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ABSTRACT

NOVEL BAYESIAN METHODOLOGY IN MULTIVARIATE
PROBLEMS

Debamita Kundu

June 18, 2019

This dissertation involves developing novel Bayesian methodology for multi-
variate problems. In particular, it focuses on two contexts: shrinkage based variable
selection in multivariate regression and simultaneous covariance estimation of multi-
ple groups. Both these projects are centered around fully Bayesian inference schemes
based on hierarchical modeling to capture context-specific features of the data and
the development of computationally efficient estimation algorithm.

Variable selection over a potentially large set of covariates in a linear model is
quite popular. In the Bayesian context, common prior choices can lead to a posterior
expectation of the regression coefficients that is a sparse (or nearly sparse) vector
with a few non-zero components, those covariates that are most important. The
first project extends the global-local shrinkage idea to a scenario where one wishes
to model multiple response variables simultaneously. Here, we have developed a vari-
able selection method for a K-outcome model (multivariate regression) that identifies
the most important covariates across all outcomes. The prior for all regression co-
efficients is a mean zero normal with coefficient-specific variance term that consists
of a predictor-specific factor (shared local shrinkage parameter) and a model-specific

factor (global shrinkage term) that differs in each model. The performance of our



modeling approach is evaluated through simulation studies and a data example.
Covariance estimation for multiple groups is a key feature for drawing infer-
ence from a heterogeneous population. One should seek to share information about
common features in the dependence structures across the various groups. In the sec-
ond project, we introduce a novel approach for estimating the covariance matrices
for multiple groups using a hierarchical latent factor model that shrinks the factor
loadings across groups toward a global value. Using a spike and slab model on these
loading coefficients provides a level of sparsity in the global factor structure. Param-
eter estimation is accomplished through a Markov chain Monte Carlo scheme, and a
model selection approach is used to determine the number of factors to use. Finally,
a number of simulation studies and a data application are shown to demonstrate the

performance of our methodology.
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CHAPTER 1
INTRODUCTION

1.1 Bayesian Variable Selection for Multi-Outcome Models Through

Shared Shrinkage

In the context of high-dimensional data, it is critical to correctly identify a set of
variables that significantly influences the responses and play an important role in
prediction. Consider a set of p potential regressors X, X,..., X, and a single re-
sponse variable Y. In order to increase the precision of statistical estimates and

prediction, we often consider a model of the form

Y =050+ X181+ Xofa + ... 4+ X8, + ¢,

where many of the (3 are exactly zero, so that only the set of ¢ (< p) regressors impact
the response Y.

In the Bayesian context there are numerous approaches to the problem of
variable selection. Mitchell and Beauchamp (1988) proposed the “spike and slab”
approach by considering a mixture prior distribution for the regressor coefficient: a
zero component (spike) and a disperse component (slab). Specifically, indicator vari-
ables were used to differentiate the important regressors from the rest. When the
indicator assumes the value 0, the prior for the corresponding regression coefficient
is set to follow a Gaussian with low variance. This is the zero component (spike).

Otherwise, it follows a Gaussian with high variance, representing the disperse com-



ponent (slab). For this setup, George and McCulloch (1993) suggested stochastic
search variable selection (SSVS) for identifying a “promising” subset. This frame-
work was later extended to incorporate several non-conjugate and conjugate priors
for prior specification (George and McCulloch, 1997). Subsequently, a related class
of variable selection priors that put positive mass at 0 are based on Reversible Jump
(RJ) sampling techniques (Green and Hastie, 2009). However, these selection meth-
ods require updating each regression coefficient conditionally on all others and tend
to be computationally slow and display poor mixing when used for a large number of
variables.

Hence, shrinkage priors have gained popularity recently as a computation-
ally faster alternative. Rather than using a mixture prior that can set the coeffi-
cient exactly to zero, the shrinkage approach employs priors designed to pull small
signals aggressively towards zero. Many of the commonly used shrinkage models
fall within the global-local (GL) shrinkage framework defined by Polson and Scott
(2010). In the usual multiple regression setting where the regression coefficient vector
B = (B1,B2,...,0p) is believed to be sparse, the typical GL shrinkage prior for the
vector would be

@»vavﬁ#%

Ao~ fC) o T gl

In this model 7 controls global shrinkage towards the origin, and A = (Ay, Ag, -+, A,)
are the local shrinkage parameters that allows deviation in the degree of shrinkage
between predictors. The typical recommendation is that f(-) should have heavy
tails to avoid over-shrinking large signals, and ¢(-) should have substantial mass near
zero. The Normal-gamma prior (Griffin and Brown, 2010), the Dirichlet-Laplace
prior (Bhattacharya et al., 2015) and the horseshoe prior (Carvalho et al., 2010)

are three popular methods in this framework. A review and comparison of various



variable selection methods including the shrinkage methods can be found in O’Hara
and Sillanpdé (2009).

Although much of the literature focuses on the situation of multiple regression
with a single response variable y, the problem of variable selection when simultane-
ously analyzing multiple responses (multivariate regression) is much less explored.
For example, multiple outcomes measuring different aspects of a patient’s health
(blood pressure, glucose, etc.) may be modeled using a potentially large set of risk
factor predictors. In many cases, each outcome is analyzed separately with variable
selection performed unique to each outcome, but this will be inefficient if each model
has the same or a similar set of relevant predictors. However, borrowing strength
across regression coefficients can boost the power of detecting true signals, especially
if the responses share similar predictors and there is reason to believe that they ex-
ert similar influences on the responses. The gain in performance can be substantial
for low to moderate sample sizes and complex noise structures. Instead of applying
variable selection separately for each outcome, Brown et al. (1999, 1998) propose two
approaches based on finding a common set of predictors for all models by extending
the George and McCulloch’s selection model (1993; 1997). However, by requiring
predictors to affect either all K outcomes or none of them, their models are often
overly restrictive. Hence, in this work we focus on developing a more flexible vari-
able selection method that encourages the inclusion of similar sets of predictors in
each of the K models by extending the GL shrinkage framework. Recently, Bai and
Ghosh (2018) independently explored a similar setup and proposed their Multivari-
ate Bayesian Model with Shrinkage Priors (MBSP). We will discuss differences that
distinguish our work in later sections. In a frequentist setting, Turlach et al. (2005)
proposed a LASSO-based approach with penalties based on the maximum absolute

coefficient across all outcomes for each predictor.



1.2 A Bayesian Hierarchical Sparse Factor Model for Simultaneous Co-

variance Estimation

In the analysis of multivariate data, the estimation of the covariance matrix is always
one prime interest. However, when data consist of multiple groups, each may be
determined by its own covariance matrix. In this work, we consider data that consist
of M groups, where the covariance matrix of group m is Q,, (m =1,2,..., M). Our
interest is in developing methodology to estimate this collection {Q4, s, ..., 2}
When faced with this scenario, it is not uncommon for the analyst to assume equality
across all €2,,s, but this will lead to erroneous inference if there are truly differences
across the covariances. Conversely, estimating each €2, without sharing information
across all groups will lead to inefficient estimation if there are common structures
shared across groups. Hence, developing a reasonable method for borrowing strength
across groups in the simultaneous covariance estimation problem is paramount for
obtaining trustworthy inference.

In the literature of simultaneous covariance estimation, principal component
methods are a well-established approach. Flury (1984) developed a method with com-
mon eigenvectors to estimate the covariance matrices by considering 2, = QI',,Q,
where €),, is the p X p covariance matrix for the m‘* group, @ is the p x p orthogonal
matrix of eigenvectors that are shared across all groups and I',, is the diagonal matrix
of positive eigenvalues specific to group m. Later, Flury (1987) extended this to the
“partial common principal component model” by assuming ¢ (¢ < p) common eigen-
vectors across all ,,,s, and the remaining eigenvectors are group-specific. Boik (2002)
broadened the idea to a more general model by sharing the eigenvectors between some
or all groups. Hoff (2009) also developed a hierarchical Bayesian model that shrinks
the eigenvector matrix of each group across the population by using a shrinkage prior

on the matrix of eigenvectors. Besides this usual spectral decomposition, Manly and



Rayner (1987) and Barnard et al. (2000) proposed decomposing the covariance ma-
trix in terms of the standard deviation matrices (S) and correlation matrices (R), i.e:
Q. = SRS, and assumed R and S are independent and the correlation matrices
are the same across the groups.

In the context of longitudinal data, there are additional methods based on
the modified Cholesky decomposition of the covariance matrix (Pourahmadi, 1999).
Pourahmadi et al. (2007) highlighted on computational advantages and fundamen-
tal differences of the unconstrained parameterization of the Cholesky decomposition
for modelling several covariance matrices simultaneously in comparison to traditional
eigenvalue or variance-correlation decomposition. Unlike the spectral decomposition
and variance-correlation decomposition, the units that appear in the lower triangular
matrix, termed as general autoregressive parameters (GARP) of the Cholesky decom-
position are always unconstrained and hence involves unconstrained maximization
techniques for computing maximum likelihood estimates. McNicholas and Murphy
(2010) considered Gaussian mixture models in order to propose a model-based cluster-
ing framework for longitudinal data, where the modified Cholesky decompositions of
the group covariance matrices are considered to have commonalities across all groups.
Gaskins and Daniels (2012) proposed a family of nonparametric priors based on Dun-
son et al. (2008)’s matrix stick-breaking process. Their method uses the parameters
from modified Cholesky decomposition which includes GARP and the innovation vari-
ances (IV) to parametrize the covariance matrix for each group. Additionally, this
methodology sets some parameters of the Cholesky decomposition to zero to provide
a lower-dimensional structure for the covariance matrix. Later, Gaskins and Daniels
(2016) proposed a related approach that partitions the collection of groups into sets
with common conditional distributions.

As an estimator for a single covariance matrix, latent factor models tradition-

ally play an important role in modeling multivariate dependence structures in the



behavioral sciences. The essential purpose of factor analysis is to describe as the un-
derlying covariance relationship between many variables in terms of a few unobserved
random quantities, called factors. Consider, a situation where a researcher assembled
a moderate to a large number of predictors for an analysis. In general a p-dimensional
predictor variable has p(p—1)/2 pairwise correlation. However, when p is moderately
large it is very difficult to summarize and interpret all pairwise correlations together.
The factor model assumes that complex correlation structure can be explained by
some latent linear combinations of fewer variables, leading to a reduction in dimen-
sion. These underlying unobserved random variables are termed as latent factors.
This is a parsimonious model. As the number of latent factors K < p, therefore
instead of p* terms, we need to deal with only p(K + 1) terms. Further, it makes
interpretation simpler if variables are grouped by their underlying correlation struc-
ture. For example, if we have test scores from different subjects of a group of student,
we may consider as mathematics, vocabulary, physics score as "intelligence" factor,
weight, BMI, energy level as "physical fitness" factor and sociability, gregariousness,
lack of shyness as "psychological" factor.

Selection of the appropriate number of factors is a key issue in such models,
and traditional model selection criteria such as AIC or BIC are standard choices. In a
Bayesian factor model Lopes and West (2004) considered the number of factors itself
to be an unknown parameter. They introduced a customized reversible jump Markov
chain Monte Carlo (RJMCMC) algorithm to sample from the model with a variable
number of factors. Additionally, Ghosh and Dunson (2009) proposed an efficient
parameter expansion algorithm to improve the computational efficiency of Bayesian
factor models. Also, Bhattacharya and Dunson (2011) have applied a multiplicative
gamma process shrinkage prior to Bayesian latent factor models to model a sparse
covariance matrix for high-dimensional data by using infinite number of factors. Due

to its use in several applied areas such as pattern recognition, financial time series



modeling, bioinformatics and computer vision, the theory of factor models analysis
has received huge attention. However, the use of the latent factor model is relatively

uncommon in the context of estimating the multiple covariance matrices.



CHAPTER 2
BAYESIAN VARIABLE SELECTION FOR MULTI-OUTCOME
MODELS THROUGH SHARED SHRINKAGE

2.1 Introduction

In the context of high-dimensional data, it is critical to correctly identify a set of
variables that significantly influences the responses and play an important role in
prediction. Consider a set of p potential regressors X, X,..., X, and a single re-
sponse variable Y. In order to increase the precision of statistical estimates and

prediction, we often consider a model of the form

Y =050+ X181+ Xofa + ... 4+ X8, + ¢,

where many of the (3 are exactly zero, so that only the set of ¢ (< p) regressors impact
the response Y.

In the Bayesian context there are numerous approaches to the problem of
variable selection. Mitchell and Beauchamp (1988) proposed the “spike and slab”
approach by considering a mixture prior distribution for the regressor coefficient: a
zero component (spike) and a disperse component (slab). Specifically, indicator vari-
ables were used to differentiate the important regressors from the rest. When the
indicator assumes the value 0, the prior for the corresponding regression coefficient
is set to follow a Gaussian with low variance. This is the zero component (spike).

Otherwise, it follows a Gaussian with high variance, representing the disperse com-



ponent (slab). For this setup, George and McCulloch (1993) suggested stochastic
search variable selection (SSVS) for identifying a “promising” subset. This frame-
work was later extended to incorporate several non-conjugate and conjugate priors
for prior specification (George and McCulloch, 1997). Subsequently, a related class
of variable selection priors that put positive mass at 0 are based on Reversible Jump
(RJ) sampling techniques (Green and Hastie, 2009). However, these selection meth-
ods require updating each regression coefficient conditionally on all others and tend
to be computationally slow and display poor mixing when used for a large number of
variables.

Hence, shrinkage priors have gained popularity recently as a computation-
ally faster alternative. Rather than using a mixture prior that can set the coeffi-
cient exactly to zero, the shrinkage approach employs priors designed to pull small
signals aggressively towards zero. Many of the commonly used shrinkage models
fall within the global-local (GL) shrinkage framework defined by Polson and Scott
(2010). In the usual multiple regression setting where the regression coefficient vector
B = (B1,B2,...,0p) is believed to be sparse, the typical GL shrinkage prior for the
vector would be

@»vavﬁ#%

Ao~ fC) o T gl

In this model 7 controls global shrinkage towards the origin, and A = (Ay, Ag, -+, A,)
are the local shrinkage parameters that allows deviation in the degree of shrinkage
between predictors. The typical recommendation is that f(-) should have heavy
tails to avoid over-shrinking large signals, and ¢(-) should have substantial mass near
zero. The Normal-gamma prior (Griffin and Brown, 2010), the Dirichlet-Laplace
prior (Bhattacharya et al., 2015) and the horseshoe prior (Carvalho et al., 2010)

are three popular methods in this framework. A review and comparison of various



variable selection methods including the shrinkage methods can be found in O’Hara
and Sillanpdé (2009).

Although much of the literature focuses on the situation of multiple regression
with a single response variable y, the problem of variable selection when simultane-
ously analyzing multiple responses (multivariate regression) is much less explored.
For example, multiple outcomes measuring different aspects of a patient’s health
(blood pressure, glucose, etc.) may be modeled using a potentially large set of risk
factor predictors. In many cases, each outcome is analyzed separately with variable
selection performed unique to each outcome, but this will be inefficient if each model
has the same or a similar set of relevant predictors. However, borrowing strength
across regression coefficients can boost the power of detecting true signals, especially
if the responses share similar predictors and there is reason to believe that they ex-
ert similar influences on the responses. The gain in performance can be substantial
for low to moderate sample sizes and complex noise structures. Instead of applying
variable selection separately for each outcome, Brown et al. (1999, 1998) propose two
approaches based on finding a common set of predictors for all models by extending
the George and McCulloch’s selection model (1993; 1997). However, by requiring
predictors to affect either all K outcomes or none of them, their models are often
overly restrictive. Hence, in this work we focus on developing a more flexible vari-
able selection method that encourages the inclusion of similar sets of predictors in
each of the K models by extending the GL shrinkage framework. Recently, Bai and
Ghosh (2018) independently explored a similar setup and proposed their Multivari-
ate Bayesian Model with Shrinkage Priors (MBSP). We will discuss differences that
distinguish our work in later sections. In a frequentist setting, Turlach et al. (2005)
proposed a LASSO-based approach with penalties based on the maximum absolute
coefficient across all outcomes for each predictor.

The layout of this manuscript is as follows. In section 2.2, we describe a general

10



strategy for GL shrinkage in multivariate regression. and explore details when paired
with the 3 common GL models, Normal-gamma, Dirichlet-Laplace, and horseshoe, as
well as relevant posterior consistency results. Section 2.3 discusses posterior sampling
for each of these models, and Section 2.4 considers simulation studies to explore the
performance of our model. In Section 2.5 we analyze a real data set based on the
yeast cell cycle data (Chun and Keleg, 2010), and we conclude with a brief discussion

in Section 2.6.

2.2 Multi-outcome Regression Coefficient Shrinkage Model

2.2.1 General Strategy

Consider a multi-outcome (multivariate) model with K outcomes/responses, p covari-
ates and n independent observations. We write the multivariate regression model in

the following form,

Y1 Y2 ... YiK 11 L12 ... T1p 511 512 . ﬁlK
Y21 Y22 ... Yok T21 T2z ... X2 Bo1 Paz ... Box

= . te,  (21)
_ynl Yn2 - ynK_ _xnl Tn2 - xnp_ _ﬁpl Bp? s ﬁpK_

where Y;., the i*" row of the n x k matrix Y, consists of the K responses for the ith
observation and X;. is the i*" row of the model matrix X which contains the p predictor
variables for this observation. The matrix of regression coefficients B is believed to
be sparse. Further, as each row of B corresponds to the regression coefficients of
predictor 7 on each of the K responses, we expect similar sparsity across the row. ¢ is
the n x K residual matrix. Under the normality assumption, each row of the residual

matrix follows a Ng (0, V) distribution independently. For simplicity, we ignore the

11



intercept terms for right now. Note also that throughout we assume that the columns
of Y and X have been standardized. This gives a multivariate normal distribution
for the vector of responses for patient 7, Y;. ~ MV Nk (X; B, V).

Variable selection is induced through the choice of prior on the B matrix.
Our approach is to extend the global-local shrinkage framework to jointly model
multiple responses. The general idea of our method is to share information about
the importance of a covariate across all response models through a local-shrinkage
parameter A = (A, Ag, ..., ;) and use a response-specific global shrinkage parameter
T = (11,7T2,...,7Tk) to allow for different scalings of the regression coefficients in
the different response models. Following the usual GL framework, our prior for the

coefficient matrix B comes from the following general hierarchy,

BjkNN(O7>\?Tk?)a (j:1727"'ap7 k:1a27'”7K)7

T~ g(-).

The choices of the local distribution f(-) and the global distribution g(-) can
be borrowed from any of the common global-local models. In particular, we fo-
cus on the utility of this approach under the following three choices: the Normal-
gamma prior (Griffin and Brown, 2010), the horseshoe prior (Carvalho et al., 2010),
and the Dirichlet-Laplace prior (Bhattacharya et al., 2015). The value of the local
parameter \; will encourage similar levels of shrinkage/sparsity for all coefficients
(Bj1, Bj2, - -+, Bijxc) of the j predictor. Following the usual GL shrinkage rules, we
choose the local distribution f(-) to have heavy tails and g(-) to have substantial
mass near zero (Polson and Scott, 2010). A large A; allows S, (k= 1,2,..., K) coef-
ficients far from zero, whereas a small A\; will ensure all coefficients for predictor j are
aggresively shrunk toward zero. Note that if there is only a single response K = 1,

then our approach is exactly equivalent to the usual global-local framework. Finally,

12



note that the general framework (2.2) specifies the distributions f(-) and g(-) for the
global and local parameters on the scales of the standard deviation of 3;;. In some
cases, it may be more natural for f(-) and/or g(-) to represent the distribution for
the variance contributions A% and 772, respectively.

Despite similarities of our framework to that of Bai and Ghosh (2018), there are
several key differences between our approaches. First, their MBSP model specifies
a common value 7 for the global 7, parameters across all models. Further, this
parameter is a priori fixed based on asymptotic arguments. Conversely, we recognize
that there may be variability in the global scale of the coefficients between response
models, and we allows differing 7, which are estimated from the data. Secondly,
MBSP specifies the column covariance of B to be proportional to W, the residual
covariance matrix. This choice facilitates additional conjugacy in their sampler, but
we opt to allow the columns of B to be independent (given the 7;s) as a more intuitive
choice. As will be shown in Section 2.3, we are able to retain a high degree of conjugacy
and develop an efficient posterior sampler.

Having defined our general approach, we now focus on three versions of our

methodology by using common shrinkage models.

2.2.2 Multi-outcome Normal-gamma Model

First, we apply the Normal-gamma shrinkage prior from Griffin and Brown (2010)

to our method. We refer this model as the Multi-outcome Normal-gamma Model

13



(MONG). This yields the following hierarchy:

Bjr ~ N(0,\;77), G=12....,p; k=12...,K),
1

Aj ~ Gamma (c,—) ,
C

7~ CT (),

(2.3)

c~ Exp(A.).

In (2.3), A; comes from a Gamma (c, %) distribution such that the prior mean
is 1 and variance is % Hence, small values of ¢ will induce greater variability within
the As and more shrinkage. The tail of 3;; thickens with increasing c. A common
special case involves setting ¢ = 1 which provides the Bayesian LASSO (Park and
Casella, 2008). For the prior distribution of 7, we consider a half-Cauchy distribution

with density f(z) = , > 0. The intuition behind considering half-Cauchy

2y
(2 +x?)
prior for global shrinkage parameter is its non-zero density near the origin with thick
tails in the extremes. We recommend setting the scale parameter of this half-Cauchy
to v = 0.5 to provide a reasonably dispersed distribution for the 7s, and this choice
has performed well in empirical studies. For the hyper-parameter ¢ we consider an

exponential density with mean 2 to encourage slightly thicker tails in §j; than the

Bayesian LASSO.

2.2.3 Multi-outcome Horseshoe Model

The horseshoe prior is one of the most appealing and commonly used shrinkage priors
in the literature. It became popular due to its infinitely tall spike in the density near
the origin that shrinks almost everything towards zero and its flat, Cauchy-like tails
that allow some parameters to escape from shrinkage. The conventional horseshoe
prior places half-Cauchy priors on both the local and global contributions to the
standard deviation. The Multi-outcome Horseshoe Model (MOHS) is defined by the
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following hierarchy:

Bir ~ N(0, Xj77),
A~ CH (1), (2.4)

TkNC+(1)

In its usual form, the model (2.4) is not conjugate, making implementation in
a standard Gibbs sampling scheme difficult and time-consuming. However, Makalic
and Schmidt (2016) proposed an efficient, conditionally conjugate sampling algorithm
for fast updating by introducing data augmentation variables from an inverse gamma
distribution. Since the marginal distribution of x from the hierarchy y* | T ~

IG (3, 5) and T ~ IG (3,1) is C* (1), we equivalently write this model as

Vi, Vo, .y Up, Wi, Wa, ..., Wk ~ IG (— 1

Note that we define IG to have density function f(z | a, ) = Fﬁ(z)x_o‘_le_g, x> 0.

In both the MONG and MOHS versions, we may use the \ parameters to judge
the importance of a predictor across all responses. The larger the local parameter
the less shrinkage in the regression coefficients and the greater the predictive power.
Hence, the estimated ;\j can be used as a summary of the importance of predictor

7 across all K models. In both cases, we may compare this value relative to 1, the

prior mean for \; in MONG and the prior median in MOHS.
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2.2.4 Multi-outcome Dirichlet-Laplace Model

In a similar manner, we also define the Multi-outcome Dirichlet-Laplace Model (MODL).
Like the previous GL methods, the DL model considers the dispersion of the j** coef-
ficient to be a contribution of local and global scaling terms. However, the conditional
distribution of the coefficient is Laplace (double exponential) instead of the usual nor-
mal distribution. While this may not technically fall in Polson and Scott (2010)’s GL
framework, it is clearly in the same spirit, and can be paired with our multi-outcome

shrinkage framework. The proposed MODL model has the following specification

Bix ~ DE (¢;71) ,

1
7. ~ Gamma (pa, 5) , (2.6)

¢ = (¢1, P2, ..., ¢p) ~ Dirichlet (a,aq, ..., a),

where a is concentration parameter of the Dirichlet distribution. In this model the
local parameters ¢; sum to one, and smaller values of a will lead ¢ to be dominated
by a few components. Since the majority of the DE scales ¢;7;, will be approximately
zero, sparsity in the ;5 is achieved. As recommended by Bhattacharya et al. (2015),
we considered a = % or a = % for our simulation and case study.

Similar to the HS model (2.5), we can introduce auxiliary variables to facilitate
sampling. One may represent the 8;, ~ DE (¢;7;) as scale mixture of normals
through Bji | nje ~ N (0,;,¢372) with 1, ~ Exp (3). Similar to using ) to evaluate
predictor relevance in the MONG and MOHS models, in this MODL proposal we can
compare the estimated ¢;s to their prior mean 1/p. Again, larger values indicate less
shrinkage and greater predictor relevance across all outcomes.

Across all models for the regression coefficients the residual covariance matrix

is given an inverse Wishart prior with K42 degrees of freedom and the identity matrix

as the prior scale matrix. This gives the prior mean for U as the identity matrix. As
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is common, we recommend responses and predictors be centered and scaled prior to

analysis.

2.2.5 Posterior Consistency

In this section, we present a result guaranteeing posterior consistency in our model
structure. For this proof, we will assume that the residual covariance matrix ¥ is fixed
and known. We first state the assumptions before proving our consistency result.

Assumptions:
(A1) The prior 7(B) is continuous in B over all of RP*K,

(A2) The vector of covariates are uniformly bounded. That is, there exist G > 0 such

that || X.||[< G foralli=1,... n.

(A3) The smallest eigenvalue of the design matrix is asymptotically bounded away
from zero. There exists ¢ > 0 such that lim inf, . A\ (X' X) > ¢, where A (M)

refers to the smallest eigenvalue of the matrix M.

Note that (Al) represents a much more general class of prior models than our
GL shrinkage framework, although our proposal clearly falls within this assumption.
Throughout, we use the Frobenius norm, |[M||= />, (m;;)?. Note also that any
deterministic functions of the n x p design matrix X depends on the sample size n.
To avoid cumbersome notation we typically suppress the dependence on n and refer
to it as simply X.

First, we state our key theorem about posterior consistency.

Theorem 1. Assume a fized, positive definite ¥ and assumptions (A1)-(A3). Let
Yi., ..., Y, be did from model (2.1) under the true parameter value By. Then for any
e >0,

P, {||B—Byl|> €| Y1.,...,Y} =0, a.s asn— oo.
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That is, the posterior distribution for B almost surely collapses to the true
value By as n — oo.

This proof along with the associated lemmas appears in the Appendix. It
builds upon Schwartz’s seminal proof (Schwartz, 1965), in combination with results for
regression models from Amewou-Atisso et al. (2003) and Choi and Schervish (2007).
The argument mainly relies on the existence of an uniformly exponentially consistent
(UEC) sequence of tests and a prior positivity property. The latter in Schwartz’s
original proof was simply the condition that the prior mass on all Kullback-Leibler
(KL) neighborhoods of the true parameter is greater than zero. However, as we show
in the Appendix, this KL framework must be modified into a multi-index version for
its use in models with covariates. Both of these two conditions are derived as separate
lemmas that can be combined to give posterior consistency. See the Appendix for full
details.

An important feature of Theorem 1 is its flexible prior condition stated in (A1l).
This relaxation comes at a cost, mainly assumption (A2), which essentially bounds
the entries of the design matrix. In contrast, Bai and Ghosh (2018) assume upper
and lower (asymptotic) bounds on the eigenvalues of the design matrix. However, the
flexibility gained under our choice is significant, as we require no condition (except
continuity) on the prior for B. This is much more general than the assumptions made
in the consistency theorems of Bai and Ghosh (2018) and Armagan et al. (2013). Their
choices require conditions on the prior with convoluted formulas involving ¥ and the
eigenvalues of the design matrix, thus restricting the choice of prior on B in ways

that are not straightforward.

2.3 Posterior Computation

As with most modern Bayesian models, inference is performed by approximating the

posterior through Markov chain Monte Carlo (MCMC) methods. We describe the
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necessary sampling steps for each of our three models below.

2.3.1 MONG Model

1

(i) Sample vec(B) | X, ¥, A, 7 from MV Nyg (M, W), where W = ((T' @ XTX) + Q')
and M =W (V' @ XT) vec(Y). Here, @ = T ® A the prior covariance matrix
of vee(B), A = diag(Ai, Ng, -+, N,) and T = diag(73, 73, -+, 74). Throughout,

we let ® denote the Kronecker product.

2
(ii) For j = 1,2,---,p, sample \; | Bjk, Tk, ¢ ~ giG (c— %,20, szl %’“), where
g1G (K, X, p) is the generalized inverse Gaussian distribution with density f (z; &, x, p) x

x"_le_%<m+§), x> 0.

(iii) The posterior density of 7, does not have a conjugate distribution. The condi-

tional posterior sampling distribution of 7 is given by

7 (T | BjrAj) o< 7. ¥ exp [——Z )
j

2
Ty

7
(7 +?)

j=1

For each k = 1,2,---, K, an adaptive Metropolis-Hastings (MH) step is applied
to attempt an update to 7, based on algorithm 4 of Andrieu and Thoms (2008)

applied to 7.

(iv) Similarly, ¢ does not have a conjugate sampling density. The conditional pos-

terior density of c is given by

c?

p p
7T(C|)\1,)\2,...,)\p)0(mexp [—c <A0+Z)\j) +(c—1)Zlog)\j] ,c>0.
j=1 j=1

An adaptive MH step based on the Andrieu and Thoms (2008) algorithm is also

performed here.

(v) Wis drawn from Inv—Wishart (vg +n, Sy + S), where S = (Y — XB)" (Y — XB).
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2.3.2 MOHS Model

Sampling steps for MOHS model are described below.

(i) Sampling distribution for vec (B) | X, ¥, A, 7 is the same as in MONG step (i),
except A = diag(A\}, A3, -+, \2) here.
(ii) For j =1,2,---,p, sample A? | B, 7., v; ~ IG (%, % +3F %) .
(iii) For k =1,2,---, K, sample 72 | Bjx, Aj, &x ~ IG (1%1, wik +>0 %) :
(iv) For j =1,2,---,p, sample v; | \; ~ IG (1,1—1—%?) .
(v) For k=1,2,---, K, sample wy, | 7 ~ IG (1,1—l—%>.

(vi) Sample ¥ | B ~ Inv — Wishart (vy + n, Sy + .5).

2.3.3 MODL Model

For the original DL specification, (Bhattacharya et al., 2015) propose a block sampler
that involves marginalizations over different sets of parameters. Due to sharing ¢;s
across multiple outcome models, this is no longer feasible in our MODL model (2.6),
and we require (adaptive) Metropolis-Hasting to jointly sample the vector (¢1, ..., ¢,)

of local parameters. Sampling steps are as follows:

(i) First sample vec(B) | X,V,¢,n,7 from MV N,x (M,W). The conditional

posterior distribution of vec(B) is as in the case of NG prior except Q =

diag (nxd?7?).

(ii) For k =1,2,---, K, sample 73 | Bjx, ¢ (marginalizing over ) from a generalized

inverse Gaussian distribution ¢giG (pa -p, 1,230, ig—’“)
J
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(iii) The conditional posterior density of ¢| B, T (marginalizing over ) is proportional

to

T oo Kty | - L5 L]
T(01 020y | Bor) o [ [ o) e | == ) =l (2)

j=1 ; k=1

where ¢ resides in the (p — 1)-dimensional simplex. We have used an adap-
tive MH algorithm by extending algorithm 4 of Andrieu and Thoms (2008) for

sampling ¢. We sample from distribution (2.7) as described below:

e At the t' iteration, sample the proposed move by

(7,5, ..., %) ~ Dirichlet ((V¢1, (W, ..., "e,) . (2.8)

The (® is a positive tuning parameter that controls the dispersion of

the proposal distribution. Note that this choice behaves similarly to a

random walk with F¢} = ¢; and Var (qu) = d)ﬂl(ig(?f ). The variance of our

candidate is inversely related to ¢,

e Calculate the MH probability a = min (1 ﬂw*'B’T)g(%m"”’%m’¢§""’¢;’>),

T w(@|B) g(6F 05,05 |61,62,.6p )
where ¢(-) is the proposal distribution (2.8). With probability a, we accept

the proposed value ¢* = (¢’{,¢§, . .,¢;§), and otherwise, we retain the
current ¢ = (¢1, P2, ..., dp).

e Updating the tuning parameter ( :

log(¢“*V) =1log(¢") ="V (a — "),
where a* = 0.24 is the ideal acceptance probability and the step size is
~® = min (500—%,75-%).

(iv) Sample nj_kl | Bjk, ¢, 7 independently from Inv — Gaussian <1 ¢ka>. The

> Bk ]

Inverse Gaussian distribution is defined by the density function f (z;u,0) =
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1

( 0 )Eexp [—e(w_“)g} , x> 0.

23 2u’x

(v) Sample ¥ | B ~ Inv — Wishart (vg + n, Sy + .5).

2.4 Simulation study

Here we implement simulation studies to evaluate the performance of our method-
ology. In addition to our MONG, MOHS, and MODL methods, we consider the

following competitors:

e Naive Normal-gamma Model: To assess the utility of sharing the local
parameters across all response variables, we consider an approach that fails
to make use of this information by independently placing a NG prior on the
vector of regression coefficients (B, Bak, - - -, Bpx) for each model k. This naive
model is unable to borrow strength across models to inform the shared level of
sparsity. To that end, 8, ~ N (0, \jz72), where all \j; are independent from

Gamma (c, %) The rest of the model is unaffected.

e Naive Horseshoe Model: Similar to the naive NG model, we consider ap-
plying a horseshoe prior independently for each response. In this case, 3;, ~

N (O, )\?kr,f), with all \j; independently from C*(1).

e Naive Dirichlet-Laplace Model: We also consider a naive version of DL
prior. To that end, we let 5, ~ DE (¢;,7). Here, independent local shrinkage
parameters are drawn for each response model k: ¢p = (P1k, Pk, =+ Ppr) ~

Dir(a,a,..., a).

e No Shrinkage Model: As a baseline that does not favor any variable selection,
we consider a basic conjugate prior model. For all j, k, ;1 ~ N (0, 10) to provide

minimal shrinkage towards zero.
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e Selection Prior (Brown et al., 1998) Model: As noted in the introduction,
this approach constrains each predictor to either be in the model of all K

responses or to be excluded from all.

e MIBSP Model (Bai and Ghosh, 2018): As previously noted, this approach
is similar to our MOHS model where the global parameter 7 is common across
all responses and fixed by asymptotic arguments, rather than estimated from

the data. The performance of this model is obtained using their available R

package MBSP.

Data are generated from the multi-response linear regression model (2.1) us-
ing a design matrix X"*? whose elements are independently drawn from a standard
normal distribution. Then, rows of the response matrix Y"*P are independently gen-
erated from Ng (X; B, V), where ¥;; = 0.5 if ¢ # j, and 1 otherwise. We consider
p = 20 predictors, K = 10 response variables, and a sample size of n = 500. We
generate 100 datasets, and for each dataset and model choice we run the MCMC
chain for 90,000 iterations with a burn-in of 10,000 iterations. We measure predic-
tive performance by computing the mean square prediction error (MSPE) using the
posterior mean regression coefficients B and an independently generated test data
set. To assess the accuracy of the regression coefficient estimation, we consider the
sum of square errors (SSE). To distinguish between error of over-shrinking relevant
signals and under-shrinking non-signals, we partition this SSE into the SSE over the
true non-zero 3;;s and the SSE for the ;s that are true zeros. These quantities are

determined by the following formulas:

K ngest K p
1 . 2 A 2
wspr = LSS (ko) ss= 3 ()’
Niest . -
k=1 i=1 k=1 j=1

where nys is the number of observations in the test dataset (n,s = 500), and y ®)

and X® denote respectively the response and design matrices for the test set. We
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consider two scenarios for choosing the true regression coefficient structure. First,
we consider a simple sparse B(®) matrix (Table 2.1), where each covariate is either
important for all responses or has no contribution to the mean of any response. Table
2.3 presents the results for this case.

Comparing each of our multi-outcome models to their respective naive versions,
we find reduced MSPE in all cases. While the difference in MSPE between models
are relatively minor, there are large improvements in the coefficient estimation. Our
shared shrinkage models lead to reduction in total SSE of around 50% when compared
to the respective naive version. When looking at the two components of SSE, we see
clear improvement in the estimation of the coefficients that are truly zero. That is,
by sharing the local parameters across the K outcome models, our model is able to
better identify those coefficients that should be aggressively shrunk toward zero. Our
proposed model also yields similar level of predictive performance with the selection
prior approach (Brown et al., 1998), which is perfectly suited to this choice of B(®),

We note that the model without shrinkage is not competitive due to its large
SSE in the zero coefficients. Also the naive DL with a = 113 performs poorly in
estimating the non-zero coefficients. Setting a = % provides a much stronger level of
shrinkage than the a = 0.5 case. For the naive DL model, we do see more shrinkage
under a = % than a = 0.5, but by sharing shrinkage information across multiple
responses, our MODL model is able to find an acceptable balance in the amount of
shrinkage under both choices of a.

Next, we consider a situation that does not have the exact same sparse struc-
ture for each response model. There are two important considerations for such a
choice. First, in light of our original motivation, we are interested in a more flexible
model than those require the same subset of predictors for all responses. We wish
to assess the performance of our model in such a case where there are variations in

the relevant predictors across models. An alternative motivation is to understand the
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impact of misspecification for models that assume the exact same subset of relevant
predictors across all outcomes. To that end, the new true coefficient matrix B™") in
Table 2.2 is created by perturbing B so that the true model no longer has exact
sparsity across all models. We switch three of the zero coefficients from B to non-
zero [ and also change three non-zero coefficients in B to zero (as denoted in
bold). This potentially represents a more realistic scenario where a small subset of
predictors impact all responses, but there are some minor deviations from this general
rule.

The results for this simulation settings are reported in the Table 2.4 and are
generally similar to the previous analysis. As would be expected, the gap between
the shared shrinkage and the naive approaches is somewhat narrowed, but the pro-
posed approaches continue to show lower MSPE and lower SSE than their naive
counterparts in all cases. Hence, even if there are some differences in which predic-
tors are relevant across models, sharing shrinkage information through our common
local parameter structure can continue to improve estimation. The selection prior
approach and MBSP model also show similar prediction performance, although both
have poorer performance in the coefficient estimation relative to our approach. Of
particular note, the MBSP has fairly large SSE for the zero signals, indicating a
lower level of shrinkage than our proposals. Our model estimates the global parame-
ters from the data to adjust the amount of shrinkage, whereas MBSP fixes 7 and is
unable to correct for undershrinkage in this data.

In conclusion, our three multi-outcome models perform well in those simulation
studies. Using a = é in the MODL model may lead to overshrinking, so we typically
prefer a = 0.5. While the differences between methods are relatively minor, MONG

tends to perform best among our proposals.

25



2.5 Application

We now demonstrate our methodology with the yeast cell cycle data set (Spellman
et al., 1998) from the spls package in R. The data was first analyzed by Chun and
Keleg (2010) and also by Bai and Ghosh (2018). In this dataset, the response matrix
Y contains gene expression data for n = 542 genes from an « factor based experiment.
Each column of Y corresponds to mRNA levels measured at 7 minute intervals across
2 hours providing a total of K = 18 responses. The covariate matrix X contains the
binding information for p = 106 transcription factors (TFs). In molecular biology,
transcription factors are a diverse family of proteins which are involved in the process
of transcribing, DNA into RNA. Hence, it is of common interest to identify the most
significant TFs that play an important role in gene regulations.

We applied our method to capture those TFs that affect the expression levels
across all time points. We perform the analysis using our proposed MONG, MODL,
and MOHS models, followed by the three naive models, the no shrinkage model, the
selection model (Brown et al., 1998) and the MBSP model (Bai and Ghosh, 2018).
Due to over-shrinkage observed in the MODL <a = %) model, we do not consider its
performance here. For each case, we run a burn-in for 1000 iterations followed by
another 30,000 iterations. We report the MSPE by performing cross validation on
50 data sets for each model to assess the predictive power of each method. For cross
validation we randomly assign 80% of observations to the training set to estimate B,
and then measured the MSPE using the remaining 20%. We also analyze the full
dataset and compute the deviance information criteria DIC as a model comparison
measure (Spiegelhalter et al., 2002). DIC' is calculated by DIC' = D + 2pp, where
D is the deviance at the posterior expectation of the parameter values and pp is the

effective number of parameters, and smaller DICs are favored. pp is calculated as

pp = E{D(B,¥|Y)} — D(¥, B). Table 2.5 shows the MSPE, the deviance at the
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posterior expectation of the parameter values (D), the effective number of parameters
(pp), and the deviance information criteria (DIC) of the yeast cycle data for each
model.

The MODL(a = 0.5) choice yields the lowest prediction error among our mod-
els. Consistent with the simulation study, each of the multi-outcome approaches have
smaller MSPE than their respective naive counterparts. The MONG and MOHS
model also yield a lower mean square prediction error by slightly outperforming the
selection prior model.

When using the competitor MBSP model, the prediction error is 0.786, scoring
lowest among all approaches. It appears that for this particular data application,
using a fixed value of 7 performs slightly better than our methods which require
estimating K = 18 global parameters. However, as noted in the simulation study,
this is not always the case, and worse performance may result. Finally, we note that
the R package of MBSP model only produces model estimates and not the full set
of posterior samples. So we were unable to compute DIC estimates for the MBSP
model.

The DIC criteria favors the MONG and MOHS models. When considering the
effective number of parameters, we see that these models estimate a much sparser
regression coefficient matrix than MODL. When comparing DIC between the shared
shrinkage and naive models, we again see that our proposals consistently dominate
their counterparts that fail to share variable selection information between responses.
The selection approach from Brown et al. (1998), which requires a common set of
predictors for all models performs poorly with respect to DIC. This model places the
majority of the posterior probability on models with only 2 or 3 predictors. This
excessive sparsity leads to high prediction error, poor model fit, and large DIC.

Based on the results from fitting the full data set, we consider the use of the

local parameters as a marker of variable importance. Figure 1 graphically displays
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these parameters for each of the multi-outcome models. Based on the MONG results,
we would consider those covariates with S\j > 1 as evidence of a strong effect across
all response models. This criterion selects 8 important TFs: SWI5, SWI6, NDD1,
ACE2, STE12, HIR1, GAT3, MBP1. The 8 predictors with the largest 5\j in the
MOHS model corresponds to the same 8 TFs, indicating robustness in the predictor
weights across the model variations. Consistent with its large pp indicating less
sparsity, the MODL choice demonstrates much less separation between large and
small ¢; and consequently less shrinkage/sparsity in the B matrix. For this MODL
case, distinguishing important predictors based on the value of the local parameters

will not be effective.

2.6  Conclusion and discussion

In this paper, we have proposed a general strategy of variable selection in the multi-
variate regression model by sharing common local parameters across all of the response
variables. We have demonstrated our approach using the Normal-gamma, Dirichlet-
Laplace and horseshoe priors. Based on the results from simulation studies and the
analysis of data from an mRNA experiment, we have demonstrated the utility of our
approach in comparison to alternatives. Our approaches are found to be superior
in terms of both predictive performance and parameter estimation. In general, we
recommend the use of the MONG version of our model as it displayed consistently
strong behavior across all empirical experiments, although the MODL and MOHS
also performed well.

Regarding computational comparisons between our methods, the MOHS model
tends to run fastest as all of its sampling distributions are conditionally conjugate.
While slightly slower, MONG has comparable computational time for a fixed number
of iterations. However, the MODL model tends to be computationally slower due

to the sampling of pK data augmentation parameters 7;,. Moreover, as noted in
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Section 2.3, the mixing in this algorithm tends to be slower due to the multivariate
MH sampling of ¢ = (¢y,...,¢,). While our adaptive step is generally effective here,

further algorithmic improvements may be possible here in future research.
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2.7 Tables and Figures

Table 2.1: True B® regression coefficient matrix in first simulation study.

20 20 20 20 20 20 20 20 20 20
-30 -30 -30 -30 -30 -3.0 -3.0 -3.0 -3.0 —-3.0
10 10 10 10 10 10 10 1.0 10 1.0
00 00 00 00 00 00 00 00 00 0.0
03 03 03 03 03 03 03 03 03 0.3

00 00 00 00 00 00 00 00 00 0.0
00 00 00 00 00 00 00 00 00 0.0
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Table 2.2: True BM regression coefficient matrix in second simulation study.

20 20 20 20 20 20 20 20 20 20
-30 -30 -30 -30 -30 -3.0 -30 -3.0 —-3.0 —-3.0
1.0 1.0 0 1.0 0 1.0 10 10 1.0 1.0
00 00 05 00 00 00 00 00 00 0.0
00 00 00 00 00 00 03 00 00 0.0
00 00 00 00 00 00 15 00 00 0.0
00 00 00 00 00 00 00 00 00 0.0
03 03 03 0.3 0 03 03 03 03 0.3

00 00 00 00 00 00 00 00 00 0.0
00 00 00 00 00 00 00 00 00 0.0
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Table 2.3: Prediction and estimation results from simulation study with B,

SSE
Models MSPE
All g B#0 p=0
MONG 1.028 0.097 0.095 0.002

MODL(a = 0.5) 1.029  0.098 0.089 0.009

MODL(a = 1/p) 1.032 0.125 0.112 0.013

MOHS 1.030 0.113 0.099 0.014

Naive NG 1.040 0.205 0.167 0.038

Naive DL(a = 0.5) 1.036 0.176 0.104 0.073

Naive DL(a = 1/p) 1.079 0.564 0.547 0.016

Naive Horseshoe 1.040 0.203 0.111 0.092

No shrinkage 1.059 0.416 0.080 0.337
Selection prior 1.028 0.134 0.134 0.000
MBSP model 1.029 0.104 0.092 0.012
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Table 2.4: Prediction and estimation results from simulation study with B™.

SSE
Models MSPE
Al B#0 =0
MONG 0.976 0.113 0.095 0.028

MODL(a = 0.5) 0976 0.118 0.085 0.033

MODL(a = 1/p) 0.978 0.127 0.097 0.030

MOHS 0.978 0.132 0.098 0.034

Naive NG 0.978 0.131 0.091 0.040

Naive DL(a = 0.5)  0.980 0.158 0.083 0.075

Naive DL(a = 1/p) 0.994 0.283 0.251 0.032

Naive Horseshoe 0.982 0.177 0.083 0.094

No shrinkage 1.005 0.416 0.080 0.336
Selection prior 0.979 0.139 0.090 0.050
MBSP model 0.978 0.146 0.080 0.066
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Table 2.5: Cross-validation prediction error and model comparison statistics for yeast
cell cycle data.

Models MSPE D PD DIC

MONG 0.833 15580 370 16321

MODL(a = 0.5) 0.814 14077 1299 16676

MOHS 0.841 15683 318 16320

Naive NG 0.987 16594 148 16890

Naive DL(a = 0.5)  0.907 13990 1430 16851

Naive DL(a = 1/p) 0.872 15117 733 16584

Naive HS 0.864 14706 827 16361
No shrinkage 0.971 13453 2131 17716
Selection prior 0.845 17425 257 17940
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Figure 2.1: Estimated local parameter (5\J or q%) across all predictors in the three
multi-outcome regression analyses for the yeast cell data.
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CHAPTER 3
A BAYESIAN HIERARCHICAL SPARSE FACTOR MODEL FOR
SIMULTANEOUS COVARIANCE ESTIMATION

3.1 Introduction

In the analysis of multivariate data, the estimation of the covariance matrix is always
one prime interest. However, when data consist of multiple groups, each may be
determined by its own covariance matrix. In this work, we consider data that consist
of M groups, where the covariance matrix of group m is Q,, (m=1,2,..., M). Our
interest is in developing methodology to estimate this collection {€,s, ..., Q}.
When faced with this scenario, it is not uncommon for the analyst to assume equality
across all €2,,s, but this will lead to erroneous inference if there are truly differences
across the covariances. Conversely, estimating each €2, without sharing information
across all groups will lead to inefficient estimation if there are common structures
shared across groups. Hence, developing a reasonable method for borrowing strength
across groups in the simultaneous covariance estimation problem is paramount for
obtaining trustworthy inference.

In the literature of simultaneous covariance estimation, principal component
methods are a well-established approach. Flury (1984) developed a method with com-
mon eigenvectors to estimate the covariance matrices by considering €2, = QI',,Q,
where €, is the p X p covariance matrix for the m!” group, @ is the p x p orthogonal
matrix of eigenvectors that are shared across all groups and I, is the diagonal matrix

of positive eigenvalues specific to group m. Later, Flury (1987) extended this to the
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“partial common principal component model” by assuming ¢ (¢ < p) common eigen-
vectors across all ,,,s, and the remaining eigenvectors are group-specific. Boik (2002)
broadened the idea to a more general model by sharing the eigenvectors between some
or all groups. Hoff (2009) also developed a hierarchical Bayesian model that shrinks
the eigenvector matrix of each group across the population by using a shrinkage prior
on the matrix of eigenvectors. Besides this usual spectral decomposition, Manly and
Rayner (1987) and Barnard et al. (2000) proposed decomposing the covariance ma-
trix in terms of the standard deviation matrices (S) and correlation matrices (R), i.e:
Q= SmBRnSm, and assumed R and S are independent and the correlation matrices
are the same across the groups.

In the context of longitudinal data, there are additional methods based on
the modified Cholesky decomposition of the covariance matrix (Pourahmadi, 1999).
Pourahmadi et al. (2007) highlighted on computational advantages and fundamen-
tal differences of the unconstrained parameterization of the Cholesky decomposition
for modelling several covariance matrices simultaneously in comparison to traditional
eigenvalue or variance-correlation decomposition. Unlike the spectral decomposition
and variance-correlation decomposition, the units that appear in the lower triangular
matrix, termed as general autoregressive parameters (GARP) of the Cholesky decom-
position are always unconstrained and hence involves unconstrained maximization
techniques for computing maximum likelihood estimates. McNicholas and Murphy
(2010) considered Gaussian mixture models in order to propose a model-based cluster-
ing framework for longitudinal data, where the modified Cholesky decompositions of
the group covariance matrices are considered to have commonalities across all groups.
Gaskins and Daniels (2012) proposed a family of nonparametric priors based on Dun-
son et al. (2008)’s matrix stick-breaking process. Their method uses the parameters
from modified Cholesky decomposition which includes GARP and the innovation vari-

ances (IV) to parametrize the covariance matrix for each group. Additionally, this
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methodology sets some parameters of the Cholesky decomposition to zero to provide
a lower-dimensional structure for the covariance matrix. Later, Gaskins and Daniels
(2016) proposed a related approach that partitions the collection of groups into sets
with common conditional distributions.

As an estimator for a single covariance matrix, latent factor models tradition-
ally play an important role in modeling multivariate dependence structures in the
behavioral sciences. The essential purpose of factor analysis is to describe as the un-
derlying covariance relationship between many variables in terms of a few unobserved
random quantities, called factors. Consider, a situation where a researcher assembled
a moderate to a large number of predictors for an analysis. In general a p-dimensional
predictor variable has p(p —1)/2 pairwise correlation. However, when p is moderately
large it is very difficult to summarize and interpret all pairwise correlations together.
The factor model assumes that complex correlation structure can be explained by
some latent linear combinations of fewer variables, leading to a reduction in dimen-
sion. These underlying unobserved random variables are termed as latent factors.
This is a parsimonious model. As the number of latent factors K < p, therefore
instead of p? terms, we need to deal with only p(K + 1) terms. Further, it makes
interpretation simpler if variables are grouped by their underlying correlation struc-
ture. For example, if we have test scores from different subjects of a group of student,
we may consider as mathematics, vocabulary, physics score as "intelligence" factor,
weight, BMI, energy level as "physical fitness" factor and sociability, gregariousness,
lack of shyness as "psychological" factor.

Selection of the appropriate number of factors is a key issue in such models,
and traditional model selection criteria such as AIC or BIC are standard choices. In a
Bayesian factor model Lopes and West (2004) considered the number of factors itself
to be an unknown parameter. They introduced a customized reversible jump Markov

chain Monte Carlo (RJMCMC) algorithm to sample from the model with a variable
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number of factors. Additionally, Ghosh and Dunson (2009) proposed an efficient
parameter expansion algorithm to improve the computational efficiency of Bayesian
factor models. Also, Bhattacharya and Dunson (2011) have applied a multiplicative
gamma process shrinkage prior to Bayesian latent factor models to model a sparse
covariance matrix for high-dimensional data by using infinite number of factors. Due
to its use in several applied areas such as pattern recognition, financial time series
modeling, bioinformatics and computer vision, the theory of factor models analysis
has received huge attention. However, the use of the latent factor model is relatively
uncommon in the context of estimating the multiple covariance matrices.

In this article, we introduce a novel approach for the estimation of multiple
covariance matrices using a hierarchical Bayesian latent factor model. In section 3.2
we explain our methodology including a full model specification and a discussion of our
computational estimation procedure. Section 3.3 describes a number of simulation
studies to explore the performance of our model. In section 3.4, we have applied
our method on Letter recognition data and compared the performance with other

competitor models. We conclude with a brief discussion in section 3.5.

3.2 Bayesian Sparse Hierarchical Factor (BaSH-F) Model

3.2.1 Model & Prior specification

Consider M groups containing n,, observations in group m, and let N = )" n,
be the total number of observations. We also let Y,,; = (Y1, Yiniz, -+, Yonip) r€D-
resents the p-dimensional sample for the " observation (i = 1,2,---,n,,) of the
m'™ group (m = 1,2,---, M). Without loss of generality, we let the mean vector
for each group be zero. We assume that Y,,; is multivariate normally distributed:
Yii ~ MVN,(0,8,,),i=1,2,--- nyp;m=1,2,---, M. We further assume that each

covarinace matrix can be decomposed using the usual factor model €2, = AmA%—l—Zm.
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Here A, is a px K matrix with (7, k) element \,,;x and ¥, = diag(c2,,, 02,5, +,02,),
where all 02 > 0.
This model may be equivalently motivated by introducing a vector of K latent

factor values for each observation. To that end we let 7,,; = (D1, iz, * ,nmiK)T ~

MV Nk (0, Ik) be the K factor scores of observation ¢ in group m, and consider

where €,,; = (€mit, €miz,  **  €mip) ~ MV N (0, X,,) is a vector of error terms. Marginally
over 7,,; and €,,;, we again obtain Y,,; ~ MV N(0,€2,). The benefit of this approach
is that we may consider A,, as a matrix of regression coeflicients (with 7,,; as predic-
tors) and the afnjs as the regression variances, which facilitates posterior sampling.
In this work, when we refer to the factor loadings we mean the regression coefficients
Amjk, not the correlation between Y,;; and 1.

The general idea of our methodology is to consider the commonalities between
the factor loading matrices A,, across the M groups by shrinking A, the (j, k)"
element of A,,, towards a global value wj, (j = 1,2,---,p;k = 1,2,---, K) shared
across all groups. The W = (w;;;) matrix can be thought of as representing the overall
relationship /factor loadings across all groups in the population. To help control the
complexity of the model and improve interpretation, it is common to assume sparsity
in the factor loading matrix (Carvalho et al., 2008). For instance, if \,,;, = 0, this
implies that the k' factor is not associated with the j** response. Here, we assume
that the sparsity in A,, is a feature shared across all groups and the W matrix. To
that end, we introduce the parameter Zj;. If Z;; = 0, then response j is unaffected
by factor k in all groups, and 0 = wj = Aijr = Aok = -+ = A If Zj; = 1, then
the factor k loads on response j, and wj; and A,jxs (m = 1,2,---, M) are non-zero.

The hierarchy that describes the distribution of (Zi, wjk, Amjk) is
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Amie ~ N(wik, Zigl/2),
Zj, ~ Ber(m), (3.2)

wjk ~ N(O, ijTz).

Note that the variance parameter v/, determines how similar A,, is to the global
W matrix. This shrinkage parameter is group-specific allowing some groups to be less
similar to the overall structure. We assume the distribution of the standard deviation
Um to be HC(0), where HC () represents the half-Cauchy distribution with scale of
0 and density f(z) = ﬂ(ef—iwg), x > 0. This prior encourages shrinkage towards zero
by imposing substantial mass near zero while its thick tail simultaneously captures
the strong signals (Gelman et al., 2006). Further, we consider an inverse gamma

IG(1,1) prior on 0, the median of the v,,s. The pdf for the IG («, ) distribution is

oY —a— _B
f(x]a,ﬁ)zr/za)a: lem%, > 0.

The parameter 7 in the distribution of the Zj;s controls the overall level of
sparsity in the factor loading matrices. Values near zero will produce highly sparse
A,,. The prior for 7 is Beta(a,,b,) with a, = b, = 1 as default choices. We place
an IG(a, B) prior on 72, the variance of the non-zero wjs. We use o = 8 =1 in our
analysis. For the error variance terms in the X, matrices, we take Ufnj ~ IG(c,d) with
¢ =d = 0.1 as default choices for the hyperparameters. We refer to our approach as
the Bayesian Sparse Hierarchical Factor Model (BaSH-F) for simultaneous covariance

estimation.

3.2.2 Posterior Computation

We adapt the usual Markov Chain Monte Carlo(MCMC) methods for factor model to
develop a posterior computation scheme. The necessary sampling steps are described

below.
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(i) First sample the probability 7|Z from Beta(ax +_; ;. Zjk, br + K =21 Zjk)-

(ii) For each (j, k) pair, we update Z;i, w; and \,,;, blockwise. That is, we update
Zj 1, marginally over wj, and the A,,jzs. Then we update wj, conditionally on
the new Z;;, and marginally over the A, ;s. Finally, we sample each of A, s

given the wj;, and Zj;.

e First update Zj; from Ber(p*), where p* = A%E” where
M nm
A=x [ TS VnislAme = 0),
m=1 i=1

M Nm
B=(1-m) H [/Hf (Yonij [ Amg) | Amgrlwin) g | (Wil Zjp = 1) dwi.
m=1 i=1

A is the likelihood when ;™ response is not loaded in the &' factor across
all groups. That means wj; = 0 and hence A,;; = 0, for all m. In a
similar way, B defines the likelihood when j* response is loaded in the k"
factor, i.e., Z;, = 1 and hence w;, = 1, for all m. p* defines the posterior

probability of j** response being loaded in the k' factor.

Simplification yields p* = (1 + €)™ where

1
c=log(l—m)— 5 log(277?) — log () (3.3)
M
1 1 1
— Adlog | = + .
2 { g 2 T;V%JFUSU/EZQ%%)}
M n -1 n 2
1 Do Moty 1 2 im EmijNmik
+§Z{C7r—+ﬁ S ) o
m=1 mj m mj
M 1M o 1 2
1 i+z 1 Z (211 ner'k_’_i) D i) €mijNmik
2 72 — vh, + Uij/Z?El Mimik =1 Oznj Vi ngjygn
M
1 D Mo 1
=5 Z {QIOng + log (;Tjk + y_2) - log(27r)} ,
m=1 m m
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with Emij = Ymij

Z’th

are shown in Appendix B.

— Zfil AmjiNmit, the residual of the j™
12k

response for the

o If Z;; = 0, then w;; = 0. Otherwise, sample wj;, from N (1%, o7 ?):

. U i M
( mz /Zz 177m1k> {Z < 02 j i

m=1

" o
2*

o, =|—=+ E .
Y (7-2 m=1 {V’I%’L +02 /Zz 177m2k })

e For each m =1,2,---,

mj Umj

(iii) Foralli=1,2, -+, n,;m=1,2,---

m—m mis

M, we set \,jr = 0 if wj =

nm ,,2 -1 nm
i= i i—1 €mijTims Wik
)\mjk from N <<2101277mzk + Ulz ) (—z“l miflimik | 2k
m

, M, update n,,; from

mj

)

observation excluding the role of factor k. The necessary derivations

()

0, otherwise update

g

MV Ny ((IK +ATSIA,) AL S Y (I + AﬁE;lAm)‘l).

i=1"Tmik +

an2
£) (5%

mj

(iv) To obtain an efficient conditionally conjugate sampling distribution for v,,, we

adapt Makalic and Schmidt (2016)’s sampling algorithm by introducing data

augmentation variables from an inverse gamma distribution. Marginally v,, ~

HC(0), and we can equivalently write hierarchically as v2|a,, ~ IG (— %)

and a,, ~ IG (3,1). The conditional sampling density of 12,

I1G (Z]’“ + §7W + = ij( mik —wjk.)2) and sample a,,, from IG (MH 1 +Zm L UQ )

(v) Sample § from IG (M+1 1+ M )

(Vl) Update 72 from IG (Oé + ZQij;B + Zij ij;jk).

(vii) For j=1,2,--- . pand m=1,2,---, M, we samplea

1G ("m +e,d+ 3 Ly ( i Zk:l )\mjknmz’k>2>.

from

In latent factor model, often MCMC samples get stuck in local modes due

to model complexity and do not mix very well. To resolve this complications, we
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consider running multiple MCMC chains and a swapping step inside the sampling
algorithm. After completing step (ii) in the sampling algorithm, we randomly choose
a j'" response and fix that j. For this fixed j*" response we propose a swap between
the positions of two elements A5, and Ak, for all m, where ky € {k: Z;; = 0} and
ky € {k:Zj =1,}, i.e we load the j response in the k" factor if this is not loaded
originally and unload it from the k,™ factor. Next we compute the MH probability

using the following equation 3.4

L(Y|A*,%)
=~ 7 3.4
O TVAY) (34)
where A* is the updated A matrix after swapping the position of A, ~and X,

position for all m,j. We update A = A* and the corresponding Z, YW matrix with
probability ¢ or retain at the current A matrix. To ensure a better mixing we attempt

this swapping steps 5 times within each MCMC chain.

3.2.3 Determination of K

The choice of K, the number of factors to use, can have a large result on the effec-
tiveness of our method. Using too few factors will lead to inconsistent estimation,
while estimating with too large of K will produce inefficient estimators. Following
the approach of Akaike (1987), we apply a model selection approach to determine the
value of K. To this end, we run the factor model for a small number of choices of K
and calculate the deviance information criteria (DIC) to compare the fits for each
choice. In the Bayesian context, DIC' is a more natural approach than AIC or BIC
as it automatically determines the model complexity without counting the number of
parameters. The deviance of the K-factor model at the parameter value € is given
by Dg () = —2Lk (Q]Y'), where Lk (2]Y') denotes the likelihood function using the

usual Yy,; ~ MV N,(0,9,,) with Q,,, = A,,AL +3,,. The posterior expected deviance
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is the average value of the deviance with respect to the posterior. We use the Bayes
estimator of the covariance matrix of group m, Q,, = E[Q}]" (Yang and Berger,
1994), and the DIC for K-factor model is given by DICk = Dy (Q) +2pk. Here, px
is the effective number of parameters and calculated from px = E{Dx (Q)|Y }—Dg(Q)
(Spiegelhalter et al., 2002). The selected value for the number of factors K is chosen
as the K with the smallest DIC. The estimates {Ql,Qg, . ,QM} are taken to be
the posterior estimators for the MCMC chain with K factors.

We considered yet an another approach using log pseudo marginal likelihood
(LPML) as the model selection statistic. LPML is based on considering the pre-
dictive distributions p (Y |Y_pi) = [ p (Yoi|Q) 7 (QY_pi) d2 for all (m, j). We com-
bine each of the predictive densities to form LPM L, for the K-factor model as
LPMLg =3, ;10g p(Yimi|Y_mi) (Gelfand and Dey, 1994). To avoid generating pos-
terior samples from 7 (Q|Y_,,;) for each (m,i) pair, we use an importance sampling
approach using the following equation

-1

G
(Yol Yori) = lag le‘Q i=1,2,--- Nym=1,2-- M,

where G is the total number of posterior samples from the full posterior with all
observations. Using the LPM L criteria, we select K to be the value with the largest

LPML and take estimators from this model.

3.3 Simulation

We have implemented a number of simulation studies to evaluate the performance of
our methodology. In addition to our BaSH-F model, we have also considered some
competing models to check the performance of our model. The first two competitors

are simplifications of the BaSH-F model:
e No Shrinkage Model: To access the utility of sharing information across all
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groups in our model, we consider a setting where no information is shared, but
sparsity is still included. To this end, there are no wj;, global parameters in our
model and each group has its own set of sparsity indicators Z,,;;. We replace

equation (3.2) with Z,,;1 ~ Ber(m,,) and ik ~ N(0, Zik/2).

No Sparsity Model: To test the utility of the spike-and-slab model on wj, we
consider a version of our hierarchical factor model without sparsity. We share
information about an underlying factor structure across groups, but constrain
all Z;; = 1. Equivalently, we swap equation (3.2) with w;, ~ N(0,7%) and

Mgk ~ N(wjk, v2). The rest of the model is unaffected.

Hoff (2009) Model: In this method, the covariance matrix is decomposed
through the eigenvalue decomposition, i.e. €2, = UmeUg, where U,, is the
eigenvector matrix and V}, be the eigenvalue for the m'* group. Then a shrink-
age prior is applied on the eigenvector matrices to pull the information across

all groups for estimating covariance.

Hierarchical Inverse-Wishart (IWH) Model: As a slightly more sophisti-
cated competitor, we consider a hierarchical model based on conjugate inverse
Wishart distribution.

Qyy ~ InvW (6,00)

1
U ~ Wishart(p, y;Ip) o~ Unif(p,N).

Note that since E(Q,,) = 5_5;’_1, all ,, are pulled toward a common/overall
covariance matrix based on ¥ and . The amount of shrinkage is determined

by the degrees of freedom ¢ and a higher ¢ indicates more shrinkage.

Independent Inverse-Wishart (IW) Model: This is a naive approach
where each covariance matrices comes independently from the conjugate InvW (p+

2,1,) prior. Hence, we do not allow any sparsity or sharing of information across
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groups in the model. This competitor represents the naive assumption that all
covariance matrices are independent and does not share any information be-

tween groups.

We will consider a variety of data generating models, and for each parameter
specification we generate 200 datasets. For each model, we run the Gibbs sampler
for 3 different chains with 50,000 iterations for each chain. After the first 10,000
iterations, we retain every 10" iteration, providing 4000 iterations from each chain
to use for inference. To measure the accuracy of our estimators, we consider the
loss function from Gaskins and Daniels (2016) that uses a weighted average of the
log-likelihood loss for each group, with weights proportional to group’s sample size

Ny,. The formula is given by

~ n A ~
c(gm) SN [t O-10,,) — log|Q=10,, | — ]
2 [t~ ogl0z 0
where Qm = [EQWQ;H_I. We calculate the risk estimates as the average loss

L (Q,Q) over the 200 datasets. For the factor models, we consider 3 methods of
choosing the K parameter: DIC, LPM L and an oracle estimates that uses the true

value of K. We consider the following data generating models:

e Case 1:
First, we generate data consistent with our model specification. We consider
the number of factors K = 5, the response dimension p = 12, number of
groups M = 3, and total number of observations N = 300 with 100, 50 and
150 observations in 1%, 2”@ and 3"¢ group respectively. We consider 7 = 0.5,
7 =1, v;, = 0.2 for all m and o7,; = 1 for all (j,m). These values are used
to generate one set of true covariance matrices {21, Qs, -+, Qs }, and all 200
generated datasets are simulated from this set of parameters. When estimating

the true number of factors in the BaSH-F model, the no sparsity model and the
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no shrinkage model, we run the model from K = 3 to K = 8.

e Case 2: Bigger sample size
In this case, we double the sample size to study the performance of our model
for a larger sample. The total number of observations is N = 600 with 200, 100
and 300 observations in 1%, 2"® and 3"¢ group respectively. All other settings

are the same as in case 1.

e Case 3: Much larger sample size
In this case, we considered a larger sample size than case 2. The total number
of observations is N = 1200 with 400, 200 and 600 observations in 1%, 2" and

37 group respectively. All other settings are the same as in case 1.

Table 3.1 and Figure 3.1 shows the results for case 1 and case 2. Note that
we re-scaled the risk in each case so that Independent IW has risk 1. In both case
1 and case 2 our BaSH-F model outperforms all other competing models in both
the Oracle version and when K is chosen by DIC and LPML. In fact, the DIC
does equivalently well as the Oracle model. This indicates that it effectively finds
a choice of K that produces good estimators. In both cases, the Hoff model yields
better estimation in comparison to no sparse and no shrinkage model. Independent
IW model shows poor performance as no information is shared between all groups.
But the IWH model yields better result as § determines the amount of shrinkage from
the data.

In the latent factor model, we also need to inspect the model selection accuracy.
We have studied both DIC and LPM L model selection criteria for estimating the
number of latent factors. Table 3.2 shows that for case 1 (N=300), DIC' captures the
true number of factors in most cases. It tends to choose a higher factor model as N
increases (case 2 and case 3). Turning to K selection based on LPM L, this approach

shows bad results in all cases and performs worse as N increases. Also parameter
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estimation using LPM L is not as good as DIC'. Hence, thereafter we only consider
DIC model selection criteria for estimation.

These results seem to suggest that as the sample size increase DIC may tend
to select models that are slightly overly complex (too many parameters). Despite
this behavior our models are still quite parsimonious, and more importantly, DIC'
BaSH-F has equivalent estimation performance on {€,{y,---,Qy/} as the BaSH-F
version with the true K. As estimation of these covariance matrices is our goal (not
the selection of the number of factors), small levels of inconsistency in selection of K
is not a concern as long as it does not impact estimation accuracy.

We now consider 3 scenarios to investigate the impact of varying levels of

sparsity.

e Case 4: Larger p, K, N
In this case, we increase the response dimension and the number of factors in
the model. We set p = 30 and K = 10 for this simulation settings. We also
increase the number of groups M = 5, a total of N = 750 observations and
100, 125, 150, 175, 200 observations in each group respectively. We induce a
moderate sparsity in this settings with 7 = 0.4. For estimating the true number

of factors, we run the model from K =8 to K = 13.

e Case 5: Less sparsity m = 0.7
Under the previous settings as in case 4, we set m = 0.7, i.e. we induce less
sparsity in the data. For estimating the true number of factors, we run the

model from K = 8 to K = 13.

e Case 6: High sparsity 7 = 0.2, higher K
In this settings we set the K = 20 and 7 = 0.2, i.e a model with higher number
of factors along with higher sparsity. p and N are set as in case 4. For estimation

of the number of factors we run the model from K = 18 to K = 23.
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In high-dimensional scenarios (case 4, case 5 & case 6), BaSH-F model con-
tinues to perform better than all competitors. The difference between the risk for
the BaSH-F model and the no shrinkage model increases from around 4% (case 1)
to around 12% (case 6), indicating the increasing benefit of sharing information as p
grows (Table 3.3 and Figure 3.2). In case 4 and case 6, when there is moderate or
high sparsity in the model, BaSH-F model performs very well in comparison to other
models. The no sparse model has equivalent risk to BaSH-F in case 5 (low sparsity
scenario). Hence, BaSH-F can effectively adopt to non-sparse scenarios when needed.
Naive independent inverse-Wishart model performs poor throughout all cases. Fail-
ing to either share info across group or to incorporate sparsity in €2,,s, leads to much
worse. The Hoff model performs well while dealing with low sparsity scenario (case

5).

e Case 7: Less similarity v2, = 0.5
In this case, we study how the simulation results behave with more variability
between groups. Under our standard simulation settings, we consider 12, = 0.5,
and to maintain the marginal variance in A, we set 72 = 0.7. All other

parameters are as in case 1.

e Case 8: Very low similarity v =1
In this case, we set much more variability between groups by setting v = 1
and set 72 = 0.2 to maintain the overall marginal variance in Amjk- All other

parameters are as in case 1.

Table 3.4 and Figure 3.3 shows that, in the situations where the covariance
matrices are less similar (case 7 & case 8), BaSH-I continues to perform well and
outperforms all other competitive models. The no shrinkage estimates, while we might
expect to be doing better, continues to have around 4% higher risk than BaSH-F.

This indicates our approach is able to determine how much shrinkage to apply in
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each scenarios. Hoff model also have 3-5% higher risk than BaSH-F model in these
cases. For both case 7 and case 8, IWH model yields around 10% increase in loss
than its performance in case 1. Naive IW model continues to show poor performance
as previous cases.

Finally, we explore the performance where the data generating model is not a

factor structure.

e Case 9: Data are generated from a non-factor model
We consider a different data generation procedure to see how our model is
performs if the underlying data do not belong to any factor model. Here our
data come from a hierarchical inverse Wishart model. We generate Y,,;, for all

m,i from MV N, (0,Q,,), where Q,, ~ IW(p+ 50,¥),m = 1,2,---, M. ¥ is

A B 04><4
chosen as a block diagonal matrix, ¥ = B |A| B |,where Aisa4 x4
04><4 B A

equi-correlation matrix with p = 0.8 and B is a 4 X 4 matrix with all elements

equal to 0.3.

e Case 10: Same covariance matrix across all groups
Lastly, we consider a situation where the covariance matrix are equal for all
groups and the common covariance is not a factor model. We generate data Y,,;

from MV'N, (0,£2,), where Q,, = ¥ (from case 9), m=1,2,---, M.

Table 3.5 and figure 3.4 shows the results for case 9 and case 10. For both cases,
our BaSH-F model outperforms no sparse and no shrinkage model. Unsurprisingly,
the IWH model performs best in case 9 when it is the correct model. In this scenario,
the Hoff model also does a good shrinking of €2, towards the common structure.
In case 10 where all covariances are the same, Hoff, IWH and BaSH-F all do well.

Independent IW continues to perform poorly in both cases.
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3.4 Letter Image Recognition Data Application

3.4.1 Data and Model specification

We consider the letter image recognition data from mlbench package in R to demon-
strate our methodology. This data consist of character images based on 20 different
fonts. The fonts represent five different stroke styles (simplex, duplex, triplex, com-
plex, and Gothic) and six different letter styles (block, script, italic, English, Italian,
and German). Each letter within these 20 fonts was randomly distorted to produce
a file of 20,000 unique stimuli (Frey and Slate, 1991). Each of these stimuli was
converted into p = 16 primitive numerical attributes (statistical moments and edge
counts) which were then scaled to fit into a range of integer values from 0 through 15.
The objective was to identify each of a large number of black-and-white rectangular
pixel displays as one of the 26 capital letters in the English alphabet.

We consider M = 26 groups defined by each letter A to Z to perform our
methodology. Both in training and test data set, we consider equal number of obser-
vation in each group. We conducted our study with three different choices of n,, = 20
40 and 100. We standardize all observations and consider a group specific mean pa-
rameter fi,,, ~ MNV,(0,1001,). We perform the analysis using our proposed BaSH-F
model and the other competitive models. We do not consider the no sparse model and
the no shrinkage model as these were special cases of BaSH-F model. For each case,
we run 3 chains with 50,000 iterations in each chain. After the first 10,000 iterations,
we retain every 10" providing 4000 iteration from each chain. Based on these 12,000
final samples from the training set, we calculate the true classification rate for the
test data set.

Let Y = (Y1, Y33, -+, Y;;) represents the p-dimensional test data set for the i
sample (i = 1,2, -+, Nys). To use the covariance models for classification, we slightly

augment the model hierarchy by including a unknown class membership variable C;
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that indicates the letter group that generates observation i. Thus C; € {1,2,---, M}

and we assume a discrete uniform prior for C;. For estimating the true classification

rate for test data set, we calculate the probability (3.5) of each sample being in group

m using the posterior samples and assign to the group having the highest probability.
1 & (Yi*lua(ﬁ), Qﬁfi))

P(Ci=m[Y]) =5 : (3.5)
G g=1 Z%:l (W!M%)aﬂg))

Here, M&%) and Q) are the mean and covariances in the ¢ MCMC imputation from

the analysis of the training set. C; is the class membership variable associated with
the test observation Y;*. It can be easily verified that this is a MCMC estimate of
the posterior predictive probability. Since the group sizes in the training data are all
equal, 1/M is a reasonable estimate of the class probabilities.

The loss for assigning the " sample to the m'* group is estimated using the

following formula.

Ntest M
1
Le=7— SN =m) - P(Ci=mlY).
€St =1 m=1

Lower value of L¢ indicates better performance. Finally we compare the predictive
accuracy of different models using the log-score of test data Y;* (Gaskins, 2019). We
define,

G
LS () = & Y loa s (1), 08
g=1

For each ' observation in the test set, we calculate the LS (Y;*) averaging over
all posterior samples. Then we take the sum over total number of observations in the
test set Nysr to obtain the log-score values for the test data. This value is basically
a log-likelihood of the test data using the predictive distribution from the training
data. Consequently, a model that produces a higher log-score is more consistent with

respect to the out-of-sample test data. Larger values (less negative) indicate better
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models.

Finally we note that there are a variety of other classification methods available
in the literature (e.g., neural networks, support vector machines, etc.). However, our
main interest is on methodology for modeling covariance matrices between multiple
groups, not in the development of classification algorithms. In this example, we seek
to understand the impact of various models on {1, Qy, -+, Q) }, and so we consider

only approaches with multivariate normal models for each group.

3.4.2 Modeling Results

We apply our methodology and other competitor models to this data set with 6 choices
of the number of factors K = 3 to K = 8. We implement DIC model selection criteria
to find the number of factors K in the training data set and choose one having the
lowest DIC'. Table 3.6 contains the predictive accuracy and model selection result
for the data application. Throughout the analysis, we see that our BaSH-F model
outperforms all other competitors both in terms of classification accuracy and loss
estimation for each choice of n,, in the training data set. Hoff model shows 2-7%
lower classification accuracy than BaSH-F model. The IWH model yields a lower
classification accuracy and higher risk in all cases. Naive IW model performs poorly
throughout all cases. Overall, with the increasing number of observation per group,

all models tend to perform better.

3.5 Conclusion and discussion

In this project, we proposed a novel approach for simultaneous covariance estimation
based on sparse Bayesian factor models. The sparsity pattern was shared across the
groups while borrowing strength across non-zero factors. The model has the flavor of
a covariance analogue of multilevel mean models in the sense that it also estimates a

global (across-group) covariance structure. The number of factors were chosen using
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established model selection criteria like the DIC. The simulation studies clearly
demonstrated the superiority of our model with respect to a metric that quantifies
discrepancy between covariance matrices.

The Bayesian hierarchy allows enough flexibility to adapt to non-sparse scenar-
ios and include the right amount of shrinkage. We applied the model to a classification
problem on real data where the group-specific covariance based models were used to
discriminate the groups. Here too, BaSH-F proved itself to be competitive and even
outperformed classical algorithms like Linear Discriminant Analysis (LDA) in predic-
tion. This clearly points to the necessity of sharing information across groups in the
presence of moderate and low sample sizes. For future work, we plan an extension to
non-Gaussian response models. Such models can be applied to inferring shared bio-
logical networks, a problem of growing importance in current genomics applications.
Also we are contemplating an automated way to choose factors by integrating the

current model with flexible priors on the number of factors.
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3.6 Tables and Figures

Table 3.1: Risk Estimates for Case 1, Case 2 and Case 3

Model selection L <Qm, Qm)

Model
criterion Case 1l Case 2 Case3
DIC 0.478  0.526  0.585
BaSH-F LPML 0.497  0.543  0.601
Oracle 0.473 0522 0.576
DIC 0.521  0.603  0.641
No shrinkage LPML 0.537  0.616  0.662
Oracle 0.516  0.602  0.635
DIC 0.599  0.699  0.759
No sparse LPML 0.623  2.048 0.791
Oracle 0.614  0.697  0.758
Hoff Model 0.517  0.588  0.682
IWH 0.632 0.759  0.861
Independent TW ! 1.000  1.000  1.000

' Risk re-scaled, so Independent IW has value 1.0.
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Table 3.3: Risk Estimates for Case 4, Case 5 & Case 6

Model selection L (Qm, Qm>
Model

criterion Case 4 Caseb Caseb6
DIC 0.300 0.431 0.495

BaSH-F
Oracle 0.305 0.431 0.498
DIC 0.364 0.483 0.614

No shrinkage

Oracle 0.364  0.481 0.613
DIC 0.434 0.436  0.606

No sparse
Oracle 0.434 0.436 0.612
Hoff Model 0.384 0.399 0.508
IWH 0.584  0.636  0.600
Independent TW! 1.000  1.000  1.000
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Table 3.4: Risk Estimates for Case 1, Case 7 & Case 8

Model selection L (Qm, Qm>
Model
criterion Casel Case7 Case8
DIC 0.478 0.525  0.552
BaSH-F
Oracle 0.473  0.521 0.548
DIC 0.521 0.567  0.593
No shrinkage
Oracle 0.516  0.808 0.591
DIC 0.599  0.657  0.663
No sparse
Oracle 0.614 0.633 0.663
Hoff Model 0.517  0.583  0.589
IWH 0.632 0.733 0.772
Independent TW! 1.000  1.000  1.000
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Table 3.5: Risk Estimates for Case 9 & Case 10

Model selection L <Qm, Qm>
Model
criterion Case 9 Case 10

BaSH-F DIC 0.639 0.358
No shrinkage DIC 0.696 0.433
No sparse DIC 0.769 0.460
Hoff Model 0.601 0.245
ITWH 0.538 0.321
Independent IW! 1.000 1.000
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Table 3.6: Model comparison statistics and true classification rate for Letter recogni-
tion data

Sample Size | Model True Loss  Log-score
Specification Classification
BaSH-F (K =4) || 0.74 0.376 -18,446
Hoff 0.69 0.428 -21,652
Ny, = 20
IWH 0.71 0.451 -22,455
Independent IW || 0.51 0.694 -87,083
BaSH-F (K =7) || 0.81 0.276 -15,031
Hoff 0.79 0.299 -17,497
n,y, = 40
IWH 0.75 0.464 -26,381
Independent TW || 0.72 0.402 -23,739
BaSH-F (K =38) || 0.85 0.214 -12,370
Hoft 0.77 0.273 -18,943
Ny = 100
IWH 0.80 0.293 -15,511
Independent TW || 0.79 0.300 -15,924
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CHAPTER 4
DISCUSSION

In this dissertation, we have proposed two novel Bayesian approaches in the field of
multivariate analysis. In Chapter 2 we have developed a general strategy of variable
selection in the multivariate regression model by sharing common local parameters
across all of the response variables. We have demonstrated the utility of our approach
in comparison to alternatives. Our approaches are found to be superior in terms of
both predictive performance and parameter estimation.

In Chapter 3, we have developed a novel technique for simultaneous covariance
estimation based on sparse Bayesian factor model. We have also established the
prediction accuracy of our proposed method in compare to other competitors through
simulation results and data applications.

Both these projects are centered around fully Bayesian inference schemes based
on Gibbs sampling and teasing out theoretically challenging posterior conditionals.
The next layer of challenges involved devising computationally scalable algorithms to
implement these schemes for high dimensional datasets. These often require consid-
erable care in tuning the MCMC schemes. While some of these issues have included a
careful choice of hyper-parameters, others involved employing matrix inversion tech-
niques while some others cleverly incorporating adaptive sampling schemes from the
existing literature. The computational success of these algorithms is borne out in ex-
tensive simulation studies that have been conducted in R for validating our models.

This dissertation project represents a first step at the problem, and there are
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many further extensions and developments worth considering. For instance, in the
first project, some possible application of this methodology could be in binary outcome
data, hurdle models, causal-inference models and generalized linear models. Also,
working on these projects have stirred a couple of ideas for natural extensions that we
have set aside for our future work. These include extending the response distributions
to non-Gaussian settings with an eye towards big-data genomic applications. For
the second project, some potential future applications of this methodology include
health /social survey data with multiple groups defined by any demographic factors
like ethnicity, age or gender and among others. Also, an extension that incorporates
a Bayesian non-parametric component could be used to consider clustering of the

groups.
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APPENDIX

Appendix A

This section includes the posterior consistency of Bayesian variable selection for multi-

outcome model Chapter 2.

A.1 Posterior Consistency of Bayesian Variable Selection for Multi-outcome Model

Here we provide details and the proof of the posterior consistency results from Section
2.2.5.

For our discussion we use the term multi-index to denote a model where the
individual observations belong to a common multidimensional family f(-) but are
indexed by possibly different parameters ;5. The second subscript denotes a global
parameter B, which in our context is the (shared) matrix of regression coefficients.
Thus, in our multivariate Gaussian regression we let 6,5 = X; B be the K-vector

representing the mean of the K responses.

Recall that the KL distance between two densities is defined as Iy, {log ;;g% }

For multi-index families, we extend the definition to have a notion KL distance for
each 7. To that end, the KL distance between the global parameter B and the true

value By for observation 7 can be written as

KL;(B,By) = Ep, {10g (]J:((;:_g;s))) } |

where 0,5 = X;.B and 0,5, = X, By are parameter vectors indexing the densities for
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observation ¢ under parameters B and By. We also define V;(B, By) as the variance

Vi(B, By) = Varg, {103; (%) } '

analogue, i.e.,

We first state our Lemma 1 which establishes a uniformly exponentially con-
sistent (UEC) sequence of tests that will be required in the proof of Theorem 1. Here,
we include the dependence on n by letting Y,, and X, denote the response and design

matrices for a sample of size n.

Lemma 1. For any € > 0, define B = {B : ||B — Bo||> €¢}. Let ®,, =
be the test statistic based on the critical region C,, = {Yn - ||B — Bol|>
(Xan)_l XTY,. Further, assume condition (A3), and let d be the largest eigenvalue

of V. Then, for the likelihood (2.1), we have the following:
1. Ep, (9,) <exp <—n%>,
2. supgep. Ep (1 —®,) < exp (—n%) :

Proof: Proof of this lemma follows as in Lemma 1 of Bai and Ghosh (2018).
Next, we state and prove Lemma 2 which establishes the prior positivity con-

dition.

Lemma 2. Assume a fized U, the likelihood (2.1), (A1), and (A2). Then, for all

€ > 0, there exists a set C. with 71(B € C.) > 0, such that for all B € C,

KL;(B,By) < € foralli,

— 1

i=1

Proof: A little algebra shows that
KL;(B,By) = (X;B — X;By)¥ Y X;B — X;By)'.
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Let X, = Ix ® X,., 8= vec(B), and By = vec(By). Then, it follows that

KL;(B,By) = (X;B—X;By)V '(X;B—X,By) = (Xzﬂ — X,;80) 0 HXi8 — Xifo)

= (8- Bo)XiU'X[(B — Bo) = ||M:(B — Bo)||,

where M; = U2 X, . From the sub-multiplicativity of the Frobenius norm, ||[M;|| is
bounded by ||¥~z2|| | X;]|= K2||U~2|| || X;.||, which is bounded by GK/2[|[U~z|| us-
ing (A2). Clearly, ||5—0o||= ||B—Bol||- Thus, aset C. = {B ||B — Boll< m}
will clearly satisfy K'L;(B, By) < € for all i. By (Al) the continuous prior 7(B) as-
signs positive probability to any such open neighborhood C,. Similar steps show that
for all B in C, the Vs are bounded uniformly by a constant across all n, proving
convergence of y >, $Vi(B, By).

We first introduce and sketch the proof of a more general theorem that estab-

lishes posterior consistency for a wide range of multi-index models.

Theorem 2. Consider a multi-index model with global parameter B and independent
observations Y;, i = 1,...,n,... with Y; ~ f(-,0;p,) under the true global parameter

value By. Further assume the following two conditions:

1. There exist tests @, such that Ep,(®,) < exp(—nC}) and that for all B # By,
Ep(1—9,) < exp(—nCy). Here, C1 and Cy are constants not depending on the

parameter of interest.

2. There exists a set C. with m(B € C,) > 0, such that for all B € C,,

KL,B,By) < € foralli,

=1
Z_—QVi(B,BO) < 0.

i=1

1)



Then, the posterior distribution for B is consistent. That is, for any € > 0,
P, {||B— Bol|> €| Y1,...,Yn} — 0, a.s asn— oo.

Proof: The proof of this theorem is a combination of arguments in Schwartz (1965),
Amewou-Atisso et al. (2003) and Choi and Schervish (2007), and we omit the technical
details. Briefly the argument is as follows. The posterior probability of interest,

denoted by LS, can be written as a ratio of integrals of two likelihood ratios in the

n?

following way

H f 3/7,7913
fU& H f 3/7,791]30 dB

I f(VibiB)
Ju L.(f(V: 9150 dB’

Ly = Pg,{||B—Byl|>¢€|Y1,...,Y} =

where U, = {B : || B — By||> €} is the e-ball around By and U is the entire parameter
space. The aim is to show L{, converges to 0 a.s. under Pg, for all € > 0.

As shown in Schwartz (1965), we may bound L using the test statistic ®,, as

Jln
L <&, + —
* <]2n

where J;,, = fU 1= %”)fnnfez’flg dB and Jy, = [ 11:[1 J{Q:Zi{))dB Following the argu-
ments from Schwartz (1965) (also used in Bai and Ghosh (2018) and Armagan et al.
(2013)), the first condition in Theorem 2 can be shown to imply ®,, — 0 a.s. Further,
" Ji, — 0 a.s., for a constant C > 0 that may depend on auxiliary parameters
(such as ¥ and the eigenvalues of the design matrix) but not on By. Similarly, the
second condition of the Theorem 2 can be shown to imply that for any constant ¢ > 0,
e"Jy, — 00 a.s. In combination, these imply that Lf converges almost surely to zero
under the true parameter By, guaranteeing posterior consistency.

We note that the proof of this theorem has a general flavor in that it only

requires a UEC sequence of tests and prior positivity. The first condition can be
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satisfied for several settings involving multivariate Gaussian likelihoods. The second
condition is applicable to a variety of model specifications and holds simply when
observations are independent but not identically distributed. Of note, condition 2
was proved in Schwartz (1965) for single-index families and later adapted to multi-
index families (Choi and Schervish, 2007). For a proof of this, we refer the reader to
the proof of part A.5 in Theorem 1 from Choi and Schervish (2007).

Proof of Theorem 1: Results from Lemmas 1 and 2 are immediately obtained from
assumptions (A1)-(A3), and these lemmas establish the two conditions required for

Theorem 2. Hence, Theorem 1 is proved.
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Appendix B

This section includes the additional computation in Chapter 3.

A.2  Calculation of the posterior probability p* for Simultaneous Covariance Esti-

mation

In section 3.2.2 we have discussed the blockwise sampling algorithm for Zj;, wj
and A,k From the equation (3.1) we have Y,,;; ~ N <ZkK:1 /\mjknmik,afnj» which
implies, Cmij = sz‘j - Zgi )\mjknmik ~ N ()\mjknmika quj)-

From our hierarchical model (3.2), the posterior distribution w;j will be

wjk|€mjk ~p*l (wjk: =0) + (1 = p")N (s, 0:22)7

_ B

= A+B’ where

with p*

N

f (szj‘)\m]k = O) 5
1

M
A:WH

m=1 1=

M N,
B=(-n]] [/ T 7 i) £ Omeleot) danse| £ (@3¢l Zoe = 1) oy
m=1 =1

Note that these conditional distributions rely on many other parameters in the
conditioning statement. To simplify notation we only include those that are involved

in the calculations. Now we derive A and B separately,

M nm
m=1 i=1
M nm 1
_ ool )2 e
ng( T0,.) exp{ QOEnjem”]

M i LM o
=7 (H(Qwa?nj)_ én) exp [—5 ZZ 07;”] :

m=1 m=1 i=1 ~™MJ
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Taking the log transformation over A, we have,

M M n
1 - mZ
a=logA=logm — E —_ 10g(27m -5 E E J. (3.6)
m=1 m=1 i=1

Now,

M N,
= (1-m]] [/Hf(sz‘ijjk)f()\mjk!wjk) A | [ (W] Zjx = 1) dwi.
m=1 =1

First we simplify the [ [ T f (Y[ Amge) £ (Amje|wjn) dAmji] term in the following.
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Now,

/ LT 7 emislAmie) f il wji) dAamie
=1

mm _1 1 _1 1
= /H (27m,2nj) 2exp |~ (emij — )\mjknmik)Q (2771/,2,1) 2exp | =55 (Amjk — wjk)2 dAmjk
i=1 200, 2Win
nm 1 ¢
= / (27T0—%1j) 2 exp [— 252 Z (ezm'j - 2emij)\mjk77mik + )‘gn]kngmk)]
mj ;=1

1

_1
X (2771/,%1) 2 exp [ 5,2 ()‘72713‘16 — 2X\pjkWjk + w?k)] ANk
m

_ 2\~ 2\~ 3 IR S R
= (2n0y,,;) % (2mv;,) 2exp[ 2‘772nj;emij exp[ 21/%%]“]

1 2 P " ik 1 Do CmijNmik | Wik
X [exp|—= A | =552 4 — | =2\ | =55 + = dAmik
/ [ 2 { ™ ( Omj  Vin " 02, V2, m

_nm 1 1 I&m 1
= (2762 .) % (2m2) Zexp|— e2 | exp |- —w?
(o) ) e |5 > ey exn [~
-1
L (yimm, ] mnop2 ]
X/exp —= M‘FT )‘gnjk_2)\mjk M‘FT
2 Um_] Vm O'm] Vm
an o . Nm 2 1 —2 Nm o . 2
o [ 2y emigtmik | Wik \ (i i L (22 emig ik @ik Ly
o2 . 2 2 V2 a2 ) mjk
mj m mj m mj m

X exp

—1 2
(Z?%ngnk n 1) (Z;Zﬁ G;nijnmik +Wﬁ'k>

1
9 2 2
2 Tnj v Tinj Vi

= (27TU72nj)_nTm (Qm/%)_% exp [—

1 & 1
2 2
e, .| exp —w~k]
207 2 mw] [ 202 i

mj j=1
Nm 2 1 -1 Nm 2
(Zz:é ik + ) (Zzl G;nijﬁmz‘k n wjk)

2
Tinj Vi Tinj oy

X
~
Nap
o=
N
ﬁ'§
ol ®
3
S
g
+
—
N~
|
SIS
@
M
e}
N | =
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Hence,

M n
nm _1 1 1 = 1
(1-— ﬂ')/ H {(27ramj) 2 (27TV,%1) 2 (2m)2 exp [— 5,2 E egmj] exp [_1/2%24
m=1 mj =1 m

_1 -1 2
. (Z?énmuylz ) . ;(z;@;nmu 1) <2?:1e?ijnmik+ij>
g

T 2

1
M Nm 2 T2 Nm,
_nm _1 1 Z,: 77 . 1 1
(1_@/ II §@ron,)* (2mvn) 2 (2m)2 <“27mk +,,2> exp [—202 > :egnij]

m=1 mj m mj ;—1
Ny 2 -1 N, 2 N, 2
L (223 ik 1 i1 EmijTmik D i mijNmik Wik
xexp |5 | =5 Ty > twik | =5 5 |t
2 Tinj Vs, Tinj O Vi vy,
1 _1 1
X exp [—2(,0]24 (271'7‘2) 2 exp I:_2T2w]2k:| dwjk
m

M nm 2

M —nﬂ e ..
(1- 7T)(27r7-2)*% (H (27TU7271j) 2 > exp [_; Z Z Urgz]]

m=1i=1 ~MJj

M Nm 2 -1 n 2
1 Z‘:l Nk 1 Z;nl €mijTImik
xexp |5 <w oz =

g

m=1 mj m mj
M _1
Nm 2 2
X (V2 )_% Zizl Nmik 1
m o? v2
m=1 mj m

M Nm .2
s 1
_ijk Z (Zz 12 mik + —

81



Nm -1 m 2
Do Mok 42 D iy €mijNmik
2 2 2
g . 1% ag

m=1 mj m mj
1
M Nm 2 -2
_1 i 1
X (Vrzn) 2 (Zzgénmzk + Iﬂ)
m=1 mj m
M Nm .2 -1
1 1 1 . . 1 1
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T S D DY 1Y .
By simplifying, — 5 + = e /an -— and taking the log of
m j m mj Mmik

B we have,
b = logB

1 M n 1 M nm 6

= log(l —p) — = log(277?) — Z — log(27raglj) — = Z 2”
2 m=1 2 2 m=1 i=1 Tmj

M n ~1
1 Zi;nl TI?m-k 1 Z 1 €ng Nimik
i mZ:1 { ( O ! Vin

+ —
2 VQ

1 M
— +
< ? Tnz V2 + 0-2 /Zz 1 TImlk)
Nm 2 -1 Nm 2
<Zi—1 ik 1 ) Zl 1 engﬁmzk)

21/2

Umj m

M n
1 2 D i i, L
-3 Z {log v, + log ( — + ) log(2m)

mj m

1
5 {IOg ( T Z 1/2 + Umg/zl ] nmzk) } : (3'7)

Finally from (3.6) and (3.7) we have,

c=b—a

1 1
= log(l — ) — = log(277?) — 1 1 +
el T g o) et~ {g< Z R nm>}
2?21 7772m‘k 1\~ 2?:1 Cmij NMmik 2
) Tt )
mj m my

2
—1 M o 1 . 2
1 1 > il Mo | L Y i i Nmik
72 + Z 2 + 12 2 .2
T V to /Zz 1 nmzk Umj Vi Umj Vi

m=1 m=1
M n
1 ZZ " 77"711 1
~ 5 Z {210g Um + log (;Tk + 1/_2) — log(ZW)} )
m=1 mj m
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