810 research outputs found

    Rough-Cut Capacity Planning in Multimodal Freight Transportation Networks

    Get PDF
    A main challenge in transporting cargo for United States Transportation Command (USTRANSCOM) is in mode selection or integration. Demand for cargo is time sensitive and must be fulfilled by an established due date. Since these due dates are often inflexible, commercial carriers are used at an enormous expense, in order to fill the gap in organic transportation asset capacity. This dissertation develops a new methodology for transportation capacity assignment to routes based on the Resource Constrained Shortest Path Problem (RCSP). Routes can be single or multimodal depending on the characteristics of the network, delivery timeline, modal capacities, and costs. The difficulty of the RCSP requires use of metaheuristics to produce solutions. An Ant Colony System to solve the RCSP is developed in this dissertation. Finally, a method for generating near Pareto optimal solutions with respect to the objectives of cost and time is developed

    Algorithm Engineering in Robust Optimization

    Full text link
    Robust optimization is a young and emerging field of research having received a considerable increase of interest over the last decade. In this paper, we argue that the the algorithm engineering methodology fits very well to the field of robust optimization and yields a rewarding new perspective on both the current state of research and open research directions. To this end we go through the algorithm engineering cycle of design and analysis of concepts, development and implementation of algorithms, and theoretical and experimental evaluation. We show that many ideas of algorithm engineering have already been applied in publications on robust optimization. Most work on robust optimization is devoted to analysis of the concepts and the development of algorithms, some papers deal with the evaluation of a particular concept in case studies, and work on comparison of concepts just starts. What is still a drawback in many papers on robustness is the missing link to include the results of the experiments again in the design

    Energy aware hybrid flow shop scheduling

    Get PDF
    Only if humanity acts quickly and resolutely can we limit global warming' conclude more than 25,000 academics with the statement of SCIENTISTS FOR FUTURE. The concern about global warming and the extinction of species has steadily increased in recent years

    Multi-Objective Flexible Job Shop Scheduling Using Genetic Algorithms

    Get PDF
    Flexible Job Shop Scheduling is an important problem in the fields of combinatorial optimization and production management. This research addresses multi-objective flexible job shop scheduling problem with the objective of simultaneous minimization of: (1) makespan, (2) workload of the most loaded machine, and (3) total workload. A general-purpose, domain independent genetic algorithm implemented in a spreadsheet environment is proposed for the flexible job shop. Spreadsheet functions are used to develop the shop model. Performance of the proposed algorithm is compared with heuristic algorithms already reported in the literature. Simulation experiments demonstrated that the proposed methodology can achieve solutions that are comparable to previous approaches in terms of solution quality and computational time. Flexible job shop models presented herein are easily customizable to cater for different objective functions without changing the basic genetic algorithm routine or the spreadsheet model. Experimental analysis demonstrates the robustness, simplicity, and general-purpose nature of the proposed approach

    Formulaciones matemáticas y heurísticos simples para solucionar problemas de programación de proyectos con recursos limitados

    Get PDF
    En este artículo se trata el Problema de Programación de Proyectos con Recursos Limitados, más conocido como RCPSP (sigla de Resource Constrained Project Scheduling Problem) -- El RCPSP es un problema proveniente del área de programación de producción y de construcción, aunque sus aplicaciones se extienden a diversas áreas del conocimiento -- En esta investigación se evalúan cinco formulaciones matemáticas diferentes que se encuentran en la literatura, se presenta un heurístico simple compuesto por nueve procedimientos de solución independientes y se comparan diferentes propuestas para combinar las soluciones heurísticas obtenidas con la formulación que presenta los mejores resultados -- Entre los métodos resultantes se encuentran tanto soluciones exactas como heurísticas -- El desempeño de los algoritmos es evaluado utilizando las instancias de la libraría PSPLIB de la literatura -- Los resultados obtenidos comprueban que tener buenas soluciones heurísticas puede ser útil para acelerar la convergencia de los modelos matemáticos en la búsqueda de soluciones óptimas -- Sin embargo, el uso de nuevas restricciones, añadidas de manera heurística, en los modelos matemáticos no es garantía de obtener buenas soluciones ni menores tiempos de cómput

    Integrated and joint optimisation of runway-taxiway-apron operations on airport surface

    Get PDF
    Airports are the main bottlenecks in the Air Traffic Management (ATM) system. The predicted 84% increase in global air traffic in the next two decades has rendered the improvement of airport operational efficiency a key issue in ATM. Although the operations on runways, taxiways, and aprons are highly interconnected and interdependent, the current practice is not integrated and piecemeal, and overly relies on the experience of air traffic controllers and stand allocators to manage operations, which has resulted in sub-optimal performance of the airport surface in terms of operational efficiency, capacity, and safety. This thesis proposes a mixed qualitative-quantitative methodology for integrated and joint optimisation of runways, taxiways, and aprons, aiming to improve the efficiency of airport surface operations by integrating the operations of all three resources and optimising their coordination. This is achieved through a two-stage optimisation procedure: (1) the Integrated Apron and Runway Assignment (IARA) model, which optimises the apron and runway allocations for individual aircraft on a pre-tactical level, and (2) the Integrated Dynamic Routing and Off-block (IDRO) model, which generates taxiing routes and off-block timing decisions for aircraft on an operational (real-time) level. This two-stage procedure considers the interdependencies of the operations of different airport resources, detailed network configurations, air traffic flow characteristics, and operational rules and constraints. The proposed framework is implemented and assessed in a case study at Beijing Capital International Airport. Compared to the current operations, the proposed apron-runway assignment reduces total taxiing distance, average taxiing time, taxiing conflicts, runway queuing time and fuel consumption respectively by 15.5%, 15.28%, 45.1%, [58.7%, 35.3%, 16%] (RWY01, RWY36R, RWY36L) and 6.6%; gated assignment is increased by 11.8%. The operational feasibility of this proposed framework is further validated qualitatively by subject matter experts (SMEs). The potential impact of the integrated apron-runway-taxiway operation is explored with a discussion of its real-world implementation issues and recommendations for industrial and academic practice.Open Acces

    Practical solutions for a dock assignment problem with trailer transportation.

    Get PDF
    We study a distribution warehouse in which trailers need to be assigned to docks for loading or unloading. A parking lot is used as a buffer zone and transportation between the parking lot and the docks is performed by auxiliary resources called terminal tractors. Each incoming trailer has a known arrival time and each outgoing trailer a desired departure time. The primary objective is to produce a docking schedule such that the weighted sum of the number of late outgoing trailers and the tardiness of these trailers is minimized; the secondary objective is to minimize the weighted completion time of all trailers, both incoming and outgoing. The purpose of this paper is to produce high-quality solutions to large instances that are comparable to a real-life case. We implement several heuristic algorithms: truncated branch and bound, beam search and tabu search. Lagrangian relaxation is embedded in the algorithms for constructing an initial solution and for computing lower bounds. The different solution frameworks are compared via extensive computational experiments.Dock assignment; Multicriteria scheduling; Branch and bound; Beam search; Lagrangian relaxation; Tabu search;
    corecore