164,898 research outputs found

    Adaptive multi-view feature selection for human motion retrieval

    Get PDF
    Human motion retrieval plays an important role in many motion data based applications. In the past, many researchers tended to use a single type of visual feature as data representation. Because different visual feature describes different aspects about motion data, and they have dissimilar discriminative power with respect to one particular class of human motion, it led to poor retrieval performance. Thus, it would be beneficial to combine multiple visual features together for motion data representation. In this article, we present an Adaptive Multi-view Feature Selection (AMFS) method for human motion retrieval. Specifically, we first use a local linear regression model to automatically learn multiple view-based Laplacian graphs for preserving the local geometric structure of motion data. Then, these graphs are combined together with a non-negative view-weight vector to exploit the complementary information between different features. Finally, in order to discard the redundant and irrelevant feature components from the original high-dimensional feature representation, we formulate the objective function of AMFS as a general trace ratio optimization problem, and design an effective algorithm to solve the corresponding optimization problem. Extensive experiments on two public human motion database, i.e., HDM05 and MSR Action3D, demonstrate the effectiveness of the proposed AMFS over the state-of-art methods for motion data retrieval. The scalability with large motion dataset, and insensitivity with the algorithm parameters, make our method can be widely used in real-world applications

    Novel Bayesian methodology in multivariate problems.

    Get PDF
    This dissertation involves developing novel Bayesian methodology for multivariate problems. In particular, it focuses on two contexts: shrinkage based variable selection in multivariate regression and simultaneous covariance estimation of multiple groups. Both these projects are centered around fully Bayesian inference schemes based on hierarchical modeling to capture context-specific features of the data and the development of computationally efficient estimation algorithm. Variable selection over a potentially large set of covariates in a linear model is quite popular. In the Bayesian context, common prior choices can lead to a posterior expectation of the regression coefficients that is a sparse (or nearly sparse) vector with a few non-zero components, those covariates that are most important. The first project extends the global-local shrinkage idea to a scenario where one wishes to model multiple response variables simultaneously. Here, we have developed a variable selection method for a K-outcome model (multivariate regression) that identifies the most important covariates across all outcomes. The prior for all regression coefficients is a mean zero normal with coefficient-specific variance term that consists of a predictor-specific factor (shared local shrinkage parameter) and a model-specific factor (global shrinkage term) that differs in each model. The performance of our modeling approach is evaluated through simulation studies and a data example. Covariance estimation for multiple groups is a key feature for drawing inference from a heterogeneous population. One should seek to share information about common features in the dependence structures across the various groups. In the second project, we introduce a novel approach for estimating the covariance matrices for multiple groups using a hierarchical latent factor model that shrinks the factor loadings across groups toward a global value. Using a spike and slab model on these loading coefficients provides a level of sparsity in the global factor structure. Parameter estimation is accomplished through a Markov chain Monte Carlo scheme, and a model selection approach is used to determine the number of factors to use. Finally, a number of simulation studies and a data application are shown to demonstrate the performance of our methodology

    Massively-Parallel Feature Selection for Big Data

    Full text link
    We present the Parallel, Forward-Backward with Pruning (PFBP) algorithm for feature selection (FS) in Big Data settings (high dimensionality and/or sample size). To tackle the challenges of Big Data FS PFBP partitions the data matrix both in terms of rows (samples, training examples) as well as columns (features). By employing the concepts of pp-values of conditional independence tests and meta-analysis techniques PFBP manages to rely only on computations local to a partition while minimizing communication costs. Then, it employs powerful and safe (asymptotically sound) heuristics to make early, approximate decisions, such as Early Dropping of features from consideration in subsequent iterations, Early Stopping of consideration of features within the same iteration, or Early Return of the winner in each iteration. PFBP provides asymptotic guarantees of optimality for data distributions faithfully representable by a causal network (Bayesian network or maximal ancestral graph). Our empirical analysis confirms a super-linear speedup of the algorithm with increasing sample size, linear scalability with respect to the number of features and processing cores, while dominating other competitive algorithms in its class

    Application of mutual information-based sequential feature selection to ISBSG mixed data

    Full text link
    [EN] There is still little research work focused on feature selection (FS) techniques including both categorical and continuous features in Software Development Effort Estimation (SDEE) literature. This paper addresses the problem of selecting the most relevant features from ISBSG (International Software Benchmarking Standards Group) dataset to be used in SDEE. The aim is to show the usefulness of splitting the ranked list of features provided by a mutual information-based sequential FS approach in two, regarding categorical and continuous features. These lists are later recombined according to the accuracy of a case-based reasoning model. Thus, four FS algorithms are compared using a complete dataset with 621 projects and 12 features from ISBSG. On the one hand, two algorithms just consider the relevance, while the remaining two follow the criterion of maximizing relevance and also minimizing redundancy between any independent feature and the already selected features. On the other hand, the algorithms that do not discriminate between continuous and categorical features consider just one list, whereas those that differentiate them use two lists that are later combined. As a result, the algorithms that use two lists present better performance than those algorithms that use one list. Thus, it is meaningful to consider two different lists of features so that the categorical features may be selected more frequently. We also suggest promoting the usage of Application Group, Project Elapsed Time, and First Data Base System features with preference over the more frequently used Development Type, Language Type, and Development Platform.Fernández-Diego, M.; González-Ladrón-De-Guevara, F. (2018). Application of mutual information-based sequential feature selection to ISBSG mixed data. Software Quality Journal. 26(4):1299-1325. https://doi.org/10.1007/s11219-017-9391-5S12991325264Angelis, L., & Stamelos, I. (2000). A simulation tool for efficient analogy based cost estimation. Empirical Software Engineering, 5(1), 35–68. https://doi.org/10.1023/A:1009897800559 .Auer, M., Trendowicz, A., Graser, B., Haunschmid, E., & Biffl, S. (2006). Optimal project feature weights in analogy-based cost estimation: improvement and limitations. Software Engineering, IEEE Transactions on, 32(2), 83–92.Awada, W., Khoshgoftaar, T. M., Dittman, D., Wald, R., Napolitano, A. (2012). A review of the stability of feature selection techniques for bioinformatics data. In 2012 I.E. 13th International Conference on Information Reuse and Integration (IRI) (pp. 356–363). Presented at the 2012 I.E. 13th International Conference on Information Reuse and Integration (IRI). https://doi.org/10.1109/IRI.2012.6303031 .Battiti, R. (1994). Using mutual information for selecting features in supervised neural net learning. Neural Networks, IEEE Transactions, 5(4), 537–550.Bennasar, M., Hicks, Y., & Setchi, R. (2015). Feature selection using joint mutual information maximisation. Expert Systems with Applications, 42(22), 8520–8532. https://doi.org/10.1016/j.eswa.2015.07.007 .Bibi, S., Tsoumakas, G., Stamelos, I., & Vlahavas, I. (2008). Regression via classification applied on software defect estimation. Expert Systems with Applications, 34(3), 2091–2101. https://doi.org/10.1016/j.eswa.2007.02.012 .Chandrashekar, G., & Sahin, F. (2014). A survey on feature selection methods. Computers & Electrical Engineering, 40(1), 16–28.Chatzipetrou, P., Papatheocharous, E., Angelis, L., Andreou, A. S. (2012). An investigation of software effort phase distribution using compositional data analysis. In 2012 38th EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA) (pp. 367–375). Presented at the 2012 38th EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA). https://doi.org/10.1109/SEAA.2012.50 .Chen, Z., Menzies, T., Port, D., & Boehm, B. (2005). Feature subset selection can improve software cost estimation accuracy. In Proceedings of the 2005 workshop on predictor models in software engineering (pp. 1–6). New York: ACM. https://doi.org/10.1145/1082983.1083171 .Chiu, N.-H., & Huang, S.-J. (2007). The adjusted analogy-based software effort estimation based on similarity distances. Journal of Systems and Software, 80(4), 628–640.Dash, M., & Liu, H. (2003). Consistency-based search in feature selection. Artificial Intelligence, 151(1), 155–176.Dejaeger, K., Verbeke, W., Martens, D., & Baesens, B. (2012). Data mining techniques for software effort estimation: a comparative study. Software Engineering, IEEE Transactions on, 38(2), 375–397. https://doi.org/10.1109/TSE.2011.55 .Deng, K., & MacDonell, S. G. (2008). Maximising data retention from the ISBSG repository. In Proceedings of the 12th international conference on evaluation and assessment in software engineering (pp. 21–30). Swinton: British Computer Society http://dl.acm.org/citation.cfm?id=2227115.2227118 . Accessed 21 Jan 2014.Doquire, G., & Verleysen, M. (2011). An hybrid approach to feature selection for mixed categorical and continuous data. In International Conference on Knowledge Discovery and Information Retrieval. http://hdl.handle.net/2078.1/90765 . Accessed 2 Nov 2015.Dudani, S. A. (1976). The distance-weighted k-nearest-neighbor rule. IEEE Transactions on Systems, Man and Cybernetics, SMC, 6(4), 325–327. https://doi.org/10.1109/TSMC.1976.5408784 .Estévez, P. A., Tesmer, M., Perez, C. A., & Zurada, J. M. (2009). Normalized mutual information feature selection. IEEE Transactions on Neural Networks, 20(2), 189–201. https://doi.org/10.1109/TNN.2008.2005601 .Fayyad, U.M., & Irani, K.B. (1993). Multi-Interval Discretization of Continuous-Valued Attributes for Classification Learning. In Proceedings of the International Joint Conference on Uncertainty in AI (pp. 1022–1027). Presented at the International Joint Conference on Uncertainty in AI. https://www.researchgate.net/publication/220815890_Multi-Interval_Discretization_of_Continuous-Valued_Attributes_for_Classification_Learning . Accessed 22 June 2016.Fernández-Diego, M., & González-Ladrón-de-Guevara, F. (2014). Potential and limitations of the ISBSG dataset in enhancing software engineering research: a mapping review. Information and Software Technology, 56(6), 527–544. https://doi.org/10.1016/j.infsof.2014.01.003 .Ferreira, A., & Figueiredo, M. (2011). Unsupervised joint feature discretization and selection. In J. Vitrià, J. M. Sanches, & M. Hernández (Eds.), Pattern recognition and image analysis (Vol. 6669, pp. 200–207). Berlin, Heidelberg: Springer Berlin Heidelberg http://link.springer.com/10.1007/978-3-642-21257-4_25 . Accessed 4 Mar 2016.Fleuret, F. (2004). Fast binary feature selection with conditional mutual information. Journal of Machine Learning Research, 5, 1531–1555.González-Ladrón-de-Guevara, F., Fernández-Diego, M., & Lokan, C. (2016). The usage of ISBSG data fields in software effort estimation: a systematic mapping study. Journal of Systems and Software, 113, 188–215. https://doi.org/10.1016/j.jss.2015.11.040 .Gupta, P., Jain, S., & Jain, A. (2014). A review of fast clustering-based feature subset selection algorithm. International Journal of Scientific & Technology Research, 3(11), 86–91.Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. The Journal of Machine Learning Research, 3, 1157–1182.Hall, M. A., & Holmes, G. (2003). Benchmarking attribute selection techniques for discrete class data mining. IEEE Transactions on Knowledge and Data Engineering, 15(6), 1437–1447. https://doi.org/10.1109/TKDE.2003.1245283 .Hausser, J., & Strimmer, K. (2009). Entropy inference and the James-Stein estimator, with application to nonlinear gene association networks. Journal of Machine Learning Research, 10(Jul), 1469–1484.Hill, P. (2010). Practical software project estimation: a toolkit for estimating software development effort & duration. McGraw Hill Professional.Hsu, H.-H., Hsieh, C.-W., & Lu, M.-D. (2011). Hybrid feature selection by combining filters and wrappers. Expert Systems with Applications, 38(7), 8144–8150.Huang, S.-J., & Chiu, N.-H. (2006). Optimization of analogy weights by genetic algorithm for software effort estimation. Information and Software Technology, 48(11), 1034–1045. https://doi.org/10.1016/j.infsof.2005.12.020 .Huang, S.-J., Chiu, N.-H., & Liu, Y.-J. (2008). A comparative evaluation on the accuracies of software effort estimates from clustered data. Information and Software Technology, 50(9–10), 879–888. https://doi.org/10.1016/j.infsof.2008.02.005 .Huang, J., Li, Y.-F., & Xie, M. (2015). An empirical analysis of data preprocessing for machine learning-based software cost estimation. Information and Software Technology, 67, 108–127. https://doi.org/10.1016/j.infsof.2015.07.004 .ISBSG. (2013a). ISBSG Dataset Release 12. ISBSG. http://isbsg.org/ . Accessed 1 Mar 2016.ISBSG. (2013b). ISBSG Guidelines Release 12.ISBSG. (2013c). ISBSG Data Demographics Release 12.Jeffery, R., Ruhe, M., Wieczorek, I. (2001). Using public domain metrics to estimate software development effort. In Software Metrics Symposium, 2001. METRICS 2001. Proceedings. Seventh International (pp. 16–27). https://doi.org/10.1109/METRIC.2001.915512 .Jiang, Z., & Comstock, C. (2007). The factors significant to software development productivity. In C. Ardil (Ed.), Proceedings of World Academy of Science, Engineering and Technology, Vol 19 (Vol. 19, pp. 160–164). Presented at the Conference of the World-Academy-of-Science-Engineering-and-Technology, Bangkok: World Acad Sci, Eng & Tech-Waset.Jørgensen, M., Indahl, U., & Sjøberg, D. (2003). Software effort estimation by analogy and ‘regression toward the mean’. Journal of Systems and Software, 68(3), 253–262. https://doi.org/10.1016/S0164-1212(03)00066-9 .Kabir, M. M., Shahjahan, M., & Murase, K. (2011). A new local search based hybrid genetic algorithm for feature selection. Neurocomputing, 74(17), 2914–2928.Kadoda, G., Cartwright, M., Chen, L., Shepperd, M. (2000). Experiences using case-based reasoning to predict software project effort. In EASE 2000 (pp. 2–3). Presented at the EASE 2000, Staffordshire, UK.Keung, J., Kocaguneli, E., & Menzies, T. (2012). Finding conclusion stability for selecting the best effort predictor in software effort estimation. Automated Software Engineering, 20(4), 543–567. https://doi.org/10.1007/s10515-012-0108-5 .Kirsopp, C., Shepperd, M. J., Hart, J. (2002). Search heuristics, case-based reasoning and software project effort prediction. In Proceedings of the Genetic and Evolutionary Computation Conference (pp. 9–13). New York, USA. http://v-scheiner.brunel.ac.uk/handle/2438/1554 . Accessed 27 Jan 2016.Kohavi, R., & John, G. H. (1997). Wrappers for feature subset selection. Artificial Intelligence, 97(1–2), 273–324. https://doi.org/10.1016/S0004-3702(97)00043-X .Kwak, N., & Choi, C.-H. (2002). Input feature selection for classification problems. IEEE Transactions on Neural Networks, 13(1), 143–159. https://doi.org/10.1109/72.977291 .Langdon, W. B., Dolado, J., Sarro, F., & Harman, M. (2016). Exact mean absolute error of baseline predictor, MARP0. Information and Software Technology, 73, 16–18. https://doi.org/10.1016/j.infsof.2016.01.003 .Li, Y. F., Xie, M., & Goh, T. N. (2009). A study of mutual information based feature selection for case based reasoning in software cost estimation. Expert Systems with Applications, 36(3), 5921–5931.Liu, H., & Motoda, H. (2012). Feature selection for knowledge discovery and data mining (Vol. 454). Springer Science & Business Media. https://books.google.es/books?hl=en&lr=&id=aaDbBwAAQBAJ&oi=fnd&pg=PP10&dq=Feature+selection+for+knowledge+discovery+and+data+mining&ots=iuMhcWZGcf&sig=KlmNEIcsBdDVs-m1HUuICfpYZiM . Accessed 25 Jan 2016.Liu, H., & Yu, L. (2005). Toward integrating feature selection algorithms for classification and clustering. IEEE Transactions on Knowledge and Data Engineering, 17(4), 491–502. https://doi.org/10.1109/TKDE.2005.66 .Liu, H., Wei, R., & Jiang, G. (2013). A hybrid feature selection scheme for mixed attributes data. Computational and Applied Mathematics, 32(1), 145–161. https://doi.org/10.1007/s40314-013-0019-5 .Liu, Q., Wang, J., Xiao, J., Zhu, H. (2014). Mutual information based feature selection for symbolic interval data. In International Conference on Software Intelligence Technologies and Applications International Conference on Frontiers of Internet of Things 2014 (pp. 62–69). Presented at the International Conference on Software Intelligence Technologies and Applications International Conference on Frontiers of Internet of Things 2014. https://doi.org/10.1049/cp.2014.1537 .Lokan, C. (2005). What should you optimize when building an estimation model? In Software Metrics, 2005. 11th IEEE International Symposium (pp. 1–10). https://doi.org/10.1109/METRICS.2005.55 .Lokan, C., & Mendes, E. (2009a). Investigating the use of chronological split for software effort estimation. Software, IET, 3(5), 422–434. https://doi.org/10.1049/iet-sen.2008.0107 .Lokan, C., & Mendes, E. (2009b). Applying moving windows to software effort estimation. In Proceedings of the 2009 3rd international symposium on empirical software engineering and measurement (pp. 111–122). Washington, DC: IEEE Computer Society. https://doi.org/10.1109/ESEM.2009.5316019 .Lokan, C., & Mendes, E. (2012). Investigating the use of duration-based moving windows to improve software effort prediction. In Software Engineering Conference (APSEC), 2012 19th Asia-Pacific (Vol. 1, pp. 818–827). Presented at the Software Engineering Conference (APSEC), 2012 19th Asia-Pacific. https://doi.org/10.1109/APSEC.2012.74 .Lustgarten, J.L., Visweswaran, S., Grover, H., Gopalakrishnan, V. (2008). An evaluation of discretization methods for learning rules from biomedical datasets. In BIOCOMP (pp. 527–532).Mandal, M., & Mukhopadhyay, A. (2013). An improved minimum redundancy maximum relevance approach for feature selection in gene expression data. Procedia Technology, 10, 20–27. https://doi.org/10.1016/j.protcy.2013.12.332 .Mendes, E., Watson, I., Triggs, C., Mosley, N., & Counsell, S. (2003). A comparative study of cost estimation models for web hypermedia applications. Empirical Software Engineering, 8(2), 163–196.Mendes, E., Lokan, C., Harrison, R., Triggs, C. (2005). A replicated comparison of cross-company and within-company effort estimation models using the ISBSG database. In Software Metrics, 2005. 11th IEEE International Symposium (pp. 1–10). https://doi.org/10.1109/METRICS.2005.4 .Moses, J., Farrow, M., Parrington, N., & Smith, P. (2006). A productivity benchmarking case study using Bayesian credible intervals. Software Quality Journal, 14(1), 37–52. https://doi.org/10.1007/s11219-006-6000-4 .Núñez, H., Sànchez-Marrè, M., Cortés, U., Comas, J., Martínez, M., Rodríguez-Roda, I., & Poch, M. (2004). A comparative study on the use of similarity measures in case-based reasoning to improve the classification of environmental system situations. Environmental Modelling & Software, 19(9), 809–819. https://doi.org/10.1016/j.envsoft.2003.03.003 .Oh, I.-S., Lee, J.-S., & Moon, B.-R. (2004). Hybrid genetic algorithms for feature selection. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 26(11), 1424–1437.Peng, H., Long, F., & Ding, C. (2005). Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(8), 1226–1238. https://doi.org/10.1109/TPAMI.2005.159 .R Core Team. (2015). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing https://www.R-project.org/ .Romanski, P., & Kotthoff, L. (2014). FSelector: Selecting attributes. R package version 0.20. https://CRAN.R-project.org/package=FSelector .Shannon, C. E. (1949). The mathematical theory of communication. Urbana: University of Illinois Press.Shepperd, M., & MacDonell, S. (2012). Evaluating prediction systems in software project estimation. Information and Software Technology, 54(8), 820–827.Shepperd, M., & Schofield, C. (1997). Estimating software project effort using analogies. Software Engineering, IEEE Transactions on, 23(11), 736–743.Somol, P., Pudil, P., & Kittler, J. (2004). Fast branch & bound algorithms for optimal feature selection. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 26(7), 900–912.Song, Q., & Shepperd, M. (2007). A new imputation method for small software project data sets. Journal of Systems and Software, 80(1), 51–62.Top, O. O., Ozkan, B., Nabi, M., Demirors, O. (2011). Internal and External Software Benchmark Repository Utilization for Effort Estimation. In Software Measurement, 2011 Joint Conference of the 21st Int’l Workshop on and 6th Int’l Conference on Software Process and Product Measurement (IWSM-MENSURA) (pp. 302–307). https://doi.org/10.1109/IWSM-MENSURA.2011.41 .Vinh, L.T., Thang, N.D., Lee, Y.-K. (2010). An improved maximum relevance and minimum redundancy feature selection algorithm based on normalized mutual information. In 2010 10th IEEE/IPSJ International Symposium on Applications and the Internet (SAINT) (pp. 395–398). Presented at the 2010 10th IEEE/IPSJ International Symposium on Applications and the Internet (SAINT). https://doi.org/10.1109/SAINT.2010.50 .Witten, I.H., Frank, E., Hall, M.A., Pal, C.J. (2011). Data mining: Practical machine learning tools and techniques. Morgan Kaufmann

    Unsupervised Feature Selection with Adaptive Structure Learning

    Full text link
    The problem of feature selection has raised considerable interests in the past decade. Traditional unsupervised methods select the features which can faithfully preserve the intrinsic structures of data, where the intrinsic structures are estimated using all the input features of data. However, the estimated intrinsic structures are unreliable/inaccurate when the redundant and noisy features are not removed. Therefore, we face a dilemma here: one need the true structures of data to identify the informative features, and one need the informative features to accurately estimate the true structures of data. To address this, we propose a unified learning framework which performs structure learning and feature selection simultaneously. The structures are adaptively learned from the results of feature selection, and the informative features are reselected to preserve the refined structures of data. By leveraging the interactions between these two essential tasks, we are able to capture accurate structures and select more informative features. Experimental results on many benchmark data sets demonstrate that the proposed method outperforms many state of the art unsupervised feature selection methods

    Wavelet feature extraction and genetic algorithm for biomarker detection in colorectal cancer data

    Get PDF
    Biomarkers which predict patient’s survival can play an important role in medical diagnosis and treatment. How to select the significant biomarkers from hundreds of protein markers is a key step in survival analysis. In this paper a novel method is proposed to detect the prognostic biomarkers ofsurvival in colorectal cancer patients using wavelet analysis, genetic algorithm, and Bayes classifier. One dimensional discrete wavelet transform (DWT) is normally used to reduce the dimensionality of biomedical data. In this study one dimensional continuous wavelet transform (CWT) was proposed to extract the features of colorectal cancer data. One dimensional CWT has no ability to reduce dimensionality of data, but captures the missing features of DWT, and is complementary part of DWT. Genetic algorithm was performed on extracted wavelet coefficients to select the optimized features, using Bayes classifier to build its fitness function. The corresponding protein markers were located based on the position of optimized features. Kaplan-Meier curve and Cox regression model 2 were used to evaluate the performance of selected biomarkers. Experiments were conducted on colorectal cancer dataset and several significant biomarkers were detected. A new protein biomarker CD46 was found to significantly associate with survival time
    • …
    corecore