑
z �=l

(ν(k)z )
H

∂�(k)

∂ξ
ν
(k)
l

λ
(k)
l − λ

(k)
z

ν(k)z . (37)

Next, we obtain

∂2G(k)

∂ξ∂η	
i

=
M∑

l=M−Ncl+1

(ν(k)l )H
∂2�(k)

∂ξ∂η	
i

ν
(k)
l

+ 2	
⎧⎨⎩

M∑
l=M−Ncl+1

(ν(k)l )
H ∂�(k)

∂ξ

∂ν
(k)
l

∂η	
i

⎫⎬⎭
(38)

where

∂2�(k)

∂ξ∂η	
i

=
Nk∑
p=1

(
(�(k)

p )
H
DH

∂(UγUH
γ )

∂η	
i

�
(k)
p

+(�(k)
p )

H ∂(UγUH
γ )

∂η	
i

D�
(k)
p

)
,

(39)

∂ν
(k)
l

∂η	
i

=
M∑
z �=l

ν
(k)
z

λ
(k)
l − λ

(k)
z

(
(ν(k)z )

H ∂�(k)

∂η	
i

ν
(k)
l

)

=
M∑
z �=l

ν
(k)
z

λ
(k)
l − λ

(k)
z⎛⎝ Nk∑

p=1

(ν(k)z )
H
(�(k)

p )
H ∂(UγUH

γ )

∂η	
i

�
(k)
p ν

(k)
l

⎞⎠ .

(40)

Using

ωH
1

∂(UγUH
γ )

∂η	
i

ω2 = eHi ω2ω
H
1 + ωH

1 eiω
T
2 (41)

and skipping some algebraic steps, we can simplify
(38) as

∂2G(k)

∂ξ∂η	
i

= 2	{eHi Q(k)} (42)

where

Q(k) = Q̃
(k)

+ (Q̃
(k)
)H, (43)

Q̃
(k)

=
M∑

l=M−Ncl+1

Nk∑
p=1

(
�
(k)
p ν

(k)
l (ν(k)l )

H
(�(k)

p )
H
DH

+
M−Ncl∑
z=1

(ν(k)l )
H
( ∂�(k)

∂ξ
)ν(k)z

λ
(k)
l − λ(k)

z

�
(k)
p ν

(k)
l (ν(k)z )

H
(�(k)

p )
H
)
.

(44)

Likewise, we can also obtain

∂2G(k)

∂ξ∂η

i

= −2
{eHi Q(k)}. (45)

Furthermore, using

Cov{η̂i, η̂j} =
1
2

[	{Cov{êi, êj} + Cov{êi, ê∗
j }} 
{−Cov{êi, êj} + Cov{êi, ê∗

j }}

{Cov{êi, êj} + Cov{êi, ê∗

j }} 	{Cov{êi, êj} − Cov{êi, ê∗
j }}

]
, (46)

we can further obtain

∂2G(k)

∂ξ∂η
Cov{η̂}

[
∂2G(k)

∂ξ∂η

]T

= 2	
⎧⎨⎩

NclNsum∑
i=1

NclNsum∑
j=1

(
eHi Q

(k)
Cov{êi, êj}Q(k)ej

+eHi Q
(k)Cov{êi, ê∗

j }(Q(k))
∗
e∗
j

)}
.

(47)

Based on the results from [24], we know

Cov{êi, êj} =
ML∑

q=1,q �=i

ML∑
f=1,f �=j

[
1

Ls(N − L + 1)2

N−L∑
t=0

N−L∑
r=0

eHq Rt,ref eHj Rr,tei

(σ 2
i − σ 2

q )(σ 2
j − σ 2

f )

]
eqe

H
f ,

(48)

Cov{êi, ê∗
j } =

ML∑
q=1,q �=i

ML∑
f=1,f �=j

[
1

Ls(N − L + 1)2

N−L∑
t=0

N−L∑
r=0

eHq Rt,rejeHf Rr,tei

(σ 2
i − σ 2

q )(σ 2
j − σ 2

f )

]
eqe

T
f

(49)

where

Rt,r = E[γ g|t+L−1
t (γ g|r+L−1

r )H] = σ 2
s A�t−rAH + σ 2

n Jt,r ,(50)

and Jtr is a submatrix of INclNsum which is given by
Jt,r = INclNsum(1 + (t − 1)M : 1 + (t + L − 2)M , 1+(r - 1)M
: 1+(r+ L-2)M).
Substituting (48) and (49) into (47) and after some

algebraic steps, we arrive at
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[
∂2G(k)

∂ξ∂η

]
Cov{η̂}

[
∂2G(k)

∂ξ∂η

]T

=
2

Ls(N − L + 1)2
	
⎡⎣ Ncl∑

i=1

Nsum

NclNsum∑
j=1

ML∑
q=NclNsum+1

ML∑
f=NclNsum+1

N−L∑
t=0

N−L∑
r=0

(
eHi Q

(k)
eHq Rt,ref eHj Rr,tei

(σ 2
i − σ 2

n )(σ
2
j − σ 2

n )

eqeHf Q
(k)ej + eHi Q

(k)

eHq Rt,rejeHf Rr,tei

(σ 2
i − σ 2

n )(σ
2
j − σ 2

n )
eqe

T
f (Q

(k))
∗
(ej)

∗
)]

.

(51)

By defining

�
(k)
UV = UH

γ Q
(k)Vγ , �

(k)
VU = VH

γ Q
(k)Uγ , �

(k)
t,r,UU = UH

γ Rt,rUγ ,

�
(k)
t,r,VV = VH

γ Rt,rVγ , �
(k)
t,r,UV = UH

γ Rt,rVγ , �
(k)
t,r,VU = VH

γ Rt,rUγ

we can further rewrite (51) into the following more
compact form

[
∂2G(k)

∂ξ∂η

]
Cov{η̂}

[
∂2G(k)

∂ξ∂η

]T

=
2

Ls(N − L + 1)2
	
[
N−L∑
t=0

N−L∑
r=0

dTσ
(
�

(k)
UV�

(k)
t,r,VV�

(k)
VU

)
◦ (�(k)

t,r,UU)
∗

+(�(k)
UV�

(k)
t,r,VU) ◦ ((�(k)

t,r,UV)
∗
(�(k)

UV)
T
)
)
dσ

]
(52)

where dσ = [ 1
σ 2
1 −σ 2

n
, 1

σ 2
2 −σ 2

n
, . . . , 1

σ 2
Nc1Nsum

−σ 2
n
]T.

Based on the fact that VH
γ A = 0 , we further obtain

�
(k)
t,r,UU = σ 2

s U
H
γ A�t−rAHUγ + σ 2

nU
H
γ Jt,rUγ  σ 2

SU
H
γ A�t−rAHUγ ,

�
(k)
t,r,VV = σ 2

n V
H
γ Jt,rVγ , �

(k)
t,r,UV = σ 2

nU
H
γ Jt,rVγ , �

(k)
t,r,VU = σ 2

n V
H
γ Jt,rUγ .

Then, we have

(�(k)
UV�

(k)
t,r,VV�

(k)
VU) (�(k)

t,r,UU)
∗ = σ 2

s σ 2
n (�

(k)
UVV

H
γ Jt,rVγ �

(k)
VU) (UH

γ A�t−rAHUγ )∗, (53)

(�(k)
UV�

(k)
t,r,VU) ((�(k)

t,r,UV)
∗(�(k)

UV)
T) = σ 4

n (�
(k)
UVV

H
γ Jt,rUγ ) ((UH

γ Jt,rVγ )∗(�
(k)
UV)

T). (54)

Bearing in mind that (54) is infinitesimal under high
signal-to-noise ratio (SNR) as compared to (53), we can
then approximate (52) as

[
∂2G(k)

∂ξ∂η

]
Cov{η̂}

[
∂2G(k)

∂ξ∂η

]T

 2σ 2
s σ 2

n

Ls(N − L + 1)2
	
[
N−L∑
t=0

N−L∑
r=0

dTσ ((�
(k)
UVV

H
γ Jt,rVγ �

(k)
VU) (UH

γ A�t−rAHUγ )
∗
)dσ

]
.

(55)

Let σ̃ 2
i , i = 1, 2, ... , ML, be the eigenvalues of matrix

AAH. Then, there holds σ 2
i = σ 2

s σ̃ 2
i + σ 2

n . By defining

d̃σ = [ 1
σ̃ 2
1
, 1

σ̃ 2
2
, . . ., 1

σ̃ 2
Nc1Nsum

]T, we have d̃σ = dσ /σ 2
s . Then,

we can rewrite (55) as

[
∂2G(k)

∂ξ∂η

]
Cov{η̂}

[
∂2G(k)

∂ξ∂η

]T

 2σ 2
n

σ 2
s Ls(N − L + 1)2

	
[
N−L∑
t=0

N−L∑
r=0

d̃
T
σ ((�

(k)
UVV

H
γ Jt,rVγ �

(k)
VU) ◦ (UH

γ A�t−rAHUγ )
∗
)d̃σ

]
.

(56)

On the other side, we can also rewrite ∂2G(k)

∂ξ2 as

follows

∂2G(k)

∂ξ2

∣∣∣∣∣
ξ=ξ (k)

= 2
M∑

l=M−Ncl+1

⎡⎣−(ν(k)l )
H
�

(k)
1 ν

(k)
l +

M−Ncl∑
z=1

|(ν(k)l )
H
�

(k)
2 ν

(k)
z |2

λ
(k)
l − λ

(k)
z

⎤⎦, (57)

where

�
(k)
1 =

Nk∑
p=1

(�(k)
p )

H
DHVγVH

γ D�
(k)
p , �

(k)
2 =

Nk∑
p=1

(�(k)
p )

H
DHVγVH

γ �
(k)
p .

Finally, substituting (55) and (57) into (31), we arrive
at

Cov{ξ̂ (k)}

 σ 2
n

2σ 2
s Ls(N − L + 1)2

·
	
[
N−L∑
t=0

N−L∑
r=0

d̃
T
σ ((�

(k)
UVV

H
γ Jt,rVγ �

(k)
VU) ◦ (UH

γ A�t−rAHUγ )
∗
)d̃σ

]
[∑M

l=M−Ncl+1 −(ν(k)l )
H
�

(k)
1 ν

(k)
l +

∑M−Ncl
z=1

|(ν(k)l )
H
�

(k)
2 ν

(k)
z |2

λ
(k)
l −λ

(k)
z

]2
∣∣∣∣∣∣∣∣∣
ξ=ξ (k)

(58)

From (58), we make the following observations: First, it
is seen that, the CFO estimation variance is decreased

when SNR, i.e., σ 2
s /σ

2
n , increases. Second, increasing the

number of blocks, i.e., Ls, also improves the CFO estima-
tion performance. Third, the relationship between the
value of L and the CFO estimation variance is quite com-
plicated. We see that, decreasing the value of L, on the

one hand, will decrease the value of 1
(N−L+1)2 ; on the

other hand, it will also decrease the eigenvalues σ̃ 2
i ,

resulting in larger entries of d̃σ
In fact, from (11) and

(14), we see that, the effect of L resembles the smoothing
technique in array signal processing. That is, decreasing
the value of L, on the one hand, will reduce the fluctua-
tions of the estimated correlation matrix R̂� ; on the
other hand, it also decreases the potential for higher reso-
lution of the subspace algorithm. We will later investigate
the impact of L on the estimation performance via
numerical simulations.
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DOA estimation performance
Denote μ

(k)
l = [	{(ν(k)

l )T}, 
{(ν(k)l )T}]T, and

μ(k) = [(μ(k)
1 )T , (μ(k)

2 )T , . . . , (μ(k)
M−Nc1

)T]T . Likewise, the

DOA estimation variance of the kth user is given by

Cov{ϕ̂(k)
i } =

[
∂2D(k)

∂ϕ2

]−1 [
∂2D(k)

∂ϕ∂μ(k)

]

Cov{μ̂(k)}
[

∂2D(k)

∂ϕ∂μ(k)

]T[
∂2D(k)

∂ϕ2

]−1

ϕ=ϕ
(k)
i

.

(59)

We have

∂D(k)

∂ϕ
= 2	

{
(α(ϕ))H

(
ν(k)(ν(k))

H
)


1α(ϕ)
}
, (60)

∂2D(k)

∂ϕ2
=2	

{
(α(ϕ))H
H

1

(
ν(k)(ν(k))

H
)


1α(ϕ)

+(α(ϕ))H
(
ν(k)(ν(k))

H
)


1(
1 + 
2)α(ϕ)
}(61)

where

ν(k) =
[
ν
(k)
1 , ν

(k)
2 , . . . , ν

(k)
M−Nc1

]
, 
1 = −j2πχ sin(ϕ)diag(0, 1, . . . , M − 1),


2 = −j2πχ cos(ϕ)diag(0, 1, . . . , M − 1).

We further obtain[
∂2D

∂ϕ∂μ(k)

]
Cov{μ̂(k)}

[
∂2D

∂ϕ∂μ(k)

]T
=

M−Ncl∑
l=1

M−Ncl∑
z=1

2	
{
(ν(k)l )

H
T(k)Cov{ν̂(k)l , ν̂(k)z }T(k) ν(k)z +

(ν(k)l )
H
T(k)Cov{ν̂(k)

l , (ν̂(k)z )
*}(T(k))*(ν̂(k)z )

*
}

(62)

where

T(k) = 
1α(ϕ)(α(ϕ))H + α(ϕ)(α(ϕ))H
H
1 . (63)

Let Δ x denote the perturbation of x, i.e., �x = x̂ − x .

Bearing in mind that ν
(k)
l , l = 1, 2, . . . , M, denotes the

eigenvector of matrix �(k)(ξ̂
(k)
) , its perturbation is

introduced by both the CFO estimation error of the kth
user and the perturbations of the eigenvectors ei, i = 1,
2, . . . , NclNsum. Hence, using the first-order approxima-

tion, the perturbation of ν
(k)
l

can be expressed as

�ν
(k)
l =

∂ν
(k)
l

∂ξ
�ξ (k)

+
NclNsum∑

i=1

(
∂ν

(k)
l

∂η	
i

�η	
i +

∂ν
(k)
l

∂η

i

�η

i

)
= ϒ

(k)
l · �η

(64)

where

ϒ
(k)
l = −∂ν

(k)
l

∂ξ

[
∂2G
∂ξ2

]−1
∂2G
∂ξ∂η

+
∂ν

(k)
l

∂η
,

∂ν
(k)
l

∂η	
i

=
M∑
z �=l

ν
(k)
l

λ
(k)
l − λ

(k)
z

Nk∑
p=1

eHi �
(k)
p ν

(k)
l (ν(k)z )H(�(k)

p )H + (ν(k)z )H(�(k)
p )Hei(ν

(k)
l )T(�(k)

p )T ,

∂ν
(k)
l

∂η

i

=
M∑
z �=l

j
ν
(k)
z

λ
(k)
l − λ

(k)
z

Nk∑
p=1

eHi �
(k)
p ν

(k)
l (ν(k)z )H(�(k)

p )H − (ν(k)z )H(�(k)
p )Hei(ν

(k)
l )T(�(k)

p )T .

From

Cov{ν̂(k)l , ν̂(k)z } = ϒ
(k)
l Cov{η̂, η̂}(ϒ(k)

z )H and Cov{ν̂(k)l , (ν̂(k)z )*} = ϒ
(k)
l Cov{η̂, η̂}(ϒ(k)

z )T ,

we simplify (62) as follows after some manipulations:[
∂2D

∂ϕ∂μ(k)

]
Cov{μ̂(k)}

[
∂2D

∂ϕ∂μ(k)

]T
= 2 · 	{T · Cov{η̂, η̂} · TH + T · Cov{η̂, η̂} · TT}
= ·	{2T} · Cov{η̂, η̂} · 	{2TT},

(65)

where

T =
M−Nc1∑
l=1

(ν(k)l )HT(k)ϒ(k)
l .

We rewrite ϒ
(k)
l = [ϒ(k)

l,1 ,ϒ
(k)
l,2 , . . . ,ϒ

(k)
l,Nc1Nsum

] with

ϒ
(k)
l,i = [ϒ(k)

l,i,	,ϒ
(k)
l,i,
] . Correspondingly, we rewrite

T = [T1, T2, . . . , TNc1Nsum] with Ti = [Ti,	, Ti,
] . Then,

we have Ti,	 =
∑M−Nc1

l=1
(ν(k)l )

H
T(k)ϒ(k)

l,i,	 and

Ti,
 =
∑M−Nc1

l=1
(ν(k)l )

H
T(k)ϒ(k)

l,i,
 . We further obtain

Ti,	 =
M−Nc1∑
l=1

(ν(k)l )
H
T(k)

(
−∂ν

(k)
l

∂ξ

[
∂2G
∂ξ2

]−1
∂2G

∂ξ∂η	
i

+
∂ν

(k)
l

∂η	
i

)
. (66)

Note that

M−Ncl∑
l=1

(ν(k)l )
H
T(k)

(
−∂ν

(k)
l

∂ξ

[
∂2G
∂ξ2

]−1
∂2G

∂ξ∂η	
i

)

= −
[

∂2G

∂ξ2

]−1 M−Ncl∑
l=1

M∑
z �=1

(ν(k)l )
H
T(k)ν(k)z (ν(k)z )

H
∂�(k)

∂ξ

λ
(k)
l − λ

(k)
z

2	{eHi Q(k)}

= −
[

∂2G
∂ξ2

]−1 M−Ncl∑
l=1

M∑
z �=1

(ν(k)l )
H
T(k)ν(k)z (ν(k)z )

H
∂�(k)

∂ξ
ν
(k)
l

λ
(k)
l − λ

(k)
z(

eHi Q
(k) + eTi (Q

(k))
T
)

= −
[

∂2G
∂ξ2

]−1 M−Ncl∑
l=1

M∑
z=M−Ncl+1

(ν(k)l )
H
T(k)ν(k)z (ν(k)z )

H
∂�(k)

∂ξ
ν
(k)
l

λ
(k)
l − λ

(k)
z(

eHi Q
(k) + eTi (Q

(k))
T
)
,

(67)
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and

M−Ncl∑
l=1

(ν(k)l )
H
T(k) ∂ν

(k)
l

∂η	
i

=
M−Ncl∑
l=1

M∑
z �=l

(ν(k)l )
H
T(k)ν

(k)
z

λ
(k)
l − λ

(k)
z

Nk∑
p=1

eHi �
(k)
p ν

(k)
l (ν(k)z )H(�(k)

p )H

+(ν(k)z )H�H
p ei(ν

(k)
l )T(�(k)

p )T

=
M−Ncl∑
l=1

M∑
z=M−Ncl+1

(ν(k)l )
H
T(k)ν

(k)
z

λ
(k)
l − λ

(k)
z

(
eHi Q̃

(k)
l,z + eTi (Q̃

(k)
l,z )

T
)
,

(68)

where Q̃
(k)
l,z =

∑Nk

p=1
�
(k)
p ν

(k)
l (ν(k)l )

H
(�(k)

p )H . Then, with

(67) and (68), we can rewrite Ti,	 as

Ti,	 = eHi Q
(k) + eTi (Q

(k))T , (69)

where

Q(k) =
M−Nc1∑
l=1

M∑
z=M−Nc1+1

(ν(k)l )
H
T(k)ν(k)z

λ
(k)
l − λ

(k)
z

(
Q̃

(k)
l,z −

[
∂2G
∂ξ2

]−1

(ν(k)z )
H ∂�(κ)

∂ξ
ν
(k)
l Q(k)

)
.

Likewise, we can also rewrite Ti,
 as

Ti,
 = j ·
(
eHi Q

(k) − eTi (Q
(k))

T
)
. (70)

By defining Q̃(k) = Q(k) + (Q(k))H , we obtain

	{2Ti,	} = 2	{eHi Q̃(k)}, 	{2Ti,
} = −2
{eHi Q̃(k)}. (71)

Afterwards, following similar steps from (46) to (56),
we can rewrite (65) as[

∂2D

∂ϕ∂μ(k)

]
Cov{μ̂(k)}

[
∂2D

∂ϕ∂μ(k)

]T
 2

Ls(N − L + 1)2
	
[
N−L∑
t=0

N−L∑
r=0

dTσ
(
�̃

(k)
UV�

(k)
t,r,VV�̃

(k)
VU

)
◦ (�(k)

t,r,UU)
∗)

dσ

]
 2σ 2

n

σ 2
s Ls(N − L + 1)2

	
[
N−L∑
t=0

N−L∑
r=0

d̃
T
σ

((
�̃

(k)
UVV

H
γ Jt,rVγ �̃

(k)
VU

)
◦
(
UH

γ A�t−rAHUγ

)∗)
d̃σ ,

(72)

where

�̃
(k)
UV = UH

γ Q̃
(k)Vγ , �̃

(k)
VU = VH

� Q̃
(k)Uγ .

Bearing in mind that

∂2D(k)

∂ϕ2

∣∣∣∣∣
ϕ=ϕ

(k)
i

= 2(α(ϕ))H
H
1

(
ν(k)(ν(k))

H
)


1α(ϕ)
∣∣∣
ϕ=ϕ

(k)
i

, (73)

we can then rewrite (59) as

Cov{ϕ̂(k)
i }

 σ 2
n

2σ 2
s Ls(N − L + 1)2

·
	
[
N−L∑
t=0

N−L∑
r=0

d−T
σ

((
�UV(VH

γ Jt,rVγ �
(k)
VU

)◦ (
UHA

γ �t−rAHUγ

)∗)
d̃σ

]
[
(α(ϕ))H
H

1 ν(k) (ν(k))H
1α(ϕ)
]2

∣∣∣∣∣∣∣∣∣
ϕ=ϕ

(k)
i

.

(74)

Interestingly, the DOA estimation variance in (74)
exhibits a similar format with the CFO estimation var-
iance given in (58). We can immediately observe that,
the DOA estimation performance can be improved by
increasing SNR or the number of blocks. Likewise, the
relationship between the value of L and the DOA esti-
mation performance is not that evident. We will leave
its investigation in the simulations.

Computational complexity analysis
Let us now evaluate the computational complexity of our
estimator in terms of the number of complex multiplica-
tions. We denote a as the number of trial CFO values to

derive the solutions in (20). Calculation of R̂γ and its

SVD requires O(M2N2Ls +M3L3) . For each trial CFO,
calculation of ∏(k)(ξ) and its SVD requires
O(M2N2/2 +M3) . The number of total trial CFOs is aK.
Then the complexity for the CFO estimation is in the
order of O(M2N2Ls +M3L3 + αK(M2N2/2 +M3) . On
the side of DOA estimation for each user, a polynomial
rooting with the highest order of 2M - 2 is required
whose complexity is in the order of O((2M − 2)3) .
Then, the overall required complexity for both CFO and
DOA estimation for the K users is in the order of
O(M2N2Ls +M3L3 + αK(M2N2/2 +M3) + K(2M − 2)3)
For one case in our simulations, i.e., N = 64, M = 4, Ls =
64, K = 8, L = 50, and a = 140,a the total complexity of
our method is in the order of O(3.4 × 107). The corre-
sponding complexity of ESPRIT-2 is in the order of
O(M2N2Ls + 3(M − 1)3N3) = (2.5 × 107) [18]. Thus,
the complexities of our method and ESPRIT-2 are in the
same order. Bearing in mind that the algorithm is imple-
mented at BS rather than the users, the required com-
plexity is not the bottleneck [18].

Simulations
In this section, we assess the performance of the pro-
posed CFO and DOA estimation algorithm from com-
puter simulations. The total number of subcarriers is
taken as N = 64. The quadrature phase-shift keying
(QPSK) constellation is adopted. The number of multi-
paths within each channel cluster is Lp = 10. In each
trial, the normalized CFO of each user is randomly
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generated from -0.4 to 0.4, and all subcarriers are allo-
cated to each user uniformly with randomly generated
SAS. The root mean square error is adopted to evalu-
ated the estimation performance.
First, we consider the single cluster scenario, i.e., Ncl = 1.

Both the CFO and DOA estimation performance versus
SNR are shown in Figure 1. In this example, we set M = 2,
K = 4, Ls = 64 and L = 50, and the DOAs from set {30°,
45°, 95°, 100°}. Both the simulation and analytical results
of the proposed method are presented in the figure. It is
demonstrated that the analytical results closely match the
simulations, especially under moderate or high SNR
region, which verifies the correctness of our analysis.
Besides, the performance of [18,19] are also presented for
comparison, which are referred to as ‘ESPRIT-1’ and
‘ESPRIT-2’, respectively. Note that there is a similar
smoothing parameter L in ESPRIT-1, which will be set the
same as ours in the following unless otherwise stated. The
results clearly demonstrate that substantial improvement
can be achieved by our proposed method compared to the
other two counterparts, especially in the lower SNR
region. This can be explained as follows. First, we have
exploited the smoothing technique in our method, which
improves the estimation of the correlation matrix; Second

and more importantly, both ESPRIT-1 and ESPRIT-2
derive the CFO or DOA for each user by an indirect
approach: they first estimate multiple CFO or DOA values
separately for each occupied subcarrier of each user, and
then combine them as the final result. Hence, lots of
redundant parameters need to be estimated from the sub-
space algorithm, making both ESPRIT-1 and ESPRIT-2
less efficient. However, in our method, we make use of the
fact that there is only one CFO and only one DOA for
each user, and these two parameters are directly estimated
by the designed rank reduction approach.
Next, we evaluate the performance of our method in

the multi-cluster scenarios with K = 4 users. Both two
clusters, i.e., Ncl = 2, and three clusters, i.e., Ncl = 3, are
considered in this example. For Ncl = 2, the DOAs of
the users are set as {{30°, 50°},{60°, 70°}, {90°, 140°},
{120°, 160°}}, while for Ncl = 3, the DOAs are set as
{{30°, 50°, 140°}, {20°, 60°, 100°}, {90°, 110°, 140°}, {80°,
120°, 150°}. In addition, M = 4 and M = 6 are assumed
for Ncl = 2 and Ncl = 3, respectively. Other parameters
are set as Ls = 64 and L = 50. We depict the CFO and
DOA estimation performance of our method in Figure
2, where both simulation and analytical curves are
included. As expected, the results demonstrate the

Figure 1 The performance comparison of both CFO and DOA estimation RMSE versus SNR under Ncl = 1 and M = 2. The top four
curves correspond to the DOA RMSE (degree), while the bottom four curves correspond to the CFO RMSE. ○: simulation results of the proposed
method; dashed: analytical results of the proposed method; □: the method from [19]; ◊: the method from [18].
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effectiveness of our method for multi-cluster scenarios.
The analytical results also closely match the simulations.
Combing the observations from Figures 1 and 2, we can
conclude that, as compared to ESPRIT-1 [19] and
ESPRIT-2 [18], our method not only has the advantage
of being applicable to multi-cluster channels, but also
can obtain much better performance in single cluster
channels.
In this example, we assume SNR = 20 dB, M = 2, K =

4, and Ls = 64, while the DOAs of the users are set the
same as that in Figure 1. The estimation performance
evolution of our method under the single cluster sce-
nario is shown in Figure 3, with L increasing from the
lower bound 49 calculated from (25)b to N = 64. The
analytical results are presented by the dashed curves.
For comparison, we also include the corresponding per-
formance of ESPRIT-1 and ESPRIT-2. Note that since
ESPRIT-2 does not have the parameter L, its perfor-
mance is presented as a straight line parallel to the
x-axis. From the results, we observe an optional range
of L that can be selected without considerable loss of
performance, e.g., from 49 to 62 in this example. More-
over, we see that, our method always obtains better
DOA estimation performance than the other two candi-
dates under all values of L. On the side of CFO

estimation, our method always behaves better than
ESPRIT-1, while as compared to ESPRIT-2, our method
behaves worse only when L = 64. In addition, some mis-
match appears between the simulation and analytical
results of our method at the right-hand end of the
curves. This is because that, when L is very large, the
estimation for the correlation matrix Rg becomes worse,
whose fluctuation may result in the occurrence of some
outliers in simulations.
Afterwards, we investigate the performance of our

method with the increasing of Ls in Figure 4, where the
DOA configuration is the same as that in Figure 3.
Besides, we assume SNR = 20 dB, M = 2, K = 4, and L =
50 in this example. As expected, performance improve-
ment can be observed with the increase of blocks
adopted. Our method almost converges within 30 blocks.
Moreover, it is seen that, in terms of both CFO and DOA
estimation, our method behaves better than ESPRIT-1
under all values of Ls. Note that since ESPRIT-2 does not
work when Ls < 64, its performance is not included in
this figure. In addition, some mismatch appears between
the analytical and simulation results of our method at the
left-hand end of the curves. This is also because of the
occurrence of outliers when a small number of blocks are
adopted.

Figure 2 The CFO and DOA estimation RMSE performance versus SNR under multi-cluster scenarios. The top four curves correspond to
the DOA RMSE (degree), while the bottom four curves correspond to the CFO RMSE. The solid and dashed curves denote the simulation and
analytical results, respectively. ○: Ncl = 2 and M = 4; □: Ncl = 3 and M = 6.
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Figure 3 The CFO and DOA estimation RMSE performance versus L under the single cluster scenario. The top four curves correspond to
the DOA RMSE (degree), while the bottom four curves correspond to the CFO RMSE. ○: simulation results of the proposed method; dashed:
analytical results of the proposed method; □: the method from [19]; ◊: the method from [18].

Figure 4 The CFO and DOA estimation RMSE performance versus Ls under the single cluster scenario. The top three curves correspond
to the DOA RMSE (degree), while the bottom three curves correspond to the CFO RMSE.○: simulation results of the proposed method; dashed:
analytical results of the proposed method; □: the method from [19].
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In Figure 5, we consider the two-cluster scenario, i.e.,
Ncl = 2, and investigate the estimation performance of
our method under different number of users. In this
example, we set M = 4, L = 50, Ls = 64. The DOAs of
users are randomly picked out from set {{30°, 50°},{60°,
70°}, {90°, 140°}, {120°, 160°}, {140°, 170°}, {20°, 80°}, {50°,
100°}, {110°, 150°}}. For brevity, we only show the analy-
tical results of K = 8 users in the figure. It is seen that,
there is not much performance difference of our method
with different number of users.

Conclusions
In this article, we developed a multiuser joint CFO and
DOA estimation scheme for OFDMA uplink transmis-
sions. We employed multi-antenna at the receiver and
exploited the rank reduction approach to derive the
CFO and multiple DOAs simultaneously for each user.
The proposed scheme supports generalized SAS and can
provide fully loaded transmissions such that the band-
width efficiency is improved. Both analysis and simula-
tion results corroborated the proposed study and
demonstrate its advantages over the existing schemes.

Appendix 1
Proof of Lemma 1
First, it can readily be verified when ω Î Span(a(k)),

there holds (B(k)
p (ξ (k)) ⊗ ω)HVγ = 0 Next for the case

of ω ∉ Span(a(k)), a method of proof by contradiction is

adopted. Note that (B(k)
p (ξ (k)) ⊗ ω)HVγ = 0 indicates

thatB(k)
p (ξ (k)) ⊗ ω) ,i.e., b(k)p ⊗ ω , belongs to the column

space of A. The implication is that there must exist

ε
(k′)
p′,i , not all zero, such that

b(k)
p ⊗ ω =

K∑
k′=1

Nk′∑
p′=1

Ncl∑
i=1

ε
(k′)
p′,i (b

(k′)
p′ ⊗ a(k

′)
i )

=
Ncl∑
i=1

ε
(k)
p (b(k)

p ⊗ a(k)i ) +
∑
p′ �=p

Ncl∑
i=1

ε
(k)
p′,i(b

(k)
p′ ⊗ a(k)i )

+
∑
k′ �=k

Nk′∑
p′=1

Ncl∑
i=1

ε
(k′)
p′,i (b

(k′)
p′ ⊗ a(k

′)
i ).

(75)

An immediate observation is that when ω ∉ Span(a(k)),

the coefficients ε
(k)
p′,i and ε

(k′)
p′,i of the last two terms in

(75) cannot all equal zeros. On the other hand, we can
rewrite (75) into the following two equivalent equations:

b−
(k)

p
⊗ ω =

K∑
k′=1

Nk′∑
p′=1

Nc1∑
i=1

(k′)
p,i (b−

(k′)

p′
⊗ a(k

′)
i ) (76)

ej2πθ
(k)
p (b(k)

p ⊗ ω) =
K∑

k′=1

Nk′∑
p′=1

Nc1∑
i=1

ε
(k′)
p′,i e

j2πθ
(k′)
p′ (b(k′)

p′ ⊗ a(k
′)

i ),(77)

Figure 5 The CFO and DOA estimation RMSE performance versus SNR with different number of users. The top four curves correspond to
the DOA RMSE (degree), while the bottom four curves correspond to the CFO RMSE. ○: K = 2; □: K = 4; ◊: K = 8.

Zhang et al. EURASIP Journal on Advances in Signal Processing 2012, 2012:126
http://asp.eurasipjournals.com/content/2012/1/126

Page 13 of 15



where b−
(k)

p
has been defined in (19). Combing the

above two equations, i.e., ej2π�
(k)
p × (76) − (77) , yields

∑
p′ �=p

Ncl∑
i=1

ε
(k)
p′,i(e

j2π�
(k)
p − ej2π�

(k)
p′ )(b(k)

p′ ⊗ a(k)i )

+
∑
k′ �=k

Nk′∑
p′=1

Ncl∑
i=1

ε
(k)
p′,i(e

j2π�
(k)
p − ej2π�

(k′)
p′ )(b(k′)

p′ ⊗ a(k
′)

i ) = 0.

(78)

Note that above (Nk - 1)Ncl vectors b−
(k)

p′
⊗ a(k)i and∑K

k′=1 Nc1Nk′ vectors b−
(k′)

p′
⊗ a(k

′)
i are column vectors of

A− . When A− has full column rank, these vectors will be

uncorrelated with each other. Then the coefficients ε
(k)
p′,i

and ε
(k′)
p′,i in (78) should all equal zeros, which is in con-

trary with the observation from (75). Hence, b−
(k)

p′
⊗ ω

does not belong to the column space of A− , which

implies (B(k)
p (ξ (k)) ⊗ ω)HVγ �= 0 when ω ∉ Span(a(k)).

Likewise, we can prove (18) as follows. Assume

B
(k)
p (ξ) ⊗ ω belongs to the column space of A, then

there exists ε
(k′)
p′,i , not all zero, such that

B
(k)
p (ξ) ⊗ ω =

K∑
k′=1

Nk′∑
p′=1

Nc1∑
i=1

ε
(k′)
p′,i (b

(k′)
p′ ⊗ a(k

′)
i ). (79)

Further, we rewrite the above equation as

B
(k)
p (ξ) ⊗ ω =

K∑
k′=1

Nk′∑
p′=1

Nc1∑
i=1

ε
(k′)
p′,i (b−

(k′)

p′
⊗ a(k

′)
i ), (80)

ej
2π(c(k)p +ξ)

N (B(k)
p (ξ) ⊗ ω)

=
K∑

k′=1

Nk′∑
p′=1

Ncl∑
i=1

ε
(k′)
p′,i e

j2πθ
(k′)
p′ (b(k′)

p′ ⊗ a(k
′)

i ).
(81)

Combing these two equations yields

K∑
k′=1

Nk′∑
p′=1

Nc1∑
i=1

ε
(k′)
p′,i (e

j2π�
(k′)
p′ − ej

2π(c(k)p +ξ)
N )(b−

(k′)

p′
⊗ a(k

′)
i ) = 0. (82)

When ξ ≠ ξ(k), we have ej2π�
(k′)
p′ , �= ej

2π(c(k)p +ξ)
N

for all k’

and p’. As a result, when A− has full column rank, all

coefficients ε
(k′)
p′,i should equal to zeros. Thus, this is in

contrary with the assumption of (79). The implication is

that B
(k)
p (ξ) ⊗ ω does not belong to the column space

of A when ξ ≠ ξ(k). Finally, we arrive at (18).

Appendix 2
Proof of Lemma 2
Define v = ⌊M/Ncl ⌋ and assume v ≥ 2. Here, we consider
only the case of M = vNcl. Note that the results obtained
here is directly applicable to the case of M >vNcl.
By defining M × M full rank matrix

a(1,v) = [a(1), a(2), . . . , a(v)], (83)

we obtain

a(k) = a(1,v)c(k), k > v, (84)

where the M × Ncl matrix c(k) has full column rank.
Further, there is

B(k) ⊗ a(k) = B(k) ⊗ (a(1,v)c(k)) = (B(k) ⊗ a(1,v))(INk ⊗ c(k)), (85)

which implies that the column space of B−
(k) ⊗ a(k)

belongs to the column space of B−
(k) ⊗ a(1,v)Then, we

define a matrix

Ã =
[
B(1) ⊗ a(1), B(2) ⊗ a(2), . . . , B(v) ⊗ a(v),[

B(v+1), B(v+2), . . . , B(K)
]⊗ a(1,v)

]
=
[
B̃
(1) ⊗ a(1), B̃

(2) ⊗ a(2), . . . , B̃ ⊗ a(v)
] (86)

where

B̃
(k)

= [B(k),B(v+1), . . . ,B(K)]. (87)

An important observation is that when Ã has full col-

umn rank, A− has full column rank too. Afterwards, since
the disjointness among a(k), k = 1, 2, . . . , v, we know

rank(Ã) =
v∑

k=1

rank(B̃
(k) ⊗ a(k))

=
v∑

k=1

Ncl · min(L − 1, Nk +
K∑
v+1

Ni).

(88)

Clearly, when

L − 1 ≥ max
1≤k≤v

(Nk +
K∑
v+1

Ni), (89)

i.e.,

L ≥ 1 + max
1≤k≤v

(Nk) +
K∑
v+1

Ni, (90)
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Ã has full column rank. Furthermore, considering the
arbitrariness of user arrangement, Lonly needs to be not
less than the minimum value of the right-hand side of
(90). Finally, (25) can be directly derived from above
observations.

Endnotes
aIn our simulations, we first obtain a coarse CFO estima-
tion value by searching over (-0.5, 0.5) with an interval of

10-2, denoted by ξ̂
(k)
c . Then, the finer estimation ξ̂

(k)
f is

achieved by searching over (ξ̂ (k)c − 0.01, ξ̂ (k)c + 0.01) with

an interval of 10-3. The final estimation ξ̂ (k) is obtained

by searching over (ξ̂ (k)f − 10−3, ξ̂ (k)f + 10−3) using an

interval of 10-4. Thus, the number of total trial CFO
values is a = 140. bFrom (25), we know

v =
⌊

M
Nc1

⌋
= 2 < K = 4 in this example. Then, according

to (25), we have L ≥ N1 + 1 +
∑4

k=3
Nk = 49.
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