12 research outputs found

    Characterisation of Self-locking High-contraction Electro-ribbon Actuators*

    Get PDF

    Adhesion State Estimation for Electrostatic Gripper Based on Online Capacitance Measure

    Get PDF
    Electroadhesion is a suitable technology for developing grippers for applications where fragile, compliant or variable shape objects need to be grabbed and where a retention action is typically preferred to a compression force. This article presents a self-sensing technique for electroadhesive devices (EAD) based on the capacitance measure. Specifically, we demonstrate that measuring the variation of the capacitance between electrodes of an EAD during the adhesion can provide useful information to automatically detect the successful grip of an object and the possible loss of adhesion during manipulation. To this aim, a dedicated electronic circuit is developed that is able to measure capacitance variations while the high voltage required for the adhesion is activated. A test bench characterization is presented to evaluate the self-sensing of capacitance during different states: (1) the EAD is far away from the object to be grasped; (2) the EAD is in contact with the object, but the voltage is not active (i.e., no adhesion); and (3) the EAD is activated and attached to the object. Correlation between the applied voltage, object material and shape and capacitance is made. The self-sensing EAD is then demonstrated in a closed-loop robotic application that employs a robot manipulator arm to pick and place objects of different kinds

    Electroadhesion Technologies For Robotics:A Comprehensive Review

    Get PDF

    Soft pneumatic elbow exoskeleton reduces the muscle activity, metabolic cost and fatigue during holding and carrying of loads

    Get PDF
    To minimize fatigue, sustain workloads, and reduce the risk of injuries, the exoskeleton Carry was developed. Carry combines a soft human–machine interface and soft pneumatic actuation to assist the elbow in load holding and carrying. We hypothesize that the assistance of Carry would decrease, muscle activity, net metabolic rate, and fatigue. With Carry providing 7.2 Nm of assistance, we found reductions of up to 50% for the muscle activity, up to 61% for the net metabolic rate, and up to 99% for fatigue in a group study of 12 individuals. Analyses of operation dynamics and autonomous use demonstrate the applicability of Carry to a variety of use cases, presumably with increased benefits for increased assistance torque. The significant benefits of Carry indicate this device could prevent systemic, aerobic, and/or possibly local muscle fatigue that may increase the risk of joint degeneration and pain due to lifting, holding, or carrying

    Design and Development of a Lightweight Ankle Exoskeleton for Human Walking Augmentation

    Get PDF
    RESUMÉ La plupart des exosquelettes motorisés de la cheville ont une masse distale considérable, ce qui limite leur capacité à réduire l’énergie dépensée par l’utilisateur durant la marche. L’objectif de notre travail est de développer un exosquelette de chevilles avec le minimum de masse distale ajoutée comparé aux exosquelettes motorisés de chevilles existants. Aussi, l’exosquelette doit fournir au moins 50 Nm de support au couple de flexion plantaire. L’exosquelette développé dans le cadre de ce mémoire utilise deux câbles Bowden pour transmettre la force mécanique de l’unité d’actionnement attachée à la taille aux deux tiges en fibre de Carbonne attachées à la botte de l’utilisateur. Quand les deux tiges sont tirées, ils génèrent un couple qui supporte le mouvement de flexion plantaire à la fin de la phase d’appui du cycle de marche. Une pièce conçue sur mesure et imprimé en plastique par prototypage rapide a été attachée au tibia pour ajuster la direction des câbles. Une étude d’optimisation a été effectuée pour minimiser la masse des tiges limitant ainsi la masse distale de l’exosquelette (attaché au tibia et pied) à seulement 348 g. Le résultat principal obtenu à partir des tests de marche est la réduction de l’activité des muscles soléaire et gastrocnémien du sujet par une moyenne de 37% et 44% respectivement lors de la marche avec l’exosquelette comparée à la marche normale. Cette réduction s’est produite quand l’exosquelette a fourni une puissance mécanique de 19 ± 2 W avec un actionnement qui a commencé à 38% du cycle de marche. Ce résultat démontre le potentiel de notre exosquelette à réduire le cout métabolique de marche et souligne l’importance de réduire la masse distale d’un exosquelette de marche.----------ABSTRACT Most of powered ankle exoskeletons add considerable distal mass to the user which limits their capacity to reduce the metabolic energy of walking. The objective of the work presented in this master thesis is to develop an ankle exoskeleton with a minimum added distal mass compared to existing autonomous powered ankle exoskeletons, while providing at least 50 Nm of assistive plantar flexion torque. The exoskeleton developed in this master thesis uses Bowden cables to transmit the mechanical force from the actuation unit attached to the waist to the carbon fiber struts fixed on the boot. As the struts are pulled, they create an assistive ankle plantar flexion torque. A 3D-printed brace was attached to the shin to adjust the direction of the cables. A design optimization study was performed to minimize the mass of the struts, thereby limiting the total added distal mass, attached to the shin and foot, to only 348 g. The main result obtained from walking tests was the reduction of the soleus and gastrocnemius muscles activity by an average of 37% and 44% respectively when walking with the exoskeleton compared to normal walking. This reduction occurred when the exoskeleton delivered a mechanical power of 19 ± 2 W with an actuation onset fixed at 38% of the gait cycle. This result shows the potential of the proposed exoskeleton to reduce the metabolic cost of walking and emphasizes the importance of minimizing the distal mass of ankle exoskeletons

    Neuromuscular Reflex Control for Prostheses and Exoskeletons

    Get PDF
    Recent powered lower-limb prosthetic and orthotic (P/O) devices aim to restore legged mobility for persons with an amputation or spinal cord injury. Though various control strategies have been proposed for these devices, specifically finite-state impedance controllers, natural gait mechanics are not usually achieved. The goal of this project was to invent a biologically-inspired controller for powered P/O devices. We hypothesize that a more muscle-like actuation system, including spinal reflexes and vestibular feedback, can achieve able-bodied walking and also respond to outside perturbations. The outputs of the Virtual Muscle Reflex (VMR) controller are joint torque commands, sent to the electric motors of a P/O device. We identified the controller parameters through optimizations using human experimental data of perturbed walking, in which we minimized the error between the torque produced by our controller and the standard torque trajectories observed in the able-bodied experiments. In simulations, we then compare the VMR controller to a four-phase impedance controller. For both controllers the coefficient of determination R^2 and root-mean-square (RMS) error were calculated as a function of the gait cycle. When simulating the hip, knee, and ankle joints, the RMS error and R^2 across all joints and all trials is 15.65 Nm and 0.28 for the impedance controller, respectively, and for the VMR controller, these values are 15.15 Nm and 0.29, respectively. With similar performance, it was concluded that the VMR controller can reproduce characteristics of human walking in response to perturbations as effectively as an impedance controller. We then implemented the VMR controller on the Parker Hannifin powered exoskeleton and performed standard isokinetic and isometric knee rehabilitation exercises to observe the behavior of the virtual muscle model. In the isometric results, RMS error between the measured and commanded extension and flexion torques are 3.28 Nm and 1.25 Nm, respectively. In the isokinetic trials, we receive RMS error between the measured and commanded extension and flexion torques of 0.73 Nm and 0.24 Nm. Since the onboard virtual muscles demonstrate similar muscle force-length and force-velocity relationships observed in humans, we conclude the model is capable of the same stabilizing capabilities as observed in an impedance controller

    Neuromuscular Reflex Control for Prostheses and Exoskeletons

    Get PDF
    Recent powered lower-limb prosthetic and orthotic (P/O) devices aim to restore legged mobility for persons with an amputation or spinal cord injury. Though various control strategies have been proposed for these devices, specifically finite-state impedance controllers, natural gait mechanics are not usually achieved. The goal of this project was to invent a biologically-inspired controller for powered P/O devices. We hypothesize that a more muscle-like actuation system, including spinal reflexes and vestibular feedback, can achieve able-bodied walking and also respond to outside perturbations. The outputs of the Virtual Muscle Reflex (VMR) controller are joint torque commands, sent to the electric motors of a P/O device. We identified the controller parameters through optimizations using human experimental data of perturbed walking, in which we minimized the error between the torque produced by our controller and the standard torque trajectories observed in the able-bodied experiments. In simulations, we then compare the VMR controller to a four-phase impedance controller. For both controllers the coefficient of determination R^2 and root-mean-square (RMS) error were calculated as a function of the gait cycle. When simulating the hip, knee, and ankle joints, the RMS error and R^2 across all joints and all trials is 15.65 Nm and 0.28 for the impedance controller, respectively, and for the VMR controller, these values are 15.15 Nm and 0.29, respectively. With similar performance, it was concluded that the VMR controller can reproduce characteristics of human walking in response to perturbations as effectively as an impedance controller. We then implemented the VMR controller on the Parker Hannifin powered exoskeleton and performed standard isokinetic and isometric knee rehabilitation exercises to observe the behavior of the virtual muscle model. In the isometric results, RMS error between the measured and commanded extension and flexion torques are 3.28 Nm and 1.25 Nm, respectively. In the isokinetic trials, we receive RMS error between the measured and commanded extension and flexion torques of 0.73 Nm and 0.24 Nm. Since the onboard virtual muscles demonstrate similar muscle force-length and force-velocity relationships observed in humans, we conclude the model is capable of the same stabilizing capabilities as observed in an impedance controller
    corecore