623 research outputs found

    Reliable Download Delivery in a Terrestrial DAB Network

    Get PDF
    Reliable file transfer is important in broadcast networks. In this paper, we have investigated if it is useful to extend the DAB standard with Fountain codes. To evaluate this, results from measurements in a live Single Frequency Network (SFN) were used. Our results show that the existing error correction algorithms provide already reliable file delivery, so there is no need to extend the DAB standard

    Power-Constrained Fuzzy Logic Control of Video Streaming over a Wireless Interconnect

    Get PDF
    Wireless communication of video, with Bluetooth as an example, represents a compromise between channel conditions, display and decode deadlines, and energy constraints. This paper proposes fuzzy logic control (FLC) of automatic repeat request (ARQ) as a way of reconciling these factors, with a 40% saving in power in the worst channel conditions from economizing on transmissions when channel errors occur. Whatever the channel conditions are, FLC is shown to outperform the default Bluetooth scheme and an alternative Bluetooth-adaptive ARQ scheme in terms of reduced packet loss and delay, as well as improved video quality

    Near-Instantaneously Adaptive HSDPA-Style OFDM Versus MC-CDMA Transceivers for WIFI, WIMAX, and Next-Generation Cellular Systems

    No full text
    Burts-by-burst (BbB) adaptive high-speed downlink packet access (HSDPA) style multicarrier systems are reviewed, identifying their most critical design aspects. These systems exhibit numerous attractive features, rendering them eminently eligible for employment in next-generation wireless systems. It is argued that BbB-adaptive or symbol-by-symbol adaptive orthogonal frequency division multiplex (OFDM) modems counteract the near instantaneous channel quality variations and hence attain an increased throughput or robustness in comparison to their fixed-mode counterparts. Although they act quite differently, various diversity techniques, such as Rake receivers and space-time block coding (STBC) are also capable of mitigating the channel quality variations in their effort to reduce the bit error ratio (BER), provided that the individual antenna elements experience independent fading. By contrast, in the presence of correlated fading imposed by shadowing or time-variant multiuser interference, the benefits of space-time coding erode and it is unrealistic to expect that a fixed-mode space-time coded system remains capable of maintaining a near-constant BER

    Fuzzy Logic Control of Adaptive ARQ for Video Distribution over a Bluetooth Wireless Link

    Get PDF
    Bluetooth's default automatic repeat request (ARQ) scheme is not suited to video distribution resulting in missed display and decoded deadlines. Adaptive ARQ with active discard of expired packets from the send buffer is an alternative approach. However, even with the addition of cross-layer adaptation to picture-type packet importance, ARQ is not ideal in conditions of a deteriorating RF channel. The paper presents fuzzy logic control of ARQ, based on send buffer fullness and the head-of-line packet's deadline. The advantage of the fuzzy logic approach, which also scales its output according to picture type importance, is that the impact of delay can be directly introduced to the model, causing retransmissions to be reduced compared to all other schemes. The scheme considers both the delay constraints of the video stream and at the same time avoids send buffer overflow. Tests explore a variety of Bluetooth send buffer sizes and channel conditions. For adverse channel conditions and buffer size, the tests show an improvement of at least 4 dB in video quality compared to nonfuzzy schemes. The scheme can be applied to any codec with I-, P-, and (possibly) B-slices by inspection of packet headers without the need for encoder intervention.</jats:p

    Symbol level decoding of Reed-Solomon codes with improved reliability information over fading channels

    Get PDF
    A thesis submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Doctor of Philosophy in the School of Electrical and Information Engineering, 2016Reliable and e cient data transmission have been the subject of current research, most especially in realistic channels such as the Rayleigh fading channels. The focus of every new technique is to improve the transmission reliability and to increase the transmission capacity of the communication links for more information to be transmitted. Modulation schemes such as M-ary Quadrature Amplitude Modulation (M-QAM) and Orthogonal Frequency Division Multiplexing (OFDM) were developed to increase the transmission capacity of communication links without additional bandwidth expansion, and to reduce the design complexity of communication systems. On the contrary, due to the varying nature of communication channels, the message transmission reliability is subjected to a couple of factors. These factors include the channel estimation techniques and Forward Error Correction schemes (FEC) used in improving the message reliability. Innumerable channel estimation techniques have been proposed independently, and in combination with di erent FEC schemes in order to improve the message reliability. The emphasis have been to improve the channel estimation performance, bandwidth and power consumption, and the implementation time complexity of the estimation techniques. Of particular interest, FEC schemes such as Reed-Solomon (RS) codes, Turbo codes, Low Density Parity Check (LDPC) codes, Hamming codes, and Permutation codes, are proposed to improve the message transmission reliability of communication links. Turbo and LDPC codes have been used extensively to combat the varying nature of communication channels, most especially in joint iterative channel estimation and decoding receiver structures. In this thesis, attention is focused on using RS codes to improve the message reliability of a communication link because RS codes have good capability of correcting random and burst errors, and are useful in di erent wireless applications. This study concentrates on symbol level soft decision decoding of RS codes. In this regards, a novel symbol level iterative soft decision decoder for RS codes based on parity-check equations is developed. This Parity-check matrix Transformation Algorithm (PTA) is based on the soft reliability information derived from the channel output in order to perform syndrome checks in an iterative process. Performance analysis verify that this developed PTA outperforms the conventional RS hard decision decoding algorithms and the symbol level Koetter and Vardy (KV ) RS soft decision decoding algorithm. In addition, this thesis develops an improved Distance Metric (DM) method of deriving reliability information over Rayleigh fading channels for combined demodulation with symbol level RS soft decision decoding algorithms. The newly proposed DM method incorporates the channel state information in deriving the soft reliability information over Rayleigh fading channels. Analysis verify that this developed metric enhances the performance of symbol level RS soft decision decoders in comparison with the conventional method. Although, in this thesis, the performance of the developed DM method of deriving soft reliability information over Rayleigh fading channels is only veri ed for symbol level RS soft decision decoders, it is applicable to any symbol level soft decision decoding FEC scheme. Besides, the performance of the all FEC decoding schemes plummet as a result of the Rayleigh fading channels. This engender the development of joint iterative channel estimation and decoding receiver structures in order to improve the message reliability, most especially with Turbo and LDPC codes as the FEC schemes. As such, this thesis develops the rst joint iterative channel estimation and Reed- Solomon decoding receiver structure. Essentially, the joint iterative channel estimation and RS decoding receiver is developed based on the existing symbol level soft decision KV algorithm. Consequently, the joint iterative channel estimation and RS decoding receiver is extended to the developed RS parity-check matrix transformation algorithm. The PTA provides design ease and exibility, and lesser computational time complexity in an iterative receiver structure in comparison with the KV algorithm. Generally, the ndings of this thesis are relevant in improving the message transmission reliability of a communication link with RS codes. For instance, it is pertinent to numerous data transmission technologies such as Digital Audio Broadcasting (DAB), Digital Video Broadcasting (DVB), Digital Subscriber Line (DSL), WiMAX, and long distance satellite communications. Equally, the developed, less computationally intensive, and performance e cient symbol level decoding algorithm for RS codes can be use in consumer technologies like compact disc and digital versatile disc.GS201

    Measurement campaign on transmit delay diversity for mobile DVB-T/H systems

    Get PDF
    This article is posted here with permission from IEEE - Copyright @ 2010 IEEEThis paper describes the work carried out by Brunel University and Broadreach Systems (UK) to quantify the advantages that can be achieved if Transmit Delay Diversity is applied to systems employing the DVB standard. The techniques investigated can be applied to standard receiver equipment without modification. An extensive and carefully planned field trial was performed during the winter of 2007/2008 in Uxbridge (UK) to validate predictions from theoretical modeling and laboratory simulations. The transmissions were performed in the 730 MHz frequency band with a DVB-T/H transmitter and a mean power of 18.4 dBW. The impact of the transmit antenna separation and the MPE-FEC was also investigated. It is shown that transmit delay diversity significantly improves the quality of reception in fast fading mobile broadcasting application

    Evaluation of cross-layer reliability mechanisms for satellite digital multimedia broadcast

    Get PDF
    This paper presents a study of some reliability mechanisms which may be put at work in the context of Satellite Digital Multimedia Broadcasting (SDMB) to mobile devices such as handheld phones. These mechanisms include error correcting codes, interleaving at the physical layer, erasure codes at intermediate layers and error concealment on the video decoder. The evaluation is made on a realistic satellite channel and takes into account practical constraints such as the maximum zapping time and the user mobility at several speeds. The evaluation is done by simulating different scenarii with complete protocol stacks. The simulations indicate that, under the assumptions taken here, the scenario using highly compressed video protected by erasure codes at intermediate layers seems to be the best solution on this kind of channel
    corecore