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ABSTRACT 

 

This thesis presents clock generation and synchronization techniques for RF wireless communication. 

First, it deals with voltage-controlled oscillators (VCOs) for local oscillators (LO) in transceivers, and 

secondly delay-locked loops for synchronization. For the high-performance LO, VCO is one of the key 

blocks. LC VCOs and ring VCOs are commonly-used types. Their characteristics are varied for different 

frequency bands. In this thesis, two types of VCOs, LC VCO and ring VCO, are presented with specific 

applications. For the multi-clock generator which could be used for carrier aggregation or frequency 

hopping, ring-type digitally controlled oscillator (DCO) was designed covering 900-1200 MHz with -

165 dB FOM. For the multi-band frequency synthesizer which could be used for 5G communication 

with backward compatibility, three LC VCOs are designed which frequency range of 25-30 GHz for 

5G, 5.2-6.0 GHz for LTE, 2.7-4.2 GHz for 2G-3G communication, respectively. For the clock 

synchronization in RF communications, a delay-locked loop (DLL) using a digital-to-analog converter 

(DAC) based band-selecting circuit (BSC) was presented to achieve a wide harmonic-locking-free 

frequency range. The BSC used the proposed exponential digital-to-analog converter (EDAC) to 

generate a collection of initial control voltages which follow a sequence of geometric with satisfying 

the condition for preventing harmonic locking problem. Therefore, the BSC can cover a much wider 

frequency range which is free from harmonic locking problem compared to initial band selection 

techniques using conventional, linear DAC (LDAC) that have a set of control voltages of arithmetic 

sequence. In this thesis, the DLL was implemented in a 65-nm CMOS process, and it had a measured 

frequency range from 100 to 1500 MHz which range is free from harmonic locking. The measure rms 

jitter and 1-MHz phase noise at 1000 MHz were 1.99 ps and –128 dBc/Hz, respectively. The DLL 

consumes 5.5 mW and its active area was 0.052 mm2. 
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I. Introduction 

For RF transceivers in wireless communications, clock generation and synchronization are essential 

techniques. For a local oscillator which generates carrier frequency of communications, voltage-

controlled oscillators (VCOs) are main blocks for generating the appropriate frequency bands. In this 

thesis, LC VCOs were designed for frequency synthesizers which covers multi-frequency bands of 

2G−4G, LTE, and 5G [1]. In that work, GHz-range analog charge-pump (CP) based phase-locked loop 

(PLL)’s output was multiplied to mmW frequency band. Since LC VCO’s Q-factor is higher in GHz-

range compared to mmW frequency range, achieving ultra-low phase noise of the PLL is easier in GHz-

range frequency bands. In addition, ring type VCOs were designed for multi-clock generators [2]. 

Reference [2] presents time-interleaved all-digital calibrator with injection locking techniques. In that 

work, ring type digitally-controlled oscillators (DCOs) are real-time calibrated by time-interleaved 

fashion with MUX, TDC, DLF, and a replica-ring VCO. Since calibration bandwidth of time-

interleaved calibrator is narrow, injection locked technique is applied to ring DCOs due to its large 

locking bandwidth. Therefore, poor ring DCOs’ phase noise could be suppressed enough. For this 

reason, ring-type VCO is often used with injection locking techniques. Additionally, since in that work, 

fractional injection technique is applied, mismatches between inverter cells in DCO are critical. 

Therefore, layout is carefully operated. 

DLLs are broadly used for synchronizing remote-located building circuits in RF transceiver modules. 

Some applications such as software defined radios (SDR) should cover a broad frequency spectrum. 

Therefore, the ability to synchronize a wide range of input frequencies, fIN, is very significant issue. 

Though, the concern is, as the frequency spectrum of fIN increases, the DLL becomes more susceptible 

to harmonic locking, which happens when the DLL is locked to any of harmonic tones of fIN instead of 

the fundamental tone of fIN [3], [4]. Hence, in order to prevent harmonic locking and confirm reliable 

operation over a broad range of fINs, a DLL should be designed with adequate measures. A simple 

approach is to restart the DLL’s locking process whenever the DLL’s output is locked to harmonic tones 

[4]. However, this approach degrades the power and area efficiency and increases lock time. Another 

approach is to use a band-selection method that initially selects a suitable range of the delay of a voltage-

controlled delay line (VCDL), TVCDL, of a DLL for each target fIN. However, conventional band-

selecting mechanisms in [5] and [6] segmented a range of fIN into evenly divided frequency bands. Then, 

they needed a large bit number of DAC and band-selection delay cells which have large digitally 

controllability. In this thesis, we present a DLL with a technique of band selection that enables the DLL 

to achieve a very wide harmonic locking-free range with using only small bit number of a DAC. As a 

key block in the DLL, we propose the exponential DAC (EDAC), which provides exponential steps 
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instead of linear steps. The EDAC makes the DLL have a set of initial frequency bands to reduce the 

necessary bit number of a DAC drastically for covering the same range of fIN avoiding harmonic locking. 

This thesis is organized as follows: Section II presents background information of VCOs, especially 

in ring VCO and LC VCO, and DLLs. Section III provides the specific applications of each VCO. In 

Section IV, a DLL with proposed EDAC is presented and the conclusion is presented in Section V. 
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II. High-frequency clock generation 

2.1 Voltage controlled oscillators (VCOs): LC VCOs and Ring VCOs 

There are various types of the VCOs. LC VCOs and Ring oVCOs are used for VCO in PLL for high 

frequency generation, and crystal oscillator and relaxation oscillator are used for reference clock 

generator for PLL. In the following subparts of 2.1.1 and 2.1.4, we will focus on the characteristics of 

the LC VCO and the ring VCO. Figure 1 is the feedback model of the VCO. For the oscillation, VCOs 

should satisfy the Barkhausen criterion which says that total loop gain of the feedback oscillator should 

be larger than unity and phase shift should be 360°. For the evaluation of the VCO performance, 

oscillation frequency (ω), frequency tuning range (FTR), phase noise, dissipated power (Pdiss) are the 

general criteria. Therefore, Figure of merit of the VCO can be represented as, 

FOMVCO= − L{∆ω} + 20 log
10

ω

∆ω
− 10 log

10

Pdiss

1mW
,                  (1) 

where L{Δω} is the spot noise of the VCO at the offset frequency of Δω. For some applications, in 

which frequency tuning range is important, VCO FOM can be transformed to FOMT: 

FOMT OSC= − L{∆ω} + 20 log
10

ω

∆ω
− 10 log

10

Pdiss

1mW
 + 20 log

10

FTR

10
.           (2) 

According to the specific type of the VCO, FOM have a theoretical limit value since the power 

consumption has a trade-off relationship with the phase noise of the VCO. 

Table. 1 shows the characteristics of the LC VCO and the ring VCO for comparison. Ring VCO is 

often used when its application needs area efficiency. Since the ring VCO is designed without oscillator, 

its area is very small. Compared to ring VCO, LC VCO needs large passive devices of inductor and 

capacitor to make oscillator, which makes LC VCO’s size large. Although LC tank occupies large are, 

LC oscillators are widely used for the applications which needs excellent performance of the phase 

noise. Since LC resonance tank acts like a band-pass filter with its large Q-factor, its phase noise filtering 

effect is excellent. Therefore, it can achieve low phase noise compared to the ring VCO. However, as 

increasing the frequency tuning range of the LC VCO, its Q-factor decreases extremely, which 

extremely degrades the phase noise performance. Even so, since the ring VCO’s maximum achievable 

frequency is limited to minimum delay of the inverter cells, LC VCO is more appropriate architecture 

for the extremely high frequency generation. 
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Figure 1. Feedback model of the oscillator. 

 

 

Table 1. Comparison between LC VCO and Ring VCO. 

 LC VCO Ring VCO 

Advantages 

• Low phase noise 

• High frequency generation 

• Wide tuning range 

• Small area (Integrativity) 

Disadvantages 
• Large area 

• Narrow tuning range 
• Poor phase noise 
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2.2. LC VCOs for a low-phase noise phase-locked loop (PLL) 

2.2.1. Voltage controlled oscillators (VCOs): Ring VCOs and LC VCOs 

LC VCOs are the mostly used VCO for RF communication for its excellent phase noise performance. 

Figure 2(a), (b) show two types of the basic architectures of the LC VCOs. Figure 2(a) is a single-switch 

pair oscillator and Figure 2(b) is a double-switch pair oscillator. Especially, Figure 2(a) is a NMOS-

type single-switch pair oscillator among two types of single-switch pair oscillator, NMOS-type and 

PMOS type. Since the mobility of the electron is higher compared to the hole, NMOS-type is more 

widely used. Those switch pairs of cross-coupled transistors provide negative resistance to the tank. 

Realistically, LC devices have series parasitic resistance, then, we can transform the series parasitic 

resistance to the parallel resistance as shown in Figure 3. As a result, energy stored in the tank is 

dissipated at this parasitic resistance. For the continuous oscillation, those dissipated energy 

compensated with generated energy from negative resistance from cross-coupled transistor pair. From 

the issue, start-up condition of the LC VCO for Figure 2(a) can be represented as, 

2

g
mn

≥ RP.                                   (4) 

In the same manner, for Figure 2(b), VCO’s start-up condition can be represented as, 

2

g
mn

+
2

g
mP

 ≥ RP,                                (5) 

where LP ≈ LTANK
2∙ω2/RS, CP ≈ CTANK, RS ≈ QO

2RS, and 2/gm is the absolute value of the negative 

resistance from the cross-coupled transistors of the LC VCO From Equation (4), (5), the start-up 

condition is relaxed for double-switch pair oscillator since the NMOS and PMOS share the same current 

path and their negative resistance is added. Therefore, for the power efficient design, double-switch pair 

oscillator is a good choice. Output voltage swing of Figure 2(a) can be represented as, 

VOUT=
2

π
ISSRP,                                (6) 

where fundamental harmonic of the load current is 2∙ISS/π since the current flows M1 and M2 

commutatively with square wave. As increasing ISS, VOUT also increased until VOUT reaches to 2VDD 

which is the maximum output voltage peak-to-peak swing, VMAX. Output voltage swing of Figure 2(b) 

can be represented as, 
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VOUT=
4

π
ISSRP,                                (7) 

where fundamental harmonic of the load current is 4∙ISS/π. As increasing ISS, VOUT also increased until 

VOUT reaches to VDD which is the VMAX. In the region where the output swing depends on the current, 

double-switch pair oscillator have larger output swing, however, after the voltage swing is limited to 

the supply voltage, single-switch pair oscillator can achieve more larger output swing of 2VDD. In result, 

double-switch pair oscillator is proper for the power efficient architecture and single-switch pair 

oscillator is proper for the low phase noise oscillator with large signal power. For the simple intuition 

to the phase noise of the LC VCO, Leeson’s equation is well-known approach which assumes VCO as 

a LTI system. Then, phase noise of the VCO can be represented as [7], 

L(∆ω)=10∙log
10

{
1

2
∙

vn
 2

∆f

VOUT
 2

2

∙(
ω

2QO∆ω
)
2

},                       (8) 

where QO is the quality factor of the VCO. Therefore, to achieve low phase noise, output voltage swing 

should be larger, and quality factor of the VCO should be higher. Quality factor of the LC VCO is, 

Q(ω)=Q
C

||Q
L

=
1

CPRPω
|| LPRω,                          (9) 

where QC is the quality factor of the capacitor and QL is the quality factor of the inductor. As shown 

in the Equation (9), Q-factor of the tank follows the lower factor between QC and QL. As the frequency 

increases, Q-factor of the capacitor decreases and Q-factor of the inductor increases. Therefore, usually, 

inductor’s Q-factor is dominant for GHz-range VCO and capacitor’s Q-factor is dominant for tens of 

GHz-range VCO. 
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(a)                                        (b) 

Figure 2. Basic architecture of the LC VCO: (a) single-switch pair oscillator. (b) double-switch pair 

oscillator. 

 

 

 

Figure 3. Realistic model of the LC tank. 
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Phase locking loop (PLL) is the most commonly used architecture for clock generation by locking 

the output clock’s phase to the input reference clock’s phase. Figure 1 shows the basic architecture of 

the PLL which consists of a phase-frequency detector (PFD), a charge-pump (CP), a loop-filter (LF), a 

voltage-controlled oscillator (VCO), and a frequency divider (/N). The PFD detects phase and frequency 

difference between the input clock, fIN, and the output clock, fOUT. A CP converts the phase difference 

to current with a gain of ICP/2п, and this current flows into the loop filter which converts current to 

frequency-tuning voltage of the VCO, VTUNE, with a gain of LF(s). The output frequency can be 

represented as, 

ωOUT=ω0+VTUNE∙KVCO,                            (11) 

where KVCO is the voltage to frequency gain of the VCO in rad/s/V. Relationship between input and 

output frequency can be represented as, 

f
OUT

=N∙f
IN

,                                 (12) 

where N is the division number from output to input frequency. Therefore, by changing the division 

number, various output frequencies can be obtained. In addition, ideally, input phase and the output 

phase are same, however, realistically, there exists phase offset between input and the output clock’s 

phase since PLL have many nonlinear effects in each block. 

Figure 5 shows the linear model of the PLL for each block’s phase noise transform function [8]. 

From the input to the output, open loop gain can be represented as, 

OLG(s) =
ФOUT

ФIN
=

ICP

2π
LF(s)

KVCO

s
,                        (13) 

where ICP is the charge pump current, LF(s) is the loop filter impedance, where LF(s) is {(R1+1/C1s)||(1/C2s)}  

when PLL is a third-order with second-order loop filter. Closed loop gain from ΦIN, in,CP, vn,LF, or Φn,VCO 

to ΦOUT can be represented as, 

CLG (s) =
ФOUT

ФIN
=

OLG(s)

1+N∙OLG(s)
,                         (14) 

ФOUT

in,CP/PFD
(s) =

OLG(s)

1+N∙OLG(s)
∙

2π

ICP
,                          (15) 

ФOUT

vn,LF
(s) =

OLG(s)

1+N∙OLG(s)
∙

2π

ICP∙LF(s)
,                        (16) 
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ФOUT

Фn,VCO
(s) =

1

1+N∙OLG(s)
.                            (17) 

From above equations, through the PLL system, input reference clock’s phase noise and the PFD, and 

the CP noise are characterized as low-pass filter, LF noise is band-pass filtered, and the VCO’s phase 

noise is high-pass filtered as shown in Figure 6(b) when the flicker noise of the VCO is neglected. Since 

each noise source have different characteristics, PLL bandwidth should be carefully designed for the 

optimal point. If a VCO have low free-running phase noise, PLL bandwidth could be extended to 

suppress the other loop building blocks’ phase noise, to achieve ultra-low jitter performance of the PLL. 

Therefore, phase noise performance of the VCO is one of the main factors which determine the overall 

phase noise performance of the PLL. 

 

Figure 4. Basic architecture of the PLL. 

 

 

Figure 5. Linear model of the PLL. 

 

 
(a)                           (b) 

Figure 6. Phase noise of VCO at (a) Φn,VCO. (b) ΦOUT. 
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2.2.2. Design of LC VCOs 

LC VCOs are used for frequency synthesizers which covers multi-frequency bands from 2G-5G in 

[1]. In that work, GHz-range analog CP PLL output multiplied to the mmW frequency band. Since LC 

oscillator of GHz-range has higher Q-factor compared to that of tens of GHz-range, achieving ultra-low 

phase noise of the PLL is easier in GHz-range frequency bands. Therefore, in [1], to generate tens of 

GHz-range low-jitter clock for 5G communications, GHz-range low-jitter PLL output is multiplied to 

mmW frequency band with low added jitter calibrator for mmW band. 

LC oscillators are used for frequency synthesizers which covers multi-frequency bands from 2G to 

5G in [1]. In that work, GHz-range analog CP PLL’s output signal was multiplied to the mmW 

frequency band. Since the LC VCO of GHz-range has higher Q-factor compared to that of tens of GHz-

range, achieving ultra-low phase noise of the PLL is easier in GHz-range frequency bands. Therefore, 

in [1], to generate tens of GHz-range low-jitter clock for 5G communications, GHz-range low-jitter 

PLL output is multiplied to mmW frequency band with low added jitter calibrator for mmW band. 

Figure 7 shows the design of the NMOS single-switch pair LC VCO with 7-bit capacitor bank and 

2-bit varactor bank for a GHz-range LC VCO. It consists of a LC tank, 7-bit capacitor bank (CBANK), 2-

bit varactor (CVAR), and cross-coupled transistors (M1, M2). Capacitor bank is used for frequency 

channel switching, and varactor is used for real time frequency calibration by the PLL. Cover range of 

the capacitor bank decides frequency tuning range of the LC VCO and the varactor should be designed 

to cover frequency drift due to real-time VT variations. To achieve wide tuning range, capacitor bank 

should have large capacitance and large bit number, which results the degradation of the Q-factor of the 

LC tank. Therefore, there is a trade-off between the frequency tuning range and the Q-factor of the LC 

tank. 

Figure 8(a) shows the design of the 7-bit capacitor bank. It consists of seven binary-sized capacitors, 

MOSFET transistors as switching devices for each bit, and biasing resistors. The size of switch 

transistors should be also binary sized since its RON resistance affects directly to the capacitors’ Q-factor. 

Since the Q-factor of the capacitor bank can be calculated as the parallel of each capacitor and weighted 

with each capacitor size, it can be represented as, 

1

Q
TOT

=
C

Q
C

+
2C

Q
2C

+⋯+
2NC

Q
2NC

.                         (10) 

Therefore, achieving high Q-factor of the most significant bit (MSB) capacitor is important. Bias 
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resistors help switching activity. To make switch MOSFET’s drain voltage 0 when it is ON state, and 1 

when it is OFF state, it makes the switch fully ON or OFF. Figure 8(b) shows a varactor design. Since 

varactor’s capacitance depends on the DC bias voltage, it usually separates its bias voltage from the 

output DC voltage of the oscillator using DC block capacitor. DC block capacitance should be large 

enough compared to varactor capacitance, and VTUNE is controlled by the PLL. Usually, MOSCAP is 

used as a varactor, and thick device is used to relive varactor leakage problem and to endure large 

voltage swing across the device. Figure 9(a) shows the frequency configuration according to VTUNE, 

therefore, KVCO configuration looks like a Figure 9(b). This non-linear configuration of the KVCO can 

raise a serious problem in PLL design since PLL bandwidth is varied by KVCO value. To solve this 

problem, offset-bias scheme with a 2-bit varactor was used as shown in Figure 10. To make two 

varactors have different bias voltages, VBIAS1, and VBIAS2, KVCO of the total varactor capacitance is nearly 

maintained even though each varactor’s KVCO is significantly varied. 

 

 

Figure 7. LC VCO with 8-bit capacitor bank and 2-bit varactor. 
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                   (a)                                      (b)              

Figure 8. (a) 8-bit capacitor bank design; (b) varactor design of the LC VCO. 

 

 

  

 (a)                                        (b)  

Figure 9. (a) Frequency configuration of a single varactor according to control voltage, VTUNE. (b) KVCO 

configuration of a single varactor according to VTUNE. 
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  (a)                                (b) 

Figure 10. Offset-bias scheme with 2-bit varactor bank; (a) schematics. (b) KVCO configuration. 

 

 

2.2.3. Simulation results 

In [1], since it targeted multiple frequency band to cover 2G-4G, LTE, and 5G communication’s 

frequency band, it needs three different VCOs. First, GHz-range VCO operates with analog CP PLL. 

Since PLL’s bandwidth is not that large, VCO’s phase noise performance is critical. Therefore, one-

turn inductor was used for high-Q factor, and 8-bit NMOS-type single-switch pair LC VCO was 

designed in a 65nm CMOS technology for low-phase noise application, and 2-bit varactor with offset-

bias scheme was used to reduce the KVCO variation effect. Output phase noise of the GHz-range LC 

VCO is shown in Figure 11 when the output frequency of the PLL was 3.897 GHz. As illustrated in 

section 2.2.1, the VCO was high-pass filtered by the PLL loop, and it covered from 2.7 to 4.2 GHz. In 

simulation result, the LC VCO consumed 6.0 mW, and 1MHz offset spot noise was −105 dBc/Hz, 

therefore, FOM of -189 was achieved. Figure 12 shows the simulation results of the nearly constant 

KVCO of GHz-range VCO which used offset-bias scheme. Then, the PLL using the LC VCO could 

achieve robustness over VT variations. 

As the operation frequency of the LC VCO is higher, the LC VCO’s phase noise performance is 

degraded and its size is reduced dramatically. Then, even though a LC VCO is usually used with a PLL, 

injection locking techniques is a good choice for a LC VCO of extremely high frequency. Then, in [1], 

LTE band VCO and mmW band VCO was used with injection locking techniques. Since injection 

locking technique has wide noise shaping bandwidth, two VCOs could use multiple turned inductors to 

increase area efficiency. For the LTE frequency band, LC VCO covers the frequency range of 5.2-6.0 

GHz, and for the mmW frequency band, LC VCO covers the range of 25.0-30.0 GHz. Additionally, 
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CMOS double-switch pair type LC VCO was used for both LTE and mmW frequency band to increase 

power efficiency. The simulation results of the phase noise of free-running VCO and shaped noise after 

injection locked are plotted in Figure 13 for LTE band, and plotted in Figure 14 for mmW band. They 

consumed 4.6 mW, and 5.2 mW, respectively. 

 

Figure 11. Free-running phase noise of the LC VCO and the shaped phase noise by PLL at 3.897 GHz. 

 

 

Figure 12. Simulation results of the KVCO of the GHz-range LC VCO by using offset-bias scheme with 

two varactors. 
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Figure 13. Free-running phase noise of the LC VCO and the shaped phase noise by injection locking at 

5.845 GHz. 

 

Figure 14. Free-running phase noise of the LC VCO and the shaped phase noise by injection locking at 

29.228 GHz. 
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2.3. Ring VCOs for an injection-locking multi-clock generator 

2.3.1. Basics of ring VCOs for a PLL 

Ring VCOs are actively studied for its utility in terms of size, area, and tuning range. Especially, 

ring VCOs are noted for its area efficiency since it has no inductor which is very large component in 

LC VCOs. However, the ring VCO has poor phase noise performance compared to the LC VCO, then, 

increasing FOM is challenging. Figure 15(a) shows the basic architecture of the ring VCO with single 

ended five inverter delay cells. In this architecture, ring VCO’s frequency can be represented as, 

ωOSC =
1

2∙N∙TD
,                               (3) 

where N is the number of stages of the ring VCO and TD is the transition time of a delay cell. For the 

single ended ring VCO, the number of the stages should be odd number to make dc phase shift 180°. If 

we want to make ring VCO with even number, we can use differential type of ring VCO as shown in 

Figure 15(b).  

  

(a) 

(b) 

Figure 15. Basic architecture of the ring VCO with (a) single ended five inverter delay cells. (b) 

differential ended four delay cells. 
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To align the phase of a VCO to the reference clock, injection locking techniques are widely used. 

Injection pulse from the reference clock is injected to the VCO to makes the VCO’s output frequency 

locked to N·fREF when free-running frequency of the VCO is close to the Nth harmonic of the reference 

frequency. By realigning the phase of the VCO to the reference clock, the phase noise accumulation of 

the VCO could be greatly suppressed and the achievable bandwidth of the locked system is much larger 

compared to a PLL. Figure 16 shows the phase noise configuration of the injection-locked VCO. The 

transfer functions of the VCO and the reference clock can be represented as [9], 

 

ФOUT

Фn,VCO
=1− 

βe-jωTREF/2

1+(β-1)e-jωTREF

sin(ωTREF/2)

ωTREF/2
,                     (18) 

ФOUT

Фn,REF
= 

N ∙ βe-jωTREF/2

1+(β-1)e-jωTREF

sin(ωTREF/2)

ωTREF/2
.                      (19) 

From above equations, through the injection-locking techniques, the input reference clock’s phase noise 

just scaled with N factor, and VCO’s phase noise high-pass filtered according to the β factor, which is 

the phase realignment factor. Then, when the flicker noise of the VCO is neglected, phase noise of the 

VCO at the output is shown in Figure 16(b), where the free-running VCO’s phase noise is shown in 

Figure 16(a). 

 

 

 

(a)                            (b) 

Figure 16. Phase noise of VCO at (a) Φn,VCO. (b) ΦOUT. 
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2.3.2. Design of ring DCOs for a PLL 

Ring digitally controlled oscillators (DCOs) are used for multi-clock generators in [2]. Reference [2] 

presents time-interleaved all-digital calibrator with injection locking techniques. For multiple output 

clock generation, multiple VCOs are required, therefore, area-efficient ring-type VCOs are adopted. 

Also, to increase the area efficiency, calibration circuits are operated digitally, then, DCOs are used. 

Since ring DCOs have poor phase noise performance, injection locking technique is applied to achieve 

ultra-low phase noise. In this work, ring DCOs are real-time calibrated by time interleaved fashion with 

MUX, TDC, DLF, and replica-ring VCO. Since calibration bandwidth of the time-interleaved calibrator 

is narrow, injection locked technique is applied to ring DCOs due to its large locking bandwidth. 

Therefore, poor ring DCOs’ phase noise could be suppressed enough.  

Figure 17 shows the design of the ring DCO with 8-bit capacitor bank which consisted of 5 single-

ended inverter cells. Since the ring VCO’s frequency depends on the load capacitance and the load 

currents, to control the TD of the inverter cell, capacitor bank was designed as Figure 18. In Figure 18, 

load capacitance is controlled by the 8-bit digital code, SW<7:0>. Switches for each binary sized 

capacitor should be also binary sized. This makes each capacitor’s series RON as binary values, then, 

this increases linearity of the capacitor banks. Controlling capacitance for manipulate the frequency of 

the VCO can be burden for high frequency generation, however, it can avoid the flicker noise and 

headroom issue of an architecture using digitally controlled current sources. In [2], for real-time 

calibration of the ring DCOs, one replica-DCO was used for detecting the phase error of each DCOs, 

mismatches between DCOs are critical. Additionally, since the fractional injection technique is applied 

in that work, mismatches between inverter cells in DCO are also critical. To prevent this issue, layout 

is carefully operated such that metal line path between each cells and loadings are carefully matched. 

 

 

Figure 17. Ring VCO with 8-bit capacitor bank (CB). 
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Figure 18. A single inverter cell with 8-bit capacitor bank. 

 

 

 

 

 

2.3.3. Simulation results 

Ring DCOs of the Figure 17 was designed in 65 nm CMOS technology for the architecture of [2]. 

The target frequency of the DCOs were from 900 to 1200 MHz. Figure 19 shows the simulation result 

of the phase noise performance of the ring DCO at the output frequency of 960 MHz. In simulation 

result, a DCO consumes 2.7mW, 1MHz offset spot noise is -110 dBc/Hz, therefore, FOM of -165 was 

achieved. Injection locking technique is applied to the ring DCO, and the result is also plotted in the 

Figure 19. Since the injection locking bandwidth is approximately 40 MHz, phase noise performance 

follows the clean reference clock at the in-band region. At the out-of-band, the VCO’s phase noise 

follows the free-running VCO’s phase noise. Figure 20 shows the simulation result of the frequency 

according to capacitor bank. It is perfectly monotonous, however, there is inevitable nonlinearity. It 

caused from the fact that VCO’s frequency is not proportional to capacitance, but inversely proportional. 

Additionally, since the frequency step per 1-bit is narrow enough, excellent phase noise performance 

was achieved through the injection locking techniques. Output frequency range is from 822 to 1236 

MHz which covers target output range enough which is from 900 to 1200 MHz. 
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Figure 19. Free-running phase noise of the ring VCO and the shaped phase noise after injection locking 

at 960 MHz. 

 

   

Figure 20. Frequency configuration according to capacitor bank’s frequency control word, SW<7:0>. 
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III. High-frequency clock synchronization 

3.1. Delay-locked loops (DLLs) 

Figure 21 shows the block diagram of a conventional DLL architecture. It consists of a phase detector 

(PD), a CP/LF, a voltage-controlled delay line (VCDL), and a coarse frequency selection (CFS) circuit 

for initial frequency band selection. When the DLL is locked, the total delay of the VCDL is equal to 

reference period, TREF. By using each delay cell’s edges, it could be used for a synchronization circuit 

or a clock multiplier with edge combiner. 

Comparing to PLLs, DLLs have several advantages in terms of stability and loop bandwidth [10]. 

In the PLL, a VCO acts like an accumulator while jitter accumulated, which generates an origin pole. 

Since LF has an origin pole also, PLL stability issue is critical. However, VCDL has no origin pole, 

then, DLL becomes an one-pole system. Since the stability issue is relaxed, the bandwidth can be 

extended, which results fast settling time. In addition, since there is no cycle-to-cycle jitter accumulation 

in delay cells, output jitter follows the jitter of the clean reference clock. 

Harmonic-locking problem is a main issue in DLL. Since the PD detects only the phase difference 

between the output signal of the VCDL and the reference clock signal, not the frequency difference, 

VCDL output frequency can be locked to harmonic frequency of the reference frequency such as 2fREF 

or 1/2fREF. To prevent the harmonic-locking, CFS commonly used for initial frequency band selection. 

 

 

Figure 21. Block diagram of a conventional DLL architecture. 
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3.2. Architecture of wide harmonic-locking-free DLL 

Figure 22 shows the overall structure of a band selecting circuit (BSC) consisting of an exponential 

digital-to-analog converter (EDAC), a low-dropout regulator (LDO), and a binary-searching engine 

(BS). The BSC rapidly calibrates the VCDL’s total delay, TVCDL, to a proper frequency band which can 

avoid the harmonic-locking problem according to the target fIN before the DLL’s fine tuning begins its 

locking mechanism to avoid harmonic locking. While the BSC is operated, the BS compares the amount 

of TVCDL with TIN, i.e., 1/fIN. During the initial band calibration with BS, the BS uses a bang-bang phase 

detector (PD) (BBPD) to compare the timing of the VCDL’s output signal with the DLL’s input signal. 

The digital code k<3 : 0> is updated sequentially from the MSB to the LSB based on the BBPD’s output 

polarity. The following DAC converts k<3 : 0> to the analog voltage, Vk, and the LDO supplies the 

VCDL’s power by setting the supply voltage of the VCDL, VCOAR, at Vk. After the k<3 : 0> value is 

specified according to the binary-searching result, the VCDL’s total delay is close to the input reference 

clock’s period, TIN. To consider enough timing margin, the decision time for each bit of k<3 : 0> 

consumes 3TIN. Total binary searching time for band selection is 12TIN. If the BSC uses a typical linear 

DAC (LDAC), a collection of Vk values is consisted of uniformly spaced voltages. Nevertheless, since 

the proposed EDAC can produce a collection of Vks following an exponential curve that covers a far 

wider voltage range for a certain bit number. The VCDL was composed of 8-stage, differential type 

delay cells that provide fairly linear frequency-tuning properties for its supply voltage, VCOAR [7]. 

Therefore, it can also generate a collection of frequency bands approximated as an exponential function 

of k. 

As the initial frequency band selected by the BSC, ENFINE is set to be 1, and the PD begins to detect 

the phase error information of the output signal of the VCDL, SOUT, comparing to the input reference 

signal, SIN. Using this detected information, the following CP updates the fine-tuning voltage, VFINE, 

which is the voltage level of the CL, and makes TVCDL be same with TIN. In Figure 22, SMID is the signal 

at the middle of the VCDL chain, i.e., the output of the 4th stage among the 8-stages, which is expected 

to have an inverted phase with SOUT when the delay of the VCDL locked to TIN. To ensure that harmonic 

locking is avoided by the use of the initial band-selection technique, as was done in this thesis, the 

condition for each of the initial values of TVCDL, i.e., TINIT, should meet the following condition [4]: 

0.5TIN < TINIT < 1.5TIN.                          (20) 

The above condition can be transformed to the frequency domain as 

0.66 fIN < fINIT < 2 fIN.                           (21) 
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Further from (2), fINIT[k] is the discrete expression of 1/TINIT. When the LDAC’s bit number is NDAC, k 

can be one of the numbers from 0 to 2NDAC-1. Fulfilling the Equation (2) is sufficient to avoid harmonic 

locking. Nonetheless, for the practical design, enough overlaps between fINIT[k]s are needed, as the value 

of fINIT[k] could be varied significantly by the initial PVT variations. Getting an implementation margin 

of more than fifty percent on both sides, (2) can be transformed to 

fIN < fINIT[k] < 1.2 fIN.                             (22) 

According to (3), fINIT[k+1] should be less than 1.2fINIT[k] for each k in order to avoid harmonic locking 

problem all over the range of fINs. Then, when using a typical LDAC, the kth frequency band, 

fINIT,LDAC[k], can be expressed as 

fINIT,LDAC [k] = (1 + 0.2k) fINIT,LDAC [0].                      (23) 

However, if the EDAC is used, the kth frequency band, fINIT,EDAC[k], can be expressed as 

fINIT,EDAC[k] = (1.2)k fINIT,EDAC[0],                        (24) 

where fINIT,LDAC[k] and fINIT,EDAC[k] in (23) and (24), respectively, are the same in that both can fulfill the 

Equation (22). Nonetheless, there exists the essential difference that fINIT,EDAC[k] is a sequence of 

geometric, while fINIT,LDAC[k] is a sequence of arithmetic. Therefore, a much smaller range of k is needed 

for fINIT,EDAC[k] for covering the same range of fIN, which means that EDAC absolutely have a less value 

of NDAC compared to a LDAC. For instance, LDAC requires NDAC value of 6 to cover one-decade 

range of fIN, while EDAC only requires 4. For covering two decades of input frequency range, LDAC 

requires as many as 9, while EDAC only needs 5. Consequentially, as the target frequency range for fIN 

increases, the advantage of the EDAC becomes more evident. It’s because the EDAC efficiently scales 

the size of the steps between the frequency bands which means it has a narrow step for low-frequency 

bands, but it has a wide step for high-frequency bands of fIN. Thanks to the band selection mechanism 

using the EDAC, the proposed DLL achieved a wide harmonic locking-free range with less DAC 

numbers, which means it consumed small power and silicon area for the design compared to the 

counterpart of using LDAC. 

Figure 23 shows the simulated results of the timing diagram of the proposed DLL using Cadence 

Virtuoso when the target frequency is 500 MHz. TVCDL is the delay of the VCDL, VFINE is the finely 

tuned control voltage for VCDL, and k is the EDAC output code. During the coarse tune, the binary 

search engine operates to make the delay of the DLL, TVCDL, be near of the target frequency which 

satisfies the condition of (22) in the thiesis. Binary searching starts from k <3:0>= 10002 and comparing 



24 

 

the rising edge of the reference signal and the output signal of the DLL, SOUT, to detect which one is 

fast. By changing the EDAC code from MSB to LSB, binary searching can be done within 4 times of 

the coarse calibration. Each detection consumes 3·TREF to ensure sufficient timing margin, and a setup 

time consumes 1·TREF for conversion from coarse tuning to fine tuning mode. In results, the coarse 

tuning is done within 13·TREF (=(4·3+1)·TREF). Therefore, coarse tuning can be done within 130 ns in 

the worst case when the reference frequency is 100 MHz. If we make a DLL with a linear DAC, to 

cover 100-1500MHz with the condition of (23), we need 7-bit DAC. Then, if we use the same binary 

search logic, coarse tuning time increases to 22·TREF (=(3·7+1)·TREF). Therefore, coarse tuning time 

increases 220 ns in the worst case when the reference frequency is 100 MHz which is 170% longer than 

the worst case coarse-tuning time of the proposed DLL with EDAC with the condition of (24). Figure 

24 shows that the fine loop settles before 500 ns (=250·TREF). 

 

  

Figure 22. Overall structure of the proposed DLL. 

 

Figure 23. Timing diagram for coarse tuning of the proposed DLL. 
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Figure 24. Timing diagram for fine tuning of the proposed DLL. 

 

 

3.3. Design of core building blocks 

3.3.1. The exponential digital-to-analog converter (DAC) 

Figure 25 shows the schematics of the proposed EDAC consisting of resistors having one of three 

resistances, i.e., R1, R2, and R3, and a multiplexer (MUX) selecting one of V[k]s and outputs it as Vk. 

In this thesis, to make the range of fIN more than a decade, the number of NDAC was designed to 4, thus, 

k ranges from 0 to 15. The left side of Figure 25 shows that a set of resistors is positioned vertically 

between VHIGH and VLOW, where VHIGH is the highest and VLOW is the lowest reference voltage. The string 

of resistors is consisted of 15 series R1-resistors from the highest-voltage side and a R2-resistor at the 

lowest-voltage side. Then, resistors which value is R3 are attached along the resistor string to each of 

the 14 nodes between R1-resistors. The voltage between the last R1-resistor and the R2-resistor is V[0], 

and VHIGH is V[15]. The core idea of the EDAC design is to make the R3 value be equal to R2·(1 + 

R2/R1). Thereby, all equivalent resistances looking down through any of the nodes of the resistor string, 

REQs, become the same value with R2, and this is the key mechanism of the proposed EDAC that yields 

a geometric sequence. The right side of Figure 25 describes the procedures of proving. It uses the 

method of recurrence and eventually drives the general equation of V[k] following the sequence of 

geometric: 

V[k] −VLOW = (VHIGH −VLOW) × (1 + R1/R2) 

k−15.                    (25) 
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Then, by making the ratio of R2 to R1 1 to 5, a geometric ratio of 1.2 can be attained to satisfy the 

Equation (24). 

 

Figure 25. Schematics of the proposed EDAC and generation process of V[k]s which follows the 

sequence of geometric. 
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3.3.2. High-speed PD 

The low power and high-speed PD was implemented as shown in the above side of Figure 26. When 

the PD is used, not PFD, the DLL can operate immediately without any additional initial state setting 

after the coarse tuning is done since the phase difference between REF and OUT is always less than π. 

The below side of Figure 26 shows the operating timing diagram of the proposed PD. EN generates 

windows to properly detect the phase difference. Delay τ is a dead-zone to switch CP fully when PD 

generates very narrow pulses. 

 

 

 

Figure 26. Schematics and conceptual timing diagram of the high-speed PD. 
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4.4. Measurement results 

The proposed DLL was fabricated in a 65nm CMOS process. As shown in Figure 27, the total active 

area was 0.052mm2 and the EDAC occupied only 0.004mm2. The DLL consumes 5.5mW at fIN of 1.0 

GHz. In Figure 28, the measured curve of fINIT,EDAC[k] according to k, which ranges from 0 to 15. For 

this measured curve, DLL operated BSC only. For each k, input signal, SIN, was tuned manually till the 

phase difference between SOUT and SMID became 180°. As shown in Figure 28, where the frequency of 

fINIT,EDAC[k] ranges from 100 to 1500 MHz, the measured curve was closely fit to the graph of 

(1.2)kfINIT,EDAC[0]. This can be possible due to frequency of the delay cells of the VCDL was linearly 

tuned in terms of VCOAR which was from the output of the EDAC. Even though there occurred the slight 

deviation of the measured curve from the fitting curve, the DLL can safely avoid harmonic locking 

problem in the input frequency range of 100 to 1500 MHz thanks to enough margin of (22). Figure 28 

shows the frequency range of fIN can be reached above 1500 MHz, however, the delay range of the 

VCDL limited the range. Corner simulations for the frequency range are operated. When the corner 

condition is FF, 0°C, the frequency range of fINIT,EDAC[k]s changed to 140-2000 MHz. When the corner 

condition is SS, 120°C, that range changed to 80 – 1200 MHz. Although there exists some variations, 

it caused no problem since the harmonic-locking-free ranges of fINIT,EDAC[k]s had enough overlaps. 

Figure 29(a)-(d) shows the measured waveforms of SOUT and SMID where fIN was 0.3, 0.5, 1.0, 1.5 

GHz, respectively. Since the SMID was the middle stage of the delay cells and the DLL was locked to 

SIN, the phase of the SMID had difference of 180° from the phase of the SOUT in all measured output. 

Figure 30(a) shows the rms jitter of SOUT was 1.99 ps when fIN was 1000 MHz. In Figure 30(b), the 1-

MHz phase noise of SOUT was −128 dBc/Hz. The difference of phase noise performance between the 

input signal and the output signal was generated from the additional noise of the delay cells of the 

VCDL and the CP. Table. 2 shows that the proposed DLL achieved the widest harmonic-locking-free 

frequency range of 175% with the use of a 4-bit EDAC to set the initial frequency band. In [5], the DLL 

used a DAC with 10-bit. In the case of the DLL in [6], the digital code range was able to cover only 

four-bit linear DAC. In this case, if [6] used the EDAC, it can be covered with only 3-bit DAC with low 

power. The DLL in [12] achieved a lower jitter, however, it consumes large power and area, and it 

covered a different frequency range. 
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Figure 27. Die photograph. 

 

 

Figure 28. Measured fINIT,EDAC[k]s with a fitting curve. 
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(a) 

 

(b) 
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(c) 

fIN = 1500 MHz fOUT fMID

 

(d) 

Figure 29. Measured waveforms of SMID and SOUT at fIN of (a) 300 MHz. (b) 500 MHz. (c) 1000MHz. 

(d) 1500 MHz. 
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Figure 30. (a) Measured jitter. (b)Measured phase noise of the DLL at fIN of 1000 MHz. 

 

 

Table 2. Performance comparison of DLL with wide harmonic-locking-free range. 

 This work [3] [5] [6] [12] 

Process 65nm 180nm 130nm 130nm 180nm 

Frequency range,

 fTR 

100-1500MHz 

(175%) 

85-550MHz 

(146%) 

15-600MHz 

(190%) 

80-450MHz 

(140%) 

900-2900MHz 

(105%) 

Anti-harmonic 

lock method 

Initial band 

selection 

Harmonic-lock 

detector 

Initial band 

selection 

Initial band 

selection 

Divider & 

switch logics 

DAC bit # 4 NA 10 4* NA 

1-MHz PN 

@fOUT 

–128dBc/Hz 

@1.0GHz 
NA NA NA 

–116dBc/Hz 

@2.16GHz 

JITRMS/JITPP 

@fOUT 

1.99/ 20.1ps 

@1.0GHz 

3.8/ 25.6ps 

@550MHz 

9.00/ NA 

@600MHz 

2.32/ 10.0ps 

@180MHz 

1.61/ 12.9ps 

@2.16GHz 

PDC 5.5mW 4.2mW NA 26.0mW 19.8mW 

Area 0.052mm2 0.258mm2 0.376mm2 0.08mm2 0.07mm2 

* 16 thermal codes for band selection, which can be covered by a four-bit DAC 
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IV. Conclusions 

In this thesis, we designed LC VCOs which frequency range of 25-30 GHz for 5G communication 

band, 5.2-6.0 GHz for LTE, 2.7-4.2 GHz for 2G-4G, respectively. For GHz-frequency band which 

frequency is relatively low, the LC VCO designed with focusing on phase noise performance, and the 

other two VCOs focused on area and power efficiency, since GHz-band VCO was used in analog CP 

PLL architecture and the other two VCOs were used with injection locking techniques. Also, we 

designed ring DCOs for multi-clock generator of [2]. Multiple same ring DCOs were used for multiple 

clock generation, and a replica ring DCO was used for calibration. Its frequency range was covered 

from 900 to 1200 MHz with -165 dB FOM. Even though ring DCO have poor phase noise, after 

injection locked, it can have extremely low jitter. Additionally, we presented a DLL with a wide 

harmonic-locking-free range. As the proposed EDAC provides a set of control voltages, which follows 

a geometric sequence, it can cover a very wide range of frequencies for a given number of bit. In the 

measurement results, the DLL with the EDAC was accurately operated over input frequencies from 100 

to 1500 MHz with avoiding any harmonic-locking issues. When fIN was 1000 MHz, the rms jitter of 

the output signal and the total power consumption was 1.99 ps and 5.5 mW, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 



34 

 

REFERENCES 

[1] H. Yoon, et al., “A -31dBc integrated-phase-noise 29GHz fractional-N frequency synthesizer 

supporting multiple frequency bands for backward-compatible 5G using a frequency doubler 

and injection-locked frequency multipliers,” ISSCC Dig. Tech. Papers, Feb. 2018, pp. 366–

367. 

[2] H. Yoon, et al., “A Low-Jitter Injection-Locked Multi-Frequency Generator Using Digitally 

Controlled Oscillators and Time-Interleaved Calibration,” IEEE Journal of Solid-State 

Circuits, vol. 54, no. 6, pp. 1564–1574, June 2019. 

[3] C.-T. Lu, et al., “A 0.6V low-power wide-range delay-locked loop in 0.18um CMOS,” IEEE 

Microw. Wireless Compon. Lett., vol. 19, no. 10, pp. 662–664, Oct. 2009. 

[4] Y.-H. Moon, et al., “A 2.2-mW 20–135 MHz false-lock-free DLL for display interface in 0.15 

um CMOS,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 61, no. 8, pp. 554–558, Aug. 2014. 

[5] S. Hoyos, et al., “A 15 MHz to 600 MHz, 20 mW, 0.38 mm2 split-control, fast coarse locking 

digital DLL in 0.13 um CMOS,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 20, 

no. 3, pp. 564–568, Mar. 2012. 

[6] D. Zhang, et al., “A multiphase DLL with a novel fast-locking fine-code time-to-digital 

converter,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 23, no. 11, pp. 2680–2684, 

Nov. 2015. 

[7] D. B. Leeson, “A simple model of feedback oscillator noise spectrum,” Pro. IEEE, vol.54, 

no. 2, pp.3219–330, Feb. 1966. 

[8] D. Banergee, PLL Performance, Simulation, and Design, 4th ed., Sirirajmedj Com., 2006. 

[9] B. Razavi, "A study of injection locking and pulling in oscillators," IEEE J. Solid-State 

Circuits, vol. 39, p. 1415–1424, Sep. 2004. 

[10] B. Razavi, Design of Analog CMOS Integrated Circuits, McGrawHill, 2002. 

[11] S. Yoo, et al., “A 2–8 GHz wideband dually frequency-tuned ring-VCO with a scalable KVCO,” 

IEEE Microw. Wireless Compon. Lett., vol. 23, no. 11, pp. 602–604, Nov. 2013. 

[12] Q. Du, et al., “A low-phase noise, anti-harmonic programmable DLL frequency multiplier 

with period error compensation for spur reduction,” IEEE Trans. Circuits Syst. II, Exp. Briefs, 

vol. 53, no. 11, pp. 1205–1209, Nov. 2006. 

 

 

 

 

 

 

 



35 

 

ACKNOWLEDGEMENTS 

 

First of all, I sincerely appreciated my advisor, Professor Jaehyouk Choi for all his guidance and 

support. I am deeply grateful that he has always been my counselor for my research and overall life. 

I feel gratitude to my committee members, Professor Kyuho Lee and Professor Seong-Jin Kim for 

serving the committee members and providing valuable comments. 

I am also truly thankful to all members of ICSL. They have always helped and encouraged me. 

Finally, I’m also grateful to my parents for their unconditional love and care. 

 

 

 

 

 

 


	I. Introduction 
	II. High-frequency clock generation 
	2.1. Voltage controlled oscillators (VCOs): LC VCOs and Ring VCOs 
	2.2. LC VCOs for a low-phase noise phase-locked loop (PLL) 
	2.2.1. Basics of LC VCOs for a PLL
	2.2.2. Design of LC VCOs
	2.2.3. Simulation results 

	2.3. Ring VCOs for an injection-locking multi-clock generator
	2.3.1. Basics of ring VCOs for a PLL 
	2.3.2. Design of ring VCOs 
	2.3.3. Simulation results 


	III. High-frequency clock synchronization 
	3.1. Delay-locked loops (DLLs)
	3.2. Architecture of wide harmonic-locking-free DLL 
	3.3. Design of core building blocks 
	3.3.1. The exponential digital-to-analog converter (DAC) 
	3.3.2. High-speed PD

	3.4. Measurement results

	IV. Conclusions


<startpage>13
I. Introduction  1
II. High-frequency clock generation  3
  2.1. Voltage controlled oscillators (VCOs): LC VCOs and Ring VCOs  3
  2.2. LC VCOs for a low-phase noise phase-locked loop (PLL)  5
   2.2.1. Basics of LC VCOs for a PLL 5
   2.2.2. Design of LC VCOs 10
   2.2.3. Simulation results  13
  2.3. Ring VCOs for an injection-locking multi-clock generator 16
   2.3.1. Basics of ring VCOs for a PLL  16
   2.3.2. Design of ring VCOs  18
   2.3.3. Simulation results  19
III. High-frequency clock synchronization  21
  3.1. Delay-locked loops (DLLs) 21
  3.2. Architecture of wide harmonic-locking-free DLL  22
  3.3. Design of core building blocks  25
   3.3.1. The exponential digital-to-analog converter (DAC)  25
   3.3.2. High-speed PD 27
  3.4. Measurement results 28
IV. Conclusions 33
</body>

