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ABSTRACT

NOVEL BAYESIAN METHODOLOGY IN MULTIVARIATE
PROBLEMS

Debamita Kundu

June 18, 2019

This dissertation involves developing novel Bayesian methodology for multi-

variate problems. In particular, it focuses on two contexts: shrinkage based variable

selection in multivariate regression and simultaneous covariance estimation of multi-

ple groups. Both these projects are centered around fully Bayesian inference schemes

based on hierarchical modeling to capture context-speci�c features of the data and

the development of computationally e�cient estimation algorithm.

Variable selection over a potentially large set of covariates in a linear model is

quite popular. In the Bayesian context, common prior choices can lead to a posterior

expectation of the regression coe�cients that is a sparse (or nearly sparse) vector

with a few non-zero components, those covariates that are most important. The

�rst project extends the global-local shrinkage idea to a scenario where one wishes

to model multiple response variables simultaneously. Here, we have developed a vari-

able selection method for a K-outcome model (multivariate regression) that identi�es

the most important covariates across all outcomes. The prior for all regression co-

e�cients is a mean zero normal with coe�cient-speci�c variance term that consists

of a predictor-speci�c factor (shared local shrinkage parameter) and a model-speci�c

factor (global shrinkage term) that di�ers in each model. The performance of our
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modeling approach is evaluated through simulation studies and a data example.

Covariance estimation for multiple groups is a key feature for drawing infer-

ence from a heterogeneous population. One should seek to share information about

common features in the dependence structures across the various groups. In the sec-

ond project, we introduce a novel approach for estimating the covariance matrices

for multiple groups using a hierarchical latent factor model that shrinks the factor

loadings across groups toward a global value. Using a spike and slab model on these

loading coe�cients provides a level of sparsity in the global factor structure. Param-

eter estimation is accomplished through a Markov chain Monte Carlo scheme, and a

model selection approach is used to determine the number of factors to use. Finally,

a number of simulation studies and a data application are shown to demonstrate the

performance of our methodology.
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CHAPTER 1

INTRODUCTION

1.1 Bayesian Variable Selection for Multi-Outcome Models Through

Shared Shrinkage

In the context of high-dimensional data, it is critical to correctly identify a set of

variables that signi�cantly in�uences the responses and play an important role in

prediction. Consider a set of p potential regressors X1, X2, . . . , Xp and a single re-

sponse variable Y . In order to increase the precision of statistical estimates and

prediction, we often consider a model of the form

Y = β0 +X1β1 +X2β2 + . . .+Xpβp + ε,

where many of the β are exactly zero, so that only the set of q (≤ p) regressors impact

the response Y .

In the Bayesian context there are numerous approaches to the problem of

variable selection. Mitchell and Beauchamp (1988) proposed the �spike and slab�

approach by considering a mixture prior distribution for the regressor coe�cient: a

zero component (spike) and a disperse component (slab). Speci�cally, indicator vari-

ables were used to di�erentiate the important regressors from the rest. When the

indicator assumes the value 0, the prior for the corresponding regression coe�cient

is set to follow a Gaussian with low variance. This is the zero component (spike).

Otherwise, it follows a Gaussian with high variance, representing the disperse com-
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ponent (slab). For this setup, George and McCulloch (1993) suggested stochastic

search variable selection (SSVS) for identifying a �promising� subset. This frame-

work was later extended to incorporate several non-conjugate and conjugate priors

for prior speci�cation (George and McCulloch, 1997). Subsequently, a related class

of variable selection priors that put positive mass at 0 are based on Reversible Jump

(RJ) sampling techniques (Green and Hastie, 2009). However, these selection meth-

ods require updating each regression coe�cient conditionally on all others and tend

to be computationally slow and display poor mixing when used for a large number of

variables.

Hence, shrinkage priors have gained popularity recently as a computation-

ally faster alternative. Rather than using a mixture prior that can set the coe�-

cient exactly to zero, the shrinkage approach employs priors designed to pull small

signals aggressively towards zero. Many of the commonly used shrinkage models

fall within the global-local (GL) shrinkage framework de�ned by Polson and Scott

(2010). In the usual multiple regression setting where the regression coe�cient vector

β = (β1, β2, . . . , βp) is believed to be sparse, the typical GL shrinkage prior for the β

vector would be

βj ∼ N(0, λ2
jτ

2),

λj ∼ f(·), τ ∼ g(·).

In this model τ controls global shrinkage towards the origin, and λ = (λ1, λ2, · · · , λp)

are the local shrinkage parameters that allows deviation in the degree of shrinkage

between predictors. The typical recommendation is that f(·) should have heavy

tails to avoid over-shrinking large signals, and g(·) should have substantial mass near

zero. The Normal-gamma prior (Gri�n and Brown, 2010), the Dirichlet-Laplace

prior (Bhattacharya et al., 2015) and the horseshoe prior (Carvalho et al., 2010)

are three popular methods in this framework. A review and comparison of various

2



variable selection methods including the shrinkage methods can be found in O'Hara

and Sillanpää (2009).

Although much of the literature focuses on the situation of multiple regression

with a single response variable y, the problem of variable selection when simultane-

ously analyzing multiple responses (multivariate regression) is much less explored.

For example, multiple outcomes measuring di�erent aspects of a patient's health

(blood pressure, glucose, etc.) may be modeled using a potentially large set of risk

factor predictors. In many cases, each outcome is analyzed separately with variable

selection performed unique to each outcome, but this will be ine�cient if each model

has the same or a similar set of relevant predictors. However, borrowing strength

across regression coe�cients can boost the power of detecting true signals, especially

if the responses share similar predictors and there is reason to believe that they ex-

ert similar in�uences on the responses. The gain in performance can be substantial

for low to moderate sample sizes and complex noise structures. Instead of applying

variable selection separately for each outcome, Brown et al. (1999, 1998) propose two

approaches based on �nding a common set of predictors for all models by extending

the George and McCulloch's selection model (1993; 1997). However, by requiring

predictors to a�ect either all K outcomes or none of them, their models are often

overly restrictive. Hence, in this work we focus on developing a more �exible vari-

able selection method that encourages the inclusion of similar sets of predictors in

each of the K models by extending the GL shrinkage framework. Recently, Bai and

Ghosh (2018) independently explored a similar setup and proposed their Multivari-

ate Bayesian Model with Shrinkage Priors (MBSP). We will discuss di�erences that

distinguish our work in later sections. In a frequentist setting, Turlach et al. (2005)

proposed a LASSO-based approach with penalties based on the maximum absolute

coe�cient across all outcomes for each predictor.
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1.2 A Bayesian Hierarchical Sparse Factor Model for Simultaneous Co-

variance Estimation

In the analysis of multivariate data, the estimation of the covariance matrix is always

one prime interest. However, when data consist of multiple groups, each may be

determined by its own covariance matrix. In this work, we consider data that consist

of M groups, where the covariance matrix of group m is Ωm (m = 1, 2, . . . ,M). Our

interest is in developing methodology to estimate this collection {Ω1,Ω2, . . . ,ΩM}.

When faced with this scenario, it is not uncommon for the analyst to assume equality

across all Ωms, but this will lead to erroneous inference if there are truly di�erences

across the covariances. Conversely, estimating each Ωm without sharing information

across all groups will lead to ine�cient estimation if there are common structures

shared across groups. Hence, developing a reasonable method for borrowing strength

across groups in the simultaneous covariance estimation problem is paramount for

obtaining trustworthy inference.

In the literature of simultaneous covariance estimation, principal component

methods are a well-established approach. Flury (1984) developed a method with com-

mon eigenvectors to estimate the covariance matrices by considering Ωm = QΓmQ,

where Ωm is the p× p covariance matrix for the mth group, Q is the p× p orthogonal

matrix of eigenvectors that are shared across all groups and Γm is the diagonal matrix

of positive eigenvalues speci�c to group m. Later, Flury (1987) extended this to the

�partial common principal component model� by assuming q (q < p) common eigen-

vectors across all Ωms, and the remaining eigenvectors are group-speci�c. Boik (2002)

broadened the idea to a more general model by sharing the eigenvectors between some

or all groups. Ho� (2009) also developed a hierarchical Bayesian model that shrinks

the eigenvector matrix of each group across the population by using a shrinkage prior

on the matrix of eigenvectors. Besides this usual spectral decomposition, Manly and
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Rayner (1987) and Barnard et al. (2000) proposed decomposing the covariance ma-

trix in terms of the standard deviation matrices (S) and correlation matrices (R), i.e:

Ωm = SmRmSm, and assumed R and S are independent and the correlation matrices

are the same across the groups.

In the context of longitudinal data, there are additional methods based on

the modi�ed Cholesky decomposition of the covariance matrix (Pourahmadi, 1999).

Pourahmadi et al. (2007) highlighted on computational advantages and fundamen-

tal di�erences of the unconstrained parameterization of the Cholesky decomposition

for modelling several covariance matrices simultaneously in comparison to traditional

eigenvalue or variance-correlation decomposition. Unlike the spectral decomposition

and variance-correlation decomposition, the units that appear in the lower triangular

matrix, termed as general autoregressive parameters (GARP) of the Cholesky decom-

position are always unconstrained and hence involves unconstrained maximization

techniques for computing maximum likelihood estimates. McNicholas and Murphy

(2010) considered Gaussian mixture models in order to propose a model-based cluster-

ing framework for longitudinal data, where the modi�ed Cholesky decompositions of

the group covariance matrices are considered to have commonalities across all groups.

Gaskins and Daniels (2012) proposed a family of nonparametric priors based on Dun-

son et al. (2008)'s matrix stick-breaking process. Their method uses the parameters

from modi�ed Cholesky decomposition which includes GARP and the innovation vari-

ances (IV) to parametrize the covariance matrix for each group. Additionally, this

methodology sets some parameters of the Cholesky decomposition to zero to provide

a lower-dimensional structure for the covariance matrix. Later, Gaskins and Daniels

(2016) proposed a related approach that partitions the collection of groups into sets

with common conditional distributions.

As an estimator for a single covariance matrix, latent factor models tradition-

ally play an important role in modeling multivariate dependence structures in the
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behavioral sciences. The essential purpose of factor analysis is to describe as the un-

derlying covariance relationship between many variables in terms of a few unobserved

random quantities, called factors. Consider, a situation where a researcher assembled

a moderate to a large number of predictors for an analysis. In general a p-dimensional

predictor variable has p(p−1)/2 pairwise correlation. However, when p is moderately

large it is very di�cult to summarize and interpret all pairwise correlations together.

The factor model assumes that complex correlation structure can be explained by

some latent linear combinations of fewer variables, leading to a reduction in dimen-

sion. These underlying unobserved random variables are termed as latent factors.

This is a parsimonious model. As the number of latent factors K � p, therefore

instead of p2 terms, we need to deal with only p(K + 1) terms. Further, it makes

interpretation simpler if variables are grouped by their underlying correlation struc-

ture. For example, if we have test scores from di�erent subjects of a group of student,

we may consider as mathematics, vocabulary, physics score as "intelligence" factor,

weight, BMI, energy level as "physical �tness" factor and sociability, gregariousness,

lack of shyness as "psychological" factor.

Selection of the appropriate number of factors is a key issue in such models,

and traditional model selection criteria such as AIC or BIC are standard choices. In a

Bayesian factor model Lopes and West (2004) considered the number of factors itself

to be an unknown parameter. They introduced a customized reversible jump Markov

chain Monte Carlo (RJMCMC) algorithm to sample from the model with a variable

number of factors. Additionally, Ghosh and Dunson (2009) proposed an e�cient

parameter expansion algorithm to improve the computational e�ciency of Bayesian

factor models. Also, Bhattacharya and Dunson (2011) have applied a multiplicative

gamma process shrinkage prior to Bayesian latent factor models to model a sparse

covariance matrix for high-dimensional data by using in�nite number of factors. Due

to its use in several applied areas such as pattern recognition, �nancial time series
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modeling, bioinformatics and computer vision, the theory of factor models analysis

has received huge attention. However, the use of the latent factor model is relatively

uncommon in the context of estimating the multiple covariance matrices.
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CHAPTER 2

BAYESIAN VARIABLE SELECTION FOR MULTI-OUTCOME

MODELS THROUGH SHARED SHRINKAGE

2.1 Introduction

In the context of high-dimensional data, it is critical to correctly identify a set of

variables that signi�cantly in�uences the responses and play an important role in

prediction. Consider a set of p potential regressors X1, X2, . . . , Xp and a single re-

sponse variable Y . In order to increase the precision of statistical estimates and

prediction, we often consider a model of the form

Y = β0 +X1β1 +X2β2 + . . .+Xpβp + ε,

where many of the β are exactly zero, so that only the set of q (≤ p) regressors impact

the response Y .

In the Bayesian context there are numerous approaches to the problem of

variable selection. Mitchell and Beauchamp (1988) proposed the �spike and slab�

approach by considering a mixture prior distribution for the regressor coe�cient: a

zero component (spike) and a disperse component (slab). Speci�cally, indicator vari-

ables were used to di�erentiate the important regressors from the rest. When the

indicator assumes the value 0, the prior for the corresponding regression coe�cient

is set to follow a Gaussian with low variance. This is the zero component (spike).

Otherwise, it follows a Gaussian with high variance, representing the disperse com-
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ponent (slab). For this setup, George and McCulloch (1993) suggested stochastic

search variable selection (SSVS) for identifying a �promising� subset. This frame-

work was later extended to incorporate several non-conjugate and conjugate priors

for prior speci�cation (George and McCulloch, 1997). Subsequently, a related class

of variable selection priors that put positive mass at 0 are based on Reversible Jump

(RJ) sampling techniques (Green and Hastie, 2009). However, these selection meth-

ods require updating each regression coe�cient conditionally on all others and tend

to be computationally slow and display poor mixing when used for a large number of

variables.

Hence, shrinkage priors have gained popularity recently as a computation-

ally faster alternative. Rather than using a mixture prior that can set the coe�-

cient exactly to zero, the shrinkage approach employs priors designed to pull small

signals aggressively towards zero. Many of the commonly used shrinkage models

fall within the global-local (GL) shrinkage framework de�ned by Polson and Scott

(2010). In the usual multiple regression setting where the regression coe�cient vector

β = (β1, β2, . . . , βp) is believed to be sparse, the typical GL shrinkage prior for the β

vector would be

βj ∼ N(0, λ2
jτ

2),

λj ∼ f(·), τ ∼ g(·).

In this model τ controls global shrinkage towards the origin, and λ = (λ1, λ2, · · · , λp)

are the local shrinkage parameters that allows deviation in the degree of shrinkage

between predictors. The typical recommendation is that f(·) should have heavy

tails to avoid over-shrinking large signals, and g(·) should have substantial mass near

zero. The Normal-gamma prior (Gri�n and Brown, 2010), the Dirichlet-Laplace

prior (Bhattacharya et al., 2015) and the horseshoe prior (Carvalho et al., 2010)

are three popular methods in this framework. A review and comparison of various

9



variable selection methods including the shrinkage methods can be found in O'Hara

and Sillanpää (2009).

Although much of the literature focuses on the situation of multiple regression

with a single response variable y, the problem of variable selection when simultane-

ously analyzing multiple responses (multivariate regression) is much less explored.

For example, multiple outcomes measuring di�erent aspects of a patient's health

(blood pressure, glucose, etc.) may be modeled using a potentially large set of risk

factor predictors. In many cases, each outcome is analyzed separately with variable

selection performed unique to each outcome, but this will be ine�cient if each model

has the same or a similar set of relevant predictors. However, borrowing strength

across regression coe�cients can boost the power of detecting true signals, especially

if the responses share similar predictors and there is reason to believe that they ex-

ert similar in�uences on the responses. The gain in performance can be substantial

for low to moderate sample sizes and complex noise structures. Instead of applying

variable selection separately for each outcome, Brown et al. (1999, 1998) propose two

approaches based on �nding a common set of predictors for all models by extending

the George and McCulloch's selection model (1993; 1997). However, by requiring

predictors to a�ect either all K outcomes or none of them, their models are often

overly restrictive. Hence, in this work we focus on developing a more �exible vari-

able selection method that encourages the inclusion of similar sets of predictors in

each of the K models by extending the GL shrinkage framework. Recently, Bai and

Ghosh (2018) independently explored a similar setup and proposed their Multivari-

ate Bayesian Model with Shrinkage Priors (MBSP). We will discuss di�erences that

distinguish our work in later sections. In a frequentist setting, Turlach et al. (2005)

proposed a LASSO-based approach with penalties based on the maximum absolute

coe�cient across all outcomes for each predictor.

The layout of this manuscript is as follows. In section 2.2, we describe a general

10



strategy for GL shrinkage in multivariate regression. and explore details when paired

with the 3 common GL models, Normal-gamma, Dirichlet-Laplace, and horseshoe, as

well as relevant posterior consistency results. Section 2.3 discusses posterior sampling

for each of these models, and Section 2.4 considers simulation studies to explore the

performance of our model. In Section 2.5 we analyze a real data set based on the

yeast cell cycle data (Chun and Kele³, 2010), and we conclude with a brief discussion

in Section 2.6.

2.2 Multi-outcome Regression Coe�cient Shrinkage Model

2.2.1 General Strategy

Consider a multi-outcome (multivariate) model with K outcomes/responses, p covari-

ates and n independent observations. We write the multivariate regression model in

the following form,



y11 y12 . . . y1K

y21 y22 . . . y2K

...
...

. . .
...

yn1 yn2 . . . ynK


=



x11 x12 . . . x1p

x21 x22 . . . x2p

...
...

. . .
...

xn1 xn2 . . . xnp





β11 β12 . . . β1K

β21 β22 . . . β2K

...
...

. . .
...

βp1 βp2 . . . βpK


+ ε, (2.1)

where Yi·, the i
th row of the n× k matrix Y , consists of the K responses for the ith

observation andXi· is the i
th row of the model matrixX which contains the p predictor

variables for this observation. The matrix of regression coe�cients B is believed to

be sparse. Further, as each row of B corresponds to the regression coe�cients of

predictor j on each of the K responses, we expect similar sparsity across the row. ε is

the n×K residual matrix. Under the normality assumption, each row of the residual

matrix follows a NK(0,Ψ) distribution independently. For simplicity, we ignore the
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intercept terms for right now. Note also that throughout we assume that the columns

of Y and X have been standardized. This gives a multivariate normal distribution

for the vector of responses for patient i, Yi· ∼MVNK (Xi.B,Ψ).

Variable selection is induced through the choice of prior on the B matrix.

Our approach is to extend the global-local shrinkage framework to jointly model

multiple responses. The general idea of our method is to share information about

the importance of a covariate across all response models through a local-shrinkage

parameter λ = (λ1, λ2, . . . , λp) and use a response-speci�c global shrinkage parameter

τ = (τ1, τ2, . . . , τK) to allow for di�erent scalings of the regression coe�cients in

the di�erent response models. Following the usual GL framework, our prior for the

coe�cient matrix B comes from the following general hierarchy,

βjk ∼ N(0, λ2
jτ

2
k ), (j = 1, 2, · · · , p, k = 1, 2, · · · , K) ,

λj ∼ f(·),

τk ∼ g(·).

(2.2)

The choices of the local distribution f(·) and the global distribution g(·) can

be borrowed from any of the common global-local models. In particular, we fo-

cus on the utility of this approach under the following three choices: the Normal-

gamma prior (Gri�n and Brown, 2010), the horseshoe prior (Carvalho et al., 2010),

and the Dirichlet-Laplace prior (Bhattacharya et al., 2015). The value of the local

parameter λj will encourage similar levels of shrinkage/sparsity for all coe�cients

(βj1, βj2, · · · , βjK) of the jth predictor. Following the usual GL shrinkage rules, we

choose the local distribution f(·) to have heavy tails and g(·) to have substantial

mass near zero (Polson and Scott, 2010). A large λj allows βjk (k = 1, 2, . . . , K) coef-

�cients far from zero, whereas a small λj will ensure all coe�cients for predictor j are

aggresively shrunk toward zero. Note that if there is only a single response K = 1,

then our approach is exactly equivalent to the usual global-local framework. Finally,
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note that the general framework (2.2) speci�es the distributions f(·) and g(·) for the

global and local parameters on the scales of the standard deviation of βjk. In some

cases, it may be more natural for f(·) and/or g(·) to represent the distribution for

the variance contributions λ2
j and τ

2
k , respectively.

Despite similarities of our framework to that of Bai and Ghosh (2018), there are

several key di�erences between our approaches. First, their MBSP model speci�es

a common value τ for the global τk parameters across all models. Further, this

parameter is a priori �xed based on asymptotic arguments. Conversely, we recognize

that there may be variability in the global scale of the coe�cients between response

models, and we allows di�ering τk which are estimated from the data. Secondly,

MBSP speci�es the column covariance of B to be proportional to Ψ, the residual

covariance matrix. This choice facilitates additional conjugacy in their sampler, but

we opt to allow the columns of B to be independent (given the τks) as a more intuitive

choice. As will be shown in Section 2.3, we are able to retain a high degree of conjugacy

and develop an e�cient posterior sampler.

Having de�ned our general approach, we now focus on three versions of our

methodology by using common shrinkage models.

2.2.2 Multi-outcome Normal-gamma Model

First, we apply the Normal-gamma shrinkage prior from Gri�n and Brown (2010)

to our method. We refer this model as the Multi-outcome Normal-gamma Model
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(MONG). This yields the following hierarchy:

βjk ∼ N(0, λjτ
2
k ), (j = 1, 2, . . . , p; k = 1, 2, . . . , K) ,

λj ∼ Gamma

(
c,

1

c

)
,

τk ∼ C+ (γ) ,

c ∼ Exp(λc).

(2.3)

In (2.3), λj comes from a Gamma
(
c, 1

c

)
distribution such that the prior mean

is 1 and variance is 1
c
. Hence, small values of c will induce greater variability within

the λs and more shrinkage. The tail of βjk thickens with increasing c. A common

special case involves setting c = 1 which provides the Bayesian LASSO (Park and

Casella, 2008). For the prior distribution of τ , we consider a half-Cauchy distribution

with density f(x) = 2γ
π(γ2+x2)

, x > 0. The intuition behind considering half-Cauchy

prior for global shrinkage parameter is its non-zero density near the origin with thick

tails in the extremes. We recommend setting the scale parameter of this half-Cauchy

to γ = 0.5 to provide a reasonably dispersed distribution for the τs, and this choice

has performed well in empirical studies. For the hyper-parameter c we consider an

exponential density with mean 2 to encourage slightly thicker tails in βjk than the

Bayesian LASSO.

2.2.3 Multi-outcome Horseshoe Model

The horseshoe prior is one of the most appealing and commonly used shrinkage priors

in the literature. It became popular due to its in�nitely tall spike in the density near

the origin that shrinks almost everything towards zero and its �at, Cauchy-like tails

that allow some parameters to escape from shrinkage. The conventional horseshoe

prior places half-Cauchy priors on both the local and global contributions to the

standard deviation. The Multi-outcome Horseshoe Model (MOHS) is de�ned by the

14



following hierarchy:

βjk ∼ N(0, λ2
jτ

2
k ),

λj ∼ C+ (1) ,

τk ∼ C+ (1) .

(2.4)

In its usual form, the model (2.4) is not conjugate, making implementation in

a standard Gibbs sampling scheme di�cult and time-consuming. However, Makalic

and Schmidt (2016) proposed an e�cient, conditionally conjugate sampling algorithm

for fast updating by introducing data augmentation variables from an inverse gamma

distribution. Since the marginal distribution of χ from the hierarchy χ2 | Υ ∼

IG
(

1
2
, 1

Υ

)
and Υ ∼ IG

(
1
2
, 1
)
is C+ (1), we equivalently write this model as

βjk ∼ N
(
0, λ2

jτ
2
k

)
,

λ2
j ∼ IG

(
1

2
,

1

νj

)
,

τ 2
k ∼ IG

(
1

2
,

1

ωk

)
,

ν1, ν2, . . . , νp, ω1, ω2, . . . , ωK ∼ IG

(
1

2
, 1

)
.

(2.5)

Note that we de�ne IG to have density function f(x | α, β) = βα

Γ(α)
x−α−1e−

β
x , x > 0.

In both the MONG and MOHS versions, we may use the λ parameters to judge

the importance of a predictor across all responses. The larger the local parameter

the less shrinkage in the regression coe�cients and the greater the predictive power.

Hence, the estimated λ̂j can be used as a summary of the importance of predictor

j across all K models. In both cases, we may compare this value relative to 1, the

prior mean for λj in MONG and the prior median in MOHS.

15



2.2.4 Multi-outcome Dirichlet-Laplace Model

In a similar manner, we also de�ne the Multi-outcome Dirichlet-Laplace Model (MODL).

Like the previous GL methods, the DL model considers the dispersion of the jth coef-

�cient to be a contribution of local and global scaling terms. However, the conditional

distribution of the coe�cient is Laplace (double exponential) instead of the usual nor-

mal distribution. While this may not technically fall in Polson and Scott (2010)'s GL

framework, it is clearly in the same spirit, and can be paired with our multi-outcome

shrinkage framework. The proposed MODL model has the following speci�cation

βjk ∼ DE (φjτk) ,

τk ∼ Gamma

(
pa,

1

2

)
,

φ = (φ1, φ2, . . . , φp) ∼ Dirichlet (a, a, . . . , a) ,

(2.6)

where a is concentration parameter of the Dirichlet distribution. In this model the

local parameters φj sum to one, and smaller values of a will lead φ to be dominated

by a few components. Since the majority of the DE scales φjτk will be approximately

zero, sparsity in the βjk is achieved. As recommended by Bhattacharya et al. (2015),

we considered a = 1
2
or a = 1

p
for our simulation and case study.

Similar to the HS model (2.5), we can introduce auxiliary variables to facilitate

sampling. One may represent the βjk ∼ DE (φjτk) as scale mixture of normals

through βjk | ηjk ∼ N
(
0, ηjkφ

2
jτ

2
k

)
with ηjk ∼ Exp

(
1
2

)
. Similar to using λ̂ to evaluate

predictor relevance in the MONG and MOHS models, in this MODL proposal we can

compare the estimated φjs to their prior mean 1/p. Again, larger values indicate less

shrinkage and greater predictor relevance across all outcomes.

Across all models for the regression coe�cients the residual covariance matrix

is given an inverse Wishart prior withK+2 degrees of freedom and the identity matrix

as the prior scale matrix. This gives the prior mean for Ψ as the identity matrix. As
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is common, we recommend responses and predictors be centered and scaled prior to

analysis.

2.2.5 Posterior Consistency

In this section, we present a result guaranteeing posterior consistency in our model

structure. For this proof, we will assume that the residual covariance matrix Ψ is �xed

and known. We �rst state the assumptions before proving our consistency result.

Assumptions:

(A1) The prior π(B) is continuous in B over all of Rp×K .

(A2) The vector of covariates are uniformly bounded. That is, there exist G > 0 such

that ||Xi·||< G for all i = 1, . . . , n.

(A3) The smallest eigenvalue of the design matrix is asymptotically bounded away

from zero. There exists c > 0 such that lim infn→∞ λ1( 1
n
X ′X) > c, where λ1(M)

refers to the smallest eigenvalue of the matrix M .

Note that (A1) represents a much more general class of prior models than our

GL shrinkage framework, although our proposal clearly falls within this assumption.

Throughout, we use the Frobenius norm, ||M ||=
√∑

i,j(mij)2. Note also that any

deterministic functions of the n × p design matrix X depends on the sample size n.

To avoid cumbersome notation we typically suppress the dependence on n and refer

to it as simply X.

First, we state our key theorem about posterior consistency.

Theorem 1. Assume a �xed, positive de�nite Ψ and assumptions (A1)-(A3). Let

Y1·, . . . , Yn· be iid from model (2.1) under the true parameter value B0. Then for any

ε > 0,

PB0 { ||B −B0||> ε | Y1·, . . . , Yn·} → 0, a.s. as n→∞.
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That is, the posterior distribution for B almost surely collapses to the true

value B0 as n→∞.

This proof along with the associated lemmas appears in the Appendix. It

builds upon Schwartz's seminal proof (Schwartz, 1965), in combination with results for

regression models from Amewou-Atisso et al. (2003) and Choi and Schervish (2007).

The argument mainly relies on the existence of an uniformly exponentially consistent

(UEC) sequence of tests and a prior positivity property. The latter in Schwartz's

original proof was simply the condition that the prior mass on all Kullback�Leibler

(KL) neighborhoods of the true parameter is greater than zero. However, as we show

in the Appendix, this KL framework must be modi�ed into a multi-index version for

its use in models with covariates. Both of these two conditions are derived as separate

lemmas that can be combined to give posterior consistency. See the Appendix for full

details.

An important feature of Theorem 1 is its �exible prior condition stated in (A1).

This relaxation comes at a cost, mainly assumption (A2), which essentially bounds

the entries of the design matrix. In contrast, Bai and Ghosh (2018) assume upper

and lower (asymptotic) bounds on the eigenvalues of the design matrix. However, the

�exibility gained under our choice is signi�cant, as we require no condition (except

continuity) on the prior for B. This is much more general than the assumptions made

in the consistency theorems of Bai and Ghosh (2018) and Armagan et al. (2013). Their

choices require conditions on the prior with convoluted formulas involving Ψ and the

eigenvalues of the design matrix, thus restricting the choice of prior on B in ways

that are not straightforward.

2.3 Posterior Computation

As with most modern Bayesian models, inference is performed by approximating the

posterior through Markov chain Monte Carlo (MCMC) methods. We describe the
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necessary sampling steps for each of our three models below.

2.3.1 MONG Model

(i) Sample vec(B) | X,Ψ, λ, τ fromMVNpK (M,W ), whereW =
((

Ψ−1 ⊗XTX
)

+ Ω−1
)−1

and M = W
(
Ψ−1 ⊗XT

)
vec(Y ). Here, Ω = T ⊗Λ the prior covariance matrix

of vec(B), Λ = diag(λ1, λ2, · · · , λp) and T = diag(τ 2
1 , τ

2
2 , · · · , τ 2

K). Throughout,

we let ⊗ denote the Kronecker product.

(ii) For j = 1, 2, · · · , p, sample λj | βjk, τk, c ∼ giG
(
c− K

2
, 2c,

∑K
k=1

β2
jk

τ2k

)
, where

giG (κ, χ, ρ) is the generalized inverse Gaussian distribution with density f (x;κ, χ, ρ) ∝

xρ−1e−
1
2(κx+χ

x ), x > 0.

(iii) The posterior density of τk does not have a conjugate distribution. The condi-

tional posterior sampling distribution of τk is given by

π (τk | βjkλj) ∝ τ−pk exp

[
− 1

τ 2
k

p∑
j=1

β2
jk

2λj

]
γ2

(τ 2
k + γ2)

.

For each k = 1, 2, · · · , K, an adaptive Metropolis-Hastings (MH) step is applied

to attempt an update to τk, based on algorithm 4 of Andrieu and Thoms (2008)

applied to τk.

(iv) Similarly, c does not have a conjugate sampling density. The conditional pos-

terior density of c is given by

π (c | λ1, λ2, . . . , λp) ∝
ccp

Γ (c)p
exp

[
−c

(
λc +

p∑
j=1

λj

)
+ (c− 1)

p∑
j=1

log λj

]
, c > 0.

An adaptive MH step based on the Andrieu and Thoms (2008) algorithm is also

performed here.

(v) Ψ is drawn from Inv−Wishart (υ0 + n, S0 + S), where S = (Y −XB)T (Y −XB).
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2.3.2 MOHS Model

Sampling steps for MOHS model are described below.

(i) Sampling distribution for vec (B) | X,Ψ, λ, τ is the same as in MONG step (i),

except Λ = diag(λ2
1, λ

2
2, · · · , λ2

p) here.

(ii) For j = 1, 2, · · · , p, sample λ2
j | βjk, τk, νj ∼ IG

(
K+1

2
, 1
νj

+
∑K

k=1

β2
jk

2τ2k

)
.

(iii) For k = 1, 2, · · · , K, sample τ 2
k | βjk, λj, εk ∼ IG

(
p+1

2
, 1
ωk

+
∑p

j=1

β2
jk

2λ2j

)
.

(iv) For j = 1, 2, · · · , p, sample νj | λj ∼ IG
(

1, 1 + 1
λ2j

)
.

(v) For k = 1, 2, · · · , K, sample ωk | τk ∼ IG
(

1, 1 + 1
τ2k

)
.

(vi) Sample Ψ | B ∼ Inv −Wishart (υ0 + n, S0 + S).

2.3.3 MODL Model

For the original DL speci�cation, (Bhattacharya et al., 2015) propose a block sampler

that involves marginalizations over di�erent sets of parameters. Due to sharing φjs

across multiple outcome models, this is no longer feasible in our MODL model (2.6),

and we require (adaptive) Metropolis-Hasting to jointly sample the vector (φ1, . . . , φp)

of local parameters. Sampling steps are as follows:

(i) First sample vec(B) | X,Ψ, φ, η, τ from MVNpK (M,W ). The conditional

posterior distribution of vec(B) is as in the case of NG prior except Ω =

diag
(
ηjkφ

2
jτ

2
k

)
.

(ii) For k = 1, 2, · · · , K, sample τk | βjk, φ (marginalizing over η) from a generalized

inverse Gaussian distribution giG
(
pa− p, 1, 2

∑p
j=1

βjk
φj

)
.
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(iii) The conditional posterior density of φ|B, τ (marginalizing over η) is proportional

to

π (φ1, φ2, . . . , φp | B, τ) ∝
p∏
j=1

φa−K−1
j exp

[
− 1

φj

K∑
k=1

| βjk |
τk

]
, (2.7)

where φ resides in the (p− 1)-dimensional simplex. We have used an adap-

tive MH algorithm by extending algorithm 4 of Andrieu and Thoms (2008) for

sampling φ. We sample from distribution (2.7) as described below:

• At the tth iteration, sample the proposed move by

(
φ∗1, φ

∗
2, . . . , φ

∗
p

)
∼ Dirichlet

(
ζ(t)φ1, ζ

(t)φ2, . . . , ζ
(t)φp

)
. (2.8)

The ζ(t) is a positive tuning parameter that controls the dispersion of

the proposal distribution. Note that this choice behaves similarly to a

random walk with Eφ∗j = φj and V ar
(
φ∗j
)

=
φj(1−φj)

1+ζ(t)
. The variance of our

candidate is inversely related to ζ(t).

• Calculate the MH probability α = min

(
1,

π(φ∗|B,τ) g(φ1,φ2,...,φp|φ∗1,φ∗2,...,φ∗p)
π(φ|B,τ) g(φ∗1,φ∗2,...,φ∗p|φ1,φ2,...,φp)

)
,

where g(·) is the proposal distribution (2.8). With probability α, we accept

the proposed value φ∗ =
(
φ∗1, φ

∗
2, . . . , φ

∗
p

)
, and otherwise, we retain the

current φ = (φ1, φ2, . . . , φp).

• Updating the tuning parameter ζ :

log(ζ(t+1)) = log(ζ(t))− γ(t+1) (α− α∗) ,

where α∗ = 0.24 is the ideal acceptance probability and the step size is

γ(t) = min
(

500−
1
2 , t−

1
2

)
.

(iv) Sample η−1
jk | βjk, φ, τ independently from Inv − Gaussian

(
1,

φjτk
|βjk|

)
. The

Inverse Gaussian distribution is de�ned by the density function f (x;µ, θ) =
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(
θ

2πx3

) 1
2 exp

[
− θ(x−µ)2

2µ2x

]
, x > 0.

(v) Sample Ψ | B ∼ Inv −Wishart (υ0 + n, S0 + S).

2.4 Simulation study

Here we implement simulation studies to evaluate the performance of our method-

ology. In addition to our MONG, MOHS, and MODL methods, we consider the

following competitors:

• Naive Normal-gamma Model: To assess the utility of sharing the local

parameters across all response variables, we consider an approach that fails

to make use of this information by independently placing a NG prior on the

vector of regression coe�cients (β1k, β2k, · · · , βpk) for each model k. This naive

model is unable to borrow strength across models to inform the shared level of

sparsity. To that end, βjk ∼ N (0, λjkτ
2
k ), where all λjk are independent from

Gamma
(
c, 1

c

)
. The rest of the model is una�ected.

• Naive Horseshoe Model: Similar to the naive NG model, we consider ap-

plying a horseshoe prior independently for each response. In this case, βjk ∼

N
(
0, λ2

jkτ
2
k

)
, with all λjk independently from C+(1).

• Naive Dirichlet-Laplace Model: We also consider a naive version of DL

prior. To that end, we let βjk ∼ DE (φjkτk). Here, independent local shrinkage

parameters are drawn for each response model k: φk = (φ1k, φ2k, · · · , φpk) ∼

Dir(a, a, . . . , a).

• No Shrinkage Model: As a baseline that does not favor any variable selection,

we consider a basic conjugate prior model. For all j, k, βjk ∼ N (0, 10) to provide

minimal shrinkage towards zero.
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• Selection Prior (Brown et al., 1998) Model: As noted in the introduction,

this approach constrains each predictor to either be in the model of all K

responses or to be excluded from all.

• MBSP Model (Bai and Ghosh, 2018): As previously noted, this approach

is similar to our MOHS model where the global parameter τ is common across

all responses and �xed by asymptotic arguments, rather than estimated from

the data. The performance of this model is obtained using their available R

package MBSP.

Data are generated from the multi-response linear regression model (2.1) us-

ing a design matrix Xn×p whose elements are independently drawn from a standard

normal distribution. Then, rows of the response matrix Y n×p are independently gen-

erated from NK (Xi·B,Ψ), where Ψij = 0.5 if i 6= j, and 1 otherwise. We consider

p = 20 predictors, K = 10 response variables, and a sample size of n = 500. We

generate 100 datasets, and for each dataset and model choice we run the MCMC

chain for 90,000 iterations with a burn-in of 10,000 iterations. We measure predic-

tive performance by computing the mean square prediction error (MSPE) using the

posterior mean regression coe�cients B̂ and an independently generated test data

set. To assess the accuracy of the regression coe�cient estimation, we consider the

sum of square errors (SSE). To distinguish between error of over-shrinking relevant

signals and under-shrinking non-signals, we partition this SSE into the SSE over the

true non-zero βjks and the SSE for the βjks that are true zeros. These quantities are

determined by the following formulas:

MSPE =
1

Kntest

K∑
k=1

ntest∑
i=1

(
X

(t)
i· B̂·k − Y

(t)
ik

)2

SSE =
K∑
k=1

p∑
j=1

(
β̂jk − βjk

)2

,

where ntest is the number of observations in the test dataset (ntest = 500), and Y (t)

and X(t) denote respectively the response and design matrices for the test set. We
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consider two scenarios for choosing the true regression coe�cient structure. First,

we consider a simple sparse B(0) matrix (Table 2.1), where each covariate is either

important for all responses or has no contribution to the mean of any response. Table

2.3 presents the results for this case.

Comparing each of our multi-outcome models to their respective naive versions,

we �nd reduced MSPE in all cases. While the di�erence in MSPE between models

are relatively minor, there are large improvements in the coe�cient estimation. Our

shared shrinkage models lead to reduction in total SSE of around 50% when compared

to the respective naive version. When looking at the two components of SSE, we see

clear improvement in the estimation of the coe�cients that are truly zero. That is,

by sharing the local parameters across the K outcome models, our model is able to

better identify those coe�cients that should be aggressively shrunk toward zero. Our

proposed model also yields similar level of predictive performance with the selection

prior approach (Brown et al., 1998), which is perfectly suited to this choice of B(0).

We note that the model without shrinkage is not competitive due to its large

SSE in the zero coe�cients. Also the naive DL with a = 1
p
performs poorly in

estimating the non-zero coe�cients. Setting a = 1
p
provides a much stronger level of

shrinkage than the a = 0.5 case. For the naive DL model, we do see more shrinkage

under a = 1
p
than a = 0.5, but by sharing shrinkage information across multiple

responses, our MODL model is able to �nd an acceptable balance in the amount of

shrinkage under both choices of a.

Next, we consider a situation that does not have the exact same sparse struc-

ture for each response model. There are two important considerations for such a

choice. First, in light of our original motivation, we are interested in a more �exible

model than those require the same subset of predictors for all responses. We wish

to assess the performance of our model in such a case where there are variations in

the relevant predictors across models. An alternative motivation is to understand the
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impact of misspeci�cation for models that assume the exact same subset of relevant

predictors across all outcomes. To that end, the new true coe�cient matrix B(1) in

Table 2.2 is created by perturbing B(0) so that the true model no longer has exact

sparsity across all models. We switch three of the zero coe�cients from B(0) to non-

zero βjk and also change three non-zero coe�cients in B(0) to zero (as denoted in

bold). This potentially represents a more realistic scenario where a small subset of

predictors impact all responses, but there are some minor deviations from this general

rule.

The results for this simulation settings are reported in the Table 2.4 and are

generally similar to the previous analysis. As would be expected, the gap between

the shared shrinkage and the naive approaches is somewhat narrowed, but the pro-

posed approaches continue to show lower MSPE and lower SSE than their naive

counterparts in all cases. Hence, even if there are some di�erences in which predic-

tors are relevant across models, sharing shrinkage information through our common

local parameter structure can continue to improve estimation. The selection prior

approach and MBSP model also show similar prediction performance, although both

have poorer performance in the coe�cient estimation relative to our approach. Of

particular note, the MBSP has fairly large SSE for the zero signals, indicating a

lower level of shrinkage than our proposals. Our model estimates the global parame-

ters from the data to adjust the amount of shrinkage, whereas MBSP �xes τ and is

unable to correct for undershrinkage in this data.

In conclusion, our three multi-outcome models perform well in those simulation

studies. Using a = 1
p
in the MODL model may lead to overshrinking, so we typically

prefer a = 0.5. While the di�erences between methods are relatively minor, MONG

tends to perform best among our proposals.
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2.5 Application

We now demonstrate our methodology with the yeast cell cycle data set (Spellman

et al., 1998) from the spls package in R. The data was �rst analyzed by Chun and

Kele³ (2010) and also by Bai and Ghosh (2018). In this dataset, the response matrix

Y contains gene expression data for n = 542 genes from an α factor based experiment.

Each column of Y corresponds to mRNA levels measured at 7 minute intervals across

2 hours providing a total of K = 18 responses. The covariate matrix X contains the

binding information for p = 106 transcription factors (TFs). In molecular biology,

transcription factors are a diverse family of proteins which are involved in the process

of transcribing, DNA into RNA. Hence, it is of common interest to identify the most

signi�cant TFs that play an important role in gene regulations.

We applied our method to capture those TFs that a�ect the expression levels

across all time points. We perform the analysis using our proposed MONG, MODL,

and MOHS models, followed by the three naive models, the no shrinkage model, the

selection model (Brown et al., 1998) and the MBSP model (Bai and Ghosh, 2018).

Due to over-shrinkage observed in the MODL
(
a = 1

p

)
model, we do not consider its

performance here. For each case, we run a burn-in for 1000 iterations followed by

another 30,000 iterations. We report the MSPE by performing cross validation on

50 data sets for each model to assess the predictive power of each method. For cross

validation we randomly assign 80% of observations to the training set to estimate B,

and then measured the MSPE using the remaining 20%. We also analyze the full

dataset and compute the deviance information criteria DIC as a model comparison

measure (Spiegelhalter et al., 2002). DIC is calculated by DIC = D + 2pD, where

D is the deviance at the posterior expectation of the parameter values and pD is the

e�ective number of parameters, and smaller DICs are favored. pD is calculated as

pD = E {D (B,Ψ|Y )} − D(Ψ̂, B̂). Table 2.5 shows the MSPE, the deviance at the

26



posterior expectation of the parameter values (D), the e�ective number of parameters

(pD), and the deviance information criteria (DIC) of the yeast cycle data for each

model.

The MODL(a = 0.5) choice yields the lowest prediction error among our mod-

els. Consistent with the simulation study, each of the multi-outcome approaches have

smaller MSPE than their respective naive counterparts. The MONG and MOHS

model also yield a lower mean square prediction error by slightly outperforming the

selection prior model.

When using the competitor MBSP model, the prediction error is 0.786, scoring

lowest among all approaches. It appears that for this particular data application,

using a �xed value of τ performs slightly better than our methods which require

estimating K = 18 global parameters. However, as noted in the simulation study,

this is not always the case, and worse performance may result. Finally, we note that

the R package of MBSP model only produces model estimates and not the full set

of posterior samples. So we were unable to compute DIC estimates for the MBSP

model.

The DIC criteria favors the MONG and MOHS models. When considering the

e�ective number of parameters, we see that these models estimate a much sparser

regression coe�cient matrix than MODL. When comparing DIC between the shared

shrinkage and naive models, we again see that our proposals consistently dominate

their counterparts that fail to share variable selection information between responses.

The selection approach from Brown et al. (1998), which requires a common set of

predictors for all models performs poorly with respect to DIC. This model places the

majority of the posterior probability on models with only 2 or 3 predictors. This

excessive sparsity leads to high prediction error, poor model �t, and large DIC.

Based on the results from �tting the full data set, we consider the use of the

local parameters as a marker of variable importance. Figure 1 graphically displays
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these parameters for each of the multi-outcome models. Based on the MONG results,

we would consider those covariates with λ̂j > 1 as evidence of a strong e�ect across

all response models. This criterion selects 8 important TFs: SWI5, SWI6, NDD1,

ACE2, STE12, HIR1, GAT3, MBP1. The 8 predictors with the largest λ̂j in the

MOHS model corresponds to the same 8 TFs, indicating robustness in the predictor

weights across the model variations. Consistent with its large pD indicating less

sparsity, the MODL choice demonstrates much less separation between large and

small φj and consequently less shrinkage/sparsity in the B̂ matrix. For this MODL

case, distinguishing important predictors based on the value of the local parameters

will not be e�ective.

2.6 Conclusion and discussion

In this paper, we have proposed a general strategy of variable selection in the multi-

variate regression model by sharing common local parameters across all of the response

variables. We have demonstrated our approach using the Normal-gamma, Dirichlet-

Laplace and horseshoe priors. Based on the results from simulation studies and the

analysis of data from an mRNA experiment, we have demonstrated the utility of our

approach in comparison to alternatives. Our approaches are found to be superior

in terms of both predictive performance and parameter estimation. In general, we

recommend the use of the MONG version of our model as it displayed consistently

strong behavior across all empirical experiments, although the MODL and MOHS

also performed well.

Regarding computational comparisons between our methods, the MOHS model

tends to run fastest as all of its sampling distributions are conditionally conjugate.

While slightly slower, MONG has comparable computational time for a �xed number

of iterations. However, the MODL model tends to be computationally slower due

to the sampling of pK data augmentation parameters ηjk. Moreover, as noted in
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Section 2.3, the mixing in this algorithm tends to be slower due to the multivariate

MH sampling of φ = (φ1, . . . , φp). While our adaptive step is generally e�ective here,

further algorithmic improvements may be possible here in future research.
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2.7 Tables and Figures

Table 2.1: True B(0) regression coe�cient matrix in �rst simulation study.

B(0) =



2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
−3.0 −3.0 −3.0 −3.0 −3.0 −3.0 −3.0 −3.0 −3.0 −3.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
...

...
...

...
...

...
...

...
...

...
0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0


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Table 2.2: True B(1) regression coe�cient matrix in second simulation study.

B(1) =



2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
−3.0 −3.0 −3.0 −3.0 −3.0 −3.0 −3.0 −3.0 −3.0 −3.0
1.0 1.0 0 1.0 0 1.0 1.0 1.0 1.0 1.0
0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0
...

...
...

...
...

...
...

...
...

...
0.0 0.0 0.0 0.0 0.0 0.0 1.5 0.0 0.0 0.0
...

...
...

...
...

...
...

...
...

...
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.3 0.3 0.3 0.3 0 0.3 0.3 0.3 0.3 0.3
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0



31



Table 2.3: Prediction and estimation results from simulation study with B(0).

Models MSPE

SSE

All β β 6=0 β=0

MONG 1.028 0.097 0.095 0.002

MODL(a = 0.5) 1.029 0.098 0.089 0.009

MODL(a = 1/p) 1.032 0.125 0.112 0.013

MOHS 1.030 0.113 0.099 0.014

Naive NG 1.040 0.205 0.167 0.038

Naive DL(a = 0.5) 1.036 0.176 0.104 0.073

Naive DL(a = 1/p) 1.079 0.564 0.547 0.016

Naive Horseshoe 1.040 0.203 0.111 0.092

No shrinkage 1.059 0.416 0.080 0.337

Selection prior 1.028 0.134 0.134 0.000

MBSP model 1.029 0.104 0.092 0.012
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Table 2.4: Prediction and estimation results from simulation study with B(1).

Models MSPE

SSE

All β β 6= 0 β = 0

MONG 0.976 0.113 0.095 0.028

MODL(a = 0.5) 0.976 0.118 0.085 0.033

MODL(a = 1/p) 0.978 0.127 0.097 0.030

MOHS 0.978 0.132 0.098 0.034

Naive NG 0.978 0.131 0.091 0.040

Naive DL(a = 0.5) 0.980 0.158 0.083 0.075

Naive DL(a = 1/p) 0.994 0.283 0.251 0.032

Naive Horseshoe 0.982 0.177 0.083 0.094

No shrinkage 1.005 0.416 0.080 0.336

Selection prior 0.979 0.139 0.090 0.050

MBSP model 0.978 0.146 0.080 0.066
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Table 2.5: Cross-validation prediction error and model comparison statistics for yeast
cell cycle data.

Models MSPE D pD DIC

MONG 0.833 15580 370 16321

MODL(a = 0.5) 0.814 14077 1299 16676

MOHS 0.841 15683 318 16320

Naive NG 0.987 16594 148 16890

Naive DL(a = 0.5) 0.907 13990 1430 16851

Naive DL(a = 1/p) 0.872 15117 733 16584

Naive HS 0.864 14706 827 16361

No shrinkage 0.971 13453 2131 17716

Selection prior 0.845 17425 257 17940
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Figure 2.1: Estimated local parameter
(
λ̂j or φ̂j

)
across all predictors in the three

multi-outcome regression analyses for the yeast cell data.
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CHAPTER 3

A BAYESIAN HIERARCHICAL SPARSE FACTOR MODEL FOR

SIMULTANEOUS COVARIANCE ESTIMATION

3.1 Introduction

In the analysis of multivariate data, the estimation of the covariance matrix is always

one prime interest. However, when data consist of multiple groups, each may be

determined by its own covariance matrix. In this work, we consider data that consist

of M groups, where the covariance matrix of group m is Ωm (m = 1, 2, . . . ,M). Our

interest is in developing methodology to estimate this collection {Ω1,Ω2, . . . ,ΩM}.

When faced with this scenario, it is not uncommon for the analyst to assume equality

across all Ωms, but this will lead to erroneous inference if there are truly di�erences

across the covariances. Conversely, estimating each Ωm without sharing information

across all groups will lead to ine�cient estimation if there are common structures

shared across groups. Hence, developing a reasonable method for borrowing strength

across groups in the simultaneous covariance estimation problem is paramount for

obtaining trustworthy inference.

In the literature of simultaneous covariance estimation, principal component

methods are a well-established approach. Flury (1984) developed a method with com-

mon eigenvectors to estimate the covariance matrices by considering Ωm = QΓmQ,

where Ωm is the p× p covariance matrix for the mth group, Q is the p× p orthogonal

matrix of eigenvectors that are shared across all groups and Γm is the diagonal matrix

of positive eigenvalues speci�c to group m. Later, Flury (1987) extended this to the

36



�partial common principal component model� by assuming q (q < p) common eigen-

vectors across all Ωms, and the remaining eigenvectors are group-speci�c. Boik (2002)

broadened the idea to a more general model by sharing the eigenvectors between some

or all groups. Ho� (2009) also developed a hierarchical Bayesian model that shrinks

the eigenvector matrix of each group across the population by using a shrinkage prior

on the matrix of eigenvectors. Besides this usual spectral decomposition, Manly and

Rayner (1987) and Barnard et al. (2000) proposed decomposing the covariance ma-

trix in terms of the standard deviation matrices (S) and correlation matrices (R), i.e:

Ωm = SmRmSm, and assumed R and S are independent and the correlation matrices

are the same across the groups.

In the context of longitudinal data, there are additional methods based on

the modi�ed Cholesky decomposition of the covariance matrix (Pourahmadi, 1999).

Pourahmadi et al. (2007) highlighted on computational advantages and fundamen-

tal di�erences of the unconstrained parameterization of the Cholesky decomposition

for modelling several covariance matrices simultaneously in comparison to traditional

eigenvalue or variance-correlation decomposition. Unlike the spectral decomposition

and variance-correlation decomposition, the units that appear in the lower triangular

matrix, termed as general autoregressive parameters (GARP) of the Cholesky decom-

position are always unconstrained and hence involves unconstrained maximization

techniques for computing maximum likelihood estimates. McNicholas and Murphy

(2010) considered Gaussian mixture models in order to propose a model-based cluster-

ing framework for longitudinal data, where the modi�ed Cholesky decompositions of

the group covariance matrices are considered to have commonalities across all groups.

Gaskins and Daniels (2012) proposed a family of nonparametric priors based on Dun-

son et al. (2008)'s matrix stick-breaking process. Their method uses the parameters

from modi�ed Cholesky decomposition which includes GARP and the innovation vari-

ances (IV) to parametrize the covariance matrix for each group. Additionally, this
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methodology sets some parameters of the Cholesky decomposition to zero to provide

a lower-dimensional structure for the covariance matrix. Later, Gaskins and Daniels

(2016) proposed a related approach that partitions the collection of groups into sets

with common conditional distributions.

As an estimator for a single covariance matrix, latent factor models tradition-

ally play an important role in modeling multivariate dependence structures in the

behavioral sciences. The essential purpose of factor analysis is to describe as the un-

derlying covariance relationship between many variables in terms of a few unobserved

random quantities, called factors. Consider, a situation where a researcher assembled

a moderate to a large number of predictors for an analysis. In general a p-dimensional

predictor variable has p(p−1)/2 pairwise correlation. However, when p is moderately

large it is very di�cult to summarize and interpret all pairwise correlations together.

The factor model assumes that complex correlation structure can be explained by

some latent linear combinations of fewer variables, leading to a reduction in dimen-

sion. These underlying unobserved random variables are termed as latent factors.

This is a parsimonious model. As the number of latent factors K � p, therefore

instead of p2 terms, we need to deal with only p(K + 1) terms. Further, it makes

interpretation simpler if variables are grouped by their underlying correlation struc-

ture. For example, if we have test scores from di�erent subjects of a group of student,

we may consider as mathematics, vocabulary, physics score as "intelligence" factor,

weight, BMI, energy level as "physical �tness" factor and sociability, gregariousness,

lack of shyness as "psychological" factor.

Selection of the appropriate number of factors is a key issue in such models,

and traditional model selection criteria such as AIC or BIC are standard choices. In a

Bayesian factor model Lopes and West (2004) considered the number of factors itself

to be an unknown parameter. They introduced a customized reversible jump Markov

chain Monte Carlo (RJMCMC) algorithm to sample from the model with a variable
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number of factors. Additionally, Ghosh and Dunson (2009) proposed an e�cient

parameter expansion algorithm to improve the computational e�ciency of Bayesian

factor models. Also, Bhattacharya and Dunson (2011) have applied a multiplicative

gamma process shrinkage prior to Bayesian latent factor models to model a sparse

covariance matrix for high-dimensional data by using in�nite number of factors. Due

to its use in several applied areas such as pattern recognition, �nancial time series

modeling, bioinformatics and computer vision, the theory of factor models analysis

has received huge attention. However, the use of the latent factor model is relatively

uncommon in the context of estimating the multiple covariance matrices.

In this article, we introduce a novel approach for the estimation of multiple

covariance matrices using a hierarchical Bayesian latent factor model. In section 3.2

we explain our methodology including a full model speci�cation and a discussion of our

computational estimation procedure. Section 3.3 describes a number of simulation

studies to explore the performance of our model. In section 3.4, we have applied

our method on Letter recognition data and compared the performance with other

competitor models. We conclude with a brief discussion in section 3.5.

3.2 Bayesian Sparse Hierarchical Factor (BaSH-F) Model

3.2.1 Model & Prior speci�cation

Consider M groups containing nm observations in group m, and let N =
∑

m nm

be the total number of observations. We also let Ymi = (Ymi1, Ymi2, · · · , Ymip) rep-

resents the p-dimensional sample for the ith observation (i = 1, 2, · · · , nm) of the

mth group (m = 1, 2, · · · ,M). Without loss of generality, we let the mean vector

for each group be zero. We assume that Ymi is multivariate normally distributed:

Ymi ∼MVNp (0,Ωm), i = 1, 2, · · · , nm;m = 1, 2, · · · ,M . We further assume that each

covarinace matrix can be decomposed using the usual factor model Ωm = ΛmΛT
m+Σm.
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Here Λm is a p×K matrix with (j, k) element λmjk and Σm = diag(σ2
m1, σ

2
m2, · · · , σ2

mp),

where all σ2
im > 0.

This model may be equivalently motivated by introducing a vector of K latent

factor values for each observation. To that end we let ηmi = (ηmi1, ηmi2, · · · , ηmiK)T ∼

MVNK(0, IK) be the K factor scores of observation i in group m, and consider

Ymi = Λmηmi + εmi, (3.1)

where εmi = (εmi1, εmi2, · · · , εmip) ∼MVN(0,Σm) is a vector of error terms. Marginally

over ηmi and εmi, we again obtain Ymi ∼MVN(0,Ωm). The bene�t of this approach

is that we may consider Λm as a matrix of regression coe�cients (with ηmi as predic-

tors) and the σ2
mjs as the regression variances, which facilitates posterior sampling.

In this work, when we refer to the factor loadings we mean the regression coe�cients

λmjk, not the correlation between Ymij and ηmik.

The general idea of our methodology is to consider the commonalities between

the factor loading matrices Λm across the M groups by shrinking λmjk, the (j, k)th

element of Λm, towards a global value ωjk (j = 1, 2, · · · , p; k = 1, 2, · · · , K) shared

across all groups. TheW = (ωjk) matrix can be thought of as representing the overall

relationship/factor loadings across all groups in the population. To help control the

complexity of the model and improve interpretation, it is common to assume sparsity

in the factor loading matrix (Carvalho et al., 2008). For instance, if λmjk = 0, this

implies that the kth factor is not associated with the jth response. Here, we assume

that the sparsity in Λm is a feature shared across all groups and the W matrix. To

that end, we introduce the parameter Zjk. If Zjk = 0, then response j is una�ected

by factor k in all groups, and 0 = ωjk = λ1jk = λ2jk = · · · = λmjk. If Zjk = 1, then

the factor k loads on response j, and ωjk and λmjks (m = 1, 2, · · · ,M) are non-zero.

The hierarchy that describes the distribution of (Zjk, ωjk, λmjk) is
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λmjk ∼ N(ωjk, Zjkν
2
m),

Zjk ∼ Ber(π),

ωjk ∼ N(0, Zjkτ
2).

(3.2)

Note that the variance parameter ν2
m determines how similar Λm is to the global

W matrix. This shrinkage parameter is group-speci�c allowing some groups to be less

similar to the overall structure. We assume the distribution of the standard deviation

νm to be HC(θ), where HC (θ) represents the half-Cauchy distribution with scale of

θ and density f(x) = 2θ
π(θ2+x2)

, x > 0. This prior encourages shrinkage towards zero

by imposing substantial mass near zero while its thick tail simultaneously captures

the strong signals (Gelman et al., 2006). Further, we consider an inverse gamma

IG(1, 1) prior on θ, the median of the νms. The pdf for the IG (α, β) distribution is

f(x | α, β) = βα

Γ(α)
x−α−1e−

β
x , x > 0.

The parameter π in the distribution of the Zjks controls the overall level of

sparsity in the factor loading matrices. Values near zero will produce highly sparse

Λm. The prior for π is Beta(aπ, bπ) with aπ = bπ = 1 as default choices. We place

an IG(α, β) prior on τ 2, the variance of the non-zero ωjks. We use α = β = 1 in our

analysis. For the error variance terms in the Σm matrices, we take σ2
mj ∼ IG(c, d) with

c = d = 0.1 as default choices for the hyperparameters. We refer to our approach as

the Bayesian Sparse Hierarchical Factor Model (BaSH-F) for simultaneous covariance

estimation.

3.2.2 Posterior Computation

We adapt the usual Markov Chain Monte Carlo(MCMC) methods for factor model to

develop a posterior computation scheme. The necessary sampling steps are described

below.
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(i) First sample the probability π|Z from Beta(aπ +
∑

j,k Zjk, bπ + pK −
∑

j,k Zjk).

(ii) For each (j, k) pair, we update Zjk, ωjk and λmjk blockwise. That is, we update

Zj,k marginally over ωjk and the λmjks. Then we update ωjk conditionally on

the new Zjk and marginally over the λmjks. Finally, we sample each of λmjks

given the ωjk and Zjk.

• First update Zjk from Ber(p∗), where p∗ = B
A+B

, where

A = π
M∏
m=1

nm∏
i=1

f (Ymij|λmjk = 0) ,

B = (1−π)
M∏
m=1

[∫ nm∏
i=1

f (Ymij|λmjk) f (λmjk|ωjk) dλmjk

]
f (ωjk|Zjk = 1) dωjk.

A is the likelihood when jth response is not loaded in the kth factor across

all groups. That means ωjk = 0 and hence λmjk = 0, for all m. In a

similar way, B de�nes the likelihood when jth response is loaded in the kth

factor, i.e., Zjk = 1 and hence ωjk = 1, for all m. p∗ de�nes the posterior

probability of jth response being loaded in the kth factor.

Simpli�cation yields p∗ = (1 + ec)−1 where

(3.3)c = log(1− π)− 1

2
log(2πτ 2)− log(π)

− 1

2

{
log

(
1

τ 2
+

M∑
m=1

1

ν2
m + σ2

mj/
∑nm

i=1 η
2
mik

)}

+
1

2

M∑
m=1

{(∑nm
i=1 η

2
mik

σ2
mj

+
1

ν2
m

)−1 (∑nm
i=1 emijηmik
σ2
mj

)2
}

+

1

2


(

1

τ 2
+

M∑
m=1

1

ν2
m + σ2

mj/
∑nm

i=1 η
2
mik

)−1( M∑
m=1

(∑nm
i=1 η

2
mik

σ2
mj

+
1

ν2
m

)−1 ∑nm
i=1 emijηmik
σ2
mjν

2
m

)2


− 1

2

M∑
m=1

{
2 log νm + log

(∑nm
i=1 η

2
mik

σ2
mj

+
1

ν2
m

)
− log(2π)

}
,
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with emij = Ymij −
∑K

l=1
l 6=k

λmjlηmil, the residual of the j
th response for the

ith observation excluding the role of factor k. The necessary derivations

are shown in Appendix B.

• If Zjk = 0, then ωjk = 0. Otherwise, sample ωjk from N(µ∗w, σ
∗
w

2):

µ∗ω =

(
1

τ2
+

M∑
m=1

1

ν2
m + σ2

mj/
∑nm

i=1 η
2
mik

)−1


M∑
m=1

(∑nm
i=1 η

2
mik

σ2
mj

+
1

ν2
m

)−1(∑nm
i=1 emijηmik
σ2
mjν

2
m

) ,

σ2
ω
∗
=

(
1

τ2
+

M∑
m=1

{
1

ν2
m + σ2

mj/
∑nm

i=1 η
2
mik

})−1

.

• For each m = 1, 2, · · · ,M , we set λmjk = 0 if ωjk = 0, otherwise update

λmjk fromN

((∑nm
i=1 η

2
mik

σ2
mj

+ 1
ν2m

)−1 (∑nm
i=1 emijηmik

σ2
mj

+
ωjk
ν2m

)
,
(∑nm

i=1 η
2
mik

σ2
mj

+ 1
ν2m

)−1
)
.

(iii) For all i = 1, 2, · · · , nm;m = 1, 2, · · · ,M , update ηmi from

MVNK

((
IK + ΛT

mΣ−1
m Λm

)−1
ΛT
mΣ−1

m Ymi,
(
IK + ΛT

mΣ−1
m Λm

)−1
)
.

(iv) To obtain an e�cient conditionally conjugate sampling distribution for νm, we

adapt Makalic and Schmidt (2016)'s sampling algorithm by introducing data

augmentation variables from an inverse gamma distribution. Marginally νm ∼

HC(θ), and we can equivalently write hierarchically as ν2
m|am ∼ IG

(
1
2
, 1
θam

)
and am ∼ IG

(
1
2
, 1
)
. The conditional sampling density of ν2

m is

IG
(∑

j,k Zjk

2
+ 1

2
, 1
θam

+ 1
2

∑
j,k (λmjk − ωjk)2

)
and sample am from IG

(
M+1

2
, 1 +

∑M
m=1

θ−1

ν2m

)
.

(v) Sample θ from IG
(
M+1

2
, 1 +

∑M
m=1

a−1
m

ν2m

)
.

(vi) Update τ 2 from IG
(
α +

∑
Zjk
2

, β +
∑

j,k

Zjkω
2
jk

2

)
.

(vii) For j = 1, 2, · · · , p and m = 1, 2, · · · ,M , we sample σ2
mj from

IG

(
nm
2

+ c, d+ 1
2

∑nm
i=1

(
Ymij −

∑K
k=1 λmjkηmik

)2
)
.

In latent factor model, often MCMC samples get stuck in local modes due

to model complexity and do not mix very well. To resolve this complications, we
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consider running multiple MCMC chains and a swapping step inside the sampling

algorithm. After completing step (ii) in the sampling algorithm, we randomly choose

a jth response and �x that j. For this �xed jth response we propose a swap between

the positions of two elements λmjk1 and λmjk2 for all m, where k1 ∈ {k : Zjk = 0} and

k2 ∈ {k : Zjk = 1, }, i.e we load the jth response in the kth1 factor if this is not loaded

originally and unload it from the k2
th factor. Next we compute the MH probability

using the following equation 3.4

φ =
L (Y |Λ∗,Σ)

L (Y |Λ,Σ)
, (3.4)

where Λ∗ is the updated Λ matrix after swapping the position of λthmjk1 and λthmjk2

position for all m, j. We update Λ = Λ∗ and the corresponding Z, W matrix with

probability φ or retain at the current Λ matrix. To ensure a better mixing we attempt

this swapping steps 5 times within each MCMC chain.

3.2.3 Determination of K

The choice of K, the number of factors to use, can have a large result on the e�ec-

tiveness of our method. Using too few factors will lead to inconsistent estimation,

while estimating with too large of K will produce ine�cient estimators. Following

the approach of Akaike (1987), we apply a model selection approach to determine the

value of K. To this end, we run the factor model for a small number of choices of K

and calculate the deviance information criteria (DIC) to compare the �ts for each

choice. In the Bayesian context, DIC is a more natural approach than AIC or BIC

as it automatically determines the model complexity without counting the number of

parameters. The deviance of the K-factor model at the parameter value Ω is given

by DK (Ω) = −2LK (Ω|Y ), where LK (Ω|Y ) denotes the likelihood function using the

usual Ymi ∼MVNp(0,Ωm) with Ωm = ΛmΛT
m+ Σm. The posterior expected deviance
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is the average value of the deviance with respect to the posterior. We use the Bayes

estimator of the covariance matrix of group m, Ω̂m = E [Ω−1
m ]
−1

(Yang and Berger,

1994), and the DIC for K-factor model is given by DICK = DK

(
Ω̂
)

+2pK . Here, pK

is the e�ective number of parameters and calculated from pK = E{DK(Ω)|Y }−DK(Ω̂)

(Spiegelhalter et al., 2002). The selected value for the number of factors K̂ is chosen

as the K with the smallest DIC. The estimates {Ω̂1, Ω̂2, · · · , Ω̂M} are taken to be

the posterior estimators for the MCMC chain with K̂ factors.

We considered yet an another approach using log pseudo marginal likelihood

(LPML) as the model selection statistic. LPML is based on considering the pre-

dictive distributions p (Ymi|Y−mi) =
∫
p (Ymi|Ω)π (Ω|Y−mi) dΩ for all (m, j). We com-

bine each of the predictive densities to form LPMLk for the K-factor model as

LPMLK =
∑

m,i log p(Ymi|Y−mi) (Gelfand and Dey, 1994). To avoid generating pos-

terior samples from π (Ω|Y−mi) for each (m, i) pair, we use an importance sampling

approach using the following equation

p(Ymi|Y−mi) =

[
1

G

G∑
g=1

p(Ymi|Ω(g))−1

]−1

i = 1, 2, · · · , N ;m = 1, 2, · · · ,M,

where G is the total number of posterior samples from the full posterior with all

observations. Using the LPML criteria, we select K̂ to be the value with the largest

LPML and take estimators from this model.

3.3 Simulation

We have implemented a number of simulation studies to evaluate the performance of

our methodology. In addition to our BaSH-F model, we have also considered some

competing models to check the performance of our model. The �rst two competitors

are simpli�cations of the BaSH-F model:

• No Shrinkage Model: To access the utility of sharing information across all
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groups in our model, we consider a setting where no information is shared, but

sparsity is still included. To this end, there are no ωjk global parameters in our

model and each group has its own set of sparsity indicators Zmjk. We replace

equation (3.2) with Zmjk ∼ Ber(πm) and λmjk ∼ N(0, Zmjkν
2
m).

• No Sparsity Model: To test the utility of the spike-and-slab model on ωjk, we

consider a version of our hierarchical factor model without sparsity. We share

information about an underlying factor structure across groups, but constrain

all Zjk = 1. Equivalently, we swap equation (3.2) with ωjk ∼ N(0, τ 2) and

λmjk ∼ N(ωjk, ν
2
m). The rest of the model is una�ected.

• Ho� (2009) Model: In this method, the covariance matrix is decomposed

through the eigenvalue decomposition, i.e. Ωm = UmVmU
T
m, where Um is the

eigenvector matrix and Vm be the eigenvalue for the mth group. Then a shrink-

age prior is applied on the eigenvector matrices to pull the information across

all groups for estimating covariance.

• Hierarchical Inverse-Wishart (IWH) Model: As a slightly more sophisti-

cated competitor, we consider a hierarchical model based on conjugate inverse

Wishart distribution.

Ωm ∼ InvW (δ, δΨ)

Ψ ∼ Wishart(p,
1

p
Ip) δ ∼ Unif(p,N).

Note that since E(Ωm) = δΨ
δ−p−1

, all Ωm are pulled toward a common/overall

covariance matrix based on Ψ and δ. The amount of shrinkage is determined

by the degrees of freedom δ and a higher δ indicates more shrinkage.

• Independent Inverse-Wishart (IW) Model: This is a naive approach

where each covariance matrices comes independently from the conjugate InvW (p+

2, Ip) prior. Hence, we do not allow any sparsity or sharing of information across
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groups in the model. This competitor represents the naive assumption that all

covariance matrices are independent and does not share any information be-

tween groups.

We will consider a variety of data generating models, and for each parameter

speci�cation we generate 200 datasets. For each model, we run the Gibbs sampler

for 3 di�erent chains with 50,000 iterations for each chain. After the �rst 10,000

iterations, we retain every 10th iteration, providing 4000 iterations from each chain

to use for inference. To measure the accuracy of our estimators, we consider the

loss function from Gaskins and Daniels (2016) that uses a weighted average of the

log-likelihood loss for each group, with weights proportional to group's sample size

nm. The formula is given by

L
(

Ω, Ω̂
)

=
M∑
m=1

nm
N

[
tr(Ω−1

m Ω̂m)− log|Ω−1
m Ω̂m|−p

]
,

where Ω̂m =
[
EΩ|yΩ

−1
m

]−1
. We calculate the risk estimates as the average loss

L
(

Ω, Ω̂
)
over the 200 datasets. For the factor models, we consider 3 methods of

choosing the K parameter: DIC, LPML and an oracle estimates that uses the true

value of K. We consider the following data generating models:

• Case 1:

First, we generate data consistent with our model speci�cation. We consider

the number of factors K = 5, the response dimension p = 12, number of

groups M = 3, and total number of observations N = 300 with 100, 50 and

150 observations in 1st, 2nd and 3rd group respectively. We consider π = 0.5,

τ 2 = 1, ν2
m = 0.2 for all m and σ2

mj = 1 for all (j,m). These values are used

to generate one set of true covariance matrices {Ω1,Ω2, · · · ,ΩM}, and all 200

generated datasets are simulated from this set of parameters. When estimating

the true number of factors in the BaSH-F model, the no sparsity model and the
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no shrinkage model, we run the model from K = 3 to K = 8.

• Case 2: Bigger sample size

In this case, we double the sample size to study the performance of our model

for a larger sample. The total number of observations is N = 600 with 200, 100

and 300 observations in 1st, 2nd and 3rd group respectively. All other settings

are the same as in case 1.

• Case 3: Much larger sample size

In this case, we considered a larger sample size than case 2. The total number

of observations is N = 1200 with 400, 200 and 600 observations in 1st, 2nd and

3rd group respectively. All other settings are the same as in case 1.

Table 3.1 and Figure 3.1 shows the results for case 1 and case 2. Note that

we re-scaled the risk in each case so that Independent IW has risk 1. In both case

1 and case 2 our BaSH-F model outperforms all other competing models in both

the Oracle version and when K is chosen by DIC and LPML. In fact, the DIC

does equivalently well as the Oracle model. This indicates that it e�ectively �nds

a choice of K that produces good estimators. In both cases, the Ho� model yields

better estimation in comparison to no sparse and no shrinkage model. Independent

IW model shows poor performance as no information is shared between all groups.

But the IWH model yields better result as δ determines the amount of shrinkage from

the data.

In the latent factor model, we also need to inspect the model selection accuracy.

We have studied both DIC and LPML model selection criteria for estimating the

number of latent factors. Table 3.2 shows that for case 1 (N=300), DIC captures the

true number of factors in most cases. It tends to choose a higher factor model as N

increases (case 2 and case 3). Turning to K selection based on LPML, this approach

shows bad results in all cases and performs worse as N increases. Also parameter
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estimation using LPML is not as good as DIC. Hence, thereafter we only consider

DIC model selection criteria for estimation.

These results seem to suggest that as the sample size increase DIC may tend

to select models that are slightly overly complex (too many parameters). Despite

this behavior our models are still quite parsimonious, and more importantly, DIC

BaSH-F has equivalent estimation performance on {Ω1,Ω2, · · · ,ΩM} as the BaSH-F

version with the true K. As estimation of these covariance matrices is our goal (not

the selection of the number of factors), small levels of inconsistency in selection of K

is not a concern as long as it does not impact estimation accuracy.

We now consider 3 scenarios to investigate the impact of varying levels of

sparsity.

• Case 4: Larger p, K, N

In this case, we increase the response dimension and the number of factors in

the model. We set p = 30 and K = 10 for this simulation settings. We also

increase the number of groups M = 5, a total of N = 750 observations and

100, 125, 150, 175, 200 observations in each group respectively. We induce a

moderate sparsity in this settings with π = 0.4. For estimating the true number

of factors, we run the model from K = 8 to K = 13.

• Case 5: Less sparsity π = 0.7

Under the previous settings as in case 4, we set π = 0.7, i.e. we induce less

sparsity in the data. For estimating the true number of factors, we run the

model from K = 8 to K = 13.

• Case 6: High sparsity π = 0.2, higher K

In this settings we set the K = 20 and π = 0.2, i.e a model with higher number

of factors along with higher sparsity. p and N are set as in case 4. For estimation

of the number of factors we run the model from K = 18 to K = 23.
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In high-dimensional scenarios (case 4, case 5 & case 6), BaSH-F model con-

tinues to perform better than all competitors. The di�erence between the risk for

the BaSH-F model and the no shrinkage model increases from around 4% (case 1)

to around 12% (case 6), indicating the increasing bene�t of sharing information as p

grows (Table 3.3 and Figure 3.2). In case 4 and case 6, when there is moderate or

high sparsity in the model, BaSH-F model performs very well in comparison to other

models. The no sparse model has equivalent risk to BaSH-F in case 5 (low sparsity

scenario). Hence, BaSH-F can e�ectively adopt to non-sparse scenarios when needed.

Naive independent inverse-Wishart model performs poor throughout all cases. Fail-

ing to either share info across group or to incorporate sparsity in Ωms, leads to much

worse. The Ho� model performs well while dealing with low sparsity scenario (case

5).

• Case 7: Less similarity ν2
m = 0.5

In this case, we study how the simulation results behave with more variability

between groups. Under our standard simulation settings, we consider ν2
m = 0.5,

and to maintain the marginal variance in λmjk, we set τ 2 = 0.7. All other

parameters are as in case 1.

• Case 8: Very low similarity ν2
m = 1

In this case, we set much more variability between groups by setting ν2
m = 1

and set τ 2 = 0.2 to maintain the overall marginal variance in λmjk. All other

parameters are as in case 1.

Table 3.4 and Figure 3.3 shows that, in the situations where the covariance

matrices are less similar (case 7 & case 8), BaSH-F continues to perform well and

outperforms all other competitive models. The no shrinkage estimates, while we might

expect to be doing better, continues to have around 4% higher risk than BaSH-F.

This indicates our approach is able to determine how much shrinkage to apply in
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each scenarios. Ho� model also have 3-5% higher risk than BaSH-F model in these

cases. For both case 7 and case 8, IWH model yields around 10% increase in loss

than its performance in case 1. Naive IW model continues to show poor performance

as previous cases.

Finally, we explore the performance where the data generating model is not a

factor structure.

• Case 9: Data are generated from a non-factor model

We consider a di�erent data generation procedure to see how our model is

performs if the underlying data do not belong to any factor model. Here our

data come from a hierarchical inverse Wishart model. We generate Ymi, for all

m, i from MVNp (0,Ωm), where Ωm ∼ IW (p + 50,Ψ),m = 1, 2, · · · ,M . Ψ is

chosen as a block diagonal matrix, Ψ =


A B 04×4

B A B

04×4 B A

, where A is a 4× 4

equi-correlation matrix with ρ = 0.8 and B is a 4× 4 matrix with all elements

equal to 0.3.

• Case 10: Same covariance matrix across all groups

Lastly, we consider a situation where the covariance matrix are equal for all

groups and the common covariance is not a factor model. We generate data Ymi

from MVNp (0,Ωm), where Ωm = Ψ (from case 9), m = 1, 2, · · · ,M .

Table 3.5 and �gure 3.4 shows the results for case 9 and case 10. For both cases,

our BaSH-F model outperforms no sparse and no shrinkage model. Unsurprisingly,

the IWH model performs best in case 9 when it is the correct model. In this scenario,

the Ho� model also does a good shrinking of Ωm towards the common structure.

In case 10 where all covariances are the same, Ho�, IWH and BaSH-F all do well.

Independent IW continues to perform poorly in both cases.
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3.4 Letter Image Recognition Data Application

3.4.1 Data and Model speci�cation

We consider the letter image recognition data from mlbench package in R to demon-

strate our methodology. This data consist of character images based on 20 di�erent

fonts. The fonts represent �ve di�erent stroke styles (simplex, duplex, triplex, com-

plex, and Gothic) and six di�erent letter styles (block, script, italic, English, Italian,

and German). Each letter within these 20 fonts was randomly distorted to produce

a �le of 20,000 unique stimuli (Frey and Slate, 1991). Each of these stimuli was

converted into p = 16 primitive numerical attributes (statistical moments and edge

counts) which were then scaled to �t into a range of integer values from 0 through 15.

The objective was to identify each of a large number of black-and-white rectangular

pixel displays as one of the 26 capital letters in the English alphabet.

We consider M = 26 groups de�ned by each letter A to Z to perform our

methodology. Both in training and test data set, we consider equal number of obser-

vation in each group. We conducted our study with three di�erent choices of nm = 20

40 and 100. We standardize all observations and consider a group speci�c mean pa-

rameter µm ∼MNVp(0, 100Ip). We perform the analysis using our proposed BaSH-F

model and the other competitive models. We do not consider the no sparse model and

the no shrinkage model as these were special cases of BaSH-F model. For each case,

we run 3 chains with 50,000 iterations in each chain. After the �rst 10,000 iterations,

we retain every 10th providing 4000 iteration from each chain. Based on these 12,000

�nal samples from the training set, we calculate the true classi�cation rate for the

test data set.

Let Y ∗i = (Y ∗i1, Y
∗
i2, · · · , Y ∗ip) represents the p-dimensional test data set for the ith

sample (i = 1, 2, · · · , Ntest). To use the covariance models for classi�cation, we slightly

augment the model hierarchy by including a unknown class membership variable Ci
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that indicates the letter group that generates observation i. Thus Ci ∈ {1, 2, · · · ,M}

and we assume a discrete uniform prior for Ci. For estimating the true classi�cation

rate for test data set, we calculate the probability (3.5) of each sample being in group

m using the posterior samples and assign to the group having the highest probability.

P (Ci = m|Y ∗i ) =
1

G

G∑
g=1

f
(
Y ∗i |µ

(g)
m ,Ω

(g)
m

)
∑M

m=1 f
(
Y ∗i |µ

(g)
m ,Ω

(g)
m

) , (3.5)

Here, µ
(g)
m and Ω

(g)
m are the mean and covariances in the gth MCMC imputation from

the analysis of the training set. Ci is the class membership variable associated with

the test observation Y ∗i . It can be easily veri�ed that this is a MCMC estimate of

the posterior predictive probability. Since the group sizes in the training data are all

equal, 1/M is a reasonable estimate of the class probabilities.

The loss for assigning the ith sample to the mth group is estimated using the

following formula.

LC =
1

Ntest

Ntest∑
i=1

M∑
m=1

[I (Ci = m)− P (Ci = m|Y ∗i )]2 .

Lower value of LC indicates better performance. Finally we compare the predictive

accuracy of di�erent models using the log-score of test data Y ∗i (Gaskins, 2019). We

de�ne,

LS (Y ∗i ) =
1

G

G∑
g=1

log f
(
Y ∗i |µ

(g)
Ci ,Ω

(g)
Ci

)
For each ith observation in the test set, we calculate the LS (Y ∗i ) averaging over

all posterior samples. Then we take the sum over total number of observations in the

test set Ntest to obtain the log-score values for the test data. This value is basically

a log-likelihood of the test data using the predictive distribution from the training

data. Consequently, a model that produces a higher log-score is more consistent with

respect to the out-of-sample test data. Larger values (less negative) indicate better
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models.

Finally we note that there are a variety of other classi�cation methods available

in the literature (e.g., neural networks, support vector machines, etc.). However, our

main interest is on methodology for modeling covariance matrices between multiple

groups, not in the development of classi�cation algorithms. In this example, we seek

to understand the impact of various models on {Ω1,Ω2, · · · ,ΩM}, and so we consider

only approaches with multivariate normal models for each group.

3.4.2 Modeling Results

We apply our methodology and other competitor models to this data set with 6 choices

of the number of factorsK = 3 toK = 8. We implementDIC model selection criteria

to �nd the number of factors K in the training data set and choose one having the

lowest DIC. Table 3.6 contains the predictive accuracy and model selection result

for the data application. Throughout the analysis, we see that our BaSH-F model

outperforms all other competitors both in terms of classi�cation accuracy and loss

estimation for each choice of nm in the training data set. Ho� model shows 2-7%

lower classi�cation accuracy than BaSH-F model. The IWH model yields a lower

classi�cation accuracy and higher risk in all cases. Naive IW model performs poorly

throughout all cases. Overall, with the increasing number of observation per group,

all models tend to perform better.

3.5 Conclusion and discussion

In this project, we proposed a novel approach for simultaneous covariance estimation

based on sparse Bayesian factor models. The sparsity pattern was shared across the

groups while borrowing strength across non-zero factors. The model has the �avor of

a covariance analogue of multilevel mean models in the sense that it also estimates a

global (across-group) covariance structure. The number of factors were chosen using
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established model selection criteria like the DIC. The simulation studies clearly

demonstrated the superiority of our model with respect to a metric that quanti�es

discrepancy between covariance matrices.

The Bayesian hierarchy allows enough �exibility to adapt to non-sparse scenar-

ios and include the right amount of shrinkage. We applied the model to a classi�cation

problem on real data where the group-speci�c covariance based models were used to

discriminate the groups. Here too, BaSH-F proved itself to be competitive and even

outperformed classical algorithms like Linear Discriminant Analysis (LDA) in predic-

tion. This clearly points to the necessity of sharing information across groups in the

presence of moderate and low sample sizes. For future work, we plan an extension to

non-Gaussian response models. Such models can be applied to inferring shared bio-

logical networks, a problem of growing importance in current genomics applications.

Also we are contemplating an automated way to choose factors by integrating the

current model with �exible priors on the number of factors.

55



3.6 Tables and Figures

Table 3.1: Risk Estimates for Case 1, Case 2 and Case 3

Model
Model selection L

(
Ωm, Ω̂m

)
criterion Case 1 Case 2 Case 3

BaSH-F

DIC 0.478 0.526 0.585

LPML 0.497 0.543 0.601

Oracle 0.473 0.522 0.576

No shrinkage

DIC 0.521 0.603 0.641

LPML 0.537 0.616 0.662

Oracle 0.516 0.602 0.635

No sparse

DIC 0.599 0.699 0.759

LPML 0.623 2.048 0.791

Oracle 0.614 0.697 0.758

Ho� Model 0.517 0.588 0.682

IWH 0.632 0.759 0.861

Independent IW 1 1.000 1.000 1.000

1Risk re-scaled, so Independent IW has value 1.0.
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Table 3.3: Risk Estimates for Case 4, Case 5 & Case 6

Model
Model selection L

(
Ωm, Ω̂m

)
criterion Case 4 Case 5 Case 6

BaSH-F
DIC 0.300 0.431 0.495

Oracle 0.305 0.431 0.498

No shrinkage
DIC 0.364 0.483 0.614

Oracle 0.364 0.481 0.613

No sparse
DIC 0.434 0.436 0.606

Oracle 0.434 0.436 0.612

Ho� Model 0.384 0.399 0.508

IWH 0.584 0.636 0.600

Independent IW1 1.000 1.000 1.000
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Table 3.4: Risk Estimates for Case 1, Case 7 & Case 8

Model
Model selection L

(
Ωm, Ω̂m

)
criterion Case 1 Case 7 Case 8

BaSH-F
DIC 0.478 0.525 0.552

Oracle 0.473 0.521 0.548

No shrinkage
DIC 0.521 0.567 0.593

Oracle 0.516 0.808 0.591

No sparse
DIC 0.599 0.657 0.663

Oracle 0.614 0.633 0.663

Ho� Model 0.517 0.583 0.589

IWH 0.632 0.733 0.772

Independent IW1 1.000 1.000 1.000
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Table 3.5: Risk Estimates for Case 9 & Case 10

Model
Model selection L

(
Ωm, Ω̂m

)
criterion Case 9 Case 10

BaSH-F DIC 0.639 0.358

No shrinkage DIC 0.696 0.433

No sparse DIC 0.769 0.460

Ho� Model 0.601 0.245

IWH 0.538 0.321

Independent IW1 1.000 1.000
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Table 3.6: Model comparison statistics and true classi�cation rate for Letter recogni-
tion data

Sample Size Model True Loss Log-score

Speci�cation Classi�cation

nm = 20

BaSH-F (K = 4) 0.74 0.376 -18,446

Ho� 0.69 0.428 -21,652

IWH 0.71 0.451 -22,455

Independent IW 0.51 0.694 -87,083

nm = 40

BaSH-F (K = 7) 0.81 0.276 -15,031

Ho� 0.79 0.299 -17,497

IWH 0.75 0.464 -26,381

Independent IW 0.72 0.402 -23,739

nm = 100

BaSH-F (K = 8) 0.85 0.214 -12,370

Ho� 0.77 0.273 -18,943

IWH 0.80 0.293 -15,511

Independent IW 0.79 0.300 -15,924
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Figure 3.1: Estimated loss for Case 1, Case 2 & Case 3
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Figure 3.2: Estimated loss for Case 4, Case 5 & Case 6
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Figure 3.3: Estimated loss for Case 1, Case 7 & Case 8
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Figure 3.4: Estimated loss for Case 9 & Case 10
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CHAPTER 4

DISCUSSION

In this dissertation, we have proposed two novel Bayesian approaches in the �eld of

multivariate analysis. In Chapter 2 we have developed a general strategy of variable

selection in the multivariate regression model by sharing common local parameters

across all of the response variables. We have demonstrated the utility of our approach

in comparison to alternatives. Our approaches are found to be superior in terms of

both predictive performance and parameter estimation.

In Chapter 3, we have developed a novel technique for simultaneous covariance

estimation based on sparse Bayesian factor model. We have also established the

prediction accuracy of our proposed method in compare to other competitors through

simulation results and data applications.

Both these projects are centered around fully Bayesian inference schemes based

on Gibbs sampling and teasing out theoretically challenging posterior conditionals.

The next layer of challenges involved devising computationally scalable algorithms to

implement these schemes for high dimensional datasets. These often require consid-

erable care in tuning the MCMC schemes. While some of these issues have included a

careful choice of hyper-parameters, others involved employing matrix inversion tech-

niques while some others cleverly incorporating adaptive sampling schemes from the

existing literature. The computational success of these algorithms is borne out in ex-

tensive simulation studies that have been conducted in R for validating our models.

This dissertation project represents a �rst step at the problem, and there are

66



many further extensions and developments worth considering. For instance, in the

�rst project, some possible application of this methodology could be in binary outcome

data, hurdle models, causal-inference models and generalized linear models. Also,

working on these projects have stirred a couple of ideas for natural extensions that we

have set aside for our future work. These include extending the response distributions

to non-Gaussian settings with an eye towards big-data genomic applications. For

the second project, some potential future applications of this methodology include

health/social survey data with multiple groups de�ned by any demographic factors

like ethnicity, age or gender and among others. Also, an extension that incorporates

a Bayesian non-parametric component could be used to consider clustering of the

groups.
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APPENDIX

Appendix A

This section includes the posterior consistency of Bayesian variable selection for multi-

outcome model Chapter 2.

A.1 Posterior Consistency of Bayesian Variable Selection for Multi-outcome Model

Here we provide details and the proof of the posterior consistency results from Section

2.2.5.

For our discussion we use the term multi-index to denote a model where the

individual observations belong to a common multidimensional family f(·) but are

indexed by possibly di�erent parameters θiB. The second subscript denotes a global

parameter B, which in our context is the (shared) matrix of regression coe�cients.

Thus, in our multivariate Gaussian regression we let θiB = Xi·B be the K-vector

representing the mean of the K responses.

Recall that the KL distance between two densities is de�ned as Ef0

{
log f1(Y )

f0(Y )

}
.

For multi-index families, we extend the de�nition to have a notion KL distance for

each i. To that end, the KL distance between the global parameter B and the true

value B0 for observation i can be written as

KLi(B,B0) = EB0

{
log

(
f(Yi, θiB)

f(Yi; θiB0)

)}
,

where θiB = Xi·B and θiB0 = Xi·B0 are parameter vectors indexing the densities for
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observation i under parameters B and B0. We also de�ne Vi(B,B0) as the variance

analogue, i.e.,

Vi(B,B0) = V arB0

{
log

(
f(Yi, θiB)

f(Yi; θiB0)

)}
.

We �rst state our Lemma 1 which establishes a uniformly exponentially con-

sistent (UEC) sequence of tests that will be required in the proof of Theorem 1. Here,

we include the dependence on n by letting Yn and Xn denote the response and design

matrices for a sample of size n.

Lemma 1. For any ε > 0, de�ne Bε = {B : ||B −B0||> ε}. Let Φn = I (Yn ∈ Cn)

be the test statistic based on the critical region Cn =
{
Yn : ||B̂ −B0||> ε

2

}
and B̂ =(

XT
nXn

)−1
XT
n Yn. Further, assume condition (A3), and let d be the largest eigenvalue

of Ψ. Then, for the likelihood (2.1), we have the following:

1. EB0 (Φn) ≤ exp
(
−n ε2c

16d

)
,

2. supB∈Bε EB (1− Φn) ≤ exp
(
−n ε2c

16d

)
.

Proof : Proof of this lemma follows as in Lemma 1 of Bai and Ghosh (2018).

Next, we state and prove Lemma 2 which establishes the prior positivity con-

dition.

Lemma 2. Assume a �xed Ψ, the likelihood (2.1), (A1), and (A2). Then, for all

ε > 0, there exists a set Cε with π(B ∈ Cε) > 0, such that for all B ∈ Cε

KLi(B,B0) < ε for all i,
∞∑
i=1

1

i2
Vi(B,B0) < ∞.

Proof : A little algebra shows that

KLi(B,B0) = (XiB −XiB0)Ψ−1(XiB −XiB0)′.
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Let X̃i = IK ⊗Xi·, β = vec(B), and β0 = vec(B0). Then, it follows that

KLi(B,B0) = (XiB −XiB0)Ψ−1(XiB −XiB0)′ = (X̃iβ − X̃iβ0)′Ψ−1(X̃iβ − X̃iβ0)

= (β − β0)X̃iΨ
−1X̃ ′i(β − β0)′ = ||Mi(β − β0)||2,

where Mi = Ψ−
1
2 X̃i· . From the sub-multiplicativity of the Frobenius norm, ||Mi|| is

bounded by ||Ψ− 1
2 || ||X̃i||= K1/2||Ψ− 1

2 || ||Xi·||, which is bounded by GK1/2||Ψ− 1
2 || us-

ing (A2). Clearly, ||β−β0||= ||B−B0||. Thus, a set Cε =

{
B : ||B −B0||< ε

GK1/2||Ψ− 1
2 ||

}
will clearly satisfy KLi(B,B0) < ε for all i. By (A1) the continuous prior π(B) as-

signs positive probability to any such open neighborhood Cε. Similar steps show that

for all B in Cε, the Vis are bounded uniformly by a constant across all n, proving

convergence of
∑∞

i=1
1
i2
Vi(B,B0).

We �rst introduce and sketch the proof of a more general theorem that estab-

lishes posterior consistency for a wide range of multi-index models.

Theorem 2. Consider a multi-index model with global parameter B and independent

observations Yi, i = 1, . . . , n, . . . with Yi ∼ f(·, θiB0) under the true global parameter

value B0. Further assume the following two conditions:

1. There exist tests Φn such that EB0(Φn) < exp(−nC1) and that for all B 6= B0,

EB(1−Φn) < exp(−nC2). Here, C1 and C2 are constants not depending on the

parameter of interest.

2. There exists a set Cε with π(B ∈ Cε) > 0, such that for all B ∈ Cε,

KLi(B,B0) < ε for all i,
∞∑
i=1

1

i2
Vi(B,B0) < ∞.
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Then, the posterior distribution for B is consistent. That is, for any ε > 0,

PB0 { ||B −B0||> ε | Y1, . . . , Yn} → 0, a.s. as n→∞.

Proof : The proof of this theorem is a combination of arguments in Schwartz (1965),

Amewou-Atisso et al. (2003) and Choi and Schervish (2007), and we omit the technical

details. Brie�y the argument is as follows. The posterior probability of interest,

denoted by Lεn, can be written as a ratio of integrals of two likelihood ratios in the

following way

Lεn = PB0 { ||B −B0||> ε | Y1, . . . , Yn} =

∫
Uε

∏
i f(Yi,θiB)∏
i f(Yi,θiB0

)
dB∫

U

∏
i f(Yi,θiB)∏
i(f(Yi,θiB0

)
dB

,

where Uε = {B : ||B−B0||> ε} is the ε-ball around B0 and U is the entire parameter

space. The aim is to show Lεn converges to 0 a.s. under PB0 for all ε > 0.

As shown in Schwartz (1965), we may bound Lεn using the test statistic Φn as

Lεn ≤ Φn +
J1n

J2n

,

where J1n =
∫
Uε

(1−Φn)
∏
i f(Yi,θBi )∏

i f(Yi,θB0
)

dB and J2n =
∫
U

∏
i f(Yi,θBi )∏
i f(Yi,θB0

)
dB. Following the argu-

ments from Schwartz (1965) (also used in Bai and Ghosh (2018) and Armagan et al.

(2013)), the �rst condition in Theorem 2 can be shown to imply Φn → 0 a.s. Further,

enCJ1n → 0 a.s., for a constant C > 0 that may depend on auxiliary parameters

(such as Ψ and the eigenvalues of the design matrix) but not on B0. Similarly, the

second condition of the Theorem 2 can be shown to imply that for any constant c > 0,

encJ2n →∞ a.s. In combination, these imply that Lεn converges almost surely to zero

under the true parameter B0, guaranteeing posterior consistency.

We note that the proof of this theorem has a general �avor in that it only

requires a UEC sequence of tests and prior positivity. The �rst condition can be
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satis�ed for several settings involving multivariate Gaussian likelihoods. The second

condition is applicable to a variety of model speci�cations and holds simply when

observations are independent but not identically distributed. Of note, condition 2

was proved in Schwartz (1965) for single-index families and later adapted to multi-

index families (Choi and Schervish, 2007). For a proof of this, we refer the reader to

the proof of part A.5 in Theorem 1 from Choi and Schervish (2007).

Proof of Theorem 1: Results from Lemmas 1 and 2 are immediately obtained from

assumptions (A1)�(A3), and these lemmas establish the two conditions required for

Theorem 2. Hence, Theorem 1 is proved.
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Appendix B

This section includes the additional computation in Chapter 3.

A.2 Calculation of the posterior probability p∗ for Simultaneous Covariance Esti-

mation

In section 3.2.2 we have discussed the blockwise sampling algorithm for Zjk, ωjk

and λmjk. From the equation (3.1) we have Ymij ∼ N
(∑K

k=1 λmjkηmik, σ
2
mj

)
, which

implies, emij = Ymij −
∑K

l=1
l 6=k

λmjkηmik ∼ N
(
λmjkηmik, σ

2
mj

)
.

From our hierarchical model (3.2), the posterior distribution ωjk will be

ωjk|emjk ∼ p∗I (ωjk = 0) + (1− p∗)N(µ∗w, σ
∗
w

2),

with p∗ = B
A+B

, where

A = π
M∏
m=1

nm∏
i=1

f (Ymij|λmjk = 0) ,

B = (1− π)
M∏
m=1

[∫ nm∏
i=1

f (Ymij|λmjk) f (λmjk|ωjk) dλmjk

]
f (ωjk|Zjk = 1) dωjk.

Note that these conditional distributions rely on many other parameters in the

conditioning statement. To simplify notation we only include those that are involved

in the calculations. Now we derive A and B separately,

A = π

M∏
m=1

nm∏
i=1

f(Ymij|λmjk = 0)

= π

M∏
m=1

nm∏
i=1

(2πσ2
mj)
− 1

2 exp

[
− 1

2σ2
mj

e2
mij

]

= π

(
M∏
m=1

(2πσ2
mj)
−nm

2

)
exp

[
−1

2

M∑
m=1

nm∑
i=1

e2
mij

σ2
mj

]
.
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Taking the log transformation over A, we have,

a = logA = log π −
M∑
m=1

nm
2

log(2πσ2
mj)−

1

2

M∑
m=1

nm∑
i=1

e2
mij

σ2
mj

. (3.6)

Now,

B = (1− π)
M∏
m=1

[∫ nm∏
i=1

f (Ymij|λmjk) f (λmjk|ωjk) dλmjk

]
f (ωjk|Zjk = 1) dωjk.

First we simplify the
[∫ ∏nm

i=1 f (Ymij|λmjk) f (λmjk|ωjk) dλmjk
]
term in the following.
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Now,

∫ nm∏
i=1

f(emij |λmjk) f(λmjk|wjk) dλmjk

=

∫ nm∏
i=1

{(
2πσ2

mj

)− 1
2 exp

[
− 1

2σ2
mj

(emij − λmjkηmik)2
]}(

2πν2
m

)− 1
2 exp

[
− 1

2ν2
m

(λmjk − ωjk)2
]
dλmjk

=

∫ (
2πσ2

mj

)−nm
2 exp

[
− 1

2σ2
mj

nm∑
i=1

(
e2
mij − 2emijλmjkηmik + λ2

mjkη
2
mik

)]

×
(
2πν2

m

)− 1
2 exp

[
− 1

2ν2
m

(
λ2
mjk − 2λmjkωjk + ω2

jk

)]
dλmjk

=
(
2πσ2

mj

)−nm
2
(
2πν2

m

)− 1
2 exp

[
− 1

2σ2
mj

nm∑
i=1

e2
mij

]
exp

[
− 1

2ν2
m

ω2
jk

]

×
∫

exp

[
−1

2

{
λ2
mjk

(∑nm
i=1 η

2
mik

σ2
mj

+
1

ν2
m

)
− 2λmjk

(∑nm
i=1 emijηmik
σ2
mj

+
ωjk
ν2
m

)}]
dλmjk

=
(
2πσ2

mj

)−nm
2
(
2πν2

m

)− 1
2 exp

[
− 1

2σ2
mj

nm∑
i=1

e2
mij

]
exp

[
− 1

2ν2
m

ω2
jk

]

×
∫

exp

−1

2

(∑nm
i=1 η

2
mik

σ2
mj

+
1

ν2
m

)λ2
mjk − 2λmjk

(∑nm
i=1 η

2
mik

σ2
mj

+
1

ν2
m

)−1

×

(∑nm
i=1 emijηmik
σ2
mj

+
ωjk
ν2
m

)
+

(∑nm
i=1 η

2
mik

σ2
mj

+
1

ν2
m

)−2(∑nm
i=1 emijηmik
σ2
mj

+
ωjk
ν2
m

)2

 dλmjk

× exp

1
2

(∑nm
i=1 η

2
mik

σ2
mj

+
1

ν2
m

)−1(∑nm
i=1 emijηmik
σ2
mj

+
ωjk
ν2
m

)2


=
(
2πσ2

mj

)−nm
2
(
2πν2

m

)− 1
2 exp

[
− 1

2σ2
mj

nm∑
i=1

e2
mij

]
exp

[
− 1

2ν2
m

ω2
jk

]

× (2π)
1
2

(∑nm
i=1 η

2
mik

σ2
mj

+
1

ν2
m

)− 1
2

exp

1
2

(∑nm
i=1 η

2
mik

σ2
mj

+
1

ν2
m

)−1(∑nm
i=1 emijηmik
σ2
mj

+
ωjk
ν2
m

)2
 .

80



Hence,

B = (1− π)
∫ M∏

m=1

{(
2πσ2

mj

)−nm
2
(
2πν2

m

)− 1
2 (2π)

1
2 exp

[
− 1

2σ2
mj

nm∑
i=1

e2
mij

]
exp

[
− 1

ν2
m

ω2
jk

]

×

(∑nm
i=1 η

2
mik

σ2
mj

+
1

ν2
m

)− 1
2

exp

1
2

(∑nm
i=1 η

2
mik

σ2
mj

+
1

ν2
m

)−1(∑nm
i=1 emijηmik
σ2
mj

+
ωjk
ν2
m

)2


× f (ωjk|Zjk = 1) dωjk

= (1− π)
∫ M∏

m=1

(2πσ2
mj

)−nm
2
(
2πν2

m

)− 1
2 (2π)

1
2

(∑nm
i=1 η

2
mik

σ2
mj

+
1

ν2
m

)− 1
2

exp

[
− 1

2σ2
mj

nm∑
i=1

e2
mij

]

× exp

1
2

(∑nm
i=1 η

2
mik

σ2
mj

+
1

ν2
m

)−1

(∑nm

i=1 emijηmik
σ2
mj

)2

+ 2ωjk

(∑nm
i=1 emijηmik
σ2
mjν

2
m

)
+
ω2
jk

ν4
m




× exp

[
− 1

ν2
m

ω2
jk

]
(2πτ2)−

1
2 exp

[
− 1

2τ2
ω2
jk

]
dωjk

= (1− π)(2πτ2)−
1
2

(
M∏
m=1

(
2πσ2

mj

)−nm
2

)
exp

[
−1

2

M∑
m=1

nm∑
i=1

e2
mij

σ2
mj

]

× exp

1
2

M∑
m=1

(∑nm
i=1 η

2
mik

σ2
mj

+
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By simplifying, 1
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Finally from (3.6) and (3.7) we have,
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