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Abstract

Estimation problems in the presence of deterministic linear nuisance parameters arise in a variety of fields. To cope
with those, three common methods are widely considered: (1) jointly estimating the parameters of interest and the
nuisance parameters; (2) projecting out the nuisance parameters; (3) selecting a reference and then taking differences
between the reference and the observations, which we will refer to as “differential signal processing.” A lot of literature
has been devoted to these methods, yet all follow separate paths.
Based on a unified framework, we analytically explore the relations between these three methods, where we
particularly focus on the third one and introduce a general differential approach to cope with multiple distinct
nuisance parameters. After a proper whitening procedure, the corresponding best linear unbiased estimators (BLUEs)
are shown to be all equivalent to each other. Accordingly, we unveil some surprising facts, which are in contrast to
what is commonly considered in literature, e.g., the reference choice is actually not important for the differencing
process. Since this paper formulates the problem in a general manner, one may specialize our conclusions to any
particular application. Some localization examples are also presented in this paper to verify our conclusions.

Keywords: Linear nuisance parameters, Joint estimation, Orthogonal subspace projection (OSP), Differential signal
processing, Best linear unbiased estimator (BLUE), Source localization

1 Introduction
The problem of estimating unknown parameters of inter-
est x ∈ R

L×1 observed through a linear transformation
H ∈ R

N×L (N > L), and corrupted by additive noise n ∈
R
N×1, has been well studied and considered in a wide vari-

ety of fields [1]. However, the observations y ∈ R
N×1 are

sometimes also influenced by unknown linear nuisance
parameters, denoted by u ∈ R

M×1 which enter y through
the linear transformation G ∈ R

N×M (N > M). For
instance, these nuisance parameters could be some com-
mon offsets such as the transmit time, the clock bias, and
the transmit power in time-of-arrival (TOA) or received
signal strength (RSS) based localization [2], or they could
represent some redundant signals like the undesired sig-
natures in hyperspectral imaging [3]. In fact, an estimation
problem with linear nuisance parameters widely exists in
many other fields such as communications [4–6], source
separation [7], and machine learning [8, 9]. Though only
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Bayesian approaches are generally studied in case of nui-
sance parameters [1, 10, 11], in this paper, wemainly adopt
deterministic approaches, for which we first formulate our
general model with linear nuisance parameters as

y = Hx + Gu + n, (1)

where we assume that

1. The concatenation ofH and G has full column rank,
i.e., Rank([H G] ) = L + M;

2. The noise n is zero-mean, i.e., the expected value of n
is E(n) = 0;

3. The noise n is white (e.g., after whitening), i.e., the
covariance matrix �n is (scaled) identity �n = σ 2IN ,
where IN is the N × N identity matrix.

Note the noise n does not have to be Gaussian dis-
tributed1, although it is true for many cases.
To cope with this kind of problem in case u is determin-

istic, threemethods are often considered: (1) the joint esti-
mation approach estimates the unknown x together with
the unknown nuisance term u (e.g., the location and the
unknown clock bias in [12]); (2) the orthogonal subspace
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projection (OSP) approach projects out the nuisance term
u such that the resulting observation vector is only sub-
ject to x (e.g., the extraction of the desired signature
in [13]); ( 3) the differential signal processing approach
firstly chooses a reference and then estimates x from the
differences between the reference and the observations
[14–18]. Note that these methods obviously result in three
distinct observation sets with different signal-to-noise
ratios (SNRs), which will greatly influence the estima-
tion performance. Therefore, a vast amount of research
has been conducted on these methods, though all follow
separate paths. Admittedly, some early results have been
reported bridging the first two methods. For instance,
the famous OSP-based solution using a matched filter to
maximize the output SNR proposed in [19] was later on
proven to be equivalent to the least squares (LS) approach
based on the joint estimation [20, 21]. However, the pro-
posed differential approaches are still widely regarded
as a common but distinct way to cope with linear nui-
sance parameters. One of the most famous applications
is time-based localization (TOA or time-difference-of-
arrival (TDOA)), where many papers exist on selecting an
optimal reference [22–24], constructing an optimal obser-
vation subset [25–27] or just using the full observation
set adopting each sample as a reference [28–30]. All these
issues never occur in the first two methods due to the
fact that they are free of a reference. In a nutshell, there
still seems to be a huge and inevitable gap between the
differential approaches and the other two.
This paper analytically investigates the relations

between all three methods, where the corresponding
best linear unbiased estimators (BLUEs) are presented
and discussed. Since the general framework in (1) is used
throughout this paper, all the conclusions apply to any
kind of problem that can be written in this form, which is
exactly the strength of this paper. We also present some
localization examples to verify our conclusions. To sum-
marize, the main contributions of this paper are listed
below.

1. For the first time, we extend the differential signal
processing approach to a more general framework,
which can cope with multiple nuisance parameters,
whereas most existing methods consider a single
nuisance parameter.

2. Surprisingly, the BLUEs of the three considered
methods are proven rigorously to be identical to each
other if an appropriate preprocessing step is used.
This might be expected or known w.r.t. the first two
methods, but the equivalence with differential
methods has never been reported before.

3. Compared with the joint estimation method, which
directly utilizes all the original observations, none of
the other two methods suffers any information loss.

4. Although differential methods seem to rely on the
selected reference, selecting the right reference is not
important since there is no actual trace of the
selected reference in the corresponding BLUE. This
is in sharp contrast to what is commonly considered
in literature.

5. As far as the differencing process is concerned, the
differential observation set associated with a single
reference already preserves the full data information.

The rest of this paper is organized as follows. Section 2
presents the relations between the three consideredmeth-
ods. Some examples of source localization are shown
and numerically studied to support our conclusions in
Section 3. Finally, Section 4 summarizes this paper.

2 Handling linear nuisance parameters
In this section, we study the relations between the joint
estimation, the OSP-based estimation, and the differential
estimation by investigating their corresponding BLUEs,
where for the first time, a general differential approach is
introduced coping with multiple nuisance parameters.

2.1 Joint estimation
The joint least squares (JLS) estimate of x and u, based on
the model (1), is given by

[
x̂jls
ûjls

]
=

([
HT

GT

] [
H G

])−1 [
HT

GT

]
y, (2)

where we have used the fact that the augmented matrix[
H G

]
has a full column rank. Obviously, x̂jls is the BLUE,

since n is the zero-mean white noise, according to the
Gauss-Markov theorem [1].

2.2 OSP-based estimation
If we prefer to project out the nuisance term u, an orthog-
onal subspace projector can be formulated [19] as

P⊥
G � IN − GG†, (3)

where [ ·]† indicates the pseudo-inverse which is given by
G† � (GTG)−1GT , since G is assumed to have a full col-
umn rank. ApplyingP⊥

G to our original model in (1) results
in a new model

P⊥
Gy = P⊥

GHx + P⊥
Gn, (4)

where the impact of the nuisance term u is eliminated.
Due to the symmetry and the idempotence of an orthog-
onal subspace projector, i.e., P⊥

G = P⊥T
G and P⊥

G = P⊥2
G ,

we obtain the covariance matrix of the model noise in
(4) as �P⊥

Gn
= σ 2P⊥

GP
⊥T
G = σ 2P⊥

G . Then, following the
OSP-based model (4), the corresponding LS optimization
problem can be formulated as

min
x

||P⊥
Gy − P⊥

GHx||22, (5)
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which leads to the following OSP-based LS estimate Type
I of x

x̂osp−1 = (HTP⊥T
G P⊥

GH)−1HTP⊥T
G P⊥

Gy= (HTP⊥
GH)−1HTP⊥

Gy.
(6)

However, the model noise P⊥
Gn in (4) is not white, i.e.,

�P⊥
Gn

is not a (scaled) identity. Moreover, the orthogo-
nal subspace projector P⊥

G is obviously singular, which
implies that the covariance matrix �P⊥

Gn
is not invertible

and hence can not be used to whiten the model (4). There-
fore, it is very difficult to decide at this point whether
x̂osp−1 is the BLUE or not.
To cope with that, we need to introduce another type

of OSP-based LS estimator for x. If this estimator can be
shown to be the BLUE and can also be proven equivalent
to x̂osp−1, then we can conclude that both of them are the
BLUE.
Assume that Un ∈ R

N×(N−M) contains orthonormal
basis vectors spanning the null space of G. Then, the idea
of this second OSP-based estimator is to adopt the null
space of G to remove the impact of u. More specifically,
pre-multiplying UT

n on both sides of our original model
leads to

UT
n y = UT

nHx + UT
n n. (7)

Note that (4) can be obtained from (7) by multiplying
it on both sides with Un since UnUT

n = P⊥
G [31], and

hence these two models are basically equivalent. We can
also see that, since Un is an isometry, the model noise
UT
n n remains white, i.e., the covariance matrix of UT

n n is
�UT

n n = σ 2UT
nUn = σ 2IN−M, which means that the LS

estimate of this model is the BLUE.
Applying the LS criterion to the model (7) results in the

optimization problem

min
x

||UT
n y − UT

nHx||22, (8)

fromwhich we can obtain the OSP-based LS estimate type
II of x as

x̂osp−2 = (HTUnUT
nH)−1HTUnUT

n y. (9)

Due to the fact that UnUT
n = P⊥

G , we obtain the
equivalence x̂osp−1 ≡ x̂osp−2 and hence both estima-
tors represent the BLUE. In the later simulations, these
two OSP-based BLUEs will be considered together for
convenience.
Finally, to end this subsection, we would like to focus

on the equivalence between the joint estimation and the
OSP-based estimation approaches. In fact, the equiva-
lence between x̂jls and x̂osp−1 is already known [20, 21, 32],
but we found it useful to revisit this result from a different
viewpoint. To be explicit, applying the block-wise inver-
sion to (2), we can easily rewrite the joint LS estimate of x
and u as

[
x̂jls
ûjls

]
=

[
MG −MGHT (G†)T

−MHGT (H†)T MH

] [
HT

GT

]
y,

=
[
MGHT − MGHT (G†)TGT

MHGT − MHGT (H†)THT

]
y,

=
[
MGHTP⊥

G
MHGTP⊥

H

]
y,

(10)

where MG � (HTP⊥
GH)−1 and MH � (GTP⊥

HG)−1 with
P⊥
H � I − HH†. From (10), we can directly observe that

x̂jls = MGHTP⊥
Gy and hence

x̂jls ≡ x̂osp−1 ≡ x̂osp−2,

where the equivalence between x̂jls and x̂osp−2 is an inter-
esting observation that has never been directly reported
before, to the best of our knowledge.

2.3 Differential signal processing
In this subsection, we would like to examine differen-
tial approaches. This method firstly selects a reference
and then removes the impact of u by taking differences
between the observations and the reference. To be spe-
cific, if the jth observation yj is selected as the reference, a
new differential observation set can be constructed as

dj �

⎡
⎢⎢⎣
...
yi − yj
...

⎤
⎥⎥⎦

(N−1)×1

= �jy, i �= j, (11)

where

�j �
[
Ij−1 −1(j−1)×1 0
0 −1(N−j)×1 IN−j

]
(N−1)×N

(12)

with 1, the all-one matrix (sizes are mentioned in sub-
script if needed) and the size of the observation set are
reduced to N − 1 since j is fixed for every element in dj.
This type of observation set is very popular and has wide
applications in source localization and many other areas.
Clearly, it can only be used to remove a single nuisance
parameter in case G = 1N×1.
One may also suggest to select the average of the obser-

vations as the reference [16, eq. (28)], thus leading to
another kind of differential observation set, given by

davg �

⎡
⎢⎢⎣
...
yi − ȳ
...

⎤
⎥⎥⎦
N×1

= P⊥
1N×1y (13)

where P⊥
1N×1

� I − 1N×11†N×1 = IN − 1
N 1N×N . Some-

times, the use of this type of observation set to eliminate
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the nuisance parameters can be implicit [4], i.e., taking
the average of the observations is not clearly pointed out.
However, this case can obviously be linked to the OSP-
based estimation with a single nuisance parameter in case
G = 1N×1. Therefore, we are more interested in the sim-
ple differencing process of (11), where the reference index
j seems to play a significant role.
As already pointed out, (11) only eliminates one nui-

sance parameter. Nevertheless, we would like to extend
this to tackle multiple nuisance parameters, i.e., we would
like to relax the constraintG = 1N×1 to rank(G) = M ≥ 1.
The idea we will adopt here is based on eliminating the
impact of the nuisance parameters one by one, which
requiresM differencing steps.
To achieve that, we write G =[ g1, · · · , gM] with gk the

kth column vector ofG related to the kth nuisance param-
eter uk (1 ≤ k ≤ M). Thus, our original model in (1) can
be rewritten as

y = Hx + g1u1 + · · · + gMuM︸ ︷︷ ︸
Mnuisance parameters

+n. (14)

We then eliminate the nuisance parameters recursively
in the order of u1, · · · ,uM, although the explicit ordering
is not important. At the kth iteration, when k−1 nuisance
parameters have already been canceled, the observation
vector containing the remaining nuisance parameters can
be written as

d(k−1) = H(k−1)x+g(k−1)
k uk + · · · + g(k−1)

M uM︸ ︷︷ ︸
M−k+1nuisance parameters

+n(k−1),

(15)

where the superscript (·)(k−1) indicates the variables after
k−1 differencing steps, y(k−1), g(k−1)

k , · · · , g(k−1)
M ,n(k−1) ∈

R
(N−k+1)×1 and H(k−1) ∈ R

(N−k+1)×L. We also assume
that, for k = 1,d(0) = y and similarlyH(0) = H, g(0)

k = gk ,
and n(0) = n.
To cancel uk , we first notice that some elements of

g(k−1)
k might be zero, i.e, uk yields no impact on the

corresponding observations in d(k−1) and hence these
observations should not be involved in the differencing
process at this iteration. Without loss of generality, we
assume that the first K elements of g(k−1)

k are zero, where
1 ≤ K ≤ N − k − 1 (there should be at least two
non-zero elements for executing the differencing process).
Then, among the remaining observations impacted by
uk , we select the jth element as the reference, K + 1 ≤
j ≤ N − k + 1, and perform the following differencing
step

d(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[d(k−1)]1
...[

d(k−1)]
K

[d(k−1)]K+1
[g(k−1)

k ]K+1
− [d(k−1)]j

[g(k−1)
k ]j

...
[d(k−1)]j−1

[g(k−1)
k ]j−1

− [d(k−1)]j
[g(k−1)

k ]j
[d(k−1)]j+1

[g(k−1)
k ]j+1

− [d(k−1)]j
[g(k−1)

k ]j
...

[d(k−1)]N−k+1
[g(k−1)

k ]N−k+1
− [d(k−1)]j

[g(k−1)
k ]j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(N−k)×1

= �(k)d(k−1),

(16)

where �(k) �

⎡
⎢⎣
IK 0

0 �
(k)
⊥ diag

([
1

[g(k−1)
k ]K+1

, · · · , 1
[g(k−1)

k ]N−k−1

]T)
⎤
⎥⎦

is the (N−k)×(N−k+1) differencing operator for d(k−1)

with

�
(k)
⊥ �

[
Ij−K−1 −1(j−K−1)×1 0

0 −1(N−k−j+1)×1 IN−k−j+1

]
, (17)

and obviously �(k)g(k−1)
k = 0. Accordingly, the new dif-

ferential observation vector d(k) can be formulated as

d(k) =�(k)H(k−1)︸ ︷︷ ︸
H(k)

x+�(k)g(k−1)
k+1︸ ︷︷ ︸

g(k)
k+1

uk+1+· · ·+�(k)g(k−1)
M︸ ︷︷ ︸

g(k)
M

uM

︸ ︷︷ ︸
M−k nuisance parameters

+�(k)n(k−1)︸ ︷︷ ︸
n(k)

,

(18)

where uk has been canceled.
We can see that (18) is similar to (15) with k−1 replaced

by k. So it is clear that this recursive process can remove
all nuisance parameters. Note that the number of zero val-
ues K as well as the reference index j could be different in
every step, but for simplicity, we use the same notation in
every step.
To understand the interaction of the successive dif-

ferencing steps, let us introduce the total differenc-
ing operator � = �(M) · · ·�(1), where obviously
rank(�(k)�(k−1)) = rank(�(k)) = N − k and hence �

has full row rank. Since it is clear that �G = 0, the final
differential observation vector d(M) can be expressed as

d(M) = �y = �Hx + �n, (19)

where the covariance matrix of �n is ��n = σ 2��T .
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Observe that the model noise has become correlated
ever since the first step of the differencing process. There-
fore, we need to whiten the model in (19) as

�
−1/2
�n d(M) = �

−1/2
�n �Hx + �

−1/2
�n �n,

=⇒ (��T )−1/2d(M) = (��T )−1/2�Hx + (��T )−1/2�n,
=⇒ Py = PHx + Pn,

(20)

where the unknown σ 2 is canceled out at both sides of the
equation and P � (��T )−1/2� which exists since � has
full row rank. Note that P, as well as � and d(k), depend
on the reference indices j that have been chosen in the
successive differencing steps, although this has not been
explicitly stated.
Applying the LS criterion, the corresponding optimiza-

tion problem is now obtained as

min
x

||Py − PHx||22, (21)

which leads to the following BLUE for model (19)

x̂d = (HTPTPH)−1HTPTPy. (22)

Finally, to prove the equivalence of the estimate x̂d to the
previous estimates, i.e., to prove that

x̂jls ≡ x̂osp−1 ≡ x̂osp−2 ≡ x̂d,

we need to establish the relation PTP = UnUT
n = P⊥

G . To
do that, we first recall that �G = 0 and that � has full row
rank. Hence, � can always be written as � = QUT

n , where
Q is an (N − M) × (N − M) invertible matrix and Un has
already been defined before as a basis that spans the null
space of G. The proof is completed by computing

PTP = �T (��T )−1�
= UnQT (QUT

nUnQT )−1QUT
n

= UnQT (QT )−1(UT
nUn)−1Q−1QUT

n
= UnUT

n = P⊥
G ,

(23)

where we surprisingly notice that, even though P and �

are subject to possibly different reference indices j, there
is no trace of any j in PTP and hence in x̂d.

A Simple Illustrative Case: We would like to demon-
strate these three different methods, particularly the dif-
ferential signal processing, with a simple example. Given
N = 3 samples, we only assume a single parameter of
interest (L = 1), but with two linear nuisance parameters
(M = 2). We also know that H = [

3 6 7
]T and G =[

3 5 2
2 4 8

]T
and hence the joint estimator in (2) results into

[
x̂jls
ûjls

]
=

⎡
⎣ −3.2 2 −0.2
2 −1 0
2.3 −1.5 0.3

⎤
⎦ y, where the parameter

estimate of interest is given by x̂jls = [−3.2 2 −0.2
]
y.

Then, we calculate P⊥
G =

⎡
⎣ 0.7171 −0.4482 0.0448

−0.4482 0.2801 −0.0280
0.0448 −0.0280 0.0028

⎤
⎦

and Un = [ −0.8468 0.5293 −0.0529
]T such that two

OSP-based estimators in (6) and (9) can easily be carried
out and proved to be equal to x̂jls. We will not present
more details for simplicity but particularly focus on the
differential method. Since there exist two linear nuisance
parameters, it would take two steps for eliminating all of
them:

1. In the first step (k = 1), we arbitrarily select the third
element of y as the reference (j = 3). Splitting G by
columns, we have g(0)

1 =[ 3 5 2]T g(0)
2 =[ 2 4 8]T .

According to (16), the new differential observation
vector can be obtained as
d(1) = [

y1/3 − y3/2 y2/5 − y3/2
]T = �(1)y, where

�(1) =
[
1/3 0 −1/2
0 1/5 −1/2

]
.We can observe from

�(1)G =
[
0 −10/3
0 −16/5

]
that the impact of the first

nuisance parameter u1 is already eliminated. Also,
g(1)
2 = �(1)g(0)

2 corresponds to the last column and
the next nuisance parameter u2.

2. In the second step (k = 2), the first element of d(1) is
selected as the reference (j = 1). The differential
observation becomes a scalar as
d(2) = − 5

16 (y2/5 − y3/2) + 3
10 (y1/3 − y3/2) =

�(2)d(1) = �y, where �(2) = [3/10 − 5/16] and
� = �(2)�(1) = [1/10 − 1/16 1/160]. Now, we
can readily observe that all the nuisance parameters
are eliminated, since �G = 0.

With a known �, we can easily whiten the model in (19)
and obtain the differential estimator in (22). Moreover,
the equivalence of the differential estimation can also be
proved by observing PTP = �T (��T )−1� = P⊥

G .

2.4 Discussion
We have studied estimation problems in the presence of
deterministic linear nuisance parameters based on a gen-
eral model. Therefore, all the conclusions drawn in this
paper are applicable to any optimization problem with a
datamodel thatmatches our generalmodel (1). The equiv-
alences between the BLUEs of the joint estimation, the
OSP-based estimation and the differential estimation are
summarized in Table 1 and also in Fig. 1. Some interesting
observations from these equivalences are listed below:

1. The joint estimation has to estimate both x and the
nuisance term u while the other two estimation
approaches remove the impact of u before
estimating x.
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Table 1 Relations between the BLUEs related to the joint
estimation, the OSP-based estimation, and the differential
estimation

Models BLUEs Equality conditions

Original Model
in (1)

Joint estimator in (2) [ IL 0L×M]a, P⊥
G � IN − GG†

OSP Model Type
I in (4)

OSP estimator type I in
(6)

P⊥T
G P⊥

G = P⊥
G

OSP Model Type
II in (7)

OSP estimator type II
in (9)

UnUT
n = P⊥

G

Differential
Model in (19)

Differential estimator
in (22)

PTP = P⊥
G

or the Whitened
One in (20)

a[ IL 0L×M] is used for extracting x̂jls in (22)

2. For the OSP-based estimation, in order to remove
the impact of u, using P⊥

G actually colors the noise,
but using UT

n keeps the model noise white.
Interestingly though, the corresponding LS estimates
for those two models are theoretically equivalent and
hence they are both the BLUE.

3. In many applications, the differential processing is
commonly considered as a separate and independent
approach. But, in this paper, we have generally
proven its equivalence to the joint estimation and the
OSP-based estimation. The differential approach
removes the impact of the nuisance parameters by
taking differences between the reference and the

observations. If one of the observations is selected as
a reference, the obtained differential observation set
has to be properly whitened in order to obtain the
BLUE for this model.

4. From an information theoretic perspective, the joint
estimation, which directly utilizes the observations y,
preserves the full data information, and any
preprocessing on the observations might cause an
information loss. However, in this paper, all the other
BLUEs have been proven to be equivalent to the
BLUE of the joint estimation, which implies that
neither the OSP-based estimation nor the differential
estimation suffers any information loss by removing
the impact of the nuisance parameters.

5. It is also worth noting that, for the differential
approach, selecting which observation will function
as a reference is not important, since the reference
index j yields no impact on the BLUE. This is in
sharp contrast to what is commonly considered in
literature.

6. One might notice that, in the differencing process, N
observations can generate a maximum ofN(N −1)/2
distinct observation differences. In contrast, we only
study the estimation problem based on a subset,
which is associated with a single reference and
corresponds to N − 1 observation differences.
However, from the above conclusions, it is clear that
the considered subset already preserves all the
information (independent of the reference), which

Fig. 1 Diagram to illustrate the relations between the BLUEs related to the joint estimation, the OSP-based estimation, and the differential estimation.
Note that the noise n is not necessarily Gaussian distributed and the operator [ IL 0L×M] is used to extract the first L elements of a vector, i.e., x̂jls
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implies that the full set obtains no more information
than any subset does. Also this is a novel observation.

3 Localization examples
By studying the relations between the BLUE of the joint
estimation, the OSP-based estimation, and the differen-
tial estimation, the essence of this paper is to provide
some in-depth understanding of coping with unknown
nuisance parameters. Some important underlying equiv-
alences have been unveiled, especially the one related to
the differential method, since, in many applications, this
approach is still considered as a separate optimization
problem. Owing to the generality of this paper, one may
easily apply our analyses and conclusions to some partic-
ular applications, if the data model can be (re)formulated
to match our general model (1). Some specific localization
examples are detailed next.

3.1 Time-based localization
Both TOA- and TDOA-based localization are called time-
based localization [2], since they both rely on time mea-
surements (either the global time or the local time). The
essence of this kind of localization problem is how to
accurately extract distance-related information (e.g., the
time of flight (TOF)). Directly using TOA measurements
requires not only perfect clock synchronization between
the emitters and the receivers but also the knowledge
of the transmitting time [33]. In cooperative networks,
where clock synchronization is frequently carried out
(because the inner clock might drift over time) and the
transmitting times are also piggybacked with the trans-
mitted signals, one can precisely calculate the TOFs from
the TOAmeasurements and then localize the target node.
However, it is often very expensive to meet those require-
ments, and most networks are constrained by limited
resources and capabilities. Therefore, in most cases, sen-
sors suffer from two linear nuisance parameters, i.e., the
unknown clock biases to the global time and the unknown
transmitting times.
In this example, we assumeN anchor nodes that are per-

fectly synchronized with the global time and there exists
only a clock bias in the target node, which broadcasts bea-
con signals at unknown local transmit times. We denote
xt ∈ R

d as the target location and si ∈ R
d as the ith anchor

location. For convenience, a single unknown global trans-
mit time t0 is considered for the target node, instead of the
local transmit time plus the clock bias. Taking the speed of
light c into account, we obtain the TOA measurements as

d = r(xt) + 1N×1ro + n, (24)

where the element di of d indicates the TOAmeasurement
from the ith anchor, r(xt) stacks ri � ||xt − si||2, ro �
ct0 and n is the vector of the measurement noise ni with
n ∼ N (0, σ 2IN ). Note that, compared with more realistic

scenarios, the model (24) is simplified for convenience but
still adequate to make our point.

3.1.1 Taylor series expansion
Obviously, the non-linearity of (24) is a very serious
issue for localization, other than the nuisance parameter.
Many methods, especially those considering mobile sce-
narios, directly linearize (24) by a Taylor series expansion
(TSE) [34]. Note that this kind of method is very simi-
lar to the Gauss-Newton (GN) method [35] and holds the
maximum likelihood (ML) property. Since we can obtain
the estimate of xt by iteratively updating the previous iter-
ation, we first have to apply the TSE to (24) around the
target location estimate x̂(k−1)

t at the (k − 1)th iteration,
thus resulting into

d = r(x̂(k−1)
t )+ ∂r

∂xTt

∣∣∣∣
xt=x̂(k−1)

t

(xt−x̂(k−1)
t )+1N×1ro+n.

Then, we rearrange the above equation and present the
TSE model for iteration step k as

d − r(x̂(k−1)
t ) + ∂r

∂xTt

∣∣∣∣
xt=x̂(k−1)

t

x̂(k−1)
t

= ∂r
∂xTt

∣∣∣∣
xt=x̂(k−1)

t

xt + 1N×1ro + n

⇒ δ(k−1) = �(k−1)xt + 1N×1ro + n,

(25)

where δ(k−1) � d − r(x̂(k−1)
t ) + �(k−1)x̂(k−1)

t and

�(k−1) � ∂r
∂xTt

∣∣∣∣
xt=x̂(k−1)

t

=
[
. . . ,

(x̂(k−1)
t − si)T

||x̂(k−1)
t − si||2

, . . .
]T

.

The localization problem at the kth iteration boils down
to estimating xt from (25) to update the location estimate
from the (k−1)th iteration. The relation between the TSE
model and the general model (1) is presented in Table 2.
Note that since the discussed approaches can directly be
applied to the TOA measurements with a single nuisance
parameter (M = 1), the differential approach applied to
the TOA measurements actually corresponds to working
with the TDOA measurements, i.e.,

⎡
⎢⎢⎣
...
di,j
...

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
...
di − dj
...

⎤
⎥⎥⎦

(N−1)×1

, i �= j. (26)

However, to avoid any confusion with the TDOA meth-
ods we will discuss later on, we will refer to this method as
the differential approach applied to the TSE model of the
TOA measurements.
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Table 2 Relations between the general model (1) and the considered time-based and RSS-based localization modelsa

General model (1) y H x G u

TSE model (25) δ(k−1) �(k−1) xt 1N×1 r0

SD-TOA model (31b) D′
1z1 D′

1A
′
1 xt D′

1A
′′
1 [ ||xt||22 − r20 , r0]

T

SD-TDOA model (36b) D′
2z2 D′

2A
′
2 xt D′

2A
′′
2 rj

SD-RSS model (43b) Dh F′ [ xTt , ||xt||22]T 1N×1 P′
0

aAll the considered models must be white or whitened, i.e., the covariance of the model noise should be a (scaled) identity

3.1.2 Squared distance
The TSE method highly relies on an appropriate ini-
tialization that is near the global solution; otherwise, it
might converge to a local minimum. Thus, some closed-
form solutions were proposed to solve this non-convex
problem, which requires squaring the distance norm (SD)
for linearization [36]. Unlike the TSE method, the SD
method depends on the type of measurements, since dif-
ferent modeling steps are carried out for TOA and TDOA
measurements.

TOA: Let us first focus on the SD method based on the
TOA measurements which can be expressed as

di = ||xt − si||2 + r0 + ni. (27)

Moving r0 to the other side and squaring both sides of
the equation, we obtain

(di − ro)2 = (||xt − si||2 + ni)2

⇒ −2sTi xt + ||xt||22 − r20 − 2dir0 = d2i − ||si||22 − 2rini − n2i ,
(28)

where r20 is viewed as a new nuisance parameter. As a
result, a linear model with two nuisance parameters (M =
2) can be formulated as

z1 = A1θ1 + ε1, (29)

where A1 �

⎡
⎢⎢⎣
...

...
...

−2sTi 1 −2di
...

...
...

⎤
⎥⎥⎦ , θ1 �

⎡
⎢⎢⎢⎣
xt
||xt||22 − r20
r0

⎤
⎥⎥⎥⎦ , z1 �

⎡
⎢⎢⎣

...
d2i − ||si||22

...

⎤
⎥⎥⎦ and

ε1 �

⎡
⎢⎢⎣

...
2rini + n2i

...

⎤
⎥⎥⎦ ≈

⎡
⎢⎢⎣

...
2rini
...

⎤
⎥⎥⎦ = 2D1n. (30a)

Here, we denoteD1 = diag([ r1, · · · , rN ]T )with diag(·) as
a diagonal matrix with its argument on the diagonal, and
hence �ε1 = 4σ 2D2

1. This SD-TOA model is widely con-
sidered [37–41]. Some researchers apply the differencing

process to remove the nuisance parameters [24, 33, 42–45]
while some others use the OSP method [16, 46]. Note that
the model noise in (30a) is still not white, and hence, an
appropriate whitening procedure is required. Assuming
D1 is perfectly known, we can whiten the model (29) as

�
−1/2
ε1 z1 = �

−1/2
ε1 A1θ1 + �

−1/2
ε1 ε1 (31a)

⇒ D′
1z1 = D′

1A1θ1 + D′
1ε1 (31b)

where D′
1 � D−1

1 and the covariance matrix of D′
1ε1

is now a scaled identity, i.e., �D′
1ε1

= 4σ 2IN . In prac-
tice, a LS estimate based on the model (29) can first be
used to construct an estimate of D1 for carrying out the
whitening. Then, the estimate of D1 can be repeatedly
updated to approach the true D1 with a more accu-
rate location estimate. In this paper though, we only
want to evaluate its best performance and hence directly
use the true D1. Finally, expressing A1 =[A′

1,A′′
1] with

A′
1 and A′′

1, respectively, containing the first d and the
remaining columns, the relation between the whitened
SD-TOA model and the general model (1) is presented in
Table 2.

TDOA: Directly applying the differencing process on
the TOA observations d removes the unknown nuisance
parameter r0, resulting in the TDOA measurements

di,j = ||xt − si||2 − ||xt − sj||2 + ni,j, i �= j, (32)

where ni,j = ni − nj. Introducing rj = ||xt − sj||2 as a
new unknown parameter, we can linearize (32) using the
following squaring operation

(di,j + rj)2 = (||xt − sj − (si − sj)||2 + ni,j)2

⇒ −2(si − sj)Txt − 2di,jrj = d2i,j + ||sj||22 −||si||22 − 2rini,j − n2i,j
.

(33)

As a result, a linear model with a single unknown nui-
sance parameter rj (M = 1) can be formulated as

z2 = A2θ2 + ε2, (34)



Hu and Leus EURASIP Journal on Advances in Signal Processing  (2017) 2017:4 Page 9 of 14

where A2 � −2

⎡
⎢⎢⎣

...
...

(si − sj)T di,j
...

...

⎤
⎥⎥⎦ , θ2 �

[
xt
rj

]
, z2 �

⎡
⎢⎢⎣

...
d2i,j + ||sj||22 − ||si||22

...

⎤
⎥⎥⎦, and

ε2 �

⎡
⎢⎢⎣

...
2rini,j + n2i,j

...

⎤
⎥⎥⎦ ≈

⎡
⎢⎢⎣

...
2rini,j

...

⎤
⎥⎥⎦ = 2D2�jn. (35a)

Here, we denote D2 = diag([ · · · , ri, · · · ]T ), i �= j, and
hence,�ε2 = 4σ 2D2�j�

T
j DT

2 . Also, this SD-TDOAmodel
has been commonly adopted in literature [14, 33, 47–51].
Among the TDOA localization techniques based on this
model, the famous Chan algorithm [14], from which
many others stem, is actually equivalent to some earlier
works [52–54], where the unknown rj is simply removed
by theOSPmethod. Again, note that themodel noise (35a)
is not white. Assuming D2 is perfectly known (as already
explained for D1, in practice, D2 should be iteratively
estimated), we can whiten the model (34) as

�
−1/2
ε2 z2 = �

−1/2
ε2 A2θ2 + �

−1/2
ε2 ε2 (36a)

⇒ D′
2z2 = D′

2A2θ2 + D′
2ε2, (36b)

where D′
2 � (D2�j�

T
j DT

2 )−1/2 and the covariance matrix
of D′

2ε2 is now a scaled identity, i.e., �D′
2ε2

= 4σ 2IN−1.
Finally, we split A2 into A2 =[A′

2,A′′
2] with A′

2 and A′′
2,

respectively, containing the first d and the remaining
columns. The relation between the whitened SD-TDOA
model and the general model (1) is finally presented in
Table 2.

Numerical results: We have conducted a Monte Carlo
simulation with 1000 trials to verify our conclusions,
where the BLUEs of the joint estimation, the OSP-
based estimation, and the differential estimation are
carried out for each one of the discussed time-based
models. Some LS estimators without a proper whiten-
ing process are also presented for comparison. The
acronyms of all estimators used in the simulations
are summarized in Table 3. We also calculate the
Cramér-Rao lower bound (CRLB) with an unknown
r0 based on the original model (24) [1, Chapter 3],
since the TSE, SD-TOA, and SD-TDOA models all lose
some information by ignoring some high-order terms.
The root mean square error (RMSE) of the location esti-

mate, which is defined as
√
E[ (x̂ − x)2] in general, is

used as a performance measure in this paper. From the
numerical results in Fig. 2, we can draw the following
conclusions.

1. For each model, the corresponding BLUEs yield the
same performance as expected.

2. Without a proper whitening, it can be observed that
the performance of the LS estimators deteriorates.
The D-LS-TSE-TOA, J-LS-SD-TOA, and
J-LS-SD-TDOA clearly perform worse than their
corresponding BLUEs.

3. The TSE model ignoresO((xt − x̂(k−1)
t )2) and

accordingly suffers some information loss in
modeling. However, the information loss can be
reduced with a more accurate x̂(k−1)

t . Therefore, with
more iterations, the BLUEs for the TSE model
approach the CRLB, which is in fact the essence of
the ML property.

4. The SD-TOA model ignores n2i ,∀i while the
SD-TDOAmodel ignores n2i,j,∀i, i �= j. Ignoring these
terms will cause an increasing information loss as the
measurement noise gets larger.

5. Even though the BLUEs of the SD-TOA model
outperform those of the SD-TDOA model in our
simulation, we still cannot decide at this point which
model is the best. This is because an optimal
localization problem for the SD models should also
include any dependence between the (nuisance)
parameters, e.g., between xt and ||xt||22, between r0
and r20 in θ1, or between xt and rj in θ2, which
explains the huge gap between the CRLB and the
BLUEs for the SD models. By contrast, the TSE
model obviously does not have this kind of issue.
Nevertheless, including these dependencies is beyond
the scope of this paper and we will not further
consider this.

6. In practice, both the TSE and SD methods require
iterations to obtain an accurate location estimate.
However, note that, even after serveral iterations, the
estimators based on the SD models still need to cope
with the abovementioned dependency issue.
Therefore, in real life, one often combines those two
models, i.e., one uses the TSE model with the
J-LS-SD-TDOA or the J-LS-SD-TOA as an
initialization.

7. For the SD-TDOA model, ignoring the terms
n2i,j,∀i, i �= j implies that the information loss depends
on the reference choice of the differencing process in
(32). However, this is only because of the SD
modeling thereafter, not because of the differencing
process itself. Note that, for any other differencing
process in this paper, the reference index is not
important as long as the model is properly whitened.
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Table 3 Acronyms of the estimators used in the localization simulations

Notations Data models Estimation methods

J-BLUE-TSE-TOA, k = 1 White TSE model (25)a,M = 1 Joint estimation (2)

OSP-BLUE-TSE-TOA, k = 1 ” OSP-based estimation (6) or (9)

D-BLUE-TSE-TOAb, k = 1 ” Differential estimation (22)

D-LS-TSE-TOAb, k = 1 ” LS estimator based on the unwhitened differential observations in (19)

J-LS-SD-TOA Unwhitened SD-TOA model (29),M = 2 LS estimator with correlated model noise

J-BLUE-SD-TOA Whitened SD-TOA model (31b),M = 2 Joint estimation (2)

OSP-BLUE-SD-TOA ” OSP-based estimation (6) or (9)

D-BLUE-SD-TOA ” Differential estimation (22)

J-LS-SD-TDOA Unwhitened SD-TDOA model (34),M = 1 LS estimator with correlated model noise

J-BLUE-SD-TDOA Whitened SD-TDOA model (36b),M = 1 Joint estimation (2)

OSP-BLUE-SD-TDOA ” OSP-based estimation (6) or (9)

D-BLUE-SD-TDOA ” Differential estimation (22)

J-LS-SD-RSS Unwhitened SD-RSS model (40),M = 1 LS estimator with correlated model noise

J-BLUE-SD-RSS Whitened SD-RSS model (43b),M = 1 Joint estimation (2)

OSP-BLUE-SD-RSS ” OSP-based estimation (6) or (9)

D-LS-SD-RSSc ” LS estimator based on the unwhitened differential observations in (19)

D-BLUE-SD-RSSc ” Differential estimation (22)

aThe J-LS-SD-TDOA is used as an initial value (i.e., k = 0), which is guaranteed to be near the global solution
bD-BLUE-TSE-TOA and D-LS-TSE-TOA can equivalently be considered to work with the TDOA measurements
cD-LS-SD-RSS and D-BLUE-SD-RSS can equivalently be considered to work with the DRSS measurements

Fig. 2 Performance of different time-based estimators: the target
node is randomly placed in a 50 × 50 field and 10 anchors are
deployed with coordinates (50, 50), (50, 0), (0, 50), (0, 0), (25, 7),
(25, 43), (12, 33), (12, 16), (37, 33), and (37, 16)

3.2 Received signal strength based localization
Due to the simplicity of utilizing received signal strength
(RSS) measurements, wireless networks with very con-
strained resources preferably rely on RSS-based localiza-
tion [2]. Therefore, it gradually became very popular in
recent years, and many efforts have already been put on
this topic [55–58].
RSS-based localization mainly suffers from the compli-

cated radio propagation channel. As before, assume that
the target node is located at xt and the ith anchor at si.
Based on a large-scale log-normal fading model [59], the
RSS measurement can then be modeled as

Pi = P0−10γ log10
( ||xt − si||2

d0

)
+ni, i = 1, 2, · · · ,N ,

(37)

where P0 is the received power at the reference distance
d0, γ is the path-loss exponent (PLE), ni ∼ N (0, σ 2) is
the shadowing effect, and N is the number of anchor
nodes. RSS-based localization is aimed at estimating the
target location xt from the RSS measurements. However,
in some military or hostile scenarios, the transmit power
might be unknown. Therefore, without loss of general-
ity, we assume the reference distance d0 to be 1 m and
then the problem of the unknown transmit power can be
equivalently converted into that of an unknown P0. Note
that (37) also has the non-linearity issue and, obviously,
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the iterative TSE model for RSS-based localization will
be very similar to that developed for time-based localiza-
tion. Therefore, to save space, we do not consider directly
applying the TSE model but only focus on the SD method
here.
To construct a linear data model, we rewrite (37) as

||xt − si||22 = P′
0n′

i
P′
i
, (38)

where P′
i � 10

Pi
5γ ,P′

0 � 10
P0
5γ and n′

i � 10
ni
5γ . Interestingly

though, we still need to apply the TSE to n′
i here2, such

that (38) can further be approximated as

||xt||22 − 2sTi xt + ||si||22 = P′
0
P′
i

[
1 + ln(10)

5γ
ni

]
. (39)

Then, a linear SD-RSS model for localization can be
formulated from (39) as

h = Fφ + ς (40)

where

F �

⎡
⎢⎢⎣

...
...

...
2sTi −1 1/P′

i
...

...
...

⎤
⎥⎥⎦
N×(d+2)

, (41a)

φ �

⎡
⎣ xt

||xt||22
P′
0

⎤
⎦

(d+2)×1

, (41b)

h �

⎡
⎢⎢⎣

...
||si||22

...

⎤
⎥⎥⎦
N×1

, (41c)

ς �

⎡
⎢⎢⎢⎣

...
ln(10)P′

0
5γP′

i
ni

...

⎤
⎥⎥⎥⎦
N×1

. (41d)

This model was firstly presented in [57, eq. (18)] but
in the absence of the shadowing effect. If we whiten the
model (40) utilizing the covariance matrix of ς , i.e.,

�ς = [ ln(10)]2 P′2
0 σ 2

25γ 2 D−2, (42)

where D = diag([P′
1, · · · , P′

N ]T ), we can obtain

�
−1/2
ς h = �

−1/2
ς Fφ + �

−1/2
ς ς (43a)

⇒ Dh = DFφ + Dς (43b)

where the covariance matrix of Dς becomes a scaled
identity matrix, i.e., �Dς = ln(10)2P′2

0 σ 2

25γ 2 IN . Note that
this whitening step simply corresponds to an appropriate
scaling of every entry of (40).

The whitenedmodel (43b) is found tomatch our general
model (1), since we notice that DF can be split into

DF =

⎡
⎢⎢⎣

...
...

...
2sTi P′

i −P′
i 1

...
...

...

⎤
⎥⎥⎦ = [

F′ 1N×1
]
, (44)

where F′ contains the first d + 1 columns of DF. The
relation between this model and the general model (1) is
presented in Table 2. Note that we only consider a single
nuisance parameter P′

0 in this model (M = 1). Although
we could consider both ||xt||22 and P′

0 as nuisance parame-
ters (M = 2), which would lead to the same performance
after using the correct preprocessing steps, the reasonwhy
we take M = 1 here is to connect this model to the
existing literature. For instance, after removing P′

0 using a
single differencing step, the model for �jDh is equal to the
SD-DRSS model used in [57, eq. (22)]. However, without
an appropriate whitening procedure, the LS estimators of
the SD-RSS and SD-DRSS models yield a different per-
formance, which is why they were treated and studied
separately. Now, we realize that they actually are identi-
cal to each other as long as the model noise is properly
whitened.

Numerical results: A simulation has also been con-
ducted to verify our conclusions for this example. As
before, the BLUEs of the joint estimation, OSP-based esti-
mation, and the differential estimation for the SD-RSS
model are evaluated and compared with some LS estima-
tors without a proper whitening. Based on the original
model in (37), the CRLB with an unknown P0 is easy to
calculate [1, Chapter 3]. From the numerical results in
Fig. 3, the critical observation is that all the BLUEs here
yield exactly the same performance as expected. Due to
the colored model noise, the J-LS-SD-RSS and the D-
LS-SD-RSS are relatively worse. Finally, denoting R �
||xt||22, we again point out that neglecting the dependence
between R and xt results in the gap between the CRLB and
the estimators presented here.

3.3 Other examples
We believe that there are many other examples with linear
nuisance parameters for our results. However, due to the
limited space, we will only point out some of them. Besides
the aforementioned localization examples, if anchors are
separated into groups with different central clocks, mul-
tiple relative clock biases might exist in the TDOA mea-
surements for localization, which can be removed by the
OSP method [60, eq. (3)]. In cooperative localization, the
multidimentional scaling (MDS) also uses the OSP-based
method to eliminate the unknown terms [61, eq. (3)]. An
acoustic source localization model, which also matches
our general model (1), was presented in [62, eq. (6)].
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Fig. 3 Performance of different RSS-based estimators: the target node
is randomly placed in a 50×50 field and 10 anchors are deployed with
coordinates of (50, 50), (50, 0), (0, 50), (0, 0), (25, 7), (25, 43), (12, 33),
(12, 16), (37, 33), and (37, 16). The transmit power is set to 10 dBm and
the PLE is set to 2

In [4, eq. (2)], the transmission times and clock offsets
are the unknown nuisance parameters for the consid-
ered clock synchronization problem. The authors claim
that those unknown parameters are systematically ML
estimated before the synchronization. However, in fact,
those nuisance parameters are equivalently removed by
using respectively the observations davg in (13) or the OSP
procedure. In hyperspectral imaging, OSP is also a very
common procedure to extract the desired signals [19].
And when tracking mobile targets, frequency-difference-
of-arrival measurements are often measured to cope with
the Doppler effect [17, 18, 63, 64]. Furthermore, multiple-
input-multiple-output (MIMO) receiver design might be
affected by some nuisance parameters like I-Q imbal-
ance and DC offset [5, eq. (7)]. In machine learning, a
well-designed OSP is desired for dimensionality reduc-
tion [8, 9]. Extracting and working on the signal space
is a strong need for signal separation [7] and underwa-
ter communication [6], which can be facilitated by OSP.
At last, the famous differential global positioning system
(DGPS) introduces a reference station on the ground and
constructs a new differential observation set for position-
ing [65], where even the double differencing process is
considered [66–68].

4 Conclusions
In this paper, we have introduced a general framework
for estimation in the presence of unknown linear nuisance
parameters. Three different kinds of methods to cope with
the unknown nuisance parameters have been studied, i.e.,
the joint estimation, the OSP-based estimation, and the
differential estimation. These approaches have been ana-
lyzed by investigating their corresponding BLUEs, where
a new differential method has been introduced to cope
with multiple nuisance parameters. We have discovered
that, after a proper whitening procedure, all the BLUEs are
equivalent to each other. From this interesting fact, one
can draw some useful conclusions:

1. There only exists one unique BLUE for all these
methods proposed to cope with unknown nuisance
parameters.

2. Compared with the joint estimation, which directly
utilizes all the original observations, none of the
other two methods suffers any information loss.

3. For the differential approach, which requires
selecting some references, the choice of the
references is not important since there is no actual
trace of the selected references in the corresponding
BLUE.

4. In the differencing process, compared with the full
differential observation set, any subset related to a
single reference already preserves the full data
information.

The presented analyses of the general model can be
projected onto many practical applications, e.g., hyper-
spectral imaging, source localization and synchronization.
Some localization examples have also been demonstrated,
simulated and discussed to verify our conclusions.

Endnotes
1 For example, the noise n could also be uniform,

Laplace, or student’s t-distributed [69]
2We use ax = 1+ xln(a) + · · · + (xln(a))n

n! + · · · , −∞ <

x < ∞ [70]. Note that the right hand side of (39) is an
approximation, but it is regarded to be exact in this paper.
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