330 research outputs found

    Microwave CMOS VCOs and Front-Ends - using integrated passives on-chip and on-carrier

    Get PDF
    The increasing demand for high data rates in wireless communication systems is increasing the requirements on the transceiver front-ends, as they are pushed to utilize more and wider bands at higher frequencies. The work in this thesis is focused on receiver front-ends composed of Low Noise Amplifiers (LNAs), Mixers, and Voltage Controlled Oscillators (VCOs) operating at microwave frequencies. Traditionally, microwave electronics has used exclusive and more expensive semiconductor technologies (III-V materials). However, the rapid development of consumer electronics (e.g. video game consoles) the last decade has pushed the silicon CMOS IC technology towards even smaller feature sizes. This has resulted in high speed transistors (high fT and fmax) with low noise figures. However, as the breakdown voltages have decreased, a lower supply voltage must be used, which has had a negative impact on linearity and dynamic range. Nonetheless, todays downscaled CMOS technology is a feasible alternative for many microwave and even millimeter wave applications. The low quality factor (Q) of passive components on-chip usually limits the high frequency performance. For inductors realized in a standard CMOS process the substrate coupling results in a degraded Q. The quality factor can, however, be improved by moving the passive components off-chip and integrating them on a low loss carrier. This thesis therefore features microwave front-end and VCO designs in CMOS, where some designs have been flip-chip mounted on carriers featuring high Q inductors and low loss baluns. The thesis starts with an introduction to wireless communication, receiver architectures, front-end receiver blocks, and low loss carrier technology, followed by the included papers. The six included papers show the capability of CMOS and carrier technology at microwave frequencies: Papers II, III, and VI demonstrate fully integrated CMOS circuit designs. An LC-VCO using an accumulation mode varactor is presented in Paper II, a QVCO using 4-bit switched tuning is shown in Paper III, and a quadrature receiver front-end (including QVCO) is demonstrated in paper VI. Papers I and IV demonstrate receiver front-ends using low loss baluns on carrier for the LO and RF signals. Paper IV also includes a front-end using single-ended RF input which is converted to differential form in a novel merged LNA and balun. A VCO demonstrating the benefits of a high Q inductor on carrier is presented in Paper V

    Voltage controlled oscillator for mm-wave radio systems

    Get PDF
    Abstract. The advancement in silicon technology has accelerated the development of integrated millimeter-wave transceiver systems operating up to 100 GHz with sophisticated functionality at a reduced consumer cost. Due to the progress in the field of signal processing, frequency modulated continuous wave (FMCW) radar has become common in recent years. A high-performance local oscillator (LO) is required to generate reference signals utilized in these millimeter-wave radar transceivers. To accomplish this, novel design techniques in fundamental voltage controlled oscillators (VCO) are necessary to achieve low phase noise, wide frequency tuning range, and good power efficiency. Although integrated VCOs have been studied for decades, as we move higher in the radio frequency spectrum, there are new trade-offs in the performance parameters that require further characterization. The work described in this thesis aims to design a fully integrated fundamental VCO targeting to 150 GHz, i.e., D-Band. The purpose is to observe and analyze the design limitations at these high frequencies and their corresponding trade-offs during the design procedure. The topology selected for this study is the cross-coupled LC tank VCO. For the study, two design topologies were considered: a conventional cross-coupled LC tank VCO and an inductive divider cross-coupled LC tank VCO. The conventional LC tank VCO yields better performance in terms of phase noise and tuning range. It is observed that the VCO is highly sensitive to parasitic contributions by the transistors, and the layout interconnects, thus limiting the targeted frequency range. The dimensions of the LC tank and the transistors are selected carefully. Moreover, the VCO performance is limited by the low Q factor of the LC tank governed by the varactor that is degrading the phase noise performance and the tuning range, respectively. The output buffer loaded capacitance and the core power consumption of the VCO are optimized. The layout is drawn carefully with strategies to minimize the parasitic effects. Considering all the design challenges, a 126 GHz VCO with a tuning range of 3.9% is designed. It achieves FOMT (Figure-of-merit) of -172 dBc/Hz, and phase noise of -99.14 dBc/Hz at 10 MHz offset, Core power consumption is 8.9 mW from a 1.2 V supply. Just falling short of the targeted frequency, the design is suitable for FMCW radar applications for future technologies. The design was done using Silicon-on-Insulator (SOI) CMOS technology

    Study on wideband voltage controlled oscillator and high efficiency power amplifier ICs for wireless communications

    Get PDF
    制度:新 ; 報告番号:甲3604号 ; 学位の種類:博士(工学) ; 授与年月日:2012/2/20 ; 早大学位記番号:新595

    FULLY INTEGRATED HIGH-FREQUENCY CLOCK GENERATION AND SYNCHRONIZATION TECHINIQUES

    Get PDF
    Department of Electrical EngineeringThis thesis presents clock generation and synchronization techniques for RF wireless communication. First, it deals with voltage-controlled oscillators (VCOs) for local oscillators (LO) in transceivers, and secondly delay-locked loops for synchronization. For the high-performance LO, VCO is one of the key blocks. LC VCOs and ring VCOs are commonly-used types. Their characteristics are varied for different frequency bands. In this thesis, two types of VCOs, LC VCO and ring VCO, are presented with specific applications. For the multi-clock generator which could be used for carrier aggregation or frequency hopping, ring-type digitally controlled oscillator (DCO) was designed covering 900-1200 MHz with -165 dB FOM. For the multi-band frequency synthesizer which could be used for 5G communication with backward compatibility, three LC VCOs are designed which frequency range of 25-30 GHz for 5G, 5.2-6.0 GHz for LTE, 2.7-4.2 GHz for 2G-3G communication, respectively. For the clock synchronization in RF communications, a delay-locked loop (DLL) using a digital-to-analog converter (DAC) based band-selecting circuit (BSC) was presented to achieve a wide harmonic-locking-free frequency range. The BSC used the proposed exponential digital-to-analog converter (EDAC) to generate a collection of initial control voltages which follow a sequence of geometric with satisfying the condition for preventing harmonic locking problem. Therefore, the BSC can cover a much wider frequency range which is free from harmonic locking problem compared to initial band selection techniques using conventional, linear DAC (LDAC) that have a set of control voltages of arithmetic sequence. In this thesis, the DLL was implemented in a 65-nm CMOS process, and it had a measured frequency range from 100 to 1500 MHz which range is free from harmonic locking. The measure rms jitter and 1-MHz phase noise at 1000 MHz were 1.99 ps and ?28 dBc/Hz, respectively. The DLL consumes 5.5 mW and its active area was 0.052 mm2.clos

    Design of injection locked frequency divider in 65nm CMOS technology for mmW applications

    Get PDF
    In this paper, an Injection Locking Frequency Divider (ILFD) in 65 nm RF CMOS Technology for applications in millimeter-wave (mm-W) band is presented. The proposed circuit achieves 12.69% of locking range without any tuning mechanism and it can cover the entire mm-W band in presence of Process, Voltage and Temperature (PVT) variations by changing the Injection Locking Oscillator (ILO) voltage control. A design methodology flow is proposed for ILFD design and an overview regarding CMOS capabilities and opportunities for mm-W transceiver implementation is also exposed.Postprint (published version

    Design and Implementation of a Low‐Power Wireless Respiration Monitoring Sensor

    Get PDF
    Wireless devices for monitoring of respiration activities can play a major role in advancing modern home-based health care applications. Existing methods for respiration monitoring require special algorithms and high precision filters to eliminate noise and other motion artifacts. These necessitate additional power consuming circuitry for further signal conditioning. This dissertation is particularly focused on a novel approach of respiration monitoring based on a PVDF-based pyroelectric transducer. Low-power, low-noise, and fully integrated charge amplifiers are designed to serve as the front-end amplifier of the sensor to efficiently convert the charge generated by the transducer into a proportional voltage signal. To transmit the respiration data wirelessly, a lowpower transmitter design is crucial. This energy constraint motivates the exploration of the design of a duty-cycled transmitter, where the radio is designed to be turned off most of the time and turned on only for a short duration of time. Due to its inherent duty-cycled nature, impulse radio ultra-wideband (IR-UWB) transmitter is an ideal candidate for the implementation of a duty-cycled radio. To achieve better energy efficiency and longer battery lifetime a low-power low-complexity OOK (on-off keying) based impulse radio ultra-wideband (IR-UWB) transmitter is designed and implemented using standard CMOS process. Initial simulation and test results exhibit a promising advancement towards the development of an energy-efficient wireless sensor for monitoring of respiration activities

    Study Of Design For Reliability Of Rf And Analog Circuits

    Get PDF
    Due to continued device dimensions scaling, CMOS transistors in the nanometer regime have resulted in major reliability and variability challenges. Reliability issues such as channel hot electron injection, gate dielectric breakdown, and negative bias temperature instability (NBTI) need to be accounted for in the design of robust RF circuits. In addition, process variations in the nanoscale CMOS transistors are another major concern in today‟s circuits design. An adaptive gate-source biasing scheme to improve the RF circuit reliability is presented in this work. The adaptive method automatically adjusts the gate-source voltage to compensate the reduction in drain current subjected to various device reliability mechanisms. A class-AB RF power amplifier shows that the use of a source resistance makes the power-added efficiency robust against threshold voltage and mobility variations, while the use of a source inductance is more reliable for the input third-order intercept point. A RF power amplifier with adaptive gate biasing is proposed to improve the circuit device reliability degradation and process variation. The performances of the power amplifier with adaptive gate biasing are compared with those of the power amplifier without adaptive gate biasing technique. The adaptive gate biasing makes the power amplifier more resilient to process variations as well as the device aging such as mobility and threshold voltage degradation. Injection locked voltage-controlled oscillators (VCOs) have been examined. The VCOs are implemented using TSMC 0.18 µm mixed-signal CMOS technology. The injection locked oscillators have improved phase noise performance than free running oscillators. iv A differential Clapp-VCO has been designed and fabricated for the evaluation of hot electron reliability. The differential Clapp-VCO is formed using cross-coupled nMOS transistors, on-chip transformers/inductors, and voltage-controlled capacitors. The experimental data demonstrate that the hot carrier damage increases the oscillation frequency and degrades the phase noise of Clapp-VCO. A p-channel transistor only VCO has been designed for low phase noise. The simulation results show that the phase noise degrades after NBTI stress at elevated temperature. This is due to increased interface states after NBTI stress. The process variability has also been evaluated

    Design And Implementation Of Up-Conversion Mixer And Lc-Quadrature Oscillator For IEEE 802.11a WLAN Transmitter Application Utilizing 0.18 Pm CMOS Technology [TK7871.99.M44 H279 2008 f rb].

    Get PDF
    Perlumbaan implementasi litar terkamil radio, dengan kos yang rendah telah menggalakkan penggunaan teknologi CMOS. The drive for cost reduction has led to the use of CMOS technology for highly integrated radios

    Design and Implementation of A 6-GHz Array of Four Differential VCOs Coupled Through a Resistive Network

    No full text
    International audienceThis paper presents the design and the implementation of a fully monolithic coupled-oscillator array, operating at 6 GHz with close to zero coupling phase, in 0.25 μm BICMOS SiGe process. This array is made of four LC-NMOS differential VCOs coupled through a resistor. The single LC-NMOS VCO structure is designed and optimized in terms of phase noise with a graphical optimization approach while satisfying design constraints. At 2.5 V power supply voltage, and a power dissipation of only 125 mW, the coupled oscillators array features a simulated phase noise of -127.3 dBc/Hz at 1 MHz frequency offset from a 6 GHz carrier, giving a simulated phase progression that was continuously variable over the range -64° < Δphi <64 ° and -116° < Δphi < 116°. This constant phase progression can be established by slightly detuning the peripheral array elements, while maintaining mutual synchronization
    corecore