10 research outputs found

    NEW COMPUTATIONAL METHODS FOR OPTIMAL CONTROL OF PARTIAL DIFFERENTIAL EQUATIONS

    Get PDF
    Partial differential equations are the chief means of providing mathematical models in science, engineering and other fields. Optimal control of partial differential equations (PDEs) has tremendous applications in engineering and science, such as shape optimization, image processing, fluid dynamics, and chemical processes. In this thesis, we develop and analyze several efficient numerical methods for the optimal control problems governed by elliptic PDE, parabolic PDE, and wave PDE, respectively. The thesis consists of six chapters. In Chapter 1, we briefly introduce a few motivating applications and summarize some theoretical and computational foundations of our following developed approaches. In Chapter 2, we establish a new multigrid algorithm to accelerate the semi-smooth Newton method that is applied to the first-order necessary optimality system arising from semi-linear control-constrained elliptic optimal control problems. Under suitable assumptions, the discretized Jacobian matrix is proved to have a uniformly bounded inverse with respect to mesh size. Different from current available approaches, a new strategy that leads to a robust multigrid solver is employed to define the coarse grid operator. Numerical simulations are provided to illustrate the efficiency of the proposed method, which shows to be computationally more efficient than the popular full approximation storage (FAS) multigrid method. In particular, our proposed approach achieves a mesh-independent convergence and its performance is highly robust with respect to the regularization parameter. In Chaper 3, we present a new second-order leapfrog finite difference scheme in time for solving the first-order necessary optimality system of the linear parabolic optimal control problems. The new leapfrog scheme is shown to be unconditionally stable and it provides a second-order accuracy, while the classical leapfrog scheme usually is well-known to be unstable. A mathematical proof for the convergence of the proposed scheme is provided under a suitable norm. Moreover, the proposed leapfrog scheme gives a favorable structure that leads to an effective implementation of a fast solver under the multigrid framework. Numerical examples show that the proposed scheme significantly outperforms the widely used second-order backward time differentiation approach, and the resultant fast solver demonstrates a mesh-independent convergence as well as a linear time complexity. In Chapter 4, we develop a new semi-smooth Newton multigrid algorithm for solving the discretized first-order necessary optimality system that characterizes the optimal solution of semi-linear parabolic PDE optimal control problems with control constraints. A new leapfrog discretization scheme in time associated with the standard five-point stencil in space is established to achieve a second-order accuracy. The convergence (or unconditional stability) of the proposed scheme is proved when time-periodic solutions are considered. Moreover, the derived well-structured discretized Jacobian matrices greatly facilitate the development of an effective smoother in our multigrid algorithm. Numerical simulations are provided to illustrate the effectiveness of the proposed method, which validates the second-order accuracy in solution approximations as well as the optimal linear complexity of computing time. In Chapter 5, we offer a new implicit finite difference scheme in time for solving the first-order necessary optimality system arising in optimal control of wave equations. With a five-point central finite difference scheme in space, the full discretization is proved to be unconditionally convergent with a second-order accuracy, which is not restricted by the classical Courant-Friedrichs-Lewy (CFL) stability condition on the spatial and temporal step sizes. Moreover, based on its advantageous developed structure, an efficient preconditioned Krylov subspace method is provided and analyzed for solving the discretized sparse linear system. Numerical examples are presented to confirm our theoretical conclusions and demonstrate the promising performance of proposed preconditioned iterative solver. Finally, brief summaries and future research perspectives are given in Chapter 6

    Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2018

    Get PDF
    This open access book features a selection of high-quality papers from the presentations at the International Conference on Spectral and High-Order Methods 2018, offering an overview of the depth and breadth of the activities within this important research area. The carefully reviewed papers provide a snapshot of the state of the art, while the extensive bibliography helps initiate new research directions

    Generalized averaged Gaussian quadrature and applications

    Get PDF
    A simple numerical method for constructing the optimal generalized averaged Gaussian quadrature formulas will be presented. These formulas exist in many cases in which real positive GaussKronrod formulas do not exist, and can be used as an adequate alternative in order to estimate the error of a Gaussian rule. We also investigate the conditions under which the optimal averaged Gaussian quadrature formulas and their truncated variants are internal

    MS FT-2-2 7 Orthogonal polynomials and quadrature: Theory, computation, and applications

    Get PDF
    Quadrature rules find many applications in science and engineering. Their analysis is a classical area of applied mathematics and continues to attract considerable attention. This seminar brings together speakers with expertise in a large variety of quadrature rules. It is the aim of the seminar to provide an overview of recent developments in the analysis of quadrature rules. The computation of error estimates and novel applications also are described

    Analysis of Hamiltonian boundary value problems and symplectic integration: a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Mathematics at Massey University, Manawatu, New Zealand

    Get PDF
    Listed in 2020 Dean's List of Exceptional ThesesCopyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.Ordinary differential equations (ODEs) and partial differential equations (PDEs) arise in most scientific disciplines that make use of mathematical techniques. As exact solutions are in general not computable, numerical methods are used to obtain approximate solutions. In order to draw valid conclusions from numerical computations, it is crucial to understand which qualitative aspects numerical solutions have in common with the exact solution. Symplecticity is a subtle notion that is related to a rich family of geometric properties of Hamiltonian systems. While the effects of preserving symplecticity under discretisation on long-term behaviour of motions is classically well known, in this thesis (a) the role of symplecticity for the bifurcation behaviour of solutions to Hamiltonian boundary value problems is explained. In parameter dependent systems at a bifurcation point the solution set to a boundary value problem changes qualitatively. Bifurcation problems are systematically translated into the framework of classical catastrophe theory. It is proved that existing classification results in catastrophe theory apply to persistent bifurcations of Hamiltonian boundary value problems. Further results for symmetric settings are derived. (b) It is proved that to preserve generic bifurcations under discretisation it is necessary and sufficient to preserve the symplectic structure of the problem. (c) The catastrophe theory framework for Hamiltonian ODEs is extended to PDEs with variational structure. Recognition equations for AA-series singularities for functionals on Banach spaces are derived and used in a numerical example to locate high-codimensional bifurcations. (d) The potential of symplectic integration for infinite-dimensional Lie-Poisson systems (Burgers' equation, KdV, fluid equations,...) using Clebsch variables is analysed. It is shown that the advantages of symplectic integration can outweigh the disadvantages of integrating over a larger phase space introduced by a Clebsch representation. (e) Finally, the preservation of variational structure of symmetric solutions in multisymplectic PDEs by multisymplectic integrators on the example of (phase-rotating) travelling waves in the nonlinear wave equation is discussed

    Evolution equations for systems governed by social interactions

    Get PDF
    corecore