3,668 research outputs found

    Comprendiendo el potencial y los desafíos del Big Data en las escuelas y la educación

    Full text link
    In recent years, the world has experienced a huge revolution centered around the gathering and application of big data in various fields. This has affected many aspects of our daily life, including government, manufacturing, commerce, health, communication, entertainment, and many more. So far, education has benefited only a little from the big data revolution. In this article, we review the potential of big data in the context of education systems. Such data may include log files drawn from online learning environments, messages on online discussion forums, answers to open-ended questions, grades on various tasks, demographic and administrative information, speech, handwritten notes, illustrations, gestures and movements, neurophysiologic signals, eye movements, and many more. Analyzing this data, it is possible to calculate a wide range of measurements of the learning process and to support various educational stakeholders with informed decision-making. We offer a framework for better understanding of how big data can be used in education. The framework comprises several elements that need to be addressed in this context: defining the data; formulating data-collecting and storage apparatuses; data analysis and the application of analysis products. We further review some key opportunities and some important challenges of using big data in educationEn los últimos años, el mundo ha experimentado una gran revolución centrada en la recopilación y aplicación de big data en varios campos. Esto ha afectado muchos aspectos de nuestra vida diaria, incluidos el gobierno, la manufactura, el comercio, la salud, la comunicación, el entretenimiento y muchos más. Hasta ahora, la educación se ha beneficiado muy poco de la revolución del big data. En este artículo revisamos el potencial de los macrodatos en el contexto de los sistemas educativos. Dichos datos pueden incluir archivos de registro extraídos de entornos de aprendizaje en línea, mensajes en foros de discusión en línea, respuestas a preguntas abiertas, calificaciones en diversas tareas, información demográfica y administrativa, discurso, notas escritas a mano, ilustraciones, gestos y movimientos, señales neurofisiológicas, movimientos oculares y muchos más. Analizando estos datos es posible calcular una amplia gama de mediciones del proceso de aprendizaje y apoyar a diversos interesados educativos con una toma de decisiones informada. Ofrecemos un marco para una mejor comprensión de cómo se puede utilizar el big data en la educación. El marco comprende varios elementos que deben abordarse en este contexto: definición de los datos; formulación de aparatos de recolección y almacenamiento de datos; análisis de datos y aplicación de productos de análisis. Además, revisamos algunas oportunidades clave y algunos desafíos importantes del uso de big data en la educació

    Teaching Analytics: Towards Automatic Extraction of Orchestration Graphs Using Wearable Sensors

    Get PDF
    "Teaching analytics" is the application of learning analytics techniques to understand teaching and learning processes, and eventually enable supportive interventions. However, in the case of (often, half-improvised) teaching in face-to-face classrooms, such interventions would require first an understanding of what the teacher actually did, as the starting point for teacher reflection and inquiry. Currently, such teacher enactment characterization requires costly manual coding by researchers. This paper presents a case study exploring the potential of machine learning techniques to automatically extract teaching actions during classroom enactment, from five data sources collected using wearable sensors (eye-tracking, EEG, accelerometer, audio and video). Our results highlight the feasibility of this approach, with high levels of accuracy in determining the social plane of interaction (90%, k=0.8). The reliable detection of concrete teaching activity (e.g., explanation vs. questioning) accurately still remains challenging (67%, k=0.56), a fact that will prompt further research on multimodal features and models for teaching activity extraction, as well as the collection of a larger multimodal dataset to improve the accuracy and generalizability of these methods

    Improving Hybrid Brainstorming Outcomes with Scripting and Group Awareness Support

    Get PDF
    Previous research has shown that hybrid brainstorming, which combines individual and group methods, generates more ideas than either approach alone. However, the quality of these ideas remains similar across different methods. This study, guided by the dual-pathway to creativity model, tested two computer-supported scaffolds – scripting and group awareness support – for enhancing idea quality in hybrid brainstorming. 94 higher education students,grouped into triads, were tasked with generating ideas in three conditions. The Control condition used standard hybrid brainstorming without extra support. In the Experimental 1 condition, students received scripting support during individual brainstorming, and students in the Experimental 2 condition were provided with group awareness support during the group phase in addition. While the quantity of ideas was similar across all conditions, the Experimental 2 condition produced ideas of higher quality, and the Experimental 1 condition also showed improved idea quality in the individual phase compared to the Control condition

    Data mining tool for academic data exploitation: literature review and first architecture proposal

    Get PDF
    Using data for making decisions is not new; companies use complex computations on customer data for business intelligence or analytics. Business intelligence techniques can discern historical patterns and trends from data and can create models that predict future trends and patterns. Analytics, broadly defined, comprises applied techniques from computer science, mathematics, and statistics for extracting usable information from very large datasets. Data itself is not new. Data has always been generated and used to inform decision-making. However, most of this was structured and organised, through regular data collections, surveys, etc. What is new, with the invention and dominance of the Internet and the expansion of digital systems across all sectors, is the amount of unstructured data we are generating. This is what we call the digital footprint: the traces that individuals leave behind as they interact with their increasingly digital world. Data analytics is the process where data is collected and analysed in order to identify patterns, make predictions, and inform business decisions. Our capacity to perform increasingly sophisticated analytics is changing the way we make predictions and decisions, with huge potential to improve competitive intelligence. These examples suggest that the actions from data mining and analytics are always automatic, but that is less often the case. Educational Data Mining (EDM) and Learning Analytics (LA) have the potential to make visible data that have heretofore gone unseen, unnoticed, and therefore unactionable. To help further the fields and gain value from their practical applications, the recommendations are that educators and administrators: • Develop a culture of using data for making instructional decisions; • Involve IT departments in planning for data collection and use; • Be smart data consumers who ask critical questions about commercial offerings and create demand for the most useful features and uses; • Start with focused areas where data will help, show success, and then expand to new areas; • Communicate with students and parents about where data come from and how the data are used; • Help align state policies with technical requirements for online learning systems. This report documents the first steps conducted within the SPEET1 ERASMUS+ project. It describes the conceptualization of a practical tool for the application of EDM/LA techniques to currently available academic data. The document is also intended to contextualise the use of Big Data within the academic sector, with special emphasis on the role that student profiles and student clustering do have in support tutoring actions. The report describes the promise of educational data mining (seeking patterns in data across many student actions), learning analytics (applying predictive models that provide actionable information), and visual data analytics (interactive displays of analyzed data) and how they might serve the future of personalized learning and the development and continuous improvement of adaptive systems. How might they operate in an adaptive learning system? What inputs and outputs are to be expected? In the next sections, these questions are addressed by giving a system-level view of how data mining and analytics could improve teaching and learning by creating feedback loops. Finally, the proposal of the key elements that conform a software application that is intended to give support to this academic data analysis is presented. Three different key elements are presented: data, algorithms and application architecture. From one side we should have a minimum data available. The corresponding relational data base structure is presented. This basic data can always be complemented with other available data that may help to decide or/and to explain decisions. Classification algorithms are reviewed and is presented how they can be used for the generation of the student clustering problem. A convenient software architecture will act as an umbrella that connects the previous two parts. The document is intended to be useful for a first understanding of academic data analysis. What we can get and what we do need to do. This is the first of a series of reports that taken all together will provide a complete and consistent view towards the inclusion of data mining as a helping hand in the tutoring action.European UnionProgramme: Erasmus+ Project Reference: 2016-1-ES01-KA203-025452info:eu-repo/semantics/draf

    A Neocolonial Warp of Outmoded Hierarchies, Curricula and Disciplinary Technologies in Trinidad’s Educational System

    Full text link
    I re-appropriate the image of a space-time warp and its notion of disorientation to argue that colonialism created a warp in Trinidad’s educational system. Through an analysis of school violence and the wider network of structural violence in which it is steeped, I focus on three outmoded aspects as evidence of this warp--hierarchies, curricula and disciplinary technologies--by using data (interviews, documents and observations) from a longitudinal case study at a secondary school in Trinidad. Colonialism was about exclusion, alienation, violence, control and order, and this functionalism persists today; I therefore contend that hierarchies, curricula and disciplinary technologies are all enforcers of these tenets of (neo)colonialism in Trinidad’s schools. I conclude with some nascent thoughts on a Systemic Restorative Praxis (SRP) model as a way of de-stabilizing the warp, by stitching together literature/approaches from systems thinking, restorative justice and Freirean notions of praxis. SRP implies that colonialism (and this modern-day warp) has rendered much psychic and material damage, and that any intervention to address structural violence has to be systemic and iterative in scope and process, include healing, be participatory, and foster an ethic of horizontalization in human relations

    Eye on Collaborative Creativity : Insights From Multiple-Person Mobile Gaze Tracking in the Context of Collaborative Design

    Get PDF
    Early Career WorkshopNon peer reviewe

    The student-produced electronic portfolio in craft education

    Get PDF
    The authors studied primary school students’ experiences of using an electronic portfolio in their craft education over four years. A stimulated recall interview was applied to collect user experiences and qualitative content analysis to analyse the collected data. The results indicate that the electronic portfolio was experienced as a multipurpose tool to support learning. It makes the learning process visible and in that way helps focus on and improves the quality of learning. © ISLS.Peer reviewe

    New measurement paradigms

    Get PDF
    This collection of New Measurement Paradigms papers represents a snapshot of the variety of measurement methods in use at the time of writing across several projects funded by the National Science Foundation (US) through its REESE and DR K–12 programs. All of the projects are developing and testing intelligent learning environments that seek to carefully measure and promote student learning, and the purpose of this collection of papers is to describe and illustrate the use of several measurement methods employed to achieve this. The papers are deliberately short because they are designed to introduce the methods in use and not to be a textbook chapter on each method. The New Measurement Paradigms collection is designed to serve as a reference point for researchers who are working in projects that are creating e-learning environments in which there is a need to make judgments about students’ levels of knowledge and skills, or for those interested in this but who have not yet delved into these methods

    Enhancing Free-text Interactions in a Communication Skills Learning Environment

    Get PDF
    Learning environments frequently use gamification to enhance user interactions.Virtual characters with whom players engage in simulated conversations often employ prescripted dialogues; however, free user inputs enable deeper immersion and higher-order cognition. In our learning environment, experts developed a scripted scenario as a sequence of potential actions, and we explore possibilities for enhancing interactions by enabling users to type free inputs that are matched to the pre-scripted statements using Natural Language Processing techniques. In this paper, we introduce a clustering mechanism that provides recommendations for fine-tuning the pre-scripted answers in order to better match user inputs
    corecore