888 research outputs found

    The importance of data classification using machine learning methods in microarray data

    Get PDF
    The detection of genetic mutations has attracted global attention. several methods have proposed to detect diseases such as cancers and tumours. One of them is microarrays, which is a type of representation for gene expression that is helpful in diagnosis. To unleash the full potential of microarrays, machine-learning algorithms and gene selection methods can be implemented to facilitate processing on microarrays and to overcome other potential challenges. One of these challenges involves high dimensional data that are redundant, irrelevant, and noisy. To alleviate this problem, this representation should be simplified. For example, the feature selection process can be implemented by reducing the number of features adopted in clustering and classification. A subset of genes can be selected from a pool of gene expression data recorded on DNA micro-arrays. This paper reviews existing classification techniques and gene selection methods. The effectiveness of emerging techniques, such as the swarm intelligence technique in feature selection and classification in microarrays, are reported as well. These emerging techniques can be used in detecting cancer. The swarm intelligence technique can be combined with other statistical methods for attaining better results

    Image Segmentation using Various Approaches

    Get PDF
    This paper addresses the issue of image segmentation. Image segmentation process is the main basic process or technique used in various image processing problem domains, for example, content based image retrieval; pattern recognition; object recognition; face recognition; medical image processing; fault detection in product industries; etc. Scope of improvement exists in the following areas: Image partitioning; color based feature; texture based feature, searching mechanism for similarity; cluster formation logic; pixel connectivity criterion; intelligent decision making for clustering; processing time; etc. This paper presents the image segmentation mechanism which addresses few of the identified areas where the scope of contribution exists. Presented work basically deals with the development of the mechanism which is divided into three parts first part focuses on the color based image segmentation using k-means clustering methodology. Second part deals with region properties based segmentation. Later, deals with the boundary based segmentation. In all these three approaches, finally the Steiner tree is created to identify the class of the region. For this purpose the Euclidean distance is used. Experimental result justifies the application of the developed mechanism for the image segmentation

    Spatio-Temporal Patterns act as Computational Mechanisms governing Emergent behavior in Robotic Swarms

    Get PDF
    open access articleOur goal is to control a robotic swarm without removing its swarm-like nature. In other words, we aim to intrinsically control a robotic swarm emergent behavior. Past attempts at governing robotic swarms or their selfcoordinating emergent behavior, has proven ineffective, largely due to the swarm’s inherent randomness (making it difficult to predict) and utter simplicity (they lack a leader, any kind of centralized control, long-range communication, global knowledge, complex internal models and only operate on a couple of basic, reactive rules). The main problem is that emergent phenomena itself is not fully understood, despite being at the forefront of current research. Research into 1D and 2D Cellular Automata has uncovered a hidden computational layer which bridges the micromacro gap (i.e., how individual behaviors at the micro-level influence the global behaviors on the macro-level). We hypothesize that there also lie embedded computational mechanisms at the heart of a robotic swarm’s emergent behavior. To test this theory, we proceeded to simulate robotic swarms (represented as both particles and dynamic networks) and then designed local rules to induce various types of intelligent, emergent behaviors (as well as designing genetic algorithms to evolve robotic swarms with emergent behaviors). Finally, we analysed these robotic swarms and successfully confirmed our hypothesis; analyzing their developments and interactions over time revealed various forms of embedded spatiotemporal patterns which store, propagate and parallel process information across the swarm according to some internal, collision-based logic (solving the mystery of how simple robots are able to self-coordinate and allow global behaviors to emerge across the swarm)
    • …
    corecore