9 research outputs found

    Mobile Location with NLOS Identification and Mitigation Based on Modified Kalman Filtering

    Get PDF
    In order to enhance accuracy and reliability of wireless location in the mixed line-of-sight (LOS) and non-line-of-sight (NLOS) environments, a robust mobile location algorithm is presented to track the position of a mobile node (MN). An extended Kalman filter (EKF) modified in the updating phase is utilized to reduce the NLOS error in rough wireless environments, in which the NLOS bias contained in each measurement range is estimated directly by the constrained optimization method. To identify the change of channel situation between NLOS and LOS, a low complexity identification method based on innovation vectors is proposed. Numerical results illustrate that the location errors of the proposed algorithm are all significantly smaller than those of the iterated NLOS EKF algorithm and the conventional EKF algorithm in different LOS/NLOS conditions. Moreover, this location method does not require any statistical distribution knowledge of the NLOS error. In addition, complexity experiments suggest that this algorithm supports real-time applications

    Range-based localization for UWB sensor networks in realistic environments

    Get PDF
    The Non-Line of Sight (NLOS) problem is the major drawback for accurate localization within Ultra-Wideband (UWB) sensor networks. In this article, a comprehensive overview of the existing methods for localization in distributed UWB sensor networks under NLOS conditions is given and a new method is proposed. This method handles the NLOS problem by an NLOS node identification and mitigation approach through hypothesis test. It determines the NLOS nodes by comparing the mean square error of the range estimates with the variance of the estimated LOS ranges and handles the situation where less than three Line of Sight (LOS) nodes are available by using the statistics of an arrangement of circular traces. The performance of the proposed method has been compared with some other methods by means of computer simulation in a 2D area

    Cognitive-radio systems for spectrum, location, and environmental awareness

    Get PDF
    In order to perform reliable communications, a system needs to have sufficient information about its operational environment, such as spectral resources and propagation characteristics. Cognitive-radio technology has capabilities for acquiring accurate spectrum, location, and environmental information, due to its unique features such as spectrum, location, and environmental awareness. The goal of this paper is to give a comprehensive review of the implementation of these concepts. In addition, the dynamic nature of cognitive-radio systems - including dynamic spectrum utilization, transmission, the propagation channel, and reception - is discussed, along with performance limits, challenges, mitigation techniques, and open issues. The capabilities of cognitive-radio systems for accurate characterization of operational environments are emphasized. These are crucial for efficient communications, localization, and radar systems. © 2010 IEEE

    Towards the Next Generation of Location-Aware Communications

    Get PDF
    This thesis is motivated by the expected implementation of the next generation mobile networks (5G) from 2020, which is being designed with a radical paradigm shift towards millimeter-wave technology (mmWave). Operating in 30--300 GHz frequency band (1--10 mm wavelengths), massive antenna arrays that provide a high angular resolution, while being packed on a small area will be used. Moreover, since the abundant mmWave spectrum is barely occupied, large bandwidth allocation is possible and will enable low-error time estimation. With this high spatiotemporal resolution, mmWave technology readily lends itself to extremely accurate localization that can be harnessed in the network design and optimization, as well as utilized in many modern applications. Localization in 5G is still in early stages, and very little is known about its performance and feasibility. In this thesis, we contribute to the understanding of 5G mmWave localization by focusing on challenges pertaining to this emerging technology. Towards that, we start by considering a conventional cellular system and propose a positioning method under outdoor LOS/NLOS conditions that, although approaches the Cram\'er-Rao lower bound (CRLB), provides accuracy in the order of meters. This shows that conventional systems have limited range of location-aware applications. Next, we focus on mmWave localization in three stages. Firstly, we tackle the initial access (IA) problem, whereby user equipment (UE) attempts to establish a link with a base station (BS). The challenge in this problem stems from the high directivity of mmWave. We investigate two beamforming schemes: directional and random. Subsequently, we address 3D localization beyond IA phase. Devices nowadays have higher computational capabilities and may perform localization in the downlink. However, beamforming on the UE side is sensitive to the device orientation. Thus, we study localization in both the uplink and downlink under multipath propagation and derive the position (PEB) and orientation error bounds (OEB). We also investigate the impact of the number of antennas and the number of beams on these bounds. Finally, the above components assume that the system is synchronized. However, synchronization in communication systems is not usually tight enough for localization. Therefore, we study two-way localization as a means to alleviate the synchronization requirement and investigate two protocols: distributed (DLP) and centralized (CLP). Our results show that random-phase beamforming is more appropriate IA approach in the studied scenarios. We also observe that the uplink and downlink are not equivalent, in that the error bounds scale differently with the number of antennas, and that uplink localization is sensitive to the UE orientation, while downlink is not. Furthermore, we find that NLOS paths generally boost localization. The investigation of the two-way protocols shows that CLP outperforms DLP by a significant margin. We also observe that mmWave localization is mainly limited by angular rather than temporal estimation. In conclusion, we show that mmWave systems are capable of localizing a UE with sub-meter position error, and sub-degree orientation error, which asserts that mmWave will play a central role in communication network optimization and unlock opportunities that were not available in the previous generation
    corecore