
  
 

TU Ilmenau | Universitätsbibliothek | ilmedia, 2019 
http://www.tu-ilmenau.de/ilmedia 

Shen, Guowei; Zetik, Rudolf; Hirsch, Ole; Thomä, Reiner: 

Range-based localization for UWB sensor networks in realistic environments 

 
Original published in: EURASIP journal on wireless communications and networking / 

European Association for Speech, Signal and Image Processing  - 
Heidelberg : Springer. - (2010), art. 476598, 9 pp. 

Original published: 2009-10-19 
ISSN: 1687-1499 
DOI: 10.1155/2010/476598 
[Visited: 2019-08-01] 
 

   

This work is licensed under a Creative Commons Attribution 2.0 
Generic license. To view a copy of this license, visit  
http://creativecommons.org/licenses/BY/2.0 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digitale Bibliothek Thüringen

https://core.ac.uk/display/227723877?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.tu-ilmenau.de/ilmedia
https://doi.org/10.1155/2010/476598
http://creativecommons.org/licenses/BY/2.0/
http://creativecommons.org/licenses/BY/2.0/
http://creativecommons.org/licenses/BY/2.0/


Hindawi Publishing Corporation
EURASIP Journal on Wireless Communications and Networking
Volume 2010, Article ID 476598, 9 pages
doi:10.1155/2010/476598

Research Article

Range-Based Localization for UWB Sensor Networks in
Realistic Environments

Guowei Shen, Rudolf Zetik, Ole Hirsch, and Reiner S. Thomä
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The Non-Line of Sight (NLOS) problem is the major drawback for accurate localization within Ultra-Wideband (UWB) sensor
networks. In this article, a comprehensive overview of the existing methods for localization in distributed UWB sensor networks
under NLOS conditions is given and a new method is proposed. This method handles the NLOS problem by an NLOS node
identification and mitigation approach through hypothesis test. It determines the NLOS nodes by comparing the mean square
error of the range estimates with the variance of the estimated LOS ranges and handles the situation where less than three Line
of Sight (LOS) nodes are available by using the statistics of an arrangement of circular traces. The performance of the proposed
method has been compared with some other methods by means of computer simulation in a 2D area.

1. Introduction

Localization in distributed Ultra-Wideband (UWB) sensor
networks is an important area that attracts significant
research interest. It is required in many sensor network
applications, such as indoor navigation and surveillance,
detection and tracking of persons or objects, and so on [1–4].

The range-based time of arrival (TOA) approach is the
most suitable approach for localization in UWB sensor
networks, because it is proved to have a very good accuracy
due to the high time resolution (large bandwidth) of UWB
signals [3, 4].

Cooperative operation of several network nodes requires
temporal synchronization. One distinguishes between two
different versions of node synchronization in sensor net-
works. In the first case, only the reference nodes are
synchronized. After transmission of a signal by the target
node, ranges can be estimated by using the time differences
between the signal arrivals at different reference nodes. In
the second case, all nodes are synchronized. Here the time
of pulse generation is known and ranges can be estimated
from TOAmeasurements immediately. The minimum num-
ber of reference nodes, necessary for the application of

trilateration methods that operate without ambiguity in a
two-dimensional (2D) scenario, is three in the case of full
synchronization and four if only the reference nodes are
synchronized. Apart from the different minimum numbers
of nodes, there is no principle difference between the
two methods. In this article, full synchronization is always
assumed.

In most TOA-based localization systems in Line of Sight
(LOS) situations, the two-step positioning is the common
technique, which includes a range estimation step and a
location estimation step [3, 4]. Firstly, the time delays signals
that propagate from the target node to the reference sensor
nodes are estimated through TOA estimation, and then the
time delays are converted to distance parameters (range
estimates) by multiplication by the speed of light. This step
is called range estimation. After that, the position of the
target node is estimated based on the range estimates via
trilateration. This step is called location estimation.

For the first step, many algorithms attempt to achieve a
precise TOA estimation from the received multipath signal.
In practical examples, correlator or matched filter (MF)
receivers are used for UWB ranging (TOA estimation)
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[5]. Both the TOA estimation and the range estimation
precision can be improved by application of efficient
methods [4], such as maximum likelihood methods (e.g.,
generalized maximum likelihood method in [6]), subspace
methods (e.g., MUSIC method in [7]), and some low-
complexity techniques (e.g., threshold-based methods in
[8]).

For the implementation of the second step, many differ-
ent algorithms were developed. All of them try to acquire a
high precision of the localization from the range estimates,
such as Taylor series method (TS) [9, 10] and approximate
maximum likelihood method (AML) [11]. Furthermore,
in [12, 13], various location estimation algorithms (for
range-based localization) have been analyzed and compared
in 3-dimensional (3D) space. In [14], a novel joint TOA
estimation and location estimation technique for UWB
sensor network applications is proposed which uses the
residual localization error as a metric to optimize the ranging
thresholds.

In an urban or indoor environment, localization is
mainly deteriorated by the multipath propagation and Non-
Line of Sight (NLOS) situations. If some obstacles, for
example, walls, or objects attenuate or block the direct signal
between the transmitter and the receiver, the transmitted
signal can only reach the receiver through a reflected,
diffracted, or scattered path, so that the path length increases.

In such environments, generally, those TOA estimation
methods we mentioned before become suboptimal, because
in this case the strongest path is not always the direct, or Line
of Sight (LOS), path. Therefore, a typical positive ranging
offset will occur [14, 15].

A simple example scenario of a network is shown in
Figure 1. The network consists of four static reference nodes
R1–R4 and one target node T1. The estimated distance
between R1 and T1, m1, may be much larger than the true
distance because of the blockage by the wall.

In this case, the location estimation algorithms men-
tioned before can also hardly handle this situation. Applica-
tion of TOA estimation in the location estimation step will
lead to large position errors.

In this article, we focus on the localization problem in
realistic environments and propose a novel NLOS identi-
fication and mitigation algorithm that can cope with this
NLOS problem. We assume that a number of static reference
nodes and one target node are deployed in a UWB sensor
network. A 2D arrangement is considered for simplicity
of explanation. The distances between target node and
reference nodes are obtained beforehand by TOA estimation,
but it is not known a priory, which of them (if any) contain
NLOS errors.

The remainder of this article is organized as follows. A
comprehensive overview of the existing methods of handling
the NLOS problem is presented and analyzed in Section 2.
In Section 3, a novel hypothesis test for NLOS identification
and mitigation is proposed and described in detail. The
performance of the new method is evaluated and compared
with results of standard methods by computer simulation in
Section 4. Finally, conclusions are given in Section 5.

Static nodes
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(corrupted by NLOS)
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Figure 1: Example location scenario. The network consists of four
static reference nodes R1–R4 (indicated by receiving antenna in
green/black) and one target node T1 (indicated by a robot with
transmitting antenna). The blockage by the wall between Node R1
and T1 creates an NLOS situation, but for the others reference
nodes, T1 is in an LOS position. Themi (i = 1, 2, 3, 4) are the range
estimates between the reference nodes and the target node.

2. Overview of ExistingMethods

We present an overview of important range-based localiza-
tion methods that take into account the NLOS problem.

A residual weighting approach was first proposed in
[16] for a TOA location scheme. It uses all NLOS and LOS
estimated distances for the localization and applies residual
ranking to minimize the influence of NLOS contributions.
Different combinations of the reference nodes are considered
to estimate the location and the corresponding residual error.
The location estimates with smaller residuals have larger
chances of corresponding to the correct target position.
Hence, this algorithm weights the location estimates with
the inverse of their residual errors. This residual ranking
method can work very well when we have a large number
of reference nodes and one of them is in an NLOS situation.
The problem of this approach is that the estimate can be
unreliable because NLOS errors, although reduced, are still
present. The location is estimated by inclusion of all already
estimated distances without any identification of LOS and
NLOS channel conditions. In addition, it is computationally
intensive, because it tries out all possible combinations of all
nodes to determine the NLOS situations, especially when the
total number is very large.

Another approach of handling the NLOS problem is
location by tracking and smoothing. This approach detects
discontinuities of the estimated historical positions by using
tracking algorithms like Kalman filter [17] or Particle filter
[18]. However, although it can detect points in time where
NLOS channel conditions may be involved in the location
estimation, it can hardly identify which node is in an NLOS
situation. Moreover, this approach requires knowledge of the
time history of range estimates and it can only be applied in
the case of a moving target node.
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A more popular approach is attempting to distinguish
between the nodes in LOS and in NLOS positions and
to mitigate the effects of NLOS nodes within the location
estimation step. For example, in the location scenario in
Figure 1, we can try to recognize that the channel between R1
and T1 is in NLOS condition and to locate T1 without using
this NLOS node. The advantage of this approach is that if
the identification is correct, the accuracy of the localization
can be considerably improved. For the practical realization
of this concept, the following attempts have been suggested
in literature.

A method is proposed in [15] that investigates the
received multipath signal. It is based on the signal power
variation, and it assumes that a sudden decrease of SNR
(Signal-to-Noise Ratio) could indicate the movement from
an LOS into an NLOS position, and vice versa. Therefore,
this method is a time history-based method. In [19], an
identification technique based on the multipath channel
statistics is proposed. It distinguishes between LOS and
NLOS channel conditions by exploiting the amplitude or the
delay statistics of the UWB channels. The amplitude statistics
are captured using the kurtosis and the delay statistics
are evaluated using the mean excess delay and the root
mean square (RMS) delay spread of the received multipath
components (MPCs). These algorithms identify NLOS nodes
by means of the received multipath signal or the channel
statistics.

As an alternative, it is also possible to identify LOS and
NLOS channel conditions by using the range estimates.

For example, a hypothesis test method is proposed in
[20]. It is based on the theory that the NLOS error increases
the standard deviation of the estimated distances of each
reference node. In [21], a decision theoretic framework for
NLOS identification is presented, where time history-based
hypothesis tests for the probability density function (PDF)
of the results of TOA measurements are proposed. Here the
NLOS and LOS range estimates are modeled as Gaussian
random variables. These methods are time history-based
hypothesis test methods. They consider the time history of
estimated distances from each reference node individually.
In [20], the measurement noise variance is assumed to be
known.Moreover, a residual test is proposed in [22]. It works
on the principle that if all measurements are performed
under LOS channel conditions, the residuals have a central
Chi-Square distribution and the residuals are the squared
differences between the estimates and the true positions. It
is computationally intensive similarly to [16], because it tries
out all possible combinations of all single nodes to findNLOS
situations. In addition, it cannot treat situations with only
three reference nodes.

3. ProposedMethod

In this article, we consider a sensor network consisting of
three or more reference nodes and one target node in a 2D
area. The reference nodes Ri are fixed and their positions
are already known (index i always goes from one to n,
the number of the reference nodes, for all variables in

this article). We assume that all the reference nodes are
synchronized with each other. The situation of the target
node is stationary or moving.

For a stationary target node or a certain moment
in case of a moving target node, the time delays of a
signal that travels from the target node to the reference
nodes are obtained by TOA estimation after performing
measurements, and hence the distances are acquired. Here
in this article, the estimated distances are referred to as range
estimates. However, there is no prior knowledge of the LOS
or NLOS conditions.

The range estimate between the ith reference node and

the target node, ̂di, where the “hat” indicates the estimate, is
modeled as

̂di = ri + bi + εi, (1)

where ri are the true distances; εi denote the noise of
range estimates and are assumed to be independently and
identically distributed zero mean Gaussian random variables
with variance σLOSi2 [14, 22]; bi are the distance biases
introduced due to the NLOS blockage [14] and must be
additive non-negative errors. If the channel is in LOS
condition, then bi is zero. In most cases, if the channel is in
NLOS condition, bi is much greater than the absolute value
of εi (i.e., bi � |εi| ). The noise εi can be reduced by averaging
repeated measurements for each reference node in a static
situation.

3.1. Hypothesis Test Using MSE of Range Estimates and
Variance of LOS Range Estimates. From (1), the range
estimation errors for each reference nodes are

ξi = ̂di − ri =
⎧

⎨

⎩

εi, in LOS channel conditions,

εi + bi, in NLOS channel conditions.
(2)

That means the range estimate errors in LOS channel
conditions are zero-mean Gaussian variables, that is, ξi ∼
N(0, σLOSi2). However, the true distances ri are always
unknown. We use the initial location estimate, by treating all
the reference nodes as being in LOS situation, to estimate the
distance. Then, the estimated range errors are

̂ξi = ̂di − r̂i, (3)

where r̂i are the estimated distances by using the initial
location estimate.

The mean square error (MSE) of ̂ξi with respect to ξi,
which is referred to asM, is

M =MSE
(

̂ξ
)

= E
[

(

̂ξ − ξ
)2
]

=

⎧

⎪

⎨

⎪

⎩

E
[

ε2
] = σLOS2, in LOS channel conditions,

E
[

(ε + b)2
]

> σLOS2, in NLOS channel conditions,

(4)

where E(·) refers to the calculation of mathematical
expectation.
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Figure 2: Demonstration for the hypothesis test. The solid
circles are produced by estimated distances and dashed circles are
produced by true distances. R2 and R3 are in LOS situation and
estimated distances are only affected by measurement noise. R1 is
in NLOS situation; estimated distance is affected by measurement
noise and NLOS blockage.

It follows from (4) that in a pure LOS situation MSE of
range estimates should not be greater than the variance of
the LOS range estimates, σLOS2. In contrast, if one or more
NLOS nodes are within the group of nodes, M is greater
than σLOS2 because the NLOS biases bi are additive positive
values.

This point can be demonstrated in Figure 2. Nodes R1,
R2, and R3 are three static reference nodes. The radiuses
of the circles are the corresponding range estimates. When
all the nodes are in LOS situation, the range estimation
errors, ξ1, ξ2 and ξ3, are caused only by noise. The location
estimation of the target node is position T1. In this case,
the MSE of the range estimates is equal or smaller than the
variance of the LOS range estimates. If, however, the node R1
is in an NLOS situation, the positive NLOS distance biases b1
adds to the measurement distance. Assume position T1′ to
be the result of the location. Then, the MSE of the measured
ranges will be greater than the variance of the LOS range
estimates.

The variances of the LOS range estimates σLOSi2 are dif-
ferent at different distances, because the noise level of range
estimates depends on the distance. We define σLOS2 as the
greatest value of the variance among the estimated variances
of measurements with all reference nodes. Therefore, for a
specific UWB device, it can easily be obtained by k (k >
0) times distance measurements and range estimates in a
pure LOS environment within the possible greatest distance,
for example, a room without any objects (e.g., furniture,
electronic devices, etc.) inside.

Let a random variableX be a vector of the range estimates
errors of each measurement, X = [ζ1, ζ2, . . . , ζk], then the

maximum likelihood estimation of the variance of the range
estimates is

σLOS
2 = Var(X) = 1

k

k
∑

l=1

(

ζl − ζ
)2
, (5)

where ζ is the average value of ζl (l = 1, 2, . . . , k).
A hypothesis test can be deduced from the idea described

above. This hypothesis test determines if NLOS nodes exist
or not by comparing the MSE of the range estimates with the
variance of the LOS range estimates. The two hypotheses are

H0 :M ≤ σLOS
2, no NLOS node exists,

H1 :M > σLOS
2, NLOS nodes exist.

(6)

The MSE of the range estimates,M, can be calculated by

M =MSE
(

̂ξ
)

= 1
n

n
∑

i=1

(

̂ξi − ̂ξ
)2

, (7)

where ̂ξ is the average value of ̂ξi.
If nodes in NLOS situation are determined, the one

with the highest probability of being an NLOS node will be
excluded from this group and the subgroup must be checked
once again until there are no more NLOS node detected, or
until there are only three reference nodes left. In this case, the
node having the highest probability of being an NLOS node
will be identified later.

After that, location estimation is done by using the nodes
left.

The procedure of this Hypothesis Test is summarized as
follows.

(1) Perform location estimation by treating all reference
nodes as if they would be in LOS channel conditions.

(2) Calculate the MSE of the range estimates M accord-
ing to the estimated distances r̂i.

(3) Compare M with the variance of the LOS range
estimates σLOS2. If M ≤ σLOS2, we conclude that no
NLOS nodes exist. In this case, we proceed with the
final location estimation. Otherwise, proceed with
the next step.

(4) Estimate the locations and calculate the MSEs of the
range estimates for each subgroup with n− 1 nodes.

(5) Compare each MSE of the range estimates with the
variance of the LOS range estimates. This step will be
explained in detail later.

(a) If only oneMSE smaller than the variance of the
LOS range estimates is detected, we conclude
that no NLOS node is present in this subgroup.
The node, that is not included in this subgroup,
is identified as an NLOS node.
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(b) If no MSEs are smaller than the variance of the
LOS range estimates, we choose the node with
the highest probability of being an NLOS node
as the NLOS node. Then, proceed to step (4)
and repeat the procedure with the remaining
n−1 nodes until there are nomore NLOS nodes
detected or until there are only three reference
nodes left.

(c) If more than one MSE is smaller than the
variance of the LOS range estimates, we do the
same as explained in step 5(b) , choose the node
with the highest probability of being an NLOS
node as the NLOS node, and proceed to step
(4).

(6) Locate estimation with the remaining nodes by
excluding the NLOS nodes identified before.

A step by step explanation shall be given using the simple
scenario in Figure 1. In step (3), we discern that one or more
NLOS nodes exist. In step (4), we do location estimations
and calculate the MSEs for the four subgroups of four nodes.
Then, each MSE is compared with the variance of the LOS
range estimates. In step (5), we find that the MSE and only
this MSE, which is obtained by the subgroup (R2, R3, and
R4) without the node R1, is smaller than the variance of the
LOS range estimates. Therefore, in step 5(a), we conclude
that no NLOS nodes exist in this subgroup. Hence, node R1
is identified as an NLOS node in this scenario. Then, the
location estimate can be done by the subgroup (R2, R3, and
R4) in step (6).

In this simplest case, there is only one MSE smaller than
the variance of the LOS range estimates detected in step (5),
because only one NLOS node exists. However, this algorithm
is an iterative method and there can two special cases appear
(in steps 5(b) and 5(c)) at a certain iteration. They are
explained separately in the following.

At a certain iteration, if no MSE is smaller than the
variance of the LOS range estimates (step 5(b)), all subgroups
still include NLOS nodes. In this case, the number of NLOS
nodes is greater than one. Then, the node having the highest
probability of being an NLOS node is determined in the
following way:

We define ̂ξ′ as the average values of ̂ξi for each subgroup.

The difference between ̂ξ′ and ̂ξ is that the node outside of
the corresponding subgroup is also taken into account within

the calculation of ̂ξ′. Because the NLOS biases are additive

positive errors, ̂ξ′ would be greater than ̂ξ obtained without
the node outside of the corresponding subgroup. A more
precise location estimate provides less MSE. Therefore, we

chose the subgroup, which satisfies ̂ξ′ > ̂ξ and provides the
smallest MSE, as the subgroup having the lowest probability
of including NLOS nodes. The node, not included in this
subgroup, has the highest probability of being an NLOS
node.

In addition, there can be another special case (in step
5(c)). It is possible that more than one MSE is smaller than
the variance of the LOS range estimates, although only one

R4

R4′

R3

R1

R2

Figure 3: Demonstration of the special situation. The solid circles
are created based on the range estimates and the dashed circle R4′

is produced based on the true distance between the target node and
reference node R4. In this case, there are two subgroups, (R1, R2,
and R3) and (R1, R2, and R4), with MSE of the range estimated
smaller than the variance of LOS range estimates.

NLOS node exists. This case is demonstrated in Figure 3.
There are four reference nodes R1–R4 in this network. Node
R4 is an NLOS node and the dashed circle R4′ is produced
based on the true distance. In this case, the criterion M ≤
σLOS2 is satisfied by two subgroups, (R1, R2, and R3) and (R1,
R2, and R4).

In this case, we also determine the node that has the
highest probability of being an NLOS node within the
corresponding subgroup as described above. In contrast,
here we do the detection within those subgroups where the
MSE is smaller than the variance of the LOS range estimates.

It is easily to know that, generally, the iteration will be
finished and stopped after a few number of times iteration.
The number of iteration times relates to the number of the
NLOS nodes in the examined sensor networks and should be
equal or less than the number of the NLOS nodes. Therefore,
this method is not so computational intensive as the method
in [16, 22].

3.2. Hypothesis Test Using the Statistics of the Arrangement of
Circular Traces. In a large sensor network, there is a high
probability of having three or more LOS nodes. However,
in case of less than three reference nodes with LOS channel
conditions, the above hypothesis test will stop identification
and will perform the location estimation with the three
nodes left and with some NLOS nodes still included. We
propose a simple but efficient method to improve the
location estimation by using the statistics of the arrangement
of circular traces obtained from the range estimates.

Without range estimation noise and without NLOS
errors, the target node must be at the intersection of all
those circles whose centers are the reference nodes and whose
radiuses are the range estimates. When there are NLOS
errors, the target node should be inside the circles. Therefore,
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Figure 4: Situation of the arrangement of circular traces.

the target node must be inside the intersection area of the
circles.

If it happens that one circle surrounds one of the other
circles, as the nodes A and B displayed in Figure 4(a),
reference node A is identified as an NLOS node [23].
Moreover, in this case, the range estimate of reference node A
can be reduced to the value where the two circles are tangent
at a single point. This is shown in Figure 4(a) (the dashed
circle A′). The revised value of the range estimate will be
closer to the true distance. Then, the revised value is used
in the data fusion.

We have also noticed a situation where two circles
are isolated from each other, for example nodes E and F
displayed in Figure 4(b). In such situation, both node E and
node F should be regarded as LOS reference node, because
this situation is normally caused by the noise εi in an LOS
situation.

3.3. Combination of These Two Hypothesis Tests. The hypoth-
esis test method using the statistics of the arrangement
of circular traces can improve the performance of the
hypothesis test using the variance to some extent. Therefore,
we propose the combination of these two methods for NLOS
identification and mitigation.

The flowchart of the proposed combination method is
shown in Figure 5.

4. Performance Evaluation

In this section, we examine the performance of the proposed
method by computer simulation.

We consider n (n ≥ 3) reference nodes that are placed
randomly in a square area with side length 300 cm. Range
estimates were simulated by adding range estimation errors
and NLOS biases to the true distances. Because of the
different noise levels at different distances, we assume that
the variance of the LOS range estimates σLOSi is proportional
to the distances with σLOSi being 2 cm if the distance is
zero and σLOSi being 3 cm if the distance is 425 cm (the
biggest possible LOS distance measured inside the area is the
length of the diagonal). The random variable of NLOS bias is
modeled in different ways in literature, such as exponentially
distributed [16, 22] and uniformly distributed [24]. In this
article, we model it as a uniformly distributed random
variable ranging from 50 cm to 400 cm.

We compare the performance of the proposed method,
the combination of hypothesis test methods (HC), with a
number of other methods. One is the hypothesis test method
using the variance (HT) described in Section 3.1. The second
is the hypothesis test method using circular traces (CT)
in Section 3.2. The third is the Residual weighting method
(RW) described in [16]. In addition, the AML method [11],
which is the best performing algorithm among some typical
location estimation algorithms compared in [12] but without
NLOS identification, is also included.

Location estimation errors have been obtained by aver-
aging 1000 trials with randomly chosen node positions. The
Root Mean Square Error (RMSE) of the location estimates is
chosen as the performance criteria. It is defined as

RMSE =
√

√

√

√

√

1
m

m
∑

j=1

∥

∥

∥
̂θj − θj

∥

∥

∥

2
. (8)

In the above equation, θj and ̂θj ( j = 1, . . . ,m) are the
true position and the location estimate in the jth trial within
a totality ofm trials, respectively.

4.1. Performance Depending on the Number of LOS Nodes.
For ease of illustration but without loss of generality, we
suppose that there are eight reference nodes in the network.
The performance of all methods was examined depending on
the number of LOS nodes among these eight nodes.

From Figure 6, one can see that HC and HT methods
perform better than AML and RW for all possible numbers
of the LOS nodes. In case of more than three LOS nodes, the
error is less than 3 cm. When the number of the LOS nodes
is three, HT method and HC method achieve a location
error of about 13 cm. This is caused by a higher possibility
of wrong identification by using the proposed method when
the number of the LOS node is less than three. If the number
of LOS nodes is less than three, the error is bigger but the
proposed method is still the best.

In addition, it is obvious that HC performs better than
HT when the number of the LOS nodes is less than three. It
proves that the CT method can improve the performance of
the HT method in some case.

4.2. Performance Depending on the Total Number of Reference
Nodes. In real sensor networks, however, we do not know
the exact number of LOS reference nodes. Here we assume
that there are at least three LOS nodes. The performance
of all methods, with four to ten reference nodes, was
examined.

Figure 7 presents the simulation results. It is obvious that
the proposed method HC acquires the best performance
among the tested methods. For the given range inaccuracy,
the HC gives a location estimation error of several centime-
ters for all numbers of reference nodes.

We have noticed that the performance of the methods
is degraded when the number of reference node increases.
This is caused by the increasing probability of wrong
identification if the percentage of NLOS nodes increases.
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Figure 5: Flowchart of the proposed method.
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Figure 6: Performance of the methods depending on the number of
LOS reference nodes. The network consists of eight reference nodes.
1000 trials have been averaged.
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Figure 7: Performance of the methods depending on the total
number of reference nodes. The number of the LOS nodes is
random but at least three. Simulation performed with 1000 trials.

4.3. Performance with Random Number of LOS Nodes Includ-
ing the Situation of Less than Three Nodes. In densemultipath
environment, the number of LOS nodes may be less than
three. Here, we include this case in our simulations.

Results are presented in Figure 8. From the figure, we can
see that the HT andHCmethods provide better performance
than other methods. The HC method, a combination of
the HT and the CT method, can further improve the
performance of the HT method.
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Figure 8: Performance of the methods depending on the number
of reference nodes. The number of the NLOS nodes is a random
variable. 1000 trials have been averaged.

5. Conclusion

The NLOS problem is considered a killer issue in UWB
localization. In this article, a comprehensive overview of the
existing methods for localization in distributed UWB sensor
networks under NLOS condition is given and a new method
is proposed. The proposed method handles the NLOS prob-
lem by NLOS node identification and mitigation approach
through hypothesis test. It determines the NLOS nodes by
comparing the mean square error of the range estimates
with the variance of range estimates in LOS situation, and
moreover, using the statistics of the arrangement of circular
traces to further improve the performance in the situations
that there are less than three LOS nodes available. Because
the number of the iteration times is equal or less than the
number of the NLOS nodes, this method is not too much
computational intensive.

The performance comparison was performed by com-
puter simulation. The simulation results imply that the pro-
posed method acquires the highest performance among the
tested methods, even within dense multipath environments
where a high possibility exists that the number of LOS nodes
is less than three. Moreover, the proposed method could also
be applied to scenario with a moving target node.

Acknowlegments

This work was partly supported by the European Commis-
sion within the FP7 ICT integrated project CoExisting Short
Range Radio by Advanced Ultra-WideBand Radio Tech-
nology (EUWB) and by the German Research Foundation
(DFG) within the project CoLOR (within Priority Program
UKoLoS, SPP 1202/2).



EURASIP Journal on Wireless Communications and Networking 9

References

[1] S. Gezici, Z. Tian, G. B. Giannakis, et al., “Localization via
ultra-wideband radios: a look at positioning aspects of future
sensor networks,” IEEE Signal Processing Magazine, vol. 22, no.
4, pp. 70–84, 2005.
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July-August 2007.

[8] I. Guvenc and Z. Sahinoglu, “Threshold-based TOA estima-
tion for impulse radio UWB systems,” in Proceedings of IEEE
International Conference on Ultra-Wideband (ICU ’05), pp.
420–425, September 2005.

[9] K. Yu, J.-P. Montillet, A. Rabbachin, P. Cheong, and I. Opper-
mann, “UWB location and tracking for wireless embedded
networks,” Signal Processing, vol. 86, no. 9, pp. 2153–2171,
2006.

[10] W. H. Foy, “Position-location solutions by Taylor-series
estimation,” IEEE Transactions on Aerospace and Electronic
Systems, vol. 12, no. 2, pp. 187–194, 1976.

[11] Y.-T. Chan, H. Y. C. Hang, and P.-C. Ching, “Exact and
approximate maximum likelihood localization algorithms,”
IEEE Transactions on Vehicular Technology, vol. 55, no. 1, pp.
10–16, 2006.

[12] G. Shen, R. Zetik, and R. S. Thomä, “Performance comparison
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