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ABSTRACT
‘Teaching analytics’ is the application of learning analytics
techniques to understand teaching and learning processes,
and eventually enable supportive interventions. However, in
the case of (often, half-improvised) teaching in face-to-face
classrooms, such interventions would require first an under-
standing of what the teacher actually did, as the starting
point for teacher reflection and inquiry. Currently, such
teacher enactment characterization requires costly manual
coding by researchers. This paper presents a case study
exploring the potential of machine learning techniques to
automatically extract teaching actions during classroom en-
actment, from five data sources collected using wearable sen-
sors (eye-tracking, EEG, accelerometer, audio and video).
Our results highlight the feasibility of this approach, with
high levels of accuracy in determining the social plane of
interaction (90%, κ=0.8). The reliable detection of con-
crete teaching activity (e.g., explanation vs. questioning)
accurately still remains challenging (67%, κ=0.56), a fact
that will prompt further research on multimodal features
and models for teaching activity extraction, as well as the
collection of a larger multimodal dataset to improve the ac-
curacy and generalizability of these methods.

Categories and Subject Descriptors
K.3.1 [Computers and Education]: Computer Uses in
Education—Collaborative learning ; J.1 [Computer Appli-
cations]: Administrative Data Processing—Education
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1. INTRODUCTION
Aiding educators in understanding and improving teach-

ing and learning processes is one of the main aims of learn-
ing analytics [41]. Such teacher-oriented learning analytics
efforts, exemplified by tools such as eLAT [13] or LOCO-
Analyst [23], so far have focused mostly on online or blended
learning scenarios, using almost exclusively the traces and
information available in such digital platforms. There is,
however, an emergent trend within the community that also
looks into capturing and modelling the physical interactions
that make up the learning process in face-to-face situations,
using a variety of data sources to complement the usual dig-
ital traces (multimodal learning analytics – MMLA [29])

These efforts into supporting teaching practice through
analytics (also known as ‘teaching analytics’ [1, 44, 45]) are
often portrayed as a cycle involving the gathering of data
from the learning situation, analyzing it and performing an
intervention as a result of the new understanding of the situ-
ation [14, 5]. Indeed, most of the existing efforts in teaching
analytics focus on the first steps of this cycle, namely, the
data gathering, analysis and visualization of learning pro-
cesses (maybe due to the recent emergence of this commu-
nity).

However, the crucial step of supporting teacher interven-
tions based on learning analytics insights remains under-
supported, starting from its very first step: knowing what
the initial state of the teaching practice was, so as to know
what needs to be changed. In the case of online learning,
the teacher plan (either explicit or reified into the learning
environment) is normally available, and the lack of enact-
ment flexibility of most currently-used platforms somehow
guarantees that such plan was ‘executed’. However, in face-
to-face (or blended) learning, even if the lesson plan is avail-
able, how do we know what (and how) the teacher actually
did during the lesson, so that we can know how to intervene
to improve it?

To answer this question, we need to go beyond technical,
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low-level measures that are often hard to interpret, towards
more ‘sense-making’ indicators [40], i.e., indicators that have
a pedagogical meaning. The way this is normally achieved
in research is through manual video coding by a human (see,
e.g., [33]), which is costly in terms of time and effort.

Therefore, bringing together teaching analytics and MMLA,
the overall question we try to explore in this paper is: can we
automatically characterize teaching practice in a face-to-face
situation, in pedagogical terms? Such automated character-
ization can be crucial to the wide and scalable application of
learning analytics to teacher reflection and inquiry, an area
of application of increasing importance for this community
[26, 31].

To explore this question, the paper presents a case study
in which we use data from multiple wearable sensors (includ-
ing accelerometers, EEG or eye-trackers) and machine learn-
ing techniques to automatically characterize the teacher ac-
tivity and the social plane of interaction of one teacher across
4 sessions of collaborative learning with primary school stu-
dents. The next section introduces the main related work
in teaching and multimodal learning analytics; later on, we
outline how the general research question above has been
operationalized, in the form of automatically generating an
‘orchestration graph’ of the teacher enactment. Afterwards,
the context, methods, analyses and results of our case study
are described, we discuss its main implications and limita-
tions, and we outline the most likely avenues for further
research opened by this study.

2. RELATED WORK

2.1 Teaching Analytics
Within learning analytics’ general aim of improving our

understanding of teaching and learning [43] and optimising
learning and the environments in which it occurs [16], ‘teach-
ing analytics’ is conceived as a sub-field that focuses on the
design, development, evaluation of visual analytics methods
and tools for teachers, to understand learning and teaching
processes [45]. This particular use of learning analytics is of-
ten mentioned in connection with teacher inquiry (or teacher
reflection) processes [26, 31].

Although the previous definition of teaching analytics con-
siders both learning and teaching processes (and products)
as subjects of analysis, so far teaching analytics research has
been mostly focusing on analyzing student learning/behavior,
and providing feedback to the teacher (see [48, 47]). Thus,
many of these research works depict ‘learning analytics for
teachers’ rather than ‘teaching analytics’ in a literal sense.
Although the focus on student learning is certainly needed
(as student learning is the main goal of any educational sce-
nario), a complementary teacher-oriented view is also neces-
sary to understand how and why some of the student learn-
ing processes take place, and assess the most adequate in-
tervention.

Interestingly, most of the works in teaching analytics (both
theoretical and implementations), that consider the teach-
ing side, do so through the inclusion of teacher-generated
artifacts, especially the teacher’s plan for the lesson. This
plan can be either explicit, as it often happens in proposals
that combine learning design (LD) approaches and learning
analytics [38, 21, 25, 15, 22, 42] or implicit in the resources
and structure of the learning environment (e.g., in [36]).

However, how do we know whether the design of the les-

son was actually followed, or what events not specified there
could have an influence in the learning process? Despite the
fact that teaching practice (especially, the face-to-face class-
room) has often been seen as improvisational [39], few works
attempt the characterization of the actual enactment of the
lesson, often in very specific episodes: examining teachers’
tool usage patterns (e.g., while using an educational digital
library tool [51]); through explicit audience-provided feed-
back during lectures [37]; or through the visual analysis of
the reasoning behind expert teacher assessments [19].

As it often happens elsewhere in learning analytics, most
of current teaching analytics research is restricted to the
analysis of easily-accessible data from digital platforms, thus
creating a certain ‘streetlight effect’ [17] (in this context, an-
alyzing learning only in places where there is an abundance
of data, even if it is not the where most of the learning actu-
ally occurs). To address this well-known limitation of tradi-
tional learning analytics approaches (especially, in face-to-
face learning scenarios), there is an emergent trend of com-
plementing the easily-available digital traces from learning
platforms with other data captured from the physical world:
multimodal learning analytics.

2.2 Multimodal Learning and Teaching Ana-
lytics

A hidden assumption present in much of learning ana-
lytics research is that it is about the usage of pre-existing,
machine-readable data [16], very often in the context of on-
line learning. Noticing this blind spot, along with the re-
alization that all learning is, almost by definition, blended
[30], always containing some amount of physical embodi-
ment (even if subdued by computer-mediated interaction),
has prompted the proposal of multimodal approaches to
learning analytics (MMLA, see [27, 29]). This flavor of learn-
ing analytics is used to aid in understanding and supporting
more free-form, creative learning activities that are not as
constrained as online ones [3], or that are more process-
oriented in nature (such as project-based learning [49]).

Typical examples of MMLA include Worsley & Blikstein’s
work to understand creative construction activities using hu-
man annotations, speech, gesture and electro-dermal activa-
tion data [50]. Working on co-located, collaborative problem
solving, Ochoa et al. [28] used video, audio and pen stroke
information, extracting simple features to discriminate be-
tween experts and non-experts. More recently, other authors
have proposed Feeler [12], a system that uses EEG in con-
junction with application logs to promote student reflection
about learning.

This kind of multimodal approaches to analyze learning
processes in the physical world are not yet widespread in the
sub-area of teaching analytics. Isolated examples include the
iKlassroom conceptual proposal [46], which features a map
of the classroom to help contextualize the real-time data
about the learners in a lecture; Also in the context of univer-
sity lectures, Raca and Dillenbourg [35] take an unobtrusive
computer vision approach to assess student attention from
their posture and other behavioral cues. Again, we can see
a larger focus on modelling student actions and information,
and a dearth of studies that characterize teacher practice in
the classroom using such multimodal approaches.

There exists, nonetheless, a wealth of research in the field
of sensors (especially using inertial sensors such as accelerom-
eters), very often applied to the fields of health and enter-



tainment [32]. However, the large majority of the initia-
tives in this field target low-level, physical activities such as
walking, running, sitting, etc. Such activities are unlikely to
prompt interesting reflection from a teacher: we need novel
ways of characterizing teacher practice in terms that “make
sense” [40] for teaching practitioners. Only very recently, re-
searchers in education are starting to turn to higher-level fea-
tures and the modelling of pedagogically-meaningful interac-
tions [2]; these efforts, however, are still confined to particu-
lar kinds of classroom episodes and pedagogical approaches
(e.g., question turns in dialogic learning), and many chal-
lenges of the data gathering setup are in the process of be-
ing tackled (e.g., for accurate automated speech recognition
[10]).

3. OPERATIONALIZING ‘TEACHER PRAC-
TICE’: ORCHESTRATION

From the related work outlined above, we see that teach-
ing analytics that look at actual (blended or face-to-face)
teacher enactment of learning situations is an essential miss-
ing piece of support for the teacher reflection/inquiry cy-
cle. However, general-purpose physical activities commonly
used in wearable sensors (like walking and sitting) are bound
to have little significance for a teacher. Hence, we need a
generic but still pedagogically-meaningful way of character-
izing the variety of pedagogical approaches that often co-
exist in everyday classroom practice.

One potential way of characterizing teacher practice (es-
pecially when using technology) is that of orchestration, de-
fined as “the process of productively coordinating support-
ive interventions across multiple learning activities occurring
at multiple social levels” [8]. In line with this definition of
teaching practice as orchestration, graphical and computa-
tional representations of the orchestration of a lesson can
be made (what may be called ‘orchestration graphs’ [7]).
This kind of graph, representing time horizontally and so-
cial plane (individual, group, or whole-class) vertically, can
be used to model the student learner activities, but also the
teachers’ supporting actions (such as explanation, monitor-
ing, repairs, etc.) [34], and have been used extensively in
computer-supported collaborative learning (CSCL), both to
express the teacher plan (or ‘script’) [9] and the improvised
actions during enactment [34].

So far, these kinds of representations are being generated
post-hoc by researchers, on the basis of observations or the
manual coding of videos of the lesson (see figure 1, middle).
This kind of process, if done in a detailed manner, is very
time-consuming, and the time required to do such analyses
makes the feedback cycle of teacher practice and reflection
unnecessarily long. Indeed, automated characterization of
teacher practice along the lines of these orchestration graphs
could be a great enabler for teacher inquiry processes in
conjunction with other teaching analytics more focused on
the learner.

With these elements in mind, and taking into account
that other efforts are already looking into the multimodal
characterization of student activities in physical classrooms
[11, 50], we can operationalize our general research question
about automatically characterizing teaching practice, into a
more concrete one: can we use multimodal teaching analyt-
ics to extract automatically the (teacher-side) orchestration
graph of the enactment of a lesson?. Towards this aim, we

Figure 2: Partial view of the classroom in one of
the case study sessions. In the center, the teacher
wearing the eye-tracking and EEG devices

set ourselves to: 1) explore different sensors and modalities
(as well as different features extracted from them) in order
to assess their predictive power to build the teaching ac-
tivity and social plane of the orchestration graph; and 2)
generate predictive models that use those data sources and
features to automatically characterize the teaching activity
and social plane of a lesson’s enactment. Below, we present
an exploratory case study in which data from five different
modalities are used to characterize the teaching activities
and social planes of interaction of a single teacher, across
four sessions with primary school students.

4. CASE STUDY

4.1 Context
The data for our study was gathered during an open doors

day at our lab, in which entire classes of primary students
from nearby schools are shown novel educational technolo-
gies. In this case, the visits were structured as simulated
math lessons in a room equipped as a multi-tabletop class-
room (see figure 2). Four sessions of 35-40 min were held
with four different cohorts of 19-21 students per session, in
which a researcher (wearing a number of sensors) acted as
the main teacher-facilitator of the session. In two of the
sessions the researcher had an assistant (to provide more
variety in orchestration load in the otherwise very similar
situations), and in all of the sessions 1-2 of the usual school
teachers accompanied the children, acting as observers.

The four sessions had a similar lesson plan (see also fig-
ure 1) and similar usages of classroom technology, including
the use of tangible, paper-based geometry exercises to be
solved in small groups, and a whole-class collaborative and
competitive game that used those same tabletops and the
classroom projector, based around the same geometrical no-
tions (rotation, translation, coordinate systems). Although
the general plan for the sessions was the same (alternat-
ing phases of small-group student work and whole-class syn-
chronization points to keep the whole class engaged), the
activities and social interaction for each of the sessions were
left fluid, improvised over the skeleton of the lesson plan (as
it often happens in everyday teaching practice in primary
schools). More concretely, the activities were organized in
the following coarse sequence: 1) Explanation of the activity
and technology involved; 2) Questioning of students about
the mathematical concepts to be seen (to have an idea of
their level of prior knowledge); 3) In small groups, use the



Figure 1: Example orchestration graphs, including the representation of the intended lesson plan (top), the
actual teaching enactment as coded by a human researcher (middle), and the orchestration graph predicted
by the best-performing models of our study (bottom)

tabletops to solve very basic geometry exercises, in order
to get familiar with the concepts and technology presented;
4) Play a whole-class game in which students first collab-
orate in small groups to rotate/translate geometric figures,
and then there is a whole-class resolution phase to see which
team better protected their area; 5) The teacher does a final
round of questions to assess the students’ new understanding
of the concepts.

4.2 Data Gathering and Feature Extraction
During the four sessions described above, the main teacher/

facilitator wore several sensors in order to capture relevant
teaching practice data (taking into account that teaching has
an important cognitive aspect, but also a physical one): a
single-electrode, portable electroencephalogram (EEG) de-
vice, mobile eye-tracker googgles (which recorded not only
the eye movements, but also a subjective video+audio stream),
plus a smartphone located in his pocket, set to record 3-
axis accelerometer data as he moved around the classroom.
From these sensors, five different data streams were con-
sidered: 1) Eye-tracking variables (e.g., saccades, fixations,
pupil size); 2) EEG data (including the raw electrode read-
ing, the usual EEG bands, attention, etc.); 3) Accelerometer
readings; 4) Subjective video feed depicting the field of view
of the teacher (taken from the eye-tracker’s camera); and
5) Subjective audio feed (also obtained from the eye-tracker
recording).

From these five data streams, up to 144 features were
extracted (see Table 1). In general, we explored generic,
relatively simple features used for multiple purposes (e.g.,
simple face detection in the video, audio energy or envelope,
general fixation/saccade features), rather than going into
more advanced, expensive techniques like speech segmenta-
tion and recognition, or the definition of areas of interest,
visual object recognition, etc.

Given the disparity of sampling rates of the different de-
vices, each data stream was divided into equal-length, rolling
windows of 10 seconds, using a 5s. slide. Then, the different
features were calculated for each 10s window1 (e.g., by av-
erages, deviations, maximum values, etc.), a technique com-
monly used in the activity detection field [32]. The feature
extraction and data analysis pipeline was developed using
SMI’s BeGaze software (for eye-tracking feature extraction),
MatlabR© for audio processing (including the Matlab Audio
Analysis Library [20]), and the DLib2 library to perform ba-
sic face detection on the video stream. Then, the data from
all the features were joined and analyzed using R.

The subjective audio/video stream has then been man-
ually coded by a human researcher, assigning to each 10s
window a value for the teaching activity being done (ex-
planation, questioning, monitoring, repairs or task distribu-
tion/transition), as well as the social plane of the teacher’s
interaction at that moment (individual, group or whole-
class). The different machine learning models described in
the following section have been trained and validated against
this ground truth.

Given the limits of this multimodal dataset (with only 1
subject, over 4 sessions), the models have been trained over
the data of 3 of the sessions, with 25 iterations of bootstrap
resampling, in order to tune the model parameters and have
a first estimation of in-session performance. Finally, the
models have been tested against the data of the remaining
session, to give a more realistic estimation of the perfor-
mance of the model when predicting about data from a ses-
sion that the algorithm has never been trained against. This

1During exploratory data analysis, other window lengths
(e.g., one second) were also used, with similar or worse pre-
dictive performance.
2http://dlib.net/

http://dlib.net/


Data sources
Eye-tracking EEG Accelerometers (Subjective) Video (Subjective) Audio

Pupil diameter (+sd) Electrode X value (+sd) Image blurriness Zero-cross rate
Nr. long fixations Attention Y value (+sd) (+sd,median,max) Energy

Saccade speed Meditation Z value (+sd) Nr. blurry frames Energy entropy
Fixation duration Delta band Jerk (+sd) Nr. blurry episodes Spectral centroid

Fixation dispersion Theta band Jerk FFT Length blurry episodes Spectral spread
Saccade duration Low Alpha band (30 coefs.) (+sd,median,max) Spectral entropy

Saccade amplitude High Alpha band Length clear episodes Spectral flux
Saccade length Low Beta band (+sd,median,max) Spectral rolloff

Saccade velocity High Beta band Nr. faces per frame Mel-Frequency Cepstrum
Low Gamma band (+sd,median,max) (MFCC, 13 coefs.)
Mid Gamma band Nr. of frames with faces Harmonic ratio

Blink strength Nr. of face episodes Fundamental frequency
Length of face episodes Chroma vector (12 coefs.)

(+sd,median,max) Auto-correlation (6 coefs.)
Length of face-free episodes Envelope (+sd)

(+sd,median,max) Envelope skew, kurtosis
Faces per clear episode Linear Predictor

(+sd) coefficients (6 coefs.)
Line Spectral Frequency

coefficients (6 coefs.)

Table 1: Overview of the features extracted for the different data sources in the study. In general, averages
of the value over a 10s window are taken; (+sd,median,max) denotes that standard deviations, medians and
maximum values were also extracted

process has been repeated holding up for testing each one
of the sessions, and then averaging the performance in this
‘out of session’ testing. For model comparison, the Kappa
(κ) statistic has been used, as it considers not only the accu-
racy of the model, but also how much better than a random
predictor it is.

4.3 Results: Predicting Teaching Activity
Given our first goal of trying to understand the predic-

tive value of each data source and its features (in this case,
for detecting whether the teacher was explaining, vs. mon-
itoring the work of students), we first tried predicting the
teaching activity using data from a single data source at
a time. During our prior exploratory analyses with differ-
ent machine learning models from the families commonly
used for classification problems, we had found that random
forests (RF, [4]) performed the best (or close to the best)
in almost all combinations of data in this dataset. The re-
sults of this ‘mono-modal prediction’ using random forests
are shown at the beginning of table 2. We can see that the
eye-tracking, audio and video streams perform much better
than EEG and accelerometer data, from which we get not
much better accuracy than if we selected randomly. Audio
features performs the best out of the five data sources, but
still the predictions are not very accurate (55.9%, κ=0.41).

To understand the value of having such a rich multimodal
dataset, we also trained a random forest on our whole dataset
and features. We can see that the accuracy of this ‘full mul-
timodal’ prediction is larger, but the performance on out-
of-session episodes is still not very high (63.8%, κ=0.52).
However, in such a large set of features, it is clear that not
all of them will be equally predictive, and many will be just
noise. In order to understand which variables are the most
informative (with the hope of increasing the performance
of our teaching activity extraction), we have triangulated
among two methods: a) We have calculated the effect size

of each of the features with respect to teaching activity [6], in
order to find those with the highest distinguishablity; b) We
computed the permutation variable importance of each fea-
ture in the random forest (which estimates which variables
are most important over all the decision trees of the RF).
The results of this ranking, in table 3 (left), show that the
pupil diameter mean size, taken from the eye-tracker, is the
most important variable according to both measures. Aside
from this, we can also note that the simple face detection
features we calculated (e.g., the maximum number of faces
that appeared in a frame of the episode) also feature among
the top variables in distinguishing among different teacher
activities. The fact that also a few audio features made it
into this list (e.g., envelope skewness, which captures the
overall asymmetry of the wave, and can be related with the
teacher’s voice volume), highlights the value of having mul-
timodal data in order to predict not-so-obvious, higher-level
activities such as these.

An important issue to note is that in all the aforemen-
tioned models, each episode is used for training and predic-
tion in an independent manner (regardless of their order and
position in time). However, teaching activities (as well as
learning activities) form sequences over time, the same way
that lesson plans are normally structured as sequences. As a
first attempt to exploit the temporal structure of the sessions
and the activities, we developed another random forest pre-
dictor using the most important multimodal features (which
itself gave a slight increase in performance). Then, we cor-
rected these RF prediction probabilities (i.e., how likely we
are to be in a certain teaching activity, given the current in-
put features) with those of the transitions between activities
from a 10s window to the next (by building a discrete-time
Markov chain –DTMC– from the training data). This ‘mul-
timodal Markov-improved random forest’ predictor gave us
a slight increase in accuracy (up to κ=0.56, see the last row



In-session perf. Out-of-session perf.
Data source Features Best model Accuracy κ Accuracy κ

Eye-tracking only All Random Forest 50.2% 0.34 45.7% 0.28
EEG only All Random Forest 34.1% 0.11 29% 0.06

Accelerometer only All Random Forest 44% 0.25 31% 0.09
Audio only All Random Forest 58.2% 0.45 55.9% 0.41
Video only All Random Forest 50.8% 0.35 45.7% 0.28

All All Random Forest 67.4% 0.57 63.2% 0.51
Audio+video All (Random Forest) 64.2% 0.53 61.7% 0.49

All Top 7 (SVM) 61% 0.49
All Top 80 RF+Markov Chain 67.3% 0.56

Table 2: Performance of different models, data sources and features in predicting teacher activities

in table 2), but still did not manage to make the prediction
overly reliable.

Another aspect worth exploring in such multimodal anal-
yses, which often feature hundreds of different features from
different data sources, is the cost-benefit analysis of: a) gath-
ering such multimodal data (e.g., the cost of the device itself,
and the effort of setting it up for recording a session); and b)
the computational cost (in terms of time and computational
power) required to pre-process, analyze and predict the mul-
timodal data. In order to explore these aspects, we show in
table 2 two additional predictors and their performance: we
can see that a simpler random forest predictor using only the
audio and video streams from the subjective head-mounted
camera, already provides a performance that is not so dif-
ferent from that of the full multimodal dataset (without the
Markov correction). On the other hand, a much faster and
simpler model, using a support vector machine (SVM) and
only the top seven variables in terms of importance, also
provides a similar level of performance (accuracy of 61%,
κ=0.49).

4.4 Results: Predicting Social Plane of Inter-
action

In general, we have followed the same sequence of analyses
and modelling as described above for the automated extrac-
tion of teacher activities. In this case, however, we are trying
to discriminate between the moments in which the teacher
is interacting individually, in small group or with the whole
classroom of students. Given that the lesson plan of the ses-
sions (and their actual enactment) included very few inter-
actions at the individual level, in the analyses below we will
try to distinguish only among two social planes, small group
and whole-class. Again, we have used the κ statistic when
predicting out-of-session (i.e., on data of a session the model
has not been trained with) as the main yardstick to com-
pare performance of the predictive models. In this case, our
exploratory modelling concluded that generalized boosted
models (GBM, concretely, stochastic gradient-boosted deci-
sion trees [18]) performed better, and is thus used below for
comparison purposes.

The performance of predictive models based on a single
data source can be found at the beginning of table Table 4.
There, we can see that again the predictive models based
on eye-tracking, audio and video data perform much better
than those based on EEG or accelerometer data. In this
case, surprisingly, eye-tracking features perform the best out
of the five data sources (achieving already 86.1% accuracy,
κ=0.72).

Regarding the added value of having a multimodal dataset,
a GBM model fed with all the features from the five data
sources achieved better performance than the eye-tracking-
only model (89.6% accuracy, κ=0.79). To understand which
of the features in our multimodal dataset might have most
predictive potential for the social level of interaction, we
again triangulated among the effect size calculation of each
features (to assess distinguishability) and the variable im-
portance that can be extracted from the multimodal GBM
predictor. In table 3 (right) we can see that, again, the pupil
diameter mean is the most important feature by all accounts.
The rest of this feature ranking is dominated by video-based
features, both based on face-detection, as well as those based
in blur of the image (indicating teacher moving the head and,
hence, the field of view). Using the variables from this rank-
ing to achieve a more efficient multimodal predictor afforded
only marginal benefits over the full-featured one (89.9% ac-
curacy, κ=0.8, using the first 81 variables). In the case of
predicting social level of interaction, our attempts of incor-
porating the time structure of the session through Markov
chains did not provide any additional increase in accuracy.

Regarding the cost-benefit (or simplicity vs. value) trade-
offs when building these multimodal predictors, again we
found that a predictor based in the audiovisual information
only (see table 4) provided a successful extraction of the
social level around 85% of the time (κ=0.69), comparable
to the one based on eye-tracking, and not much worse than
the most accurate model. Similarly, a much simpler and
faster (but still multimodal) support vector machine based
on the top five features of our ranking (table 3, right) obtains
an accuracy comparable to that of the full dataset (88.2%,
κ=0.76).

5. DISCUSSION
The results presented above provide a first exploration of

the multimodal data streams and the feature space avail-
able for researchers in teacher analytics, in order to achieve
an automated characterization of teacher activity in ped-
agogical terms (rather than just physical ones), and show
how reasonable accuracy can be achieved by using machine
learning techniques, even with such simple and generic fea-
tures. Indeed, our models were able to distinguish between
two different social planes of interaction, close to 90% of
the time, and the resulting orchestration graph so generated
looked remarkably similar to the actual one, as coded by a
human (see figure 1, bottom) and, certainly, was closer to
what happened in the classroom than just using the lesson
plan as a proxy.



Teacher activity Social plane of interaction
Feature Rank ES Rank RF Feature Rank ES Rank GBM

Avg. pupil diameter (ET) 1 1 Avg. pupil diameter (ET) 1 1
Max. nr. faces/frame (VD) 2 4 Std. dev. blur in frame (VD) 2 3

Std. dev. faces per frame (VD) 3 – Max. nr. faces/frame (VD) 3 5
Envelope skewness (AU) 4 2 Max. len. episode w/o faces (VD) 4 14

Std. dev. faces/clear frame (VD) 5 6 Std. dev. faces/frame (VD) 5 –
Total nr. faces/window (VD) 6 3 Std. dev. faces/clear frame (VD) 6 9
3rd MFCC coefficient (AU) 7 16 Med. len. episode w/o faces (VD) 7 51

Table 3: Most predictive variables in the multimodal feature set, according to the ranking obtained by mea-
suring effect size (ES) and importance in the best-performing whole dataset model (RF/GBM). Along with
the features, in parentheses, the data source to which it belongs (ET=eye-tracking, AU=audio, VD=video)

In-session perf. Out-of-session perf.
Data source Features Best model Accuracy κ Accuracy κ

Eye-tracking only All Gradient Boosted T. 87.5% 0.75 86.1% 0.72
EEG only All Gradient Boosted T. 55.1% 0.08 50.9% –0.02

Accelerometer only All Gradient Boosted T. 67.6% 0.34 61.2% 0.19
Audio only All Gradient Boosted T. 81.4% 0.62 79.3% 0.58
Video only All Gradient Boosted T. 81.7% 0.63 81.9% 0.63

All All Gradient Boosted T. 90.6% 0.81 89.6% 0.79
Audio+video All Gradient Boosted T. 86.1% 0.72 84.8% 0.69

All Top 5 (SVM) 88.2% 0.76
All Top 81 Gradient Boosted T. 90.6% 0.81 89.9% 0.80

Table 4: Performance of different models, data sources and features in predicting social plane of interaction

Distinguishing among the different teaching activities, how-
ever, still remains difficult. Looking at the erroneously-
predicted episodes, we find that certain kinds of error were
more common than others (e.g., the activities of monitor-
ing students’ work and providing repairs when one of them
asks a question, which flow very fluidly into each other3).
Such results hint at the necessity of developing new sets of
features (e.g., based on basic automated speech analysis),
but also of developing further our coding schemes so that
they provide as much pedagogical value as possible, while
remaining distinguishable.

In our exploration of the different multimodal data sources,
we have found that basic features based on accelerometer
and EEG signals provide very poor information to distin-
guish teaching activity and social plane (which is to be ex-
pected, as they are rather noisy and contaminated by even
minimal physical movement, which can be irrelevant for this
kind of characterization). On the other hand, we found that
eye-tracking data had a surprising amount of useful informa-
tion, especially the mean pupil diameter of each 10s window.
This finding can be interpreted in the sense that such mea-
sures are known to be related to emotional response and
cognitive load factors, that is, this measure may capture
the different levels of cognitive load elicited by the different
teaching activities at different social planes (a hypothesis
supported by our previous research in measuring cognitive
load in the classroom [33]). However, it is also worth noting
that eye-tracking measures (and the features extracted from
them) are also most prone to be subject-dependent, which
may pose a limitation if we are looking for models that are
generalizable across teachers.

3For instance, the same random forest models, if applied to
a coding scheme in which monitoring and repair are joined
into a single category, achieve an accuracy of 75% (κ=0.6).

This exploratory case study also enabled us to uncover
interesting trade-offs between the accuracy of the machine
learning models and the cost, effort and convenience of gath-
ering and analyzing the different data sources. For instance,
we found that using just the subjective audiovisual feed (eas-
ily attainable using a small camera such as those used for
sports, head-mounted cameras like Google Glass, or even
a simple mobile phone) provided already quite good accu-
racy, even if the eye-tracking measures provided an addi-
tional edge (and have other advantages from the point of
view of research, such as providing access to the subject’s
cognitive load). Even more convenient (and cheaper) would
be the use of fixed cameras (e.g., such as the ones used to as-
sess student attention in [35]), although the subjective feeds
are more likely to capture the teacher’s experience and ac-
tivities (e.g., occlusions, dead angles), and has side benefits
for teacher inquiry processes (as it is easier to remember or
understand a situation, or empathize with it – as we found
during the coding of the videos). Regarding the cost in com-
puting power we found that, although the best performance
was attained by rather complex, black-box models like ran-
dom forests, much simpler and faster models like support
vector machines, using only a handful of multimodal fea-
tures, also provided reasonable results (which can be use-
ful, for instance, if real-time extraction of the orchestration
graph were needed).

Despite the interest of these findings, this exploratory case
study also suffers from a number of limitations, the most
important of which is the data set used (featuring only one
subject, across four sessions that were rather similar to each
other). This fact make the accuracies and performance re-
ported in this paper very tied to the concrete subject and
situation of our case study (i.e., low potential generalizabil-
ity to other teachers, or to very different classroom situa-



tions). This is especially true of some features we found
very important (like pupil diameter), although it may be
less so for many of the audiovisual features that helped dis-
tinguish between activities and social planes (e.g., faces in
the field of view, or certain audio features). On the pos-
itive side, our finding that audio/video data may provide
adequate performance, along with the increasing affordabil-
ity of such means of data gathering, make us hope for more
scalable approaches that can be widely deployed, as other
recent work in this area [2] also demonstrate.

Another limitation of this study is the feature set and
machine learning methods explored. Even if we used more
than a hundred features from five data streams, the fea-
tures used were rather simplistic and generic, in many cases
not tuned specifically for such teaching practice discovery.
Although our results already provide a first step into sepa-
rating useful features in each of the kinds of data, more work
is still needed to distill more targeted features (maybe from
other sensor data streams) that can help us distinguish more
clearly between certain similar activities. Furthermore, the
teaching practice categorization used in this study is only
one example, and other characterizations are also possible,
especially for researchers or practitioners interested in con-
crete pedagogical approaches such as collaborative learning,
or inquiry-based learning (which will also prompt new ex-
ploration efforts into different sets of useful multimodal fea-
tures). Also, further exploration is needed in applying more
complex algorithms (e.g., deep/recurrent neural networks),
which have recently shown promising capabilities in dealing
with rich multimodal data (e.g., [24]).

Finally, it should be noted that one important aspect of
orchestration, of which this study has barely scratched the
surface, is that of the time structure of the teaching activi-
ties, and of the different signals used, as teaching is by nature
a sequence of actions over time. We anticipate that look-
ing into the rhythm and pulse of each classroom situation,
and exploiting time-series tools such as semi-Markov models
(which model the time spent in one state before jumping to
the next one), will probably provide additional increases in
the accuracy of our automated teaching activity extraction.

6. CONCLUSIONS AND FUTURE WORK
We started this paper by noting the scarcity of teaching

analytics research that actually studies teacher practice, and
especially teacher actions in the face-to-face classroom, be-
yond their lesson plans. As a first step into incorporating
analyses of teaching activities to existing learning analytics
and teacher reflection processes, we have explored a multi-
modal approach to automatically extracting the orchestra-
tion graph of a face-to-face collaborative learning session,
based on the data of several wearable sensors.

The results of our study show that the approach is fea-
sible and achieves reasonably good accuracy (especially to
discriminate the for social plane of interaction). Also, the
different models and data sources used show how this kind of
approach is feasible, not only for researcher teams with ad-
vanced equipment, but also for mass deployment by practi-
tioners themselves (by using a simple subjective audiovisual
feed). However, our study also demonstrates the difficulty
in discriminating between certain teaching activities, solely
on the basis of a set of generic (and rather simple) features.
More efforts are needed into extracting new discriminating
features from these and other data sources.

These favorable results, and the hope that even a personal
camera or a mobile phone could achieve useful results, open
the door for larger-scale, wearable-based studies into teach-
ing practice, either based on the generic characterization
of practice as ‘orchestration’ (presented in this paper), or
through different ones based on more concrete pedagogical
approaches. Regarding the categorization of teaching prac-
tice, we are currently validating the interest of the teacher
community in this kind of approach to reflection and teach-
ing analytics through example visualizations extracted from
this dataset4.

In our current and future work we are also continuing the
exploration of more accurate statistical models (especially,
those aimed at the time structure of the problem), and of
more discriminating features for automatic activity and so-
cial plane extraction. However, our most prominent current
work relates to the recording of a larger multimodal dataset
of teaching sessions by multiple teachers, especially in pri-
mary schools but also at other educational levels. We hope
this expanded dataset will help us overcome the largest limi-
tation of the work presented here, namely, the limited gener-
alizability of the results beyond a concrete classroom. Once
this dataset is gathered, we expect to share it, along with
the processing and analytical code used, with the teaching
analytics community, as we believe openness and collabora-
tion will be crucial in using this kind of multimodal analytics
to study orchestration (since expertise from pedagogy, psy-
chology, and a wide array of data and signal processing fields
is required to make sense of the heterogeneous data), and to
overcome the current scalability limitations of research into
face-to-face orchestration.
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Chatti, and U. Schroeder. Design and implementation
of a learning analytics toolkit for teachers. Journal of
Educational Technology & Society, 15(3):58–76, 2012.

[14] T. Elias. Learning analytics: The definitions, the
processes, and the potential. 2011.

[15] V. Emin-Martinez, C. Hansen, M. J.
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