
Southern Illinois University Carbondale
OpenSIUC

Dissertations Theses and Dissertations

8-1-2015

NEW COMPUTATIONAL METHODS FOR
OPTIMAL CONTROL OF PARTIAL
DIFFERENTIAL EQUATIONS
Jun Liu
Southern Illinois University Carbondale, gdctor@gmail.com

Follow this and additional works at: http://opensiuc.lib.siu.edu/dissertations

This Open Access Dissertation is brought to you for free and open access by the Theses and Dissertations at OpenSIUC. It has been accepted for
inclusion in Dissertations by an authorized administrator of OpenSIUC. For more information, please contact opensiuc@lib.siu.edu.

Recommended Citation
Liu, Jun, "NEW COMPUTATIONAL METHODS FOR OPTIMAL CONTROL OF PARTIAL DIFFERENTIAL EQUATIONS"
(2015). Dissertations. Paper 1076.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OpenSIUC

https://core.ac.uk/display/60579415?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://opensiuc.lib.siu.edu?utm_source=opensiuc.lib.siu.edu%2Fdissertations%2F1076&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/dissertations?utm_source=opensiuc.lib.siu.edu%2Fdissertations%2F1076&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/etd?utm_source=opensiuc.lib.siu.edu%2Fdissertations%2F1076&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/dissertations?utm_source=opensiuc.lib.siu.edu%2Fdissertations%2F1076&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/dissertations/1076?utm_source=opensiuc.lib.siu.edu%2Fdissertations%2F1076&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:opensiuc@lib.siu.edu

NEW COMPUTATIONAL METHODS FOR

OPTIMAL CONTROL OF PARTIAL DIFFERENTIAL EQUATIONS

by

Jun Liu

M.S., South China Normal University, China, 2010

B.S., Guangdong University of Technology, China, 2004

A Dissertation

Submitted in Partial Fulfillment of the Requirements for the

Doctor of Philosophy Degree

Department of Mathematics
in the Graduate School

Southern Illinois University Carbondale
August, 2015

DISSERTATION APPROVAL

NEW COMPUTATIONAL METHODS FOR

OPTIMAL CONTROL OF PARTIAL DIFFERENTIAL EQUATIONS

By

Jun Liu

A Dissertation Submitted in Partial

Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

in the field of Computational Mathematics

Approved by:

Dr. Mingqing Xiao, Chair

Dr. Jianhong Xu

Dr. Kathleen Pericak-Spector

Dr. David Olive

Dr. Ying Chen

Graduate School
Southern Illinois University Carbondale

May 7, 2015

AN ABSTRACT OF THE DISSERTATION OF

JUN LIU, for the Doctor of Philosophy degree in COMPUTATIONAL MATHEMATICS,

presented on May 7, 2015, at Southern Illinois University Carbondale.

TITLE: NEWCOMPUTATIONALMETHODS FOROPTIMAL CONTROL OF PARTIAL DIF-

FERENTIAL EQUATIONS

MAJOR PROFESSOR: Dr. Mingqing Xiao

Partial differential equations are the chief means of providing mathematical models in sci-

ence, engineering and other fields. Optimal control of partial differential equations (PDEs) has

tremendous applications in engineering and science, such as shape optimization, image processing,

fluid dynamics, and chemical processes. In this thesis, we develop and analyze several efficient

numerical methods for the optimal control problems governed by elliptic PDE, parabolic PDE,

and wave PDE, respectively.

The thesis consists of six chapters. In Chapter 1, we briefly introduce a few motivating

applications and summarize some theoretical and computational foundations of our following

developed approaches.

In Chapter 2, we establish a new multigrid algorithm to accelerate the semi-smooth Newton

method that is applied to the first-order necessary optimality system arising from semi-linear

control-constrained elliptic optimal control problems. Under suitable assumptions, the discretized

Jacobian matrix is proved to have a uniformly bounded inverse with respect to mesh size. Different

from current available approaches, a new strategy that leads to a robust multigrid solver is

employed to define the coarse grid operator. Numerical simulations are provided to illustrate

the efficiency of the proposed method, which shows to be computationally more efficient than the

popular full approximation storage (FAS) multigrid method. In particular, our proposed approach

achieves a mesh-independent convergence and its performance is highly robust with respect to

ii

the regularization parameter.

In Chaper 3, we present a new second-order leapfrog finite difference scheme in time for solv-

ing the first-order necessary optimality system of the linear parabolic optimal control problems.

The new leapfrog scheme is shown to be unconditionally stable and it provides a second-order ac-

curacy, while the classical leapfrog scheme usually is well-known to be unstable. A mathematical

proof for the convergence of the proposed scheme is provided under a suitable norm. Moreover, the

proposed leapfrog scheme gives a favorable structure that leads to an effective implementation of

a fast solver under the multigrid framework. Numerical examples show that the proposed scheme

significantly outperforms the widely used second-order backward time differentiation approach,

and the resultant fast solver demonstrates a mesh-independent convergence as well as a linear

time complexity.

In Chapter 4, we develop a new semi-smooth Newton multigrid algorithm for solving the

discretized first-order necessary optimality system that characterizes the optimal solution of semi-

linear parabolic PDE optimal control problems with control constraints. A new leapfrog discretiza-

tion scheme in time associated with the standard five-point stencil in space is established to achieve

a second-order accuracy. The convergence (or unconditional stability) of the proposed scheme is

proved when time-periodic solutions are considered. Moreover, the derived well-structured dis-

cretized Jacobian matrices greatly facilitate the development of an effective smoother in our

multigrid algorithm. Numerical simulations are provided to illustrate the effectiveness of the pro-

posed method, which validates the second-order accuracy in solution approximations as well as

the optimal linear complexity of computing time.

In Chapter 5, we offer a new implicit finite difference scheme in time for solving the first-

order necessary optimality system arising in optimal control of wave equations. With a five-point

central finite difference scheme in space, the full discretization is proved to be unconditionally con-

vergent with a second-order accuracy, which is not restricted by the classical Courant-Friedrichs-

Lewy (CFL) stability condition on the spatial and temporal step sizes. Moreover, based on its

advantageous developed structure, an efficient preconditioned Krylov subspace method is provided

iii

and analyzed for solving the discretized sparse linear system. Numerical examples are presented

to confirm our theoretical conclusions and demonstrate the promising performance of proposed

preconditioned iterative solver.

Finally, brief summaries and future research perspectives are given in Chapter 6.

iv

ACKNOWLEDGMENTS

First of all, I would like to express my deep gratitude to my dissertation advisor, Professor

Mingqing Xiao, for his strong support in both academic activities and personal life during the

past five years of my Ph.D. study. Without his guidance and efforts, this dissertation as well as

all of my academic achievements would not have been possible. It is his inspiration and many

help that brought me to this level of research. His vision and wisdom in research and teaching

will always positively influence my future career.

I also would like to express my sincere thanks for Professor Buyang Li of Nanjing University

who provided many helpful suggestions on Chapter 3 and 5, and for Professor William W. Hager

of University of Florida who carefully read Chapter 4 and gave valuable comments/suggestions,

that led to the significant improvement of this dissertation.

I also sincerely thank all members of my dissertation committee for their time and efforts

in reading my dissertation. I have gained many inspiring ideas from research seminars and per-

sonal discussions with Professor Jianhong Xu. I also thank Professor Kathleen, Professor David,

and Professor Ying Chen for their many supports during my Ph.D. study at Southern Illinois

University.

I also want to thank the student travel award committees of the Society for Industrial

and Applied Mathematics (SIAM) and IEEE, respectively, for the generous travel awards. These

awards supported me to present some results of this dissertation in SIAM Conference on Optimiza-

tion (May, 2014) and IEEE Conference on Decision and Control (December, 2014), respectively.

Moreover, this dissertation have benefited a lot from the courses taught by Professor Philip

Feinsilver, Professor Robert Fitzgerald, Professor Sakthivel Jeyaratnam, Professor Salah-eldin

Mohammed, Professor Edward Neuman, Professor Scott Spector, and Professor Dashun Xu. Be-

sides, I also want to appreciate the support and assistance from Ms. Diane Fritcher and Professor

Gregory Budzban.

Especially, I am grateful to Professor Haiwei Sun of University of Macau, who has guided

v

me the educational path to the U.S. during my bachelor’s degree and taught me how to conduct

research in computational mathematics during my master’s degree.

Last, but certainly not least, I would like to thank my family. Without the constant

support from my parents, I would certainly not be where I am today. I also want to thank my

wife, Yurino, and our lovely daughter, Emory, for being a forever source of enjoyment, strength,

and encouragement. This dissertation is my best reward of their love and encouragement.

This dissertation has been supported in part by Doctoral Fellowship and Dissertation Re-

search Assistantship from Southern Illinois University, and in part by National Science Foundation

under Grant 1021203 of United States.

vi

TABLE OF CONTENTS

Abstract . ii

Acknowledgments . v

List of Tables . ix

List of Figures . xi

1 Backgrounds and preliminaries . 1

1.1 Motivating applications . 2

1.2 General framework of PDE-constrained optimization 6

1.3 Finite difference discretization . 11

1.4 Iterative methods for solving linear system . 16

1.4.1 Multigrid method . 16

1.4.2 Krylov subspace method . 20

1.5 Iterative methods for solving nonlinear system 23

1.5.1 Semismooth Newton (SSN) method . 23

1.5.2 Full approximation scheme (FAS) multigrid method 25

2 A new SSN-multigrid method for semilinear elliptic control problems with control con-

straints . 28

2.1 Introduction . 28

2.2 SSN method for optimality system . 31

2.3 Multigrid method for Jacobian system . 37

2.4 FAS multigrid method for optimality system . 40

2.5 Numerical examples . 43

2.6 Conclusions . 48

3 A new leapfrog multigrid method for linear parabolic control problems without control

constraints . 49

3.1 Introduction . 49

vii

3.2 A leapfrog scheme and its error estimate . 53

3.3 Multigrid method for linear system . 61

3.4 Numerical examples . 64

3.5 Conclusions . 70

4 A leapfrog SSN-multigrid method for semilinear parabolic control problems with control

constraints . 73

4.1 Introduction . 73

4.2 Optimality system with a leapfrog scheme . 76

4.3 Stability analysis for periodic case . 81

4.4 SSN-multigrid method for optimality system . 87

4.5 Numerical examples . 94

4.6 Conclusions . 103

5 An implicit preconditioned iterative method for wave control problems without control

constraints . 104

5.1 Introduction . 104

5.2 A standard explicit central difference scheme . 107

5.3 A new implicit scheme and its error estimate . 110

5.4 A fast preconditioned iterative solver . 123

5.5 Numerical examples . 127

5.6 Conclusions . 132

6 Summary and future research . 133

6.1 Summary . 133

6.2 Future research . 134

Vita . 149

viii

LIST OF TABLES

1.1 Results for solving a 2D Poisson equation by multigrid method. 20

1.2 Results for solving a 2D nonlinear elliptic equation by FAS multigrid method. . . . 27

2.1 Results of SSN-MG method (V-cycles) for Ex. 1. 45

2.2 Results of MATLAB’s backslash direct solver for Ex. 1. 45

2.3 Results of SSN-MG method (V-cycles with D̃H) for Ex. 1. 45

2.4 Results of FAS-MG and SSN-MG method for Ex. 1 (γ = 10−4). 46

2.5 Results of FAS-MG and SSN-MG method for Ex. 2 (γ = 10−4). 47

2.6 Results of FAS-MG and SSN-MG method for Ex. 3 (γ = 10−4). 47

2.7 Results of FAS-MG and SSN-MG method for Ex. 3 (γ = 10−6). 48

3.1 Results for Ex. 4 with our leapfrog scheme (γ = 10−1). 66

3.2 Results for Ex. 4 with our leapfrog scheme (γ = 10−3). 66

3.3 Results for Ex. 4 with the BDF2 scheme (γ = 10−1). 67

3.4 Results for Ex. 4 with the BDF2 scheme (γ = 10−3). 67

3.5 Results for Ex. 4 with the Crank-Nicolson scheme (γ = 10−1). 67

3.6 Results for Ex. 4 with the Crank-Nicolson scheme (γ = 10−3). 68

3.7 Results for Ex. 5 with our leapfrog scheme (γ = 10−2). 69

3.8 Results for Ex. 5 with our leapfrog scheme (γ = 10−4). 69

3.9 Results for Ex. 5 with the BDF2 scheme (γ = 10−2). 69

3.10 Results for Ex. 5 with the BDF2 scheme (γ = 10−4). 69

4.1 Maximum norm errors for solving the heat equation with different T 81

4.2 Results for Ex. 6 using SSN-MG method, with S(y) = exp(y), γ = 10−3. 98

4.3 Results for Ex. 6 using SSN-MG method, with S(y) = exp(y), γ = 10−5. 98

4.4 Results for Ex. 6 using FAS-MG method, with S(y) = exp(y), γ = 10−3. 98

4.5 Results for Ex. 6 using FAS-MG method, with S(y) = exp(y), γ = 10−5. 98

4.6 Results for Ex. 7 using SSN-MG method (α = 1, β = 0, σ = 1). 100

ix

4.7 Results for Ex. 7 using SSN-MG method (α = 0, β = 1, σ = 1). 100

4.8 Results for Ex. 7 using SSN-MG method (α = 1, β = 1, σ = 10). 100

4.9 Results for Ex. 7 using FAS-MG method (α = 1, β = 0, σ = 1). 101

4.10 Results for Ex. 7 using FAS-MG method (α = 0, β = 1, σ = 1). 101

4.11 Results for Ex. 7 using FAS-MG method (α = 1, β = 1, σ = 10). 102

5.1 The condition numbers of the explicit and implicit scheme for Ex. 8 (T = 2, γ = 10−2). 113

5.2 Results for Ex. 8 with γ = 10−2 (Implicit scheme with preconditioned GMRES). . . 130

5.3 Results for Ex. 8 with γ = 10−4 (Implicit scheme with preconditioned GMRES). . . 130

5.4 Results for Ex. 8 with γ = 10−2 (Explicit scheme with sparse direct solver). 130

5.5 Results for Ex. 8 with γ = 10−4 (Explicit scheme with sparse direct solver). 130

5.6 Results for Ex. 9 with γ = 10−2 (Implicit scheme with preconditioned GMRES). . . 131

5.7 Results for Ex. 9 with γ = 10−4 (Implicit scheme with preconditioned GMRES). . . 131

5.8 Results for Ex. 9 with γ = 10−2 (Explicit scheme with sparse direct solver). 131

5.9 Results for Ex. 9 with γ = 10−4 (Explicit scheme with sparse direct solver). 131

x

LIST OF FIGURES

1.1 The distributed control u as heating source . 2

1.2 A typical hierarchy of multilevel meshes on a 2D domain 17

1.3 Algorithm of multigrid V-cycle iteration . 18

1.4 A bird’s-eye view of one multigrid V-cycle iteration 18

1.5 Algorithm of GMRES method . 21

1.6 Algorithm of FAS multigrid V-cycle iteration . 26

2.1 Computed optimal control and optimal state of Ex. 1 with γ = 10−3 for h = 1/256 . 44

2.2 Computed optimal control and optimal state of Ex. 3 with γ = 10−4 for h = 1/1024 48

4.1 The evolution of y, z, and u at (x1, x2) = (0.5, 0.5) for Ex. 6. 96

4.2 The evolution of ey(·, t) for Ex. 6 with S(y) = exp(y) and γ = 10−3. 97

4.3 The trajectory of y, z, and u at (0.5, 0.5) for Ex. 7 (α = 1, β = 0, σ = 1). 101

4.4 The evolution of y, z, and u at (0.5, 0.5) for Ex. 7 (α = 1, β = 1, σ = 10. 102

5.1 Eigenvalue distributions of Mh and MhP
−1
h in Ex. 8 (M = N = 16) 127

5.2 Eigenvalue distributions of Mh and MhP
−1
h in Ex. 8 (M = N = 32) 127

xi

CHAPTER 1

BACKGROUNDS AND PRELIMINARIES

Partial differential equations (PDEs) have broad applications in almost every area of our

modern society, from airplanes in the sky to submarines under the sea, from biological move-

ments to chemical processes, from medical imaging to drug development, etc. As the foundation

of applied mathematics, PDEs have been extensively used to model the reality in every disci-

plines in order to better understand our world. The simulation, optimization, and control of

these PDE models in natural sciences, engineering, and economics often lead to control prob-

lems governed by PDEs associated with certain control constraints due to physical restrictions

[Lions, 1971, Hinze et al., 2009, Tröltzsch, 2010, Borz̀ı and Schulz, 2012, Leugering et al., 2012,

Bredies et al., 2013, Leugering et al., 2014]. Such problems arise in a wide range of applica-

tions such as flow control design [Gunzburger, 2003], gas dynamics, aerodynamic shape optimiza-

tion [Jameson, 1988], and photo-acoustic tomography [Bergounioux et al., 2014]. Most of these

governing PDEs are nonlinear [Neittaanmaki and Tiba, 1994, Aubert and Kornprobst, 2006,

Debnath, 2012], whose analytic solutions are nearly impossible to obtain through purely theoret-

ical investigation. Therefore, numerical approach with the help of computers becomes the most

realistic approach to provide the approximated solutions, and thus effective numerical methods

for the study of control and optimization of various PDE models are not only desirable but also

necessary.

In particular, numerical methods for optimal control problems governed by time-dependent

partial differential equations (PDEs) have recently gained dramatically increasing attention from

the scientific computing community. This trend is motivated not only by its broader applica-

tions in different fields but also by the computational challenges that require new methodol-

ogy. For example, the real-time optimal control [Biegler et al., 2007] of reaction-diffusion systems

in cardiac electrophysiology [Nagaiah et al., 2011] demonstrates the inherent difficulties in com-

putations. Moreover, these applications usually have a very high demand in both efficiency

1

and accuracy for the chosen numerical algorithms in order to achieve various purposes, which

presents many dreadful challenges across related disciplines, including numerical optimization

[Nocedal and Wright, 2006], numerical PDEs [Thomas, 1995, Thomas, 1999], and numerical lin-

ear algebra [Trefethen and Bau, 1997]. It requires a comprehensive understanding of the subtle

interplay among these areas to develop effective numerical methods that excel at both efficiency

and accuracy.

1.1 MOTIVATING APPLICATIONS

Our first application is the optimal control of stationary heating or cooling process. Let

Ω ⊂ R3 be a bounded domain with boundary Γ := ∂Ω, which represents an object to be heated by

electromagnetic induction or by microwaves. The temperature distribution or state y(x) inside Ω is

controlled by the enforcing heating source u(x), as shown in Fig. 1.1. For some practical purposes

(such as for treatment requirement), we would like to choose the optimal control which minimizes

the difference between the desired stationary temperature distribution z(x) and the achievable

temperature distribution y(x). Mathematically, by assuming the boundary temperature vanishes,

Figure 1.1. The distributed control u as heating source

2

we can model this process as a constrained optimization problem as follows:



min J(y, u) :=
1

2
∥y − z∥2L2(Ω) +

α

2
∥u∥2L2(Ω)

subject to:

−∆y(x) = u(x) in Ω,

y(x) = 0 on Γ := ∂Ω,

ua(x) ≤ u(x) ≤ ub(x) in Ω,

(1.1)

where ∆ is the Laplacian operator, the constant α ≥ 0 can be understood as either energy cost

weight associated with the control u or a regularization parameter to improve the regularity of

the problem. Also, the point-wise control constraints ua(x) ≤ u(x) ≤ ub(x) arises naturally from

physical restrictions of the heating or cooling capacities. Here u is called distributed control since

it acts in the whole domain Ω. On the contrary, we call u boundary control if it only operates on

the boundary ∂Ω.

Our second application is the optimal control of time-dependent heating or cooling process,

which is a natural extension of previous stationary model by describing the process using a time-

dependent PDE (e.g., parabolic heat equation). Let T > 0 be the final time of the process,

Q := Ω × (0, T) and Σ := Γ × (0, T). Assume the initial temperature is given by y0 = y0(x).

Denote the temperature on x ∈ Ω at time t ∈ (0, T] by y = y(t, x). Similarly, by assuming

3

vanishing boundary temperature, we derive a time-dependent model as follows:



min J(y, u) :=
1

2
∥y − z∥2L2(Q) +

α

2
∥u∥2L2(Q)

subject to:

yt(t, x)−∆y(t, x) = u(t, x) in Q,

y(t, x) = 0 on Σ := Γ× (0, T),

y(0, x) = y0(x) in Ω,

ua(t, x) ≤ u(t, x) ≤ ub(t, x) in Q,

(1.2)

where z = z(t, x) is the desired temperature distribution over time and yt (= ∂ty) denotes the

partial derivative of y with respect to the time variable. This parabolic control problem is com-

putationally more challenging than the previous elliptic control problem (1.1) due the additional

time variable.

Our third application is the optimal control of vibrations described by a linear wave equation.

Optimal control of hyperbolic equations has many applications, such as noise reduction, focusing

of ultrasound waves in medical imaging, as well as elastodynamics. A simple scenario is to use

a group of pedestrians to excite oscillations in a bridge by walking across it. Denote the bridge

surface domain by Ω ⊂ R2. Let the control u = u(t, x) be the force density acting in the vertical

4

direction. We then get the corresponding optimization problem as follows:



min J(y, u) :=
1

2
∥y − z∥2L2(Q) +

α

2
∥u∥2L2(Q)

subject to:

ytt(t, x)−∆y(t, x) = u(t, x) in Q,

y(t, x) = 0 on Σ := Γ× (0, T),

y(0, x) = y0(x) in Ω,

yt(0, x) = y1(x) in Ω,

ua(t, x) ≤ u(t, x) ≤ ub(t, x) in Q,

(1.3)

where z = z(t, x) is the desired evolution of transverse vibrations over time, y stands for dis-

placement, ytt denotes the second-order partial derivatives with respect to time t, y0 is the initial

displacement, and y1 is the initial velocity. This hyperbolic control problem is often deemed to

be more difficult than aforementioned both elliptic and parabolic control problems due to lower

regularity of the solution state variables.

5

1.2 GENERAL FRAMEWORK OF PDE-CONSTRAINED OPTIMIZATION

Let Y, U , and W be reflexive Banach spaces (such as Hilbert spaces), and Uad ⊂ U be a

closed, bounded and convex set. Consider the general constrained optimization problem


minu∈Uad J(y, u)

subject to: e(y, u) = 0,

(1.4)

with an objective functional J : Y × U → R, state equality constraint e : Y × U → W, as well

as the control constraints u ∈ Uad, the set of admissible controls. We are especially interested in

those applications where the state equation e is given by a well-posed PDE with suitable boundary

and/or initial conditions, such as the three applications introduced in the previous section.

Current numerical methods [Hinze et al., 2009, Ulbrich, 2011, Borz̀ı and Schulz, 2012] for

solving this class of optimal control problems (1.4) generally fall into either discretize-then-

optimize approach or optimize-then-discretize approach. In this thesis, we will focus on the second

category by making use of its first-order optimality system. However, our proposed methods are

also suitable for the first category when the discretization has a similar structure.

Before discussing the existence of optimal solution to the above optimization problem (1.4),

we first need to introduce the following standard assumptions [De los Reyes, 2015] on the state

equation:

(A) for each u ∈ Uad, there exists a unique solution y(u) ∈ Y to the state equation e(y, u) = 0;

(B) the set of solutions {y(u)} is bounded in Y for u ∈ Uad;

(C) if uk ⇀ û weakly in U , then the corresponding states y(uk)⇀ y(û) weakly in Y.

Under the above assumptions, by defining the solution (or control-to-state) operator

S : U → Y

6

u 7→ y(u) = S(u),

we can reformulate the optimization problem (1.4) in its reduced form as

min
u∈Uad

J(u) := J(y(u), u). (1.5)

Let U , V be two Banach spaces and F : U → V a mapping from U to V. Denote L(U ,V) the

normed space of all bounded linear operators from U to V, endowed with the operator norm

∥ · ∥L(U ,V), given by

∥A∥L(U ,V) = sup
∥u∥U=1

∥Au∥V .

If V = R, we write U∗ := L(U ,R), which is also called the dual space of U .

Definition 1 ([De los Reyes, 2015]). A functional J : U → R is called weakly lower semi-

continuous if for every weakly convergent sequence uk ⇀ û as k → ∞ in U , i.e.,

lim
k→∞

f(uk) = f(û) ∀f ∈ U∗,

it follows that J(û) ≤ lim infk→∞ J(uk).

In particular, if J is convex and continuous, then it is also weakly lower semi-continuous.

Definition 2 ([De los Reyes, 2015]). An element ū ∈ Uad is called a global optimal solution

(minimizer) to (1.5) if J(ū) ≤ J(u), ∀u ∈ Uad. Further, ū is called a local optimal solution

(minimizer) if there exists a neighborhood O(ū) of ū in Uad such that J(ū) ≤ J(u), ∀u ∈ O(ū).

To derive the optimality conditions that characterizing optimal solutions, it is necessary to

introduce some notions of differentiability for operators between Banach spaces.

7

Definition 3 ([Tröltzsch, 2010]). F is called directionally differentiable at u ∈ U if the limit

DF (u)(s) := lim
t→0+

F (u+ ts)− F (u)

t
∈ V

exists for all s ∈ U . In this case, DF (u) : U → V is called directional derivative of F at u.

Definition 4 ([Tröltzsch, 2010]). F is called Gâteaux differentiable at u ∈ U if F is directionally

differentiable at u and the corresponding directional derivative DF (u) : U → V is bounded and

linear, i.e., DF (u) ∈ L(U ,V). In this case, DF (u) is denoted by F ′(u), which is called the Gâteaux

derivative of F at u,

Definition 5 ([Tröltzsch, 2010]). F is called Fréchet differentiable at u ∈ U if F is Gâteaux

differentiable at u and it satisfies

lim
∥s∥U→0

∥F (u+ s)− F (u)− F ′(u)s∥V
∥s∥U

= 0.

In this case, F ′(u) is called the Fréchet derivative of F at u.

The following theorem gives the existence result of the above optimization problem (1.5)

Theorem 1.2.1 ([De los Reyes, 2015]). Let J : Y × U → R be bounded from below and weakly

lower semi-continuous. Then there exists a global optimal solution (minimizer) for problem (1.5).

Hereafter we assume that J : Y × U → R and e : Y × U → W are continuously Fréchet

differentiable. Denote ȳ = y(ū). We further assume that ey(ȳ, ū) ∈ L(Y,W) is a bijection,

which, by the implicit function theorem, implies the existence of a (locally) unique solution y(u)

to the state equation e(y, u) = 0, in a neighborhood of (ȳ, ū), and the continuously Fréchet

differentiability of the solution operator S.

Theorem 1.2.2 ([De los Reyes, 2015]). Suppose that ū ∈ Uad is a local minimizer of (1.5), then

it satisfies the variational inequality J ′(ū)(v − ū) ≥ 0 for all v ∈ Uad. In particular, if Uad = U ,

then it implies J ′(ū) = 0.

8

We now can derive the first-order necessary optimality conditions for (1.4) by using the

standard Lagrangian approach [Ito and Kunisch, 2008]. Define the Lagrangian functional corre-

sponding to (1.4) as

L :Y × U ×W∗ → R

(y, u, p) 7→ L(y, u, p) := J(y, u)− ⟨p, e(y, u)⟩W∗,W ,

where p ∈ W∗ is called Lagrange multiplier or adjoint state. The first-order necessary optimality

system for determining optimal control ū and optimal state y(ū) is given by

Lp(y, u, p) = 0 ⇒ e(y, u) = 0, (1.6a)

Ly(y, u, p) = 0 ⇒ e∗y(y, u)p = Jy(y, u), (1.6b)

Lu(y, u, p)(v − u) ≥ 0 ⇒ ⟨Ju(y, u)− e∗u(y, u)p, v − u⟩U∗,U ≥ 0 ∀v ∈ Uad, (1.6c)

where e∗y(y, u) denotes the adjoint operator of ey(y, u) and the last variational inequality follows

from Theorem (1.2.2).

Throughout this thesis, we will focus on the widely used case of U = L2(Ω) and box con-

straints on the control, i.e.,

Uad = {u ∈ L2(Ω) : ua ≤ u(x) ≤ ub a.e. in Ω}

with ua, ub ∈ R such that ua ≤ ub. In this case (notice U∗ = U), the above variational inequality

(1.6c) holds if and only if, for almost every x ∈ Ω,

(Ju(y, u)(x)− e∗u(y, u)p(x))(v − u(x)) ≥ 0 ∀v ∈ R : ua ≤ v ≤ ub. (1.7)

9

Also, our considered objective functional J is quadratic and of tracking type (with α > 0), i.e.,

J(y, u) =
1

2
∥y − z∥2L2(Ω) +

α

2
∥u∥L2(Ω),

which gives Ju(y, u)(x) = αu(x). In the following study of distributed control problems, we always

have e∗u(y, u) = −1, since the control term u appears alone in the right-hand-side. Under this

setting, the above scalar inequality (1.7) is equivalent to the projection formula

u(x) = Φ(− 1

α
p(x)) := P[ua,ub]

(
− 1

α
p(x)

)
= min{ua,max{ub,−

1

α
p(x)}}, (1.8)

where P[ua,ub] : R → R denotes the projection onto the interval [ua, ub]. The special case with

α = 0 usually gives bang-bang control with the last inequality can be converted to

p = min{0, p+ u− ua}+max{0, p+ u− ub},

which is not discussed in current work since it requires very different numerical treatments. How-

ever, it can be numerically approximated using our algorithms by letting the regularization pa-

rameter α → 0. Taking the first application (1.1) as an example, according to (1.6), we can

formulate its first-order necessary optimality system as

−∆y − u = 0 in Ω and y = 0 on ∂Ω,

−∆p = y − z in Ω and p = 0 on ∂Ω,

u = Φ(− 1
αp) in Ω,

where we have replaced the variational inequality (1.6c) by the projection formula (1.8). Notice

that u can be easily eliminated by plugging the third equation into the first one, which is compu-

tationally more economical as we now only need to solve for y and p from a coupled nonsmooth

10

PDEs (due to Φ(·))


−∆y +Φ(1αp) = 0 in Ω and y = 0 on ∂Ω,

−∆p− y = −z in Ω and p = 0 on ∂Ω.

(1.9)

The solutions to the optimality system (1.6) are called stationary or critical points. In gen-

eral, a local optimal solution (ū, y(ū)) to problem (1.4) is also a stationary point, but not vice

versa. Usually, second-order sufficient optimality conditions are required to determine whether a

stationary point is also a local optimal solution or not. The general theory of second-order opti-

mality conditions in the control of nonlinear PDEs is still an active research topic with many re-

cent contributions [Casas and Tröltzsch, 2012, Casas and Tröltzsch, 2015, Ali et al., 2015]. Given

α > 0, noticing that J(y, u) is strictly convex and Uad is convex, the optimization problem (1.4)

is also convex if the constraint e(y, u) is a linear PDE. With convexity assumption, the first-

order necessary optimality conditions become also sufficient and hence second-order sufficient

optimality conditions are not needed. We will not explicitly verify the second-order optimality

conditions in our discussions, since the process is standard and our major interest will focus on

developing efficient numerical methods for solving the optimality system (1.6) within the frame-

work of one-shot approach [Gunzburger, 2003], i.e., to determine the optimal state, adjoint state,

and optimal control simultaneously by solving the optimality system (1.6) once. The one-shot

approach is very attractive since it does not involve any intermediate iterations, compared to

the optimization-based approaches using the gradient information of the objective functional.

However, this approach requires a good structure of discretization for the implementation of fast

solvers.

1.3 FINITE DIFFERENCE DISCRETIZATION

When the state constraint e(y, u) is given by a PDE, the corresponding optimality system

(1.6) becomes a coupled system of PDEs, which is usually very difficult to obtain an analytic

11

solution. Hence it is more practical to seek its approximated solutions in a discrete form using

numerical methods on modern computers. Finite difference discretization is a well recognized

method of discretizing the continuous PDEs into a discrete structure suitable for numerical im-

plementation on computers with finite precision arithmetic. In this thesis, we will focus on using

the finite difference method since we only study the problems with regular rectangular domains.

Moreover, it usually takes less effort to develop computationally more efficient algorithms for

solving the resultant large-scale discretized systems. Nevertheless, our developed approaches are

suitable for other discretizations (such as finite element method [Brenner and Scott, 2008]) as

well. In particular, it may be more convenient to use the finite element method in space if the

considered problem has a general domain, such as a convex polygon.

The basic idea of a finite difference discretization scheme consists of approximating the

derivatives involved in the PDE with corresponding discrete difference quotients using the solution

at nearby grid points. The standard approach of deriving a finite difference scheme is to expand

the Taylor series of the sufficiently smooth function f(x) at the concerning point ξ ∈ (a, b) with

a small step size h > 0, e.g.,

f(ξ + h) = f(ξ) + hf ′(ξ) +
h2

2
f ′′(ξ) +

h3

6
f ′′′(ξ) +

h4

24
f (4)(ξ) +O(h5), (1.10)

and

f(ξ − h) = f(ξ)− hf ′(ξ) +
h2

2
f ′′(ξ)− h3

6
f ′′′(ξ) +

h4

24
f (4)(ξ) +O(h5). (1.11)

Subtracting (1.11) from (1.10) gives a central difference approximation for the first derivative

f(ξ + h)− f(ξ − h)

2h
= f ′(ξ) +

h2

6
f ′′′(ξ) +O(h4)

with a second-order accuracy. The addition of (1.11) and (1.10) leads to a central difference

12

approximation for the second derivative

f(ξ + h)− 2f(ξ) + f(ξ − h)

h2
= f ′′(ξ) +

h2

12
f (4)(ξ) +O(h4)

with a second-order accuracy. Under the assumption that f (4)(x) is uniformly bounded in [a, b],

one can truncate the high-order error terms with h2 and h4 to derive the second-order accurate

central finite difference scheme

f ′(ξ) ≈ f(ξ + h)− f(ξ − h)

2h

and

f ′′(ξ) ≈ f(ξ + h)− 2f(ξ) + f(ξ − h)

h2
,

for approximating the first derivative and second derivative, respectively. If the point ξ lies

on the boundaries of the interval [a, b], one can also obtain so-called one-sided finite difference

schemes. For instance, again by Taylor series expansion, we can derive a second-order accurate

finite difference approximation

f ′(ξ) =
3f(ξ)− 4f(ξ − h) + f(ξ − 2h)

2h

for the first derivative on the right boundary ξ = b. Such one-sided finite difference schemes are

useful when we handle the time derivative at the initial time with a given initial condition.

As an introductory example, we illustrate how to find the numerical solution to the Poisson

equation on a two-dimensional bounded domain Ω = (0, 1)2 ⊂ R2, i.e.,


−∆y = f in Ω

y = 0 on ∂Ω,

(1.12)

13

by using the above finite difference discretizations. Discretize Ω by a uniform Cartesian grid

Ω̄h =
{
(xi1, x

j
2) = (ih, jh)| i = 0, 1, 2, · · · , n, n+ 1; j = 0, 1, 2, · · · , n, n+ 1.

}

with a mesh size step h = 1/(n+ 1) and denote yi,j = y(xi1, x
j
2) and fi,j = f(xi1, x

j
2). By

applying the above second-order central finite difference scheme to approximate the second-order

partial derivatives yx1x1 and yx2x2 in each spatial variable, the Poisson equation (1.12) can be

approximated (with truncation error O(h2)) by

−yi+1,j − 2yi,j + yi−1,j

h2
− yi,j+1 − 2yi,j + yi,j−1

h2
= fi,j

for i = 1, 2, · · · , n; j = 1, 2, · · · , n. This in fact gives a large system of linear equations that can be

solved with different numerical algorithms, from which we can get the discrete approximation yi,j

of the continuous solution y to the original Poisson equation. Let yh and fh be the corresponding

horizontal-vertical lexicographic ordering (vectorization) of yi,j and fi,j over all interior grid points,

respectively. By incorporating the homogeneous Dirichlet boundary condition, we can further

rewrite the above system as

Ahyh := − 1

h2



K I

I K I

. . .
. . .

. . .

I K I

I K


yh = fh, (1.13)

14

where I ∈ Rn×n stands for the identity matrix and

K =



−4 1

1 −4 1

. . .
. . .

. . .

1 −4 1

1 −4


n×n

Due to the elliptic differential operator, the resulting coefficient matrix Ah is symmetric positive

definite and hence is uniquely solvable. Upon solving the discretized system (1.13) accurately (or

up to the machine accuracy) for yh, it can be proved [Hackbusch, 2003] that the obtained discrete

numerical solution yh has an approximation error of order two, i.e.,

∥yh − y∥∞ := max
i,j

|yi,j − y(xi1, x
j
2)| = O(h2).

Therefore, to get more accurate numerical approximations, we need to choose a smaller mesh

step size h = 1/(n + 1), which in return gives rise to a larger linear system to be solved. For

example, taking n = 103 in each variable for a 3D Poisson equation, we easily reach a billion

(109) unknowns. Unfortunately, even with the latest computers, it is still a forbidding task to

efficiently solve a large linear system with possible billions of unknowns. Compared to (sparse)

direct methods, iterative methods are usually preferred since they require less time and memory

complexity by exploiting the sparsity of the coefficient matrix. However, simple iterative methods

(such as Gauss-Seidel method) demonstrate a dramatically worsening convergence rate as the

mesh size refines, which render them impractical for large-scale applications. Hence, we are

especially interested in developing those iterative methods having the potential of achieving a

mesh-independent convergence, as those ones to be introduced in the next section.

15

1.4 ITERATIVE METHODS FOR SOLVING LINEAR SYSTEM

Contrary to direct methods [Davis, 2006], which theoretically produce the exact solution

after a finite number of algorithmic steps (in exact arithmetic), iterative methods construct a

sequence of solution approximations such that it converges to the unique exact solution of a linear

system. Broadly speaking, we can roughly classify most iterative methods into three groups

[Barrett et al., 1994, Golub and Van Loan, 2013]:

• Stationary methods: Jacobi, Gauss-Seidel, etc.;

• Multigrid methods: Geometric multigrid, Algebraic multigrid.

• Non-stationary methods: Krylov subspace methods, etc.;

We will briefly introduce two representative methods from the last two groups, which constitute

the foundation of our developed iterative solvers in the following chapters.

1.4.1 Multigrid method

Multigrid methods are in fact built on stationary iterative methods by performing a few

such iterations on a hierarchy of multilevel discretizations (e.g., see Figure 1.2). They can often

achieve an optimal time and space complexity in solving for the numerical solution of elliptic

PDEs. Furthermore, they have been successfully used in a time-stepping scheme of parabolic

PDEs, or directly applied to time-dependent PDEs under the space-time multigrid framework.

For a given linear system such as (1.13) that can be discretized with the finest mesh-size h

Ahwh = bh,

one linear multigrid V-cycle iteration [Briggs et al., 2000, Saad, 2003] is delineated in Fig. 1.4.1 ,

where we need to provide the coarsest mesh size h0 ≫ h, the smoothing algorithm smooth, the

restriction operator IHh , the prolongation operator IhH , as well as the coarse grid operator AH . It

is usually suggested to choose H = 2h to get the best overall performance. For 2D domains, as

16

Figure 1.2. A typical hierarchy of multilevel meshes on a 2D domain

suggested in [Borz̀ı, 2008], we define the restriction operator IHh from the full-weighting averaging

with the following stencil form

IHh =
1

16


1 2 1

2 4 2

1 2 1


and the prolongation operator IhH from linear interpolation with a corresponding stencil form

IhH =
1

4


1 2 1

2 4 2

1 2 1

 .

Other restriction (half weighting or injection) and prolongation (cubic interpolation) operators

can also be used [Briggs et al., 2000], depending on the applications.

In each V-cycle iteration, a few smoothing iterations (such as Jacobi iterations) are con-

ducted to improve the fine-grid approximate solution, whose major role is to smooth out the

17

wh := MG(h,Ah, w
0
h, bh)

IF (h == h0)

Solve exactly: wh = A−1
h bh

ELSE
Pre-smooth ν1 times: wh := smoothν1(Ah, w

0
h, bh)

Restriction: rH := IHh (bh −Ahwh)
Recursion: δH := MG(H,AH , 0, rH)
Prolongation: δh := IhHδH
Correction: wh := wh + δh
Post-smooth ν2 times: wh := smoothν2(Ah, wh, bh)

ENDIF
RETURN wh.

Figure 1.3. Algorithm of multigrid V-cycle iteration

Figure 1.4. A bird’s-eye view of one multigrid V-cycle iteration

high-frequency components of the approximation errors. Following this, the residual is restricted

to a coarser grid (H = 2h) using the restriction operators IHh . A new V-cycle iteration is then

performed on this coarser level, with this procedure proceeding recursively until the grid reaches

the coarsest level h0 ≫ h. At the coarsest level, the underlying problem size has become very

small so that it can be quickly solved by direct methods. Computing the solution on the coarser

level H leads to a coarse approximation of the solution. A prolongation operator (IhH) interpolates

this coarse grid approximation to the fine grid, which provides a coarse grid correction to the fine

grid solution. Finally, the corrected fine grid solution is further enhanced by using a small number

18

of smoothing iterations. A straightforward definition of the coarse grid operator AH is possible

by simply using the re-discretized equation with a coarser step size H. This is the most common

choice for a fully structured mesh as we used. For better illustration, one full such multigrid

V-cycle iteration can also be visually depicted as in Figure 1.41.

Through applying the multigrid V-cycle iterations (with red-black Gauss-Seidel smoothing)

to previous discretized 2D Poisson equation (1.13), we would like to demonstrate its very attractive

mesh-independent convergence as well as linear time complexity. Choose f = 2π2 sin(πx) sin(πy)

in (1.12) such that the exact solution is given by y = sin(πx) sin(πy). Starting with an initial

guess y0h = 0, we update the current approximation at the k-th iteration according to

ykh = MG(h,Ah, y
k−1
h , fh), k = 1, 2, · · ·

until the relative residual norm of ykh fulfills the prescribed stopping criterion

∥rk∥2/∥r0∥2 < 10−8,

where rk = fh − Ahy
k
h is the residual vector at the k-th iteration. The computational results are

reported in Table 1.1, from which we can observe that

• When the mesh size h is halved, the infinity norm error (in column ‘∥ykh − y∥∞’) is reduced

to about one fourth, which indicates a second-order accuracy of the used central finite

difference discretization. The experimental order of accuracy is also estimated in column

‘Order’ according to

Order = log2

(
∥yk2h − y∥∞
∥ykh − y∥∞

)
.

• The required number of V-cycle iterations, as shown in column ’Iter’, to attain the stopping

condition (verified in column ‘∥rk∥2/∥r0∥2’) is independent of the mesh size h. We refer to

this outstanding feature as mesh-independent convergence, which is very desirable in solving

1See also https://computation.llnl.gov/casc/sc2001_fliers/SLS/SLS01.html.

19

https://computation.llnl.gov/casc/sc2001_fliers/SLS/SLS01.html.

large-scale linear systems.

• The computational time in seconds (shown in column ‘CPU’) grows linearly. Notice that

it increases by about four times as the mesh size h is halved (which in fact quadruples the

dimension of the discretized system). This is very reasonable since it takes a fixed number

of total iterations and each iteration costs the same amount of operations in terms of sparse

matrix-vector product. We refer to this as O(N) linear time complexity, which is often

called optimal time complexity in the sense that one can not get a better time complexity.

Table 1.1. Results for solving a 2D Poisson equation by multigrid method.
h ∥rk∥2/∥r0∥2 ∥ykh − y∥∞ Order Iter CPU

1/257 7.9e-09 1.3e-05 – 10 0.37
1/513 8.0e-09 3.1e-06 2.07 10 1.40
1/1025 8.0e-09 7.8e-07 1.99 10 6.03
1/2049 8.0e-09 1.9e-07 2.04 10 25.00
1/4097 8.0e-09 4.4e-08 2.11 10 102.14

1.4.2 Krylov subspace method

In the case of hyperbolic PDEs, multigrid methods turn out to be much less successful.

Instead, preconditioned Krylov subspace methods are more favorable in dealing with such linear

systems, which may be highly nonsymmetric and indefinite depending on the underlying PDEs

as well as discretization schemes.

Consider a general non-singular linear system

Av = b ∈ RN . (1.14)

Given an initial guess v0, let r0 = b−Av0. We can define Krylov subspaces of the form

Km(A, r0) := span{r0, Ar0, · · · , Am−1r0}.

Being very different from those stationary iterative methods based on fixed-point iterations,

20

Krylov subspace methods seek an approximate solution vm from the generated Krylov subspace

Km(A, r0) by imposing certain orthogonality conditions (such as Petrov-Galerkin conditions).

The dimension of Km(A, r0) is expected to be much smaller, i.e., m ≪ N . A standard Arnoldi’s

algorithm based on the modified Gram-Schimdt procedure can be used for building an orthogonal

basis of the Krylov subspace.

The generalized minimal residual (GMRES) method is one of the most popular Krylov

subspace method, which is well suitable for general large-scale non-singular sparse linear systems.

The standard GMRES algorithm [Saad, 2003] without restarting is described in Fig. 1.4.2. When

vm := GMRES(A, b, v0,m)

Initialize r0 := b−Av0, β := ∥r0∥2, and v1 := r0/β;
FOR k = 1, 2, . . . ,m,

wj := Avj
FOR l = 1, 2, . . . , k

hlk := wT
k vl

wl := wl − hlkvl
END
hk+1,k := ∥wk∥2
IF (hk+1,k == 0) SET m := k BREAK
vk+1 := wk/hk+1,k

END

Ĥm := {hl,k}1≤l≤m+1,1≤k≤m;Vm := [v1, . . . , vm]

ym := argminy ∥β[1, 0, . . . , 0]T − Ĥmy∥2
vm := v0 + Vmym
RETURN vm.

Figure 1.5. Algorithm of GMRES method

the linear system (1.14) is solved by GMRES method with the initial guess v0, a theoretical

estimate of the residual rk = b−Avk at the k-th iteration is given by

∥rk∥2 = min
p∈Pk

∥p(A)r0∥2,

where Pk is the set of monic polynomials of degree ≤ k. However, such an abstract estimate is

not practical to predict the convergence behavior of GMRES method. Alternatively, the following

theorem provides us a more intuitive understanding on the factors that influence the convergence

21

rate of GMRES method.

Theorem 1.4.1 ([Saad and Schultz, 1986]). Suppose that A ∈ Rn×n is diagonalizable so that

A = XΛX−1 with

Λ = diag[λ1, λ2, · · · , λm, λm+1, · · · , λn],

where we assume {λ1, λ2, · · · , λm} has nonpositive real parts and {λm+1, · · · , λn} is enclosed in a

circle centered at c > 0 with radius d satisfying c > d, then

∥ri+1∥2 ≤ κ(X)

(
dmax

dmin

)m(d
c

)i−m

∥r0∥2,

where

dmin = min
1≤i≤m

|λi|, dmax = max
1≤i≤m<j≤n

|λi − λj |, and κ(X) = ∥X∥2∥X−1∥2.

Based on Theorem 1.4.1, the convergence rate of GMRES method can be improved by alter-

ing the eigenvalue distribution of A. The concept of preconditioning emerges when we transform

the linear system (1.14) into another mathematically equivalent linear system

(AP−1)w = b,

where v = P−1w with a nonsingular matrix P is called (right) preconditioner. To incorporate

such a right preconditioning step, we just need to modify two lines in above GMRES algorithm,

i.e.,

wj := Avj ⇒ wj := AP−1vj and vm := v0 + Vmym ⇒ vm := v0 + VmP
−1ym.

The idea of preconditioning lies in the fact that the preconditioned coefficient matrix AP−1 may

have a better eigenvalue distribution than A provided P is chosen appropriately. Meanwhile, the

computational cost of the preconditioning step P−1w should be far more less than solving the

22

original system by A−1b. In another words, there are two useful criteria for evaluating a good

preconditioner P :

• AP−1 has a very clustered eigenvalue distribution (uniformly away from the origin),

• P−1w can be computed or approximated with a low computational cost.

How to find a good preconditioner for more general linear systems is a very active area of current

research, which often requires insightful understanding of the original problem and its discretized

structures. When the coefficient matrix has better algebraic properties (such as symmetric pos-

itive definite), some variants of GMRES (such as Conjugate-Gradient algorithm) may become

advantageous. But a good preconditioner is still very necessary to accelerate the convergence.

1.5 ITERATIVE METHODS FOR SOLVING NONLINEAR SYSTEM

The most important iterative method for solving nonlinear systems is Newton’s method

[Kelley, 2003], which often leads to a super-linear or quadratic local convergence provided the

initial guess is sufficiently close to the true solution. However, such a Newton’s method can not

be directly applied when the system operator is not continuously Fréchet differentiable. In the

case of our concerned optimality system (1.6), the variational inequality leads to a projection

operator Φ(·), which is not continuously Fréchet differentiable. On the other hand, as a highly

efficient iterative algorithm, the FAS multigrid method is a nonlinear generalization of the linear

multigrid method. It provides a powerful approach for handling nonlinear equations without the

global linearization required by Newton’s method. Unlike with Newton’s method, there is typically

no need to initialize the solver with a very good initial guess. In general, the practical efficiency

of both methods depend on the underlying problems. There is no permanent winner in terms of

overall performance. We will briefly describe both methods in the following two subsections.

1.5.1 Semismooth Newton (SSN) method

In our derived infinite dimensional operator equation (1.6), the non-smooth projection op-

erator Φ(·), which is not Fréchet differentiable, hinders us from directly employing the traditional

23

Newton method that relies on Fréchet differentiability. However, by generalizing the concept

of differentiability, one could derive the semismooth Newton (SSN) method [Ulbrich, 2011] for

solving the operator equation having the form as in (1.9). Let X ,Y be Banach spaces and

O be an open subset of X . The mapping F : O ⊂ X 7→ Y is called Newton differentiable

[Chen et al., 2000, Hintermüller et al., 2002] in the open subset V ⊂ O if there exists a family of

mappings ∂F : V 7→ L(X ,Y) such that

lim
∥δ∥X→0

∥F (v + δ)− F (v)− ∂F (v + δ)δ∥Y
∥δ∥X

= 0.

for every v ∈ V . We refer ∂F as a generalized derivative of F in V . Note that ∂F is not

necessary to be unique. It is well-known that the projection (mapping) Φ : Lq(Ω) → Ls(Ω) with

1 ≤ s < q ≤ ∞ is Newton differentiable on Lq(Ω) and its generalized derivative, denoted by ∂Φ,

can be chosen as the following form

∂Φ(v)(x) =


1, if ua < v(x) < ub;

0, otherwise.

Theorem 1.5.1 ([Hintermüller et al., 2002]). Suppose that v∗ is a solution of F (v) = 0, and F

is Newton differentiable in an open neighborhood U containing v∗ with a generalized derivative

∂F (v). If ∂F (v) is non-singular and ∥∂F (v)−1∥ is bounded (in a suitable operator norm) for all

v ∈ U , then the semismooth Newton iteration

vk+1 = vk − ∂F (vk)−1F (vk), k = 0, 1, 2, · · · (1.15)

converges super-linearly to v∗, provided that the initial guess v0 is sufficiently close to v∗.

For computer implementation, we have to discretize the considered optimality system (1.6)

as well as its generalized derivative, which consequently leads to the discretized version of above

24

semismooth Newton iteration

vk+1
h = vkh − ∂Fh(v

k
h)

−1Fh(v
k
h), k = 0, 1, 2, · · · (1.16)

depending on the mesh-size h. Under certain mild assumptions, it was shown that the discretized

SSN method has a mesh-independent convergence. This indicates the number of SSN iterations

will not change as we refine the mesh. Nevertheless, the computational costs of solving the

large-scale discretized Jacobian linear systems given by

∂Fh(v
k
h)wh = Fh(v

k
h) (1.17)

are still very high if we simply use direct methods. Therefore, it is very appealing to em-

ploy those iterative methods introduced in previous section for efficiently solving the Jaco-

bian linear systems. We mention that when the Jacobian linear system is only approximately

solved, it in fact falls into the inexact Newton method [Dembo et al., 1982, Brown et al., 2003,

Ortega and Rheinboldt, 2000]. We do not explicitly distinguish between those slightly differ-

ent names for the simplicity of exposition. We will actually use a more instructive name, i.e.,

semismooth Newton-multigrid (SSN-MG) method, since the linear multigrid method is utilized

for approximately solving the Jacobian linear systems. We choose to use the multigrid method

because of its excellent computational efficiency compared to other types of iterative methods.

1.5.2 Full approximation scheme (FAS) multigrid method

In this section, we introduce the nonlinear full approximation scheme (FAS) multigrid

method for solving the discretized nonlinear problem. For a general nonlinear system that is

discretized by a finest mesh-size h

Sh(wh) = bh,

25

one FAS multigrid V-cycle iteration [Briggs et al., 2000, Trottenberg et al., 2001, Saad, 2003,

Brandt and Livne, 2011] is shown in Fig. 1.5.2.

wh := FAS(h, Sh, w
0
h, bh)

IF (h == h0)
Approximately solve: Sh0(wh0) = bh0

ELSE
Pre-smooth ν1 times: wh := smoothν1(Sh, w

0
h, bh)

Restriction residual: rH := IHh (bh − Sh(wh))

Initialize coarse guess: uH := IHh wh, wH := ĨHh wh

Define coarse r.h.s.: bH := SH(wH) + rH
Recursion: uH := FAS(H,SH , uH , bH)
Prolongation: δh := IhH(uH − wH)
Correction: wh := wh + δh
Post-smooth ν2 times: wh := smoothν2(Sh, wh, bh)

ENDIF
RETURN wh.

Figure 1.6. Algorithm of FAS multigrid V-cycle iteration

In each FAS V-cycle iteration, the fine-grid solution first undergoes a few nonlinear smooth-

ing iterations. Following this, both the solution and residual are restricted to a coarser grid

(H = 2h) using two (possibly different) restriction operators (IHh , ĨHh). A new V-cycle iteration

is then performed on this coarser level, with this procedure proceeding recursively until the grid

reaches the coarsest level h0 ≫ h. At the coarsest level, the underlying problem size has become

so small that it can be (approximately) solved easily using a few smoothing iterations. Computing

the solution on the coarser level H leads to a coarse approximation of the solution. A prolongation

operator (IhH) transfers this approximation to the fine grid, which provides a coarse grid correction

in the fine grid solution. The fine grid solution is further improved using a few more smoothing

iterations. As suggested in [Trottenberg et al., 2001], the approximation restriction operator ĨHh

is often chosen as straight injection.

The last but most crucial component is an effective smoother smooth, which can effectively

smooth out high-frequency components of the approximation errors. As a standalone solver, the

smoothing iteration may converge very slowly as the mesh refines. This is the case for a standard

nonlinear Gauss-Seidel iteration. However, because it wipes out the high-frequency components

26

of the approximation errors, it will serve as an ideal smoother smooth. This is unsurprising

given that the classical linear Gauss-Seidel iteration has been widely employed as a benchmark

smoother in the linear multigrid method.

As a quick demonstration, we also apply the above FAS multigrid method to a nonlinear

elliptic PDE on a two dimensional domain, i.e.,

−∆y + 10yey = f(x1, x2) in Ω = (0, 1)2

with a given f such that the exact solution is y = (x21 − x31) sin(3πx2). We will also use the

previous introduced second-order central finite difference discretization. As in the linear case,

starting with an initial guess y0h = 0, we update the current approximation at the k-th iteration

according to

ykh = FAS(h, Sh, y
k−1
h , bh), k = 1, 2, · · ·

until the relative residual norm of ykh fulfills the prescribed stopping criterion

∥rk∥2/∥r0∥2 < 10−8,

where rk = bh − Sh(y
k
h) is the residual vector at the k-th iteration. The corresponding compu-

tational results are reported in Table 1.2, which shows a very similar excellent performance like

that observed for the linear multigrid method.

Table 1.2. Results for solving a 2D nonlinear elliptic equation by FAS multigrid method.
h ∥rk∥2/∥r0∥2 ∥ykh − y∥∞ Order Iter CPU

129 3.00e-09 5.54e-05 – 11 0.17
257 3.69e-09 1.39e-05 2.00 11 0.55
513 4.26e-09 3.46e-06 2.00 11 2.26
1025 4.69e-09 8.66e-07 2.00 11 9.62
2049 4.99e-09 2.16e-07 2.00 11 39.62
4097 5.18e-09 5.41e-08 2.00 11 166.80

27

CHAPTER 2

A NEW SSN-MULTIGRID METHOD FOR SEMILINEAR ELLIPTIC CONTROL

PROBLEMS WITH CONTROL CONSTRAINTS

2.1 INTRODUCTION

In this chapter, we consider the following distributed optimal control problem of minimizing

the tracking type cost functional

J(u) =
1

2
∥y − z∥2L2(Ω) +

γ

2
∥u∥2L2(Ω) (2.1)

over the set Uad of admissible controls given by

Uad = {u ∈ L2(Ω) | ua ≤ u ≤ ub a.e. in Ω},

subject to a semi-linear elliptic PDE boundary value problem


−∆y + S(y) = f + u in Ω

y = 0 on ∂Ω,

(2.2)

where Ω = (0, 1)2, u is the control, z ∈ L2(Ω) is the target state, γ > 0 represents either the

weight of the cost of control or the Tikhonov regularization parameter, S : R → R is a given

nonlinear function, f ∈ L2(Ω), and {ua, ub} ⊂ L∞(Ω). The existence and uniqueness of the

solution to the state equation (2.2) for every given u ∈ L2(Ω) requires suitable assumptions on S

[Arada et al., 2002, Casas, 2007]. Under some appropriate assumptions, the convexity of the cost

functional J guarantees the existence of at least one solution (it may not be unique) to the above

control problem (2.1–2.2).

During the last two decades, many efficient numerical methods for solving this type of semi-

28

linear elliptic optimal control problems (2.1–2.2) have been proposed [Ito and Kunisch, 2008,

Ulbrich, 2011, Borz̀ı and Schulz, 2012]. The full-approximation-storage multigrid (FAS-MG)

method was first introduced in [Borźı and Kunisch, 2005, Borz̀ı and Schulz, 2009] for the linear

case (S is linear), where the point-wise projected collective Gauss-Seidel iteration acts as an

effective smoother. In [Borz̀ı, 2007a, Borz̀ı, 2008] the author further generalizes their FAS-MG

method to nonlinear case (S(y) = y4) by employing local Newton iterations as a smoother. The

reported numerical results demonstrate that FAS-MG method does achieve a typical ‘textbook’

multigrid convergence, however, its overall numerical efficiency in the nonlinear case is not quite

satisfactory due to the high computational cost of the point-wise local Newton iteration smoother,

in particular, for the more complicated nonlinear term S. It seems that there is little room for

the further improvement of the smoother within the FAS-MG framework in order to reduce the

computational cost.

In [Schöberl et al., 2011], the authors theoretically proved, for an unconstrained linear case,

their proposed W-cycle based multigrid method has an γ-independent convergence provided γ ≥

ch4 for some constant c. A similar condition was also derived in [Engel and Griebel, 2011], where

the authors developed a multigrid method with a block preconditioned Richardson iteration as a

smoother for solving the Karush-Kuhn-Tucker (KKT) system arising in each iteration via primal-

dual active-set method [Bergounioux et al., 1999]. More recently, in [Takacs and Zulehner, 2011,

Takacs and Zulehner, 2013] the authors develop and analyze a class of multigrid methods with

a so-called collective point smoother for the linear case without control constraints. Its mesh-

independent convergence is shown to be quite robust with respect to the regularization (or cost)

parameter. Nevertheless, these results generally do not directly apply to the nonlinear case with

control constraints.

In [Hintermüller and Ulbrich, 2004], the authors establish the mesh-independence conver-

gence of the semi-smooth Newton (SSN) method [Chen et al., 2000] applied to (2.1–2.2) under

certain assumptions. For linear case, the primal-dual active-set method [Bergounioux et al., 1999]

is shown to be a special case of the general SSN method [Hintermüller et al., 2002]. It’s critical to

29

observe that the SSN method can simultaneously handle the non-smooth control constraints and

the nonlinear term S, which will be linearized at the same time during each Newton iteration.

This motivates us to investigate the SSN method through applying the linear multigrid solver

with an appropriate smoother to each linearized Newton system in order to achieve a better com-

putational efficiency. Related to this direction, a mesh-independence convergence result is proved

in [Brown et al., 2003], where the authors apply multigrid method to solve the linear Jacobian

system of smooth Newton method.

Our main contributions in this chapter are: (i) to derive a new formulation of the SSN

method that can be applied to the optimality system of (2.1–2.2) so that the computational

efficiency can be greatly improved by incorporating a standard linear multigrid method for

solving the linearized Newton systems; (ii) to design an efficient implementation of the pre-

ceding multigrid method so that it can achieve a robust mesh-independent convergence with

respect to the regularization parameter γ. It’s worthwhile to mention that we apply the

SSN method to solve both state and adjoint variables in the sense of ‘all-at-once’ method

[Takacs and Zulehner, 2013], which is different from the strategy of reducing the coupled sys-

tem to one equation depending on only state variable [Hintermüller and Ulbrich, 2004] or control

variable [Hackbusch, 1980, Hintermüller et al., 2008, Hinze and Vierling, 2012] before applying

the SSN method. The FAS multigrid method treats the nonlinear term through projected local

Newton iterations as smoother, while our proposed SSN multigrid (SSN-MG) method linearizes

both the semi-smoothness and nonlinear term by SSN prior to using the linear multigrid method.

The proposed approach, demonstrated by theoretical discussions as well as numerical simulations,

presents a significant improvement in the computational efficiency.

The rest of the chapter is organized as follows. In next section, a new formulation of semi-

smooth Newton method is presented for solving the first-order necessary optimality system and its

corresponding finite difference discretization. In Section 2.3, we provide a detailed implementation

of the linear multigrid method for approximately solving the saddle-point linear system in each

semi-smooth Newton iteration. The FAS multigrid method is summarized in detail in Section 2.4

30

for readiness and a handy comparison with our proposed approach. Numerical experiments are

carried out in Section 2.5 to demonstrate the effectiveness of the proposed method. Finally, the

chapter ends with concluding remarks in Section 2.6.

2.2 SSN METHOD FOR OPTIMALITY SYSTEM

In this section we introduce the semi-smooth Newton method for the optimality system of

the optimal control problem (2.1–2.2). To characterize the possible optimal solutions of (2.1–2.2),

the first-order necessary optimality conditions can be stated as [Lions, 1971, Tröltzsch, 2010]



−∆y + S(y)− u = f in Ω and y = 0 on ∂Ω,

−∆p+ S′(y)p+ y = z in Ω and p = 0 on ∂Ω,

(γu− p, v − u) ≥ 0 for all v ∈ Uad,

(2.3)

where p is called adjoint state. By making use of the principle of variational inequality, one can

obtain the following equivalent characterization of the optimal control

u = Φ(p/γ) := min{ua,max{ub, p/γ}}, (2.4)

where Φ(·) denotes the element-wise projection onto Uad. By substituting (2.4) into the optimality

conditions (2.3) so that u can be eliminated, we thus obtain the following non-smooth nonlinear

optimality system in terms of (y, p)


−∆y + S(y)− Φ(p/γ) = f in Ω and y = 0 on ∂Ω,

−∆p+ S′(y)p+ y = z in Ω and p = 0 on ∂Ω.

(2.5)

We employ the second order five-point finite difference scheme [Borźı and Kunisch, 2005,

31

Borz̀ı, 2008] for the discretization of (2.5). Discretize Ω using a uniform Cartesian grid

Ωh =
{
(xi1, x

j
2) = (ih, jh)| i = 1, 2, · · · , n; j = 1, 2, · · · , n.

}

with mesh size h = 1/(n+ 1) and then let yi,j , pi,j , fi,j , and zi,j represents an approximation

to y(xi1, x
j
2), p(x

i
1, x

j
2), f(x

i
1, x

j
2), and z(xi1, x

j
2), respectively. Also let yh, ph, fh, and zh be the

corresponding lexicographic ordering (vectorization) of those approximations over all interior grid

points. Denote the corresponding discretization of Laplacian ∆ by ∆h, where the homogeneous

Dirichlet boundary conditions are also included. More specifically, ∆h = (I ⊗ Jh) + (Jh ⊗ I) with

Jh = tridiag (1,−2, 1)/h2, and I being an identity matrix with appropriate dimension. After

discretizing (2.5), we thus obtain the discrete optimality system in the form of

Fh(yh, ph) :=

 −∆hyh + S(yh)− Φ(ph/γ)− fh

−∆hph + S′(yh)ph + yh − zh

 = 0 (2.6)

where S(·), S′(·), and Φ(·) are element-wisely defined and so is the multiplication S′(yh)ph. It is

straightforward to verify that Fh in (2.6) has a generalized derivative

Gh(yh, ph) =

 −∆h +D(S′(yh)) − 1
γD(∂Φ(1γ ph))

I +D(S′′(yh)ph) −∆h +D(S′(yh))



where D(·) denotes a diagonal matrix with the input vector as the diagonal elements. Analogously,

we could treat the discrete optimality system (2.6) by the discrete version of SSN method given by

(1.16). However, to achieve a mesh-independent convergence, we do require the Jacobian matrix

Gh has a uniformly bounded inverse in some open neighborhood containing the optimal control

and state with respect to h, as stated in Theorem 1.5.1. For proving our following theoretical

result, we need to confine the nonlinear function S : R → R by introducing the following two

assumptions:

32

(A1) S ∈ C3 and S′ is non-negative, which are the same conditions given in

[Hintermüller and Ulbrich, 2004];

(A2) S′′(y(x1, x2))p(x1, x2) + 1 ≥ κ1 for some κ1 > 0 in some neighborhood of the optimal y and

p, which is similar to the second-order necessary conditions in [Borz̀ı and Kunisch, 2006,

Borz̀ı, 2007a].

We remark here that the assumption (A2) is a sufficient condition to guarantee the optimal

solution, which may not be necessary to the proposed algorithm in some cases. Clearly, (A2)

holds when S is linear. The (A2) assumption may be replaced by a more transparent one if

bounds for optimal y and p can be estimated for a specific S given at hand.

Theorem 2.2.1. Under the assumptions (A1) and (A2), ∥Gh(yh, ph)
−1∥2 is uniformly bounded

for all h > 0, where ∥ · ∥2 is the operator (spectral) norm associated with the discrete L2 norm.

Proof. Let

 Bh Dh

Ch Bh

 := Gh(yh, ph) =

 −∆h +D(S′(yh)) − 1
γD(∂Φ(1γ ph))

I +D(S′′(yh)ph) −∆h +D(S′(yh))

 . (2.7)

We first symmetrize the system by reordering the rows

 0 I

I 0


 Bh Dh

Ch Bh

 =

 Ch Bh

Bh Dh

 =: Th,

which gives

∥∥∥∥∥∥∥∥∥
 Bh Dh

Ch Bh


−1
∥∥∥∥∥∥∥∥∥
2

=

∥∥∥∥∥∥∥∥∥
 Ch Bh

Bh Dh


−1  0 I

I 0


∥∥∥∥∥∥∥∥∥
2

=

∥∥∥∥∥∥∥∥∥
 Ch Bh

Bh Dh


−1
∥∥∥∥∥∥∥∥∥
2

=
∥∥T−1

h

∥∥
2

since the spectral norm is unitarily invariant. Let the eigenvalues of a square matrix A be arranged

33

so that |λmax(A)| ≥ · · · ≥ |λmin(A)|, and the singular values of A be ordered as σmax(A) ≥ · · · ≥

σmin(A). It is well-known [Horn and Johnson, 2013] that the singular values of a symmetric square

matrix are merely the absolute value of its eigenvalues. Therefore, for a symmetric A, there holds

σmin(A) = |λmin(A)|.

We first show that Th is indeed invertible and then prove ∥T−1
h ∥2 is uniformly bounded. Let

(λ, ξ) be any eigenpair of Th with a normalized eigenvector ∥ξ∥22 = ξ∗ξ = 1. Partition ξ =

 ξ1

ξ2


according to the block structure of Th. Then Thξ = λξ gives


Chξ1 +Bhξ2 = λξ1

Bhξ1 +Dhξ2 = λξ2.

(2.8)

Since Bh = −∆h + D(S′(yh)) is positive definite, it’s obvious ξ1 = 0 if and only if ξ2 = 0. Thus

we have both ξ1 ̸= 0 and ξ2 ̸= 0. By multiplying the first equation by ξ∗1 and the second one by

ξ∗2 we get 
ξ∗1Chξ1 + ξ∗1Bhξ2 = λξ∗1ξ1

ξ∗2Bhξ1 + ξ∗2Dhξ2 = λξ∗2ξ2.

(2.9)

Notice (ξ∗1Bhξ2)
∗ = ξ∗2Bhξ1 and λ∗ = λ. On subtracting the second equation from the conjugate

of first equation we obtain

ξ∗1Chξ1 − ξ∗2Dhξ2 = λ(ξ∗1ξ1 − ξ∗2ξ2).

By Assumption (A2), the diagonal matrix Ch = I + D(S′′(yh)ph) is positive definite with

λmin(Ch) ≥ κ1. By continuity we further have λmax(Ch) ≤ κ2 for some κ2 ≥ κ1 > 0. By

the definition of ∂Φ, the diagonal matrix Dh = − 1
γD(∂Φ(1γ ph)) is negative semidefinite since

34

those entries with active control constraints are zeros. Based on these facts, we have

0 < κ1ξ
∗
1ξ1 ≤ ξ∗1Chξ1 ≤ ξ∗1Chξ1 − ξ∗2Dhξ2 = λ(ξ∗1ξ1 − ξ∗2ξ2), (2.10)

which implies λ ̸= 0 and thus Th is invertible.

Next, we will estimate the bounds of all eigenvalues of Th. For λ > 0, from the above

inequality we get

(λ− κ1)ξ
∗
1ξ1 ≥ λξ∗2ξ2 > 0,

which implies λ > κ1 > 0 since ξ∗1ξ1 > 0.

For λ < 0, (Ch − λI) is positive definite, according to the first equation in (2.8) we obtain

ξ1 = −(Ch − λI)−1Bhξ2, which can be substituted into the second equation and leads to

Bh(Ch − λI)−1Bhξ2 −Dhξ2 = −λξ2.

Multiplying from the left by ξ∗2 and noticing (−Dh) is positive semidefinite we obtain

ξ∗2Bh(Ch − λI)−1Bhξ2 ≤ ξ∗2Bh(Ch − λI)−1Bhξ2 − ξ∗2Dhξ2 = −λξ∗2ξ2.

This further gives

(λmax(Ch)− λ)−1σ2min(Bh) ≤
ξ∗2Bh(Ch−λI)−1Bhξ2

ξ∗2BhBhξ2

ξ∗2BhBhξ2
ξ∗2ξ2

=
ξ∗2Bh(Ch−λI)−1Bhξ2

ξ∗2ξ2
≤ −λ,

which is

λ2 − λmax(Ch)λ− σ2min(Bh) ≥ 0.

35

Under the condition λ < 0, we derive

λ ≤ 1
2

(
λmax(Ch)−

√
λ2max(Ch) + 4σ2min(Bh)

)
.

It follows from Bh = −∆h + D(S′(yh)) is symmetric positive definite with S′(yh) ≥ 0 and the

monotonicity theorem [Horn and Johnson, 2013] that

σmin(Bh) = λmin(−∆h +D(S′(yh))) ≥ λmin(−∆h) = 2π2 −O(h2) > π2

for any h < 1, where the estimation of λmin(−∆h) is a classical result [Hackbusch, 2003]. Thus

λ < 1
2

(
λmax(Ch)−

√
λ2max(Ch) + 4π4

)
= −2π4

λmax(Ch)+
√

λ2
max(Ch)+4π4

≤ −2π4

κ2+
√

κ2
2+4π4

.

To this end, we have shown that either λ > κ1 > 0 or λ < −2π4

κ2+
√

κ2
2+4π4

< 0, which gives

∥T−1
h ∥2 = 1

σmin(Th)
= 1

|λmin(Th)| ≤
1

min(κ1,
2π4

κ2+
√

κ22+4π4
)
= max{ 1

κ1
,
κ2+

√
κ2
2+4π4

2π4 },

where 0 < κ1 ≤ κ2 are independent of mesh size h. This completes the proof.

Our above proof mainly follows the arguments in [Silvester and Wathen, 1994] for estimating the

eigenvalue bounds of preconditioned saddle point systems arising from stabilized Stokes systems.

The major difference from Stokes systems is that the (1,2) and (2,1) blocks in our case, Bh, have

nice algebraic properties with σmin(Bh) ̸= 0, which allows us to derive the uniformly boundedness

of the inverse T−1
h . Additionally, the invertibility of the saddle point system Th was also discussed

in the review paper [Benzi et al., 2005]. The authors showed that Th is invertible if ker(Ch) ∩

ker(Bh) = {0} or Bh has full rank. However, the uniform boundedness of ∥T−1
h ∥2, which is

essential to our approach, was not investigated there.

Based on the above discussions, the semi-smooth Newton method for solving (2.6) can be

36

iterated as  yk+1
h

pk+1
h

 =

 ykh

pkh

−Gh(y
k
h, p

k
h)

−1Fh(y
k
h, p

k
h), k = 0, 1, 2, · · ·

where the initials (y0h, p
0
h) will be specified accordingly. In each semi-smooth Newton iteration,

we need to solve the linearized Newton system

 −∆h +D(S′(ykh)) − 1
γD(∂Φ(1γ p

k
h))

I +D(S′′(ykh)p
k
h) −∆h +D(S′(ykh))


 δyk

δpk

 = Fh(y
k
h, p

k
h), (2.11)

and to then update the k-th approximation by

 yk+1
h

pk+1
h

 =

 ykh

pkh

−

 δyk

δpk

 .

The summary of current numerical methods for solving saddle-point systems such as (2.11) can be

found in the review paper [Benzi et al., 2005]. However, it is not difficult to see that the numerical

computation of (2.11) becomes more challenging as γ → 0 since the system tends to be more ill-

conditioned. The simple fixed-point iterative method usually deteriorates or fails to converge

when γ becomes small (about < 10−3). The multigrid method has been successfully employed

to solve ill-conditioned Toeplitz systems [Chan et al., 1998]. Unfortunately, here the underlying

system (2.11) is not Toeplitz and thus does not have those nice features that Toeplitz matrices

offer . Therefore, to develop an efficient multigrid scheme, it becomes necessary to improve the

SSN method, which will be shown in next section.

2.3 MULTIGRID METHOD FOR JACOBIAN SYSTEM

This section is devoted to developing a multigrid algorithm for approximately solving (2.11).

We now carry out a specific multigrid implementation for our previous saddle point linear

37

system (2.11), which can be simplified (by omitting subscript k) as

 Bh Dh

Ch Bh


 δy

δp

 = F (yh, ph) (2.12)

where

Ah :=

 Bh Dh

Ch Bh

 :=

 −∆h +D(S′(yh)) − 1
γD(∂Φ(1γ ph))

I +D(S′′(yh)ph) −∆h +D(S′(yh))

 . (2.13)

Next, we discuss how to construct the coarse grid operator

AH :=

 BH DH

CH BH

 .

Unlike the algebraic multigrid, we perform coarsening in a geometric way. The blocks BH and

CH are derived from the finite difference discretization with a coarse step-size H, that is,

BH = −∆H +D(S′(IHh yh)) and CH = I +D(S′′(IHh yh)I
H
h ph).

However, there are two possible approaches to coarse the non-smooth operator

Dh = −1

γ
D(∂Φ(

1

γ
ph)).

The first strategy directly applies IHh to the adjoint variable ph to obtain

D̃H := −1

γ
D(∂Φ(

1

γ
IHh ph)) (2.14)

which fails to achieve favorable convergence for small γ (< 10−3) in our simulations. It seems that

38

this type of deteriorated performance results from those extra high frequency errors introduced by

the non-smooth operator ∂Φ, and these errors are supposed to be smoothed out by the smoother

on fine grid. As an alternative, we place the restriction operator IHh on the non-smooth operator

∂Φ, that is,

DH := −1

γ
D(IHh ∂Φ(

1

γ
ph)), (2.15)

which provides more information to the coarse operator compared with D̃H . Postponing the

restriction operator IHh after the non-smooth operator ∂Φ results in the iterations being able to

capture more nonlinear structure of the finer system.

For the smoother smooth, we tested both the standard Gauss-Seidel (G-S) smoother and the

more recently damped collective Jacobi (C-JAC) smoother given in [Takacs and Zulehner, 2011].

In particular, these iteration schemes can be represented in one compact formula (with damping

factor ω ∈ (0, 1] for C-JAC smoother and ω = 1 for G-S smoother)

 δynew

δpnew

 =

 δy

δp

+ ωP−1
h

Fh(yh, ph)−

 Bh Dh

Ch Bh


 δy

δp


 , (2.16)

where

Ph =

 diag(Bh) Dh

Ch diag(Bh)

 or Ph =

 tril(Bh) 0

Ch tril(Bh),

 (2.17)

where diag(Bh) and tril(Bh) stand for the diagonal and left-lower triangular part of Bh, respec-

tively. Here, the matrix-vector multiplication P−1
h r can be computed very efficiently based on the

39

well-known partitioned inverse formula

 B D

C B


−1

=

 I −B−1D

0 I


 B−1 0

0 (B − CB−1D)−1


 I 0

−CB−1 I

 ,

since these blocks are all diagonal or lower triangular. Although both collective Richardson and

collective Gauss-Seidel methods [Takacs and Zulehner, 2011] can be used as well, our numerical

experiments show that the C-JAC smoother is the fastest one among all of these approaches. In

particular, the C-JAC smoother shows stronger robustness than G-S smoother in handling very

small γ, as reported in the following Example 3.

2.4 FAS MULTIGRID METHOD FOR OPTIMALITY SYSTEM

In this section, for the sake of completeness and comparison, we give a brief description of

the FAS multigrid method [Borźı and Kunisch, 2005, Borz̀ı, 2007a, Borz̀ı, 2008] for a direct finite

difference discretization of the optimality system (2.3) in the form of



−∆hyh + S(yh)− uh = fh,

−∆hph + S′(yh)ph + yh = zh,

(γuh − ph) · (vh − uh) ≥ 0 for all vh ∈ Uad
h ,

(2.18)

where the control variable and constraints are also explicitly discretized in a straightforward

manner with

Uad
h = {u ∈ L2

h(Ωh) | ua ≤ u ≤ ub in Ωh}.

To illustrate the (projected) collective Gauss-Seidel smoothing scheme [Borz̀ı, 2007a,

Borz̀ı, 2008], we rewrite the discretized optimality system (2.18) in its coordinate form at each

40

(xi1, x
j
2) ∈ Ωh

1

h2
(4yi,j − yi−1,j − yi+1,j − yi,j−1 − yi,j+1) + S(yi,j)− ui,j = fi.j , (2.19)

1

h2
(4pi,j − pi−1,j − pi+1,j − pi,j−1 − pi,j+1) + S′(yi,j)pi,j + yi,j = zi,j , (2.20)

(γui,j − pi,j) · (vi,j − ui,j) ≥ 0 for all vh ∈ Uad
h . (2.21)

To simplify notation we set

Yi,j = fi,j +
1
h2 (yi−1,j + yi+1,j + yi,j−1 + yi,j+1)

and

Pi,j = zi,j +
1
h2 (pi−1,j + pi+1,j + pi,j−1 + pi,j+1).

Notice that both Yi,j and Pi,j are considered as constants during the update at (xi1, x
j
2). The first

step is to derive the local Newton update formula for yi,j and pi,j only based on the first two

equations

4
h2 yi,j + S(yi,j) = Yi.j + ui,j ,

4
h2 pi,j + S′(yi,j)pi,j + yi,j = Pi,j ,

where ui,j is set to be fixed during the update. It’s easy to find the inverse of the Jacobian Ji,j of

the above two equations as

J−1
i,j =

 4
h2 + S′(yi,j) 0

S′′(yi,j)pi,j + 1 4
h2 + S′(yi,j)


−1

=
1

det(Ji,j)

 4
h2 + S′(yi,j) 0

−(S′′(yi,j)pi,j + 1) 4
h2 + S′(yi,j)

 ,

where det(Ji,j) = (4
h2 + S′(yi,j))

2 > 0 for sufficiently small h. By checking the reduced Hessian

[Borz̀ı and Kunisch, 2006], one finds that second-order necessary conditions for a minimum require

that (S′′(yi,j)pi,j + 1) ≥ 0 (see also assumption (A2)). Hence, the local smooth Newton update

41

for yi,j and pi,j is given by

 ŷi,j

p̂i,j

 =

 yi,j

pi,j

− J−1
i,j

 eyi,j

epi,j

 ,

where eyi,j = 4
h2 yi,j + S(yi,j) − Yi.j − ui,j and epi,j = 4

h2 pi,j + S′(yi,j)pi,j + yi,j − Pi,j denote the

corresponding residual. In particular, we notice that p̂i,j depends on ui,j as follows:

p̂i,j(ui,j) = pi,j − 1
det(Ji,j)

(
(4
h2 + S′(yi,j))(

4
h2 pi,j + S′(yi,j)pi,j + yi,j − Pi,j)

)
+ 1

det(Ji,j)

(
(S′′(yi,j)pi,j + 1)(4

h2 yi,j + S(yi,j)− Yi.j − ui,j)
)
,

which in together with the unconstrained variational inequality (γūi,j = p̂i,j(ūi,j)) gives the in-

termediate control update as

ūi,j =
(
γ +

(S′′(yi,j)pi,j+1)
det(Ji,j)

)−1

×
[
pi,j − 1

det(Ji,j)

(
(4
h2 + S′(yi,j))(

4
h2 pi,j + S′(yi,j)pi,j + yi,j − Pi,j)

)
+ 1

det(Ji,j)

(
(S′′(yi,j)pi,j + 1)(4

h2 yi,j + S(yi,j)− Yi.j)
)]
.

Finally, the new value of control ui,j is obtained by enforcing the control constraint

ûi,j = min{ua(xi1, x
j
2),max{ub(xi1, x

j
2), ūi,j}}. (2.22)

With this updated ûi,j we now can update yi,j and pi,j collectively according to (2.4).

To summarize, one local Newton update step at (xi1, x
j
2) includes

(1) obtain an auxiliary control variable ūi,j based on the update formula (2.4);

(2) project ūi,j onto Uad
h as in (2.22) to get the updated control ûi,j ;

(3) perform a local Newton update (2.4) for yi,j and pi,j with new ûi,j .

42

This whole process implicitly treats the variational inequality through the projection (2.22). Fi-

nally, one complete Gauss-Seidel smoothing iteration consists of sweeping (in certain ordering) n2

local Newton update steps over all grid points in Ωh. It is called Gauss-Seidel method because

the updated nodes will be used once they are computed.

2.5 NUMERICAL EXAMPLES

In this section we numerically verify the mesh-independence convergence of our multigrid ac-

celerated SSN method and compare its computational performance with that of the well-accepted

FAS multigrid method. All numerical simulations are implemented using MATLAB on a laptop

PC with Intel(R) Core(TM) i3-3120M CPU@2.50GHz and 6GB RAM. The CPU time is esti-

mated by MATLAB’s built-in timing functions tic/toc, which may be slightly different from other

programming languages, but it gives a reliable reference. Let ry and rp be the residual of the

state and adjoint equation, respectively, i.e.,

ry = −∆hyh + S(yh)− Φ(ph/γ)− fh and rp = −∆hph + S′(yh)ph + yh − zh.

All unknowns are initialized to be zero and the stopping criterion is chosen as

∥rky∥2 + ∥rkp∥2
max(1, ∥r0y∥2 + ∥r0p∥2)

≤ 10−8,

where rky and rkp denote the residuals at k-th iteration. Here ∥ · ∥2 denotes the standard discrete

L2 norm. To approximately solve the inner semi-smooth Newton system (2.12), we perform only

two V-cycle multigrid iterations with zero initial and two pre- and post- smoothing iterations.

If the nonlinear term S is very complicated, we may increase the number of inner iterations to

recover the mesh-independence convergence. The damping factor is set as ω = 2/3 for C-JAC

smoother. The coarsest mesh size is chosen as h0 = 1/8.

43

Mesh-independence

Example 1 [Hintermüller and Ulbrich, 2004].

Let S(y) = y3 + y, z = sin(2πx1) sin(2πx2)e
2x1/6, ua = −4, ub = 0, and f = 0.

Fig. 2.1 shows the computed optimal control uh and the corresponding state yh for γ = 10−3

with h = 1/256, which is indistinguishable from the plot in [Hintermüller and Ulbrich, 2004] to

the human eye.

Figure 2.1. Computed optimal control and optimal state of Ex. 1 with γ = 10−3 for h = 1/256

In Table 2.1, we provide the required numbers (column ‘Iter’) and the corresponding CPU

time in seconds (column ‘CPU’) of the SSN multigrid iterations (using G-S smoother) for different

levels of mesh size h with different γ. We clearly observe the mesh-independent convergence of

our proposed SSN-MG method. More importantly, the SSN-MG algorithm numerically achieves

the optimal O(N) linear complexity since its CPU time does present a roughly fourfold increase

as the number of unknowns quadruples from one level to the next. As what we have anticipated,

if we just solve the semi-smooth Newton system (2.11) by MATLAB’s backslash(‘\’) sparse direct

solver, the corresponding CPU time, as stated in Table 2.2, turns out to be much slower than

SSN-MG method although it does achieve slightly better mesh-independent convergence rate

and accuracy. The cruciality of the coarsen strategy (2.15) is illustrated in Table 2.3, where we

44

implement our SSN-MG method using (2.14) instead of (2.15). It’s convergence rate is obviously

deteriorated for γ = 10−6.

Moreover, the required numbers of SSN-MG iterations are very robust with respect to the

regularization parameter γ (only 2 more iterations for γ = 10−6 compared with γ = 10−3). A

slight increase in ‘Iter’ is reasonable since the problem becomes more ill-conditioned as γ becomes

smaller. However, even for extremely small γ(< 10−6), we suggest to handle it via an extrapolation

based continuation technique proposed in [Hintermüller et al., 2008]. Its basic idea is, for each

fixed h, to derive a better initial guess for smaller γ by performing a linear extrapolation using

already computed solutions for larger γ’s.

Table 2.1. Results of SSN-MG method (V-cycles) for Ex. 1.
γ = 10−3 γ = 10−6

h ∥ry∥2 ∥rp∥2 Iter CPU ∥ry∥2 ∥rp∥2 Iter CPU

1/64 1.42e-09 1.22e-11 6 0.15 2.83e-09 7.89e-12 14 0.31
1/128 2.27e-09 1.63e-11 6 0.38 1.28e-09 1.72e-12 9 0.56
1/256 2.81e-09 1.68e-11 6 1.20 8.47e-10 1.21e-12 9 1.87
1/512 3.42e-09 1.67e-11 6 5.24 2.96e-09 3.74e-12 8 6.40
1/1024 4.02e-09 1.70e-11 6 21.43 5.21e-10 1.16e-12 8 27.47

1/2048 4.41e-09 1.75e-11 6 82.40 5.92e-10 4.52e-12 8 124.22

Table 2.2. Results of MATLAB’s backslash direct solver for Ex. 1.
γ = 10−3 γ = 10−6

h ∥ry∥2 ∥rp∥2 Iter CPU ∥ry∥2 ∥rp∥2 Iter CPU

1/64 2.40e-10 2.93e-11 4 0.22 3.66e-11 1.12e-12 13 0.77
1/128 1.41e-13 1.65e-14 5 1.27 1.99e-13 1.77e-14 10 2.82
1/256 5.67e-13 6.60e-14 5 6.39 7.65e-13 7.04e-14 7 9.51
1/512 2.25e-12 2.67e-13 5 33.61 3.08e-12 2.83e-13 7 49.07
1/1024 9.02e-12 1.06e-12 5 246.26 1.23e-11 1.13e-12 7 350.64

Table 2.3. Results of SSN-MG method (V-cycles with D̃H) for Ex. 1.
γ = 10−3 γ = 10−6

h ∥ry∥2 ∥rp∥2 Iter CPU ∥ry∥2 ∥rp∥2 Iter CPU

1/64 1.34e-09 1.30e-11 6 0.14 >50
1/128 1.91e-09 1.35e-11 6 0.38 >50
1/256 2.46e-09 1.39e-11 6 1.57 >50
1/512 3.15e-09 1.40e-11 6 5.45 5.73e-09 3.56e-13 36 29.79
1/1024 3.78e-09 1.41e-11 6 21.57 8.62e-09 1.17e-12 36 135.23

1/2048 4.21e-09 1.47e-11 6 87.45 8.02e-09 4.52e-12 35 517.37

45

Comparison with FAS multigrid method

In this subsection, we compare our proposed SSN-MG method with the FAS multigrid

method given in [Borźı and Kunisch, 2005, Borz̀ı, 2008, Borz̀ı and Schulz, 2009], where the au-

thors suggested to use the W-cycle with two pre- and post-smoothing iterations. We will use 10

Gauss-Seidel smoothing iterations as the direct solver on the coarsest level. By comparing both

methods (with the same stop criterion), we continue using zero initials since it’s more clear to see

a mesh-independent convergence rate and hence judge their computational efficiency more fairly.

Example 2 [Borz̀ı, 2008].

Let S(y) = y4, z = sin(2πx1) sin(3πx2), ua = −1/2, ub = 1/2, and f = 0.

In Table 2.4 and 2.5, we compare the convergence results and computational time of both

our proposed SSN-MG method (C-JAC and G-S smoother) with the FAS-MG method (V-cycles

and W-cycles) for Ex.1 and Ex. 2 with γ = 10−4, respectively. It evidently shows that the

FAS-MG method with W-cycles is faster and more robust than with V-cycles. However, there

is no advantage over V-cycles to choose more expensive W-cycles in our SSN-MG method, since

the robust mesh-independence convergence mainly comes from SSN outer iterations, which will

not be obviously influenced by how the inner multigrid solver is implemented. Although both

of them achieve a very favorable mesh-independent convergence, our proposed SSN-MG method

costs significantly less CPU time than the FAS-MG method does. For example, in Table 2.5 with

h = 1/1024, our proposed SSN-MG method (for both smoothers) only need less than half of the

CPU time taken by the FAS-MG method (with W-cycles). We also find that the standard G-S

smoother is obviously faster than the C-JAC smoother for γ = 10−4.

Table 2.4. Results of FAS-MG and SSN-MG method for Ex. 1 (γ = 10−4).
FAS-MG Method SSN-MG Method (V-cycles)

V-cycle W-cycle C-JAC smoother G-S smoother

h Iter CPU Iter CPU Iter CPU Iter CPU

1/64 13 0.32 8 0.31 9 0.22 7 0.16
1/128 13 1.10 7 0.97 9 0.57 7 0.42
1/256 13 4.40 6 3.09 9 1.96 7 1.43
1/512 13 17.98 6 12.67 9 7.32 7 5.56
1/1024 13 73.34 6 52.30 9 28.89 7 23.25

46

Table 2.5. Results of FAS-MG and SSN-MG method for Ex. 2 (γ = 10−4).
FAS-MG Method SSN-MG Method (V-cycles)

V-cycle W-cycle C-JAC smoother G-S smoother

h Iter CPU Iter CPU Iter CPU Iter CPU

1/64 35 0.90 11 0.53 8 0.20 6 0.15
1/128 43 3.97 8 1.37 8 0.52 6 0.41
1/256 46 16.92 6 3.73 8 1.87 6 1.32
1/512 45 69.91 6 15.04 8 7.14 6 5.30
1/1024 45 333.03 6 59.34 8 26.62 6 20.68

Example 3 [Hintermüller et al., 2008].

Let S(y) = y3 + y + e10y, z = cos(πx1) cos(πx2)e
x1/2, ua = −8, ub = 4, and f = 0.

Our last Example 3 is slightly modified from the Example 1 in [Hintermüller et al., 2008],

where the original problem is mixed control-state constrained. Fig. 2.2 shows the computed

optimal control uh and the corresponding optimal state yh for γ = 10−4 with h = 1/1024,

which displays some similar characteristics as the plots reported in [Hintermüller et al., 2008].

Again, the corresponding computational results as given in Table 2.6 and 2.7 demonstrate the

better performance for our proposed SSN-MG method. Interestingly, the FAS-MG method

fails to converge within 50 iterations and the C-JAC smoother becomes faster than the G-

S smoother when γ = 10−6. However, in the case of γ = 10−6, the extrapolation technique

[Hintermüller et al., 2008] should be adopted.

Table 2.6. Results of FAS-MG and SSN-MG method for Ex. 3 (γ = 10−4).
FAS-MG Method SSN-MG Method (V-cycles)

V-cycle W-cycle C-JAC smoother G-S smoother

h Iter CPU Iter CPU Iter CPU Iter CPU

1/64 24 0.63 8 0.36 10 0.24 8 0.19
1/128 25 2.41 7 1.10 10 0.63 8 0.52
1/256 25 9.18 6 3.51 10 2.15 8 1.87
1/512 25 38.31 6 13.60 10 7.99 8 6.51
1/1024 25 158.45 6 56.32 10 32.24 8 27.20

47

Figure 2.2. Computed optimal control and optimal state of Ex. 3 with γ = 10−4 for h = 1/1024

Table 2.7. Results of FAS-MG and SSN-MG method for Ex. 3 (γ = 10−6).
FAS-MG Method SSN-MG Method (V-cycles)

V-cycle W-cycle C-JAC smoother G-S smoother

h Iter CPU Iter CPU Iter CPU Iter CPU

1/64 >50 1.20 >50 2.00 20 0.73 27 0.59
1/128 >50 4.70 >50 7.24 16 1.45 31 2.68
1/256 >50 18.74 >50 27.54 16 4.09 32 8.44
1/512 >50 76.64 >50 112.96 16 13.70 32 29.26
1/1024 >50 321.70 >50 468.32 16 57.71 32 102.87

2.6 CONCLUSIONS

We propose a new multigrid approach to implement the semi-smooth Newton method, which

works very well for a class of semi-linear elliptic optimal control problems with control-constraints

comparing with current available approaches in literature in terms of computational efficiency.

Numerical results show that our proposed semi-smooth Newton multigrid method outperforms the

currently widely used FAS multigrid method, attributed to the proposed new coarsening strategy

and computationally more efficient smoothers.

48

CHAPTER 3

A NEW LEAPFROG MULTIGRID METHOD FOR LINEAR PARABOLIC

CONTROL PROBLEMS WITHOUT CONTROL CONSTRAINTS

3.1 INTRODUCTION

In this chapter, we exemplify our proposed approach through discussing a typical parabolic

distributed optimal control problem. Let Ω = (0, 1)d (1 ≤ d ≤ 3) be the spatial domain with

boundary Γ := ∂Ω. Given a finite period of time T > 0, define Q = Ω× (0, T) and Σ = Γ× (0, T).

We consider the following optimal control problem of minimizing a tracking-type quadratic cost

functional

J(y, u) =
1

2
∥y − g∥2L2(Q) +

γ

2
∥u∥2L2(Q) (3.1)

subject to a linear parabolic PDE system



−∂ty +∆y = f + u in Q,

y = 0 on Σ,

y(·, 0) = y0 in Ω,

(3.2)

where u ∈ U := L2(Q) is the distributed control function, g ∈ L2(Q) is the desired tracking

trajectory, γ > 0 represents either the weight of the cost of control or the Tikhonov regularization

parameter, f ∈ L2(Q), and the initial condition y0 ∈ H1
0 (Ω). The existence and uniqueness of

solution to the above optimal control problem (3.1-3.2) is well understood (see, e.g., [Lions, 1971,

Tröltzsch, 2010]).

By defining an appropriate Lagrange functional, making use of the strong convexity of

the original optimization problem, the optimal solution pair (y, u) to (3.1-3.2) is shown to be

49

completely characterized by the unique solution triplet (y, p, u) to the following optimality system



−∂ty +∆y − u = f in Q,

y = 0 on Σ, y(·, 0) = y0 in Ω,

∂tp+∆p+ y = g in Q,

p = 0 on Σ, p(·, T) = 0 in Ω,

γu− p = 0 in Q,

(3.3)

where the state y evolves forward in time and the adjoint state p marches backward in time.

According to [Evans, 2010], suitable regularity for y and p can hold under appropriate assumptions

on y0, f , and g. The special relation γu − p = 0 implies that u has the same regularity as p.

This would not be the case if there are some boxed constraints on the control u, which will be

discussed in the next chapter. For the purpose of simplified analysis and practical implementation,

the control u = p/γ can be eliminated from the optimality system as following



−∂ty +∆y − p/γ = f in Q,

y = 0 on Σ, y(·, 0) = y0 in Ω,

∂tp+∆p+ y = g in Q,

p = 0 on Σ, p(·, T) = 0 in Ω.

(3.4)

This is a standard two-point boundary-value problem (with respect to t) appeared in optimal

control of parabolic PDEs. It is well-known that the main challenge for solving (3.4) results

from the fact that the state y and the adjoint state p are marching in opposite orientations. Its

numerical discretizations will create an enormously huge system of algebraic equations as we have

to resolve all time steps simultaneously [Heinkenschloss, 2005].

In terms of finite difference discretization for time variable of (3.4), the backward Euler

discretization with respect to time t is a favorable choice due to its unconditional stability (see,

50

e.g.,[Borz̀ı, 2003]). The drawback is the sloppy first-order accuracy in time t, compared with

standard second-order spatial discretizations. Constructing higher order finite difference schemes

for the time variable t is a natural development to improve the overall efficiency (for both time

and spatial variables) since it allows us to attain the required accuracy with much coarser mesh

size that results in a smaller dimension of discretized linear system. Thus much effort is devoted

by many researchers to explore various second or higher-order numerical schemes for (3.4) or

similar-type systems. In [Apel and Flaig, 2012], the authors introduced a family of second-order

Crank-Nicolson based time discretizations for state and adjoint state in unconstrained optimal

control problems with evolution equations, where a second-order accuracy in both time and space

is proved under L2 norm setting. In [González Andrade and Borz̀ı, 2012], the authors developed a

second-order backward time differentiation formula (BDF2) in time with Crank-Nicolson scheme

as an initialization step, which is also shown to be second-order accurate with discrete L2 norm in

the case where the constraints on the control are not active. Their BDF2 scheme requires a second-

order accurate approximation, such as the Crank-Nicolson scheme, to the initial time step of the

state equation as well as the final time step of the adjoint equation, respectively. Under the frame-

work of finite element discretizations, similar efforts were also made to develop better convergent

schemes. For instance, it was demonstrated in [Neitzel and Tröltzsch, 2009, Neitzel et al., 2011]

under suitable conditions the optimality system is actually equivalent to a V-elliptic problem on

the space-time cylinder that leads to some rigorous error estimates [Meidner and Vexler, 2008a,

Meidner and Vexler, 2008b, Meidner and Vexler, 2011, Gong et al., 2012]. In addition to the

above mentioned schemes, many other discretization strategies in time and space have been ex-

tensively studied [Liu et al., 2004, Chrysafinos, 2010].

Although several second-order schemes are available, they are not necessarily suitable for

fast solver development due to the complexity of discretization structures. For example, as the

authors pointed out in [González Andrade and Borz̀ı, 2012, Borz̀ı and González Andrade, 2014],

the pure Crank-Nicolson scheme is not a good choice for implementing a space-time multigrid

algorithm due to the lack of certain symmetric structures of discretization. In fact, numerical

51

experiences show that some multigrid solvers, including the one we present in this work, may not

even converge with the Crank-Nicolson scheme, and thus this simulates us to seek more suitable

schemes for the multigrid solver development. Moreover, in order to improve the overall efficiency

it is important and necessary to equip a discretization scheme with some fast direct/iterative linear

solvers [Rees et al., 2010, Herzog and Sachs, 2010, Pearson et al., 2012, Pearson and Stoll, 2013]

so that it can deal with large-scale degrees of freedom and higher dimension efficiently. Begin-

ning with a few early numerical endeavors [Hackbusch, 1978, Hackbusch, 1979, Hackbusch, 1981],

multigrid methods have started to play a more and more irreplaceable character in the field of PDE

optimization [Briggs et al., 2000, Trottenberg et al., 2001, Saad, 2003, Borz̀ı and Schulz, 2012,

Hinze et al., 2012, Liu and Xiao, 2014a] since the seminal introduction of space-time multi-

grid for linear parabolic PDEs [Horton and Vandewalle, 1995], where the semi-coarsening was

shown to give better convergence compared to standard coarsening. In the framework

of finite difference discretization, some recent papers [Borz̀ı, 2003, Borz̀ı and Griesse, 2005,

Borz̀ı and Griesse, 2006, Borz̀ı, 2007b, Borz̀ı and Schulz, 2009, Borz̀ı and von Winckel, 2009,

Borz̀ı and González Andrade, 2012, González Andrade and Borz̀ı, 2012] are devoted to apply the

idea of space-time multigrid to those forward-and-backward coupled linear/nonlinear parabolic

PDE systems similar to (3.4). But little research is seen between the connection of numerical

scheme design and fast solver implementation.

In this chapter we propose a new leapfrog central difference scheme for time discretization.

In classical theory, it is well-known that the leapfrog scheme is not stable for a single evolu-

tionary equation although it is second-order accurate [Strikwerda, 2004, LeVeque, 2007]. How-

ever, in this work, we prove that our new leapfrog scheme in terms of time discretization for

the two point boundary-value problem (3.4) is unconditionally stable and delivers the second-

order accuracy of time variable, which has not been seen in current literature. Our method

for treating parabolic PDEs can be regarded as a generalization of the boundary value meth-

ods [Axelsson and Verwer, 1985, Brugnano and Trigiante, 1998], which are orignally developed

only for solving ordinary differential equations (ODEs). The essential observation is that the

52

conventional instability of the leapfrog scheme comes from errors propagation in each time step

with an amplification factor being strictly greater than one. In contrast, our approach solves

for all time steps in one shot by treating time as a new spatial variable, which will not amplify

the temporal errors as there are no explicit time-iteration operations. More importantly, our

approach of using the new leapfrog scheme leads to the implementation of a very efficient multi-

grid iterative solver. More specifically, this scheme provides a feasible and practical approach in

constructing the effective collective Jacobi smoother [Borz̀ı and Schulz, 2009], as was shown in

[Lass et al., 2009, Takacs and Zulehner, 2011] for the case of elliptic optimal control problems by

using finite element discretization. This advantage will become even more valuable when handling

the problems with nonlinear parabolic PDEs associated with higher dimensional domains.

This chapter is organized as follows. In the next section, we propose the leapfrog scheme

(with a backward Euler step) in time and a second-order five-point finite difference scheme in space

for discretizing the optimality system. The second-order accuracy of our proposed leapfrog scheme

is proved under the discrete L2(L∞) norm. In Section 3.3, a multigrid algorithm is designed for

solving the discretized optimality system with some favorable structures. In Section 3.4, results of

numerical simulations are reported to demonstrate the second-order accuracy of our leapfrog finite

difference approximations and the mesh independent convergence of the corresponding multigrid

solver with linear time complexity. Numerical comparisons are performed among the BDF2

scheme, the Crank-Nicolson scheme, and our leapfrog scheme. Finally, the chapter ends with

concluding remarks in Section 3.5.

3.2 A LEAPFROG SCHEME AND ITS ERROR ESTIMATE

In this section, we conduct our analysis in the two dimensional case, the conclusions of

which can be easily generalized to one and three dimensions. We partition the time interval [0, T]

uniformly into 0 = t0 < t1 < · · · < tN = T with tk − tk−1 = τ = T/N , and discretize the space

domain Ω = [0, 1]2 uniformly into 0 = ξ0 < ξ1 < · · · < ξM1 = 1 and 0 = ζ0 < ζ1 < · · · < ζM2 = 1,

with h1 = ξi − ξi−1, h2 = ζj − ζj−1. Let h = max(h1, h2). We define the discrete inner product

53

(φn, ϕn) =
∑M1−1,M2−1

i,j=1 φn
ijϕ

n
ijh1h2 and the corresponding discrete L2(Ω) norm ∥ϕn∥ =

√
(ϕn, ϕn).

We also define the discrete gradient

∇hφ
n =

(
φn
i,j − φn

i−1,j

h1
,
φn
i,j − φn

i,j−1

h2

)M1,M2

i=1,j=1

,

and the discrete Laplacian

(∆hY
n)ij =

Y n
i−1,j − 2Y n

i,j + Y n
i+1,j

h21
+
Y n
i,j−1 − 2Y n

i,j + Y n
i,j+1

h22
.

We shall use the discrete version of Poincare inequality and Sobolev embedding inequality

[Knabner and Angermann, 2003, Jovanović and Süli, 2014], i.e. there exists a positive constant

C0, independent of h, such that if y = (yij) satisfies the boundary condition y0,j = yM1,j = yi,0 =

yi,M2 = 0 for i = 1, · · · ,M1 − 1 and j = 1, · · · ,M2 − 1, then

∥y∥ ≤ C0∥∇hy∥ and max
i,j

|ynij | ≤ C0∥∆hy
n∥.

We shall also use the discrete version of integration by parts:

(−∆hz, w) = (∇hz,∇hw)

when functions z, w are defined on the mesh points and vanish on the boundary ∂Ω.

We discretize the equations (3.4) by the leap-frog finite difference scheme

Y n+1 − Y n−1

2τ
−∆hY

n + Pn/γ = −fn, n = 1, 2, · · · , N − 1 (3.5)

Pn+1 − Pn−1

2τ
+∆hP

n + Y n = gn, n = 1, 2, · · · , N − 1 (3.6)

where Y n = (Y n
ij)

M1−1,M2−1
i=1,j=1 and Pn = (Pn

ij)
M1−1,M2−1
i=1,j=1 with Y n

ij and Pn
ij being the discrete ap-

54

proximation of y(ξi, ζj , tn) and p(ξi, ζj , tn), respectively. Similar notations are used for fn and

gn. Here Y 0 and PN are from given initial conditions. At the last time step, we close the linear

system by imposing two additional equations by using the backward Euler scheme

Y N − Y N−1

τ
−∆hY

N + PN/γ = −fN , (3.7)

P 1 − P 0

τ
+∆hP

0 + Y 0 = g0. (3.8)

Such a treatment is significantly different from the traditional unstable leapfrog scheme which

often uses a backward Euler step for initializing the temporal advancing. Although we only use

a first-order backward Euler scheme in the final time step, we shall see that the finite difference

approximations {Y n, Pn}Nn=0 have a second-order accuracy in both time and space as shown

in the following theorem. This extra flexibility of our leapfrog scheme compared to the BDF2

scheme comes from our following more direct proof arguments. In practical implementations,

those second-order accurate BDF2 or Crank-Nicolson schemes are also applicable to replace the

above backward Euler scheme, and numerical comparisons will be provided in last section.

Theorem 3.2.1. Let the dimension d = 2. Assume f, g ∈ C4,3(Q) and the solution y, p ∈

C4,3(Q), then the linear system defined by (3.5)-(3.8) is invertible and the scheme has a second-

order accuracy in discrete L2(L∞) norm, i.e.,

(
∥e∥2L2

τ (L
∞
h) + ∥η∥2L2

τ (L
∞
h)

) 1
2

:=

(N∑
n=0

(max
i,j

|enij |2 +max
i,j

|ηnij |2)τ
) 1

2

≤ C(τ2 + h2)

for some positive constant C(T, γ) which does not depend on τ and h, where eni,j = Y n
i,j−y(ξi, ζj , tn)

and ηni,j = Pn
i,j − p(ξi, ζj , tn).

Proof. Note that the exact solutions yn(x) = y(x, tn) and p
n(x) = p(x, tn) satisfy the equations

yn+1 − yn−1

2τ
−∆hy

n + pn/γ = −fn − Fn, n = 1, 2, · · · , N − 1 (3.9)

55

pn+1 − pn−1

2τ
+∆hp

n + yn = gn −Gn, n = 1, 2, · · · , N − 1 (3.10)

and

yN − yN−1

τ
−∆hy

N + pN/γ = −fN − FN , (3.11)

p1 − p0

τ
+∆hp

0 + y0 = g0 −G0, (3.12)

where Fn and Gn denote the truncation errors, which satisfy (by assuming y, p ∈ C4,3(Q))

∥Fn∥+ ∥Gn∥ ≤ C1(τ
2 + h2) for n = 1, 2, · · · , N − 1

and

FN
ij = ∂ty(ξi, ζj , tN)− y(ξi, ζj , tN)− y(ξi, ζj , tN−1)

τ
− (∆y(ξi, ζj , tN)− (∆hy

N)ij)

=

(
1

τ

∫ tN

tN−1

∫ tN

s
∂tty(ξi, ζj , s

′)ds′ds

)
− (∆y(ξi, ζj , tN)− (∆hy

N)ij) =: F
N
ij − F̃N

ij ,

G0
ij = ∂tp(ξi, ζj , 0)−

p(ξi, ζj , τ)− y(ξi, ζj , 0)

τ
+ (∆p(ξi, ζj , 0)− (∆hp

0)ij)

=

(
1

τ

∫ τ

0

∫ τ

s
∂ttp(ξi, ζj , s

′)ds′ds

)
+ (∆p(ξi, ζj , 0)− (∆hp

0)ij) =: G
0
ij + G̃0

ij ,

where

∥∇hF
N∥+ ∥∇hG

0∥ ≤ C1τ,

∥F̃N∥+ ∥G̃0∥ ≤ C1h
2,

for some positive constant C1, independent of τ and h. Here we define F
N
ij and G

0
ij to be zero on

the boundary (i ∈ {0,M1} or j ∈ {0,M2}) so that their discrete gradients are well-defined. Let

56

en = Y n − yn and ηn = Pn − pn. Then the difference between (3.5)-(3.8) and (3.9)-(3.12) gives

en+1 − en−1

2τ
−∆he

n + ηn/γ = Fn, (3.13)

ηn+1 − ηn−1

2τ
+∆hη

n + en = Gn, (3.14)

and

eN − eN−1

τ
−∆he

N + ηN/γ = FN , (3.15)

η1 − η0

τ
+∆hη

0 + e0 = G0, (3.16)

with the initial conditions e0 = ηN = 0.

The discrete inner product of (3.13) and −τ ∆he
n is

(∇he
n+1,∇he

n)− (∇he
n,∇he

n−1)

2
+ τ∥∆he

n∥2 + τ(∇he
n,∇hη

n)/γ = −τ(Fn,∆he
n), (3.17)

and by summing up the above equations for n = 1, · · · , N−1, we get (note that (∇he
1,∇he

0) = 0)

(∇he
N ,∇he

N−1)

2
+

N−1∑
n=1

τ∥∆he
n∥2 +

N−1∑
n=1

τ(∇he
n,∇hη

n)/γ = −
N−1∑
n=1

τ(Fn,∆he
n). (3.18)

The discrete inner product of (3.15) and −τ ∆he
N/2 is (note that ηN = 0)

∥∇he
N∥2 − (∇he

N ,∇he
N−1)

2
+
τ

2
∥∆he

N∥2 = −τ
2
(FN ,∆he

N)

=
τ

2
(∇hF

N
,∇he

N) +
τ

2
(F̃N ,∆he

N). (3.19)

The sum of the last two equations gives

57

(by Cauchy’s inequality with ϵ [Evans, 2010]: ab ≤ a2/(4ϵ) + ϵb2 for a > 0, b > 0, ϵ > 0)

∥∇he
N∥2

2
+

N−1∑
n=1

τ∥∆he
n∥2 + τ

2
∥∆he

N∥2 +
N−1∑
n=1

τ(∇he
n,∇hη

n)/γ

= −
N−1∑
n=1

τ(Fn,∆he
n) +

τ

2
(∇hF

N
,∇he

N) +
τ

2
(F̃N ,∆he

N)

≤
N−1∑
n=1

τ∥Fn∥∥∆he
n∥+ τ

2
(∥∇hF

N∥∥∇he
N∥+ ∥F̃N∥∥∆he

N∥)

≤ C1

N−1∑
n=1

τ(τ2 + h2)∥∆he
n∥+ C1

2
τ(τ∥∇he

N∥+ h2∥∆he
N∥)

≤ C2
1 (τ

2 + h2)2/(4ϵ)

N−1∑
n=1

τ + ϵ

N−1∑
n=1

τ∥∆he
n∥2 + C2

1

4
(τ4 + τh4)/(4ϵ) + ϵ∥∇he

N∥2 + ϵτ∥∆he
N∥2

≤ 2TC2
1 (τ

4 + h4)/(4ϵ) + ϵ

N−1∑
n=1

τ∥∆he
n∥2 + C2

1

4
(τ4 + τh4)/(4ϵ) + ϵ∥∇he

N∥2 + ϵτ∥∆he
N∥2

= C2
1 ((T +

1

8
)τ4 + Th4 +

1

8
τh4)/(2ϵ) + ϵ

N−1∑
n=1

τ∥∆he
n∥2 + ϵ∥∇he

N∥2 + ϵτ∥∆he
N∥2,

which leads to (after moving the last three terms to the left-hand-side)

(
1

2
− ϵ)∥∇he

N∥2 + (1− ϵ)

N−1∑
n=1

τ∥∆he
n∥2 + (

1

2
− ϵ)τ∥∆he

N∥2 +
N−1∑
n=1

τ(∇he
n,∇hη

n)/γ (3.20)

≤ C2
1 ((T +

1

8
)τ4 + Th4 +

1

8
τh4)/(2ϵ) (3.21)

for arbitrary ϵ > 0. By choosing ϵ = 1/4 so that (1 − ϵ) ≥ 1/4 and (1/2 − ϵ) ≥ 1/4, the last

inequality is reduced to

1

4
∥∇he

N∥2 + 1

4

N−1∑
n=1

τ∥∆he
n∥2 + 1

4
τ∥∆he

N∥2 + 1

γ

N−1∑
n=1

τ(∇he
n,∇hη

n)

≤ 2C2
1 ((T +

1

8
)τ4 + Th4 +

1

8
τh4),

58

which implies (by dropping 1
4∥∇he

N∥2 and absorbing the higher-order term τh4 into C2)

N∑
n=1

τ∥∆he
n∥2 + 4

γ

N−1∑
n=1

τ(∇he
n,∇hη

n) ≤ C2(τ
4 + h4). (3.22)

Following the above analogous arguments, the discrete inner product of (3.14) and τ ∆hη
n is

− (∇hη
n+1,∇hη

n)− (∇hη
n−1,∇hη

n)

2
+ τ∥∆hη

n∥2 − τ(∇he
n,∇hη

n) = τ(Gn,∆hη
n), (3.23)

and by summing up the above equations for n = 1, · · · , N−1, we get (note that (∇hη
N ,∇hη

N−1) =

0)

(∇hη
0,∇hη

1)

2
+

N−1∑
n=1

τ∥∆hη
n∥2 −

N−1∑
n=1

τ(∇he
n,∇hη

n) =
N−1∑
n=1

τ(Gn,∆hη
n). (3.24)

The discrete inner product of (3.16) and τ ∆hη
0/2 is (note that e0 = 0)

−(∇hη
1,∇hη

0)− (∇hη
0,∇hη

0)

2
+
τ

2
∥∆hη

0∥2 = τ

2
(G0,∆hη

0)

= −τ
2
(∇hG

0
,∇hη

0) +
τ

2
(G̃0,∆hη

0). (3.25)

Similarly, the sum of the last two equations gives (by Cauchy’s inequality with ϵ)

∥∇hη
0∥2

2
+
τ

2
∥∆hη

0∥2 +
N−1∑
n=1

τ∥∆hη
n∥2 −

N−1∑
n=1

τ(∇he
n,∇hη

n)

= −τ
2
(∇hG

0
,∇hη

0) +
τ

2
(G̃0,∆hη

0) +
N−1∑
n=1

τ(Gn,∆hη
n)

≤ τ

2
(∥∇hG

0∥∥∇hη
0∥+ ∥G̃0∥∥∆hη

0∥) +
N−1∑
n=1

τ∥Gn∥∥∆hη
n∥

≤ C1

2
τ(τ∥∇hη

0∥+ h2∥∆hη
0∥) + C1

N−1∑
n=1

τ(τ2 + h2)∥∆hη
n∥

59

≤ C2
1

4
(τ4 + τh4)/(4ϵ) + ϵ∥∇hη

0∥2 + ϵτ∥∆hη
0∥2 + C2

1 (τ
2 + h2)2/(4ϵ)

N−1∑
n=1

τ + ϵ

N−1∑
n=1

τ∥∆hη
n∥2

≤ C2
1

4
(τ4 + τh4)/(4ϵ) + ϵ∥∇hη

0∥2 + ϵτ∥∆hη
0∥2 + 2TC2

1 (τ
4 + h4)/(4ϵ) + ϵ

N−1∑
n=1

τ∥∆hη
n∥2

= C2
1 ((T +

1

8
)τ4 + Th4 +

1

8
τh4)/(2ϵ) + ϵ∥∇hη

0∥2 + ϵτ∥∆hη
0∥2 + ϵ

N−1∑
n=1

τ∥∆hη
n∥2,

that is

(
1

2
− ϵ)∥∇hη

0∥2 + (
1

2
− ϵ)τ∥∆hη

0∥2 + (1− ϵ)

N−1∑
n=1

τ∥∆hη
n∥2 −

N−1∑
n=1

τ(∇he
n,∇hη

n) (3.26)

≤ C2
1 ((T +

1

8
)τ4 + Th4 +

1

8
τh4)/(2ϵ) (3.27)

for arbitrary ϵ > 0. By choosing ϵ = 1/4 so that (1− ϵ) ≥ 1/4 and (1/2− ϵ) ≥ 1/4, then the last

inequality becomes

∥∇hη
0∥2

4
+

1

4
τ∥∆hη

0∥2 + 1

4

N−1∑
n=1

τ∥∆hη
n∥2 −

N−1∑
n=1

τ(∇he
n,∇hη

n)

≤ 2C2
1 ((T +

1

8
)τ4 + Th4 +

1

8
τh4),

which further indicates that

N−1∑
n=0

τ∥∆hη
n∥2 − 4

N−1∑
n=1

τ(∇he
n,∇hη

n) ≤ C3(τ
4 + h4). (3.28)

Adding γ×(3.22) with (3.28) gives

γ

N∑
n=1

τ∥∆he
n∥2 +

N−1∑
n=0

τ∥∆hη
n∥2 ≤ (γC2 + C3)(τ

4 + h4), (3.29)

60

which also shows (recall that ∥∆he
0∥ = 0 and ∥∆hη

N∥ = 0)

N∑
n=0

τ∥∆he
n∥2 +

N∑
n=0

τ∥∆hη
n∥2 ≤ C4(τ

4 + h4). (3.30)

Since max
i,j

|enij | ≤ C0∥∆he
n∥ for some positive constant C0, the last inequality implies that

N∑
n=0

(max
i,j

|enij |2 +max
i,j

|ηnij |2)τ ≤ C5(τ
4 + h4), (3.31)

which completes the proof.

From the proof we can also see that, if we set Fn = Gn = 0 in (3.11)-(3.14), then (3.11)-

(3.14) imply that en = ηn = 0. This substantiates the invertibility of the discretized linear system

(3.5)-(3.8) in our conclusions.

Remark 1. It is worthy of pointing out that our proved error estimate in terms of discrete L2(L∞)

norm is stronger than the often used discrete L2(Q) norm estimate in literature [Borz̀ı, 2003,

González Andrade and Borz̀ı, 2012]. The approach technique for the L∞ norm in space also

holds for dimensions d = 1 and d = 3. With d > 3 we are not able to reach (3.31) from (3.30)

due to the failure of the discrete Sobolev embedding inequality. However, we still can obtain a

similar error estimate in discrete L2(Q) norm directly from (3.30).

3.3 MULTIGRID METHOD FOR LINEAR SYSTEM

To illustrate our multigrid linear solver for the discretized system, we reformulate our leapfrog

scheme (3.5,3.6,3.7,3.8) in a two-by-two block structured linear system

Lhwh :=

 Ah Bh

Ch Dh


 yh

ph

 =

 fh

gh

 =: bh, (3.32)

61

where

Ah =



I 0 0 · · · 0 0

−I/2τ −∆h I/2τ · · · 0 0

0 −I/2τ −∆h I/2τ · · · 0

0 0
. . .

. . .
. . . 0

0 0 · · · −I/2τ −∆h I/2τ

0 0 · · · 0 I/τ (−∆h + I/τ)



, (3.33)

Bh =



0 0 · · · 0 0

0 I
γ 0 · · · 0 0

0 0 I
γ 0 · · · 0

0 0
. . .

. . .
. . . 0

0 0 · · · 0 I
γ 0

0 0 · · · 0 0 I
γ



, Ch =



I 0 0 · · · 0 0

0 I 0 · · · 0 0

0 0 I 0 · · · 0

0 0
. . .

. . .
. . . 0

0 0 · · · 0 I 0

0 0 · · · 0 0 0



, (3.34)

Dh =



(−I/τ +∆h) I/τ 0 · · · 0 0

−I/2τ ∆h I/2τ · · · 0 0

0 −I/2τ ∆h I/2τ · · · 0

0 0
. . .

. . .
. . . 0

0 0 · · · −I/2τ ∆h I/2τ

0 0 · · · 0 0 I



, (3.35)

62

fh =



y0

−f1

−f2

...

−fN−1

−fN



, gh =



g0

g1

g2

...

gN−1

0



, yh =



y0

y1

y2

...

yN−1

yN



, and ph =



p0

p1

p2

...

pN−1

pN



. (3.36)

Here I is an identity matrix of appropriate size and the vectors y0, f
n, gn, and pn are the

lexicographic ordering (vectorization) of the corresponding approximations over mesh grids. Also

notice that we include the given initial conditions y0 = y0 and p
N = 0 as unknowns for the unified

formulation purpose.

Now, we proceed to propose a multigrid algorithm [Liu and Xiao, 2014b] for solving (3.32).

For our implementation, we only use semi-coarsening in space (no coarsening in time) for its

fast convergence. The coarse grid operator LH is derived from the finite difference discretiza-

tion with a coarse step-size H in space. For the smoother smooth, considering its lower

computational costs, we make use of a damped collective Jacobi (C-JAC) smoother given in

[Takacs and Zulehner, 2011]. Numerical simulations indicate that the C-JAC smoother works

better than conventional Gauss-Seidel (G-S) smoother, especially when the regularization param-

eter γ is small. In particular, a single smoothing iteration can be represented in a compact formula

(with a damping factor ω ∈ (0, 1])

 y
(k+1)
h

p
(k+1)
h

 =

 y
(k)
h

p
(k)
h

+ ωJ−1
h

bh − Lh

 y
(k)
h

p
(k)
h


 ,

63

with

Jh :=

 diag(Ah) diag(Bh)

diag(Ch) diag(Dh)

 , (3.37)

where diag(·) stands for the diagonal part of the input matrix block, respectively. Notice that we

have diag(Bh) = Bh and diag(Ch) = Ch since they are diagonal matrices. Here, the matrix-vector

multiplication J−1
h v can be computed very efficiently based on the partitioned inverse formula

[Horn and Johnson, 2013] since these blocks are all diagonal. Indeed, the time complexity of

calculating J−1
h v is of O(N). A obviously necessary condition for the above smoother is the

invertibility of Jh, which trivially holds for our proposed leapfrog scheme.

3.4 NUMERICAL EXAMPLES

In this section, we will provide several numerical examples to validate the obtained theo-

retical results and to demonstrate the high efficiency of our proposed approach. All simulations

are implemented using MATLAB R2014a on a laptop PC with Intel(R) Core(TM) i3-3120M

CPU@2.50GHz and 12GB RAM. The CPU time is estimated by timing functions tic/toc.

For simplicity, we will denote the discrete L2 norm on Q in short by ∥ · ∥, that is ∥ · ∥ :=

∥ · ∥L2
h(Q). Based on our error estimates, we also defined the discrete L2(L∞) norm ∥ · ∥L2

τ (L
∞
h).

We first compute the discrete L2(L∞) norms of state and adjoint state approximation errors

ehy = ∥yh − y∥L2
τ (L

∞
h) and ehp = ∥ph − p∥L2

τ (L
∞
h)

and then estimate the experimental order of accuracy by computing the logarithmic ratios of the

approximation errors between two successive refined meshes, i.e.,

Order = log2(e
2h/eh),

64

which should be close to two for a second-order accuracy. Theoretically, our leapfrog scheme, the

BDF2 scheme, and the Crank-Nicolson scheme should exhibit the same second-order accuracy.

However, the absolute approximation errors of our leapfrog scheme are expected to be smaller than

that of BDF2 scheme since the leapfrog scheme is based on central finite difference approximations

instead of one-sided finite difference formulas as in the BDF2 scheme (see Appendix A). This

anticipation is verified by the following numerical simulations.

In our multigrid implementation, we choose the damping factor ω = 1/2 for d = 1 and

ω = 4/5 for d = 2, the coarsest mesh size h0 = 4d−3, and the spatial coarsening mesh size

H = 2h. In each V-cycle iterations two pre- and post- smoothing steps are performed. For

initialization, the state y and the adjoint state p are set to be zero, and the stopping criterion is

chosen to be √
∥r(k)y ∥2 + ∥r(k)p ∥2√
∥r(0)y ∥2 + ∥r(0)p ∥2

≤ 10−7,

where r
(k)
y and r

(k)
p denote the residuals after k-th V-cycle iteration.

Example 4.

Let Ω = (0, 1) and T = 2. Let

f = π sin(πx) sin(πt)− π2 sin(πx) cos(πt)− sin(πx) sin(πt)/γ

and

g = π sin(πx) cos(πt)− π2 sin(πx) sin(πt) + sin(πx) cos(πt)

in (3.4) such that the exact solution is

y(x, t) = sin(πx) cos(πt) and p(x, t) = sin(πx) sin(πt).

65

Here the initial condition is set as y0(x) = sin(πx). We test with different parameters γ = 10−1

and γ = 10−3.

We report in Tables 3.1 and 3.2 the errors, the experimental order of accuracy, the required

multigrid iteration numbers, and the CPU time of our proposed leapfrog scheme with different

parameters. Clearly, the finite difference approximations achieve a second-order accuracy for both

state y and adjoint state p, which validates our theoretical conclusions. The mesh-independent

number of iterations in column ‘Iter’ indicates our proposed multigrid solver has a roughly lin-

ear time complexity with respective to the number of degrees of freedom. Notice the CPU time

increases about four times as the mesh size is halved. The almost unchanging iteration numbers

for different parameters shows that our multigrid solver is quite robust with respect to the reg-

ularization parameter γ, which is very attractive to those practical applications with a possible

large range of regularization parameters.

Table 3.1. Results for Ex. 4 with our leapfrog scheme (γ = 10−1).
(M,N) ehy Order ehp Order Iter CPU

(32,32) 4.22e-03 – 1.66e-03 – 3 0.024
(64,64) 1.04e-03 2.02 4.14e-04 2.00 3 0.034
(128,128) 2.57e-04 2.02 1.03e-04 2.00 4 0.108
(256,256) 6.38e-05 2.01 2.58e-05 2.00 4 0.309
(512,512) 1.59e-05 2.00 6.45e-06 2.00 4 0.987

(1024,1024) 3.96e-06 2.00 1.61e-06 2.00 5 4.676
(2048,2048) 9.90e-07 2.00 4.03e-07 2.00 5 20.491

Table 3.2. Results for Ex. 4 with our leapfrog scheme (γ = 10−3).
(M,N) ehy Order ehp Order Iter CPU

(32,32) 1.88e-02 – 2.90e-04 – 4 0.028
(64,64) 4.77e-03 1.98 5.68e-05 2.35 4 0.046
(128,128) 1.20e-03 1.99 1.31e-05 2.12 4 0.112
(256,256) 3.00e-04 2.00 3.19e-06 2.04 4 0.304
(512,512) 7.50e-05 2.00 7.89e-07 2.01 4 0.992

(1024,1024) 1.88e-05 2.00 1.96e-07 2.01 4 3.938
(2048,2048) 4.70e-06 2.00 4.83e-08 2.02 4 15.608

As the first comparison, we report in Table 3.3 and Table 3.4 the corresponding results

of the BDF2 scheme. Because the BDF2 scheme shares a similar structure with our leapfrog

66

scheme, as a by-product, numerical experiments show that our multigrid solver also works quite

well with the BDF2 scheme. This allows us to conduct an adequate fair comparison between

them using the same multigrid solver. Comparing Tables 3.1 and 3.2 with Tables 3.3 and 3.4, our

proposed leapfrog scheme delivers more accurate approximations than the BDF2 scheme with less

CPU time. In particular, the multigrid solver shows better mesh-independent convergence when

applied to our leapfrog scheme. In particular, our leapfrog scheme outperforms the BDF2 scheme

in terms of efficiency as well as accuracy.

Table 3.3. Results for Ex. 4 with the BDF2 scheme (γ = 10−1).
(M,N) ehy Order ehp Order Iter CPU

(32,32) 4.95e-03 – 3.18e-03 – 5 0.047
(64,64) 1.20e-03 2.05 8.29e-04 1.94 5 0.112
(128,128) 2.93e-04 2.03 2.12e-04 1.97 5 0.229
(256,256) 7.22e-05 2.02 5.34e-05 1.99 6 0.605
(512,512) 1.79e-05 2.01 1.34e-05 1.99 6 2.121

(1024,1024) 4.47e-06 2.00 3.36e-06 2.00 7 6.351
(2048,2048) 1.12e-06 2.00 8.41e-07 2.00 8 31.799

Table 3.4. Results for Ex. 4 with the BDF2 scheme (γ = 10−3).
(M,N) ehy Order ehp Order Iter CPU

(32,32) 3.41e-02 – 4.58e-04 – 4 0.038
(64,64) 8.74e-03 1.96 1.07e-04 2.10 4 0.065
(128,128) 2.22e-03 1.98 2.63e-05 2.02 4 0.158
(256,256) 5.59e-04 1.99 6.56e-06 2.01 4 0.392
(512,512) 1.40e-04 1.99 1.64e-06 2.00 5 1.615

(1024,1024) 3.51e-05 2.00 4.11e-07 2.00 5 4.615
(2048,2048) 8.79e-06 2.00 1.03e-07 2.00 6 22.788

Table 3.5. Results for Ex. 4 with the Crank-Nicolson scheme (γ = 10−1).
(M,N) ehy Order ehp Order Iter CPU

(32,32) 5.60e-04 – 1.20e-03 – 23 0.146
(64,64) 1.38e-04 2.02 2.96e-04 2.01 43 0.587
(128,128) 3.45e-05 2.00 7.37e-05 2.01 79 2.511
(256,256) 8.61e-06 2.00 1.84e-05 2.00 140 12.121
(512,512) 2.15e-06 2.00 4.59e-06 2.00 267 75.268

For a further comparison, we also report in Table 3.5 and Table 3.6 the corresponding results

of the Crank-Nicolson scheme, which is anticipated to be problematic for our multigrid solver

67

Table 3.6. Results for Ex. 4 with the Crank-Nicolson scheme (γ = 10−3).
(M,N) ehy Order ehp Order Iter CPU

(32,32) 1.14e-02 – 1.51e-04 – 32 0.208
(64,64) 2.83e-03 2.01 3.58e-05 2.08 54 0.696
(128,128) 7.05e-04 2.00 8.72e-06 2.04 99 3.317
(256,256) 1.76e-04 2.00 2.15e-06 2.02 163 14.016
(512,512) 4.40e-05 2.00 5.35e-07 2.01 254 71.130

framework. Although the Crank-Nicolson scheme gives a comparable second-order accuracy, the

required multigrid iteration numbers to fulfill the convergence criterion are almost doubled as the

mesh size is halved, which will greatly degrade the computational efficiency of the Crank-Nicolson

scheme. Therefore, as also mentioned in [González Andrade and Borz̀ı, 2012], the Crank-Nicolson

scheme is not recommended when solving the underlying problem with the standard multigrid

algorithm implementations. In summary, our proposed leapfrog scheme demonstrates the desired

advantage in both provable second-order accuracy and fast iterative linear solver.

Example 5.

Let Ω = (0, 1)2 and T = 2. Let

f =
(
π sin(πt)− 2π2 cos(πt)− γ−1 sin(πt)

)
sin(πx1) sin(πx2)

and

g =
(
π cos(πt)− 2π2 sin(πt) + cos(πt)

)
sin(πx1) sin(πx2)

in (3.4) such that the exact solution is

y(x, t) = cos(πt) sin(πx1) sin(πx2)

and

p(x, t) = sin(πt) sin(πx1) sin(πx2).

68

Here the initial condition is set as y0(x) = sin(πx1) sin(πx2). We test with different parameters

γ = 10−2 and γ = 10−4.

Table 3.7. Results for Ex. 5 with our leapfrog scheme (γ = 10−2).
(M1,M2, N) ehy Order ehp Order Iter CPU

(8,8,8) 9.25e-02 – 1.56e-02 – 7 0.02
(16,16,16) 2.42e-02 1.9 3.87e-03 2.0 8 0.04
(32,32,32) 6.17e-03 2.0 9.63e-04 2.0 8 0.16
(64,64,64) 1.55e-03 2.0 2.40e-04 2.0 8 1.10

(128,128,128) 3.86e-04 2.0 5.99e-05 2.0 8 8.91
(256,256,256) 9.64e-05 2.0 1.50e-05 2.0 8 90.46

Table 3.8. Results for Ex. 5 with our leapfrog scheme (γ = 10−4).
(M1,M2, N) ehy Order ehp Order Iter CPU

(8,8,8) 3.57e-01 – 6.70e-03 – 7 0.02
(16,16,16) 9.40e-02 1.9 1.05e-03 2.7 7 0.03
(32,32,32) 2.40e-02 2.0 1.52e-04 2.8 7 0.15
(64,64,64) 6.08e-03 2.0 2.19e-05 2.8 7 0.97

(128,128,128) 1.53e-03 2.0 3.74e-06 2.5 7 7.79
(256,256,256) 3.79e-04 2.0 8.01e-07 2.2 7 80.16

Table 3.9. Results for Ex. 5 with the BDF2 scheme (γ = 10−2).
(M1,M2, N) ehy Order ehp Order Iter CPU

(8,8,8) 9.41e-02 – 1.89e-02 – 7 0.03
(16,16,16) 2.82e-02 1.7 5.81e-03 1.7 8 0.04
(32,32,32) 7.25e-03 2.0 1.60e-03 1.9 8 0.17
(64,64,64) 1.83e-03 2.0 4.18e-04 1.9 8 1.12

(128,128,128) 4.61e-04 2.0 1.07e-04 2.0 9 9.96
(256,256,256) 1.16e-04 2.0 2.69e-05 2.0 10 114.02

Table 3.10. Results for Ex. 5 with the BDF2 scheme (γ = 10−4).
(M1,M2, N) ehy Order ehp Order Iter CPU

(8,8,8) 4.87e-01 – 1.06e-02 – 7 0.02
(16,16,16) 1.47e-01 1.7 1.56e-03 2.8 7 0.05
(32,32,32) 3.88e-02 1.9 1.98e-04 3.0 7 0.15
(64,64,64) 9.98e-03 2.0 2.96e-05 2.7 8 1.14

(128,128,128) 2.53e-03 2.0 6.12e-06 2.3 8 9.14
(256,256,256) 6.39e-04 2.0 1.46e-06 2.1 9 104.21

We give in Tables 3.7-3.8 and Tables 3.9-3.10 the corresponding numerical results of our

proposed leapfrog scheme and the BDF2 scheme with different parameters, respectively. Similar

69

to Example 4, we observe a satisfactory second-order accuracy for our leapfrog scheme as the

mesh is refined. Also, our leapfrog scheme produces more accurate approximations than the

BDF2 scheme with the same mesh size. Moreover, our multigrid solver achieves a desired mesh-

independent convergence for our leapfrog scheme. However, the performance of our multigrid

solver with the BDF2 scheme is getting a little bit worse when the mesh is refined, as shown in

columns ‘Iter’ of Tables 3.9-3.10. Thus one can also see from Example 5 that our leapfrog scheme

exceeds the BDF2 scheme in providing better efficiency and higher accuracy.

Finally, we choose not to present the corresponding numerical results of the Crank-Nicolson

scheme since the our multigrid solver is not suitable for this example by using the Crank-Nicolson

scheme. In this case, the Crank-Nicolson scheme could still be realized by the backslash sparse

direct solver within MATLAB, of which the CPU time will soar up very fast as the mesh is refined.

For example, it takes about 35 seconds for just a 32×32×32 mesh. Hence it would be misleading

to compare its computational CPU time with our multigrid iterative solver since the sparse direct

solver is based on a completely different philosophy. How to come up with an efficient iterative

solver for the Crank-Nicolson scheme is a quiet open problem deserving further investigations,

which is beyond the scope of our current work.

3.5 CONCLUSIONS

Although several second-order temporal schemes are proposed for the optimal control prob-

lems in order to improve the efficiency and accuracy of numerical approximations, little attention

is paid to the suitability of the underlying discretization structure for the establishment of fast

solvers. Due to the high dimensions of discretized data set resulting from solving PDE-constrained

optimization problems, the design of a fast solver would be very difficult or even impossible if the

given scheme has an undesirable structure, such as the classical Crank–Nicolson scheme. Thus an

ideal scheme should be not only designed to achieve high order accuracy but also make the later

implementation of fast linear system solvers approachable.

In this chapter, we have established the second-order accuracy of a leapfrog central difference

70

scheme in time for a forward-and-backward coupled parabolic PDE systems arising from standard

parabolic optimal control problems. The proposed scheme is unconditionally stable and the

discretized structure allows us to establish a fast solver under the multigrid framework. According

to the proof presented in this chapter, the proposed approach is also applicable to the semi-linear

parabolic cases, whose results will be reported in the next chapter.

APPENDIX: A BDF2 SCHEME WITH A CRANK–NICOLSON INITIALIZATION

STEP.

For the purpose of completeness, the BDF2 scheme with a Crank–Nicolson initialization

step [González Andrade and Borz̀ı, 2012] for the system (3.4) using the same notation is included

below. As we discussed in the introduction, the Crank-Nicolson initialization step here is necessary

for the BDF2 scheme to achieve a second-order accuracy. It is worthwhile to notice that the

resultant discretized coefficient matrix of the whole BDF2 scheme (3.38,3.39,3.40,3.41) has more

complicated structure compared to our proposed leapfrog scheme. Especially, we only used the

first-order backward Euler scheme at the finalization step.

• BDF2 scheme for time-stepping: For 2 ≤ n ≤ N , the state equation is discretized as

3Y n − 4Y n−1 + Y n−2

2τ
−∆hY

n +
Pn

γ
= −fn. (3.38)

Similarly, for 0 ≤ n ≤ (N − 2), the adjoint equation is approximated as

− 3Pn − 4Pn+1 + Pn+2

2τ
+∆hP

n + Y n = gn. (3.39)

• Crank–Nicolson scheme for initialization: For n = 1, the state equation is discretized

as

Y n − Y n−1

τ
− ∆hY

n +∆hY
n−1

2
+
Pn + Pn−1

2γ
= −f

n + fn−1

2
(3.40)

71

with Y 0 is given by the initial condition y0. Similarly, for n = N , the adjoint equation is

approximated as

Pn − Pn−1

τ
+

∆hP
n +∆hP

n−1

2
+
Y n + Y n−1

2
=
gn + gn−1

2
(3.41)

with PN is given by the terminal condition p(·, T) = 0.

72

CHAPTER 4

A LEAPFROG SSN-MULTIGRID METHOD FOR SEMILINEAR PARABOLIC

CONTROL PROBLEMS WITH CONTROL CONSTRAINTS

4.1 INTRODUCTION

In this chapter, we consider the following standard distributed optimal control problem

[Borz̀ı and González Andrade, 2012] of minimizing a quadratic cost functional

{
J(y, u) = α

2 ∥y − z∥2
L2
Q
+ β

2 ∥y(·, T)− zT ∥2L2
Ω
+ γ

2∥u∥
2
L2
Q

(4.1)

over the set Uad of admissible controls given by

Uad = {u ∈ L2
Q := L2(Q) | ua ≤ u ≤ ub a.e. in Q = Ω× (0, T)},

subject to a semi-linear parabolic PDE system



−∂ty + σ∆y + S(y) = f + u in Q = Ω× (0, T),

y = g on Ω× {t = 0},

y = 0 on Σ = ∂Ω× (0, T),

(4.2)

where Ω = (0, 1)2, u ∈ Uad is the control function, z ∈ L2(Q) is the desired tracking trajectory,

zT ∈ L2
Ω := L2(Ω) is the target terminal state at the terminal time T > 0, α and β ≥ 0

(α+ β > 0) are optimization parameters, γ > 0 represents either the weight of the cost of control

or the Tikhonov regularization parameter, σ denotes the diffusion coefficient, S : R → R is a

given nonlinear smooth function, f ∈ L2(Q), and {ua, ub} ⊂ L∞(Q). To focus on the reaction-

diffusion equation as in [Borz̀ı and González Andrade, 2012], we further assume σ > 0 and the

initial condition g ∈ H1
0 (Ω). Notice that the case (α, β) = (1, 0) corresponds to tracking without

73

a terminal observation, while another case (α, β) = (0, 1) only concerns the final target state

without specifying any reference trajectory. The existence of solutions to the above optimal

control problem (4.1-4.2) can be obtained under suitable assumptions for the non-linearity of S;

see [Lions, 1971, Neittaanmaki and Tiba, 1994, Tröltzsch, 2010].

Several recent papers [Borz̀ı, 2003, Borz̀ı and Griesse, 2005,

Borz̀ı and Griesse, 2006, Borz̀ı, 2007b, Borz̀ı and Schulz, 2009, Borz̀ı and von Winckel, 2009,

Borz̀ı and González Andrade, 2012, González Andrade and Borz̀ı, 2012] are devoted to apply the

idea of space-time multigrid to the forward-and-backward coupled parabolic optimality system de-

rived from the first-order necessary condition of parabolic optimal control problems. In particular,

the full-approximation-storage (FAS) multigrid method [Brandt and Livne, 2011] is extensively

used to treat the non-linearity as well as the variational inequality due to control constraints. The

developed smoother in the FAS multigrid method is shown to be equivalent to a local semi-smooth

Newton (SSN) method [Borz̀ı and González Andrade, 2012, González Andrade and Borz̀ı, 2012],

which mainly focuses on the non-linearity of the system and lets the non-smooth control con-

straints be implicitly treated by projection in the process of smoothing iterations.

As a new attempt, in this chapter, we are trying to lift up the SSN implementation to

the most top level so that both non-linearity and non-smoothness can be simultaneously han-

dled in a single procedure. More precisely, the nonlinear term and the non-smoothness are ‘lin-

earized’ at the same time during the approximation of each Newton iteration to gain a better

computational efficiency. This approach is different from the current FAS multigrid method,

in which the nonlinear term and the non-smoothness are handled in separate procedures that

requires more computational effort. More details in terms of computational advantages of the

Newton-multigrid method over the FAS multigrid method have been discussed in a recent pa-

per [Brabazon et al., 2014], in which Newton-multigrid method is applied to solve the second

order differential operators of elliptic and parabolic type with nonlinear coefficients. Moreover,

it is well-known that the SSN method has the property of mesh-independence convergence as

discussed in [Hintermüller and Ulbrich, 2004, Bergounioux et al., 1999, Hintermüller et al., 2002,

74

Ito and Kunisch, 2008, Hinze et al., 2009, Ulbrich, 2011], and in [Chen et al., 2000] where a class

of semi-linear elliptic PDEs is considered. Thus it is attractive to develop a new SSN method for

solving the optimization of parabolic PDE problem in order to achieve a better computational

efficiency and maintain its favorable super-linear convergence [Ortega and Rheinboldt, 2000]. It

is worthy of mentioning here that the FAS multigrid method has its own merits, in particular,

when the available memory becomes a main concern [Brabazon et al., 2014], though it seems not

an issue for the problem discussed in this chapter.

Under the same motivation explained in the previous chapter, we provide a new second-

order leapfrog scheme in time, which is more advantageous in the design of the collec-

tive Jacobi smoother under our multigrid solver setting. Besides finite difference methods,

many other discretization strategies in both time and space have been extensively studied

[Liu et al., 2004, Chrysafinos, 2010, Meidner and Vexler, 2011]. Nevertheless, the enormously in-

creasing dimension (4 million unknowns with a mesh size 1/128) of the discretized nonlinear and

non-smooth system as the mesh size refines requires us to scrutinize the possibility of designing a

high efficient solver during (not after) the process of discretization, since those standard/general

direct or iterative (sparse) solvers may become very inefficient in dealing with such high dimen-

sional systems.

This chapter is organized as follows. In the next section, we formulate the corresponding first-

order necessary optimality conditions to characterize the optimal solutions of our posed control-

constrained semi-linear parabolic optimal control problem. A continuous SSN method is used

to solve the non-smooth optimality system associated with control constraints. We also propose

a second-order five-point finite difference scheme in space and leapfrog scheme (with BDF2) in

time for the discretization of the optimality system. The convergence of our proposed leapfrog

scheme is proved for both linear and nonlinear cases with time-periodic solutions in Section 4.3.

In Section 4.4, the discretized optimality system is solved by the discrete SSN method, in which a

linear multigrid algorithm is presented to approximately solve the Jacobian system in each outer

Newton iteration. In Section 4.5, results of numerical simulations are reported to demonstrate

75

the second-order accuracy of approximations and mesh independent convergence with linear time

complexity of our integrated SSN multigrid approach. Finally, the chapter ends with concluding

remarks in Section 4.6.

4.2 OPTIMALITY SYSTEM WITH A LEAPFROG SCHEME

Based on the Lagrange functional, the optimal solution to (4.1-4.2) is characterized by the

following first-order optimality system



−∂ty + σ∆y + S(y)− u = f in Q, y = 0 on Σ,

∂tp+ σ∆p+ S′(y)p+ αy = αz in Q, p = 0 on Σ,

(γu− p, v − u) ≥ 0 for all v ∈ Uad,

(4.3)

where the state variable y evolves forward with the initial condition

y(x1, x2, 0) = g(x1, x2) (4.4)

and the adjoint variable p marches backward with a terminal condition

p(x1, x2, T) = β(y(x1, x2, T)− zT (x1, x2)). (4.5)

By making use of the principle of variational inequality (last inequality in (4.3)), one can obtain

the following equivalent characterization of the optimal control

u = Φ(p/γ) := max{ua,min{ub, p/γ}}, (4.6)

where Φ(·) denotes the element-wise projection onto Uad. By substituting (4.6) into the optimality

conditions (4.3), we thus obtain the following non-smooth nonlinear optimality system in terms

76

of only (y, p)


−∂ty + σ∆y + S(y)− Φ(p/γ) = f in Q, y = 0 on Σ,

∂tp+ σ∆p+ S′(y)p+ αy = αz in Q, p = 0 on Σ.

(4.7)

It is well-known [Borz̀ı and Schulz, 2009] that solving the above type of coupled time-dependent

nonlinear PDE equations marching in opposite time orientation poses a major challenge (even

in linear case) in scientific computing, partially because it is required to store those dependent

variables for all time steps (especially for a large time interval).

In order to implement the SSN algorithm in practice, one has to first discretize the continuous

optimality system (4.7). We use finite difference schemes since it makes the algorithm formulation

simpler. Let h = 1/(n+ 1) be the space mesh size and τ = T/nt be the time-step size. Then we

discretize the space domain Ω using a uniform Cartesian grid

Ωh =
{
(xi1, x

j
2) = (ih, jh) : i, j = 1, 2, · · · , n

}

and define the space-time mesh

Qh,τ = {(x, tm) : x ∈ Ωh, tm = mτ, 0 ≤ m ≤ nt} .

Let ymi,j , p
m
i,j , f

m
i,j , and zmi,j represent approximations to y(xi1, x

j
2, tm), p(xi1, x

j
2, tm), f(xi1, x

j
2, tm),

and z(xi1, x
j
2, tm), respectively. We denote ymh , pmh , fmh , and zmh the corresponding lexicographic

ordering (vectorization) of those approximations over Ωh×{t = tm}. In discretization of (4.7), we

employ the second order five-point finite difference scheme [Borźı and Kunisch, 2005, Borz̀ı, 2008]

in space. Denote the corresponding discretization of the Laplacian operator ∆ on Ωh by ∆h, where

the homogeneous Dirichlet boundary conditions are already included.

The time discretization is more involved since y evolves forward and p marches backward.

Furthermore, the terminal condition p(x1, x2, T) may be unknown when β > 0, which is different

77

from the case of the given initial condition g. Thus, a robust scheme should treat p(x1, x2, T) as

an unknown. In the following schemes, we always incorporate the discretized initial and terminal

conditions

y0h = gh and pnt
h = β(ynt

h − znt
h). (4.8)

In [Borz̀ı, 2003], appling the backward Euler scheme to the state equation in (4.7) which

gives

−
ymh − ym−1

h

τ
+ σ∆hy

m
h + S(ymh)− Φ(pmh /γ) = fmh (4.9)

for 1 ≤ m ≤ nt and the forward Euler scheme to the adjoint equation generates

pm+1
h − pmh

τ
+ σ∆hp

m
h + S′(ymh)pmh + αymh = αzmh (4.10)

for 0 ≤ m ≤ nt − 1. Without any surprise, the above Euler scheme (4.8,4.9,4.10) gives only first-

order accuracy in time but second-order accuracy in space. To achieve second-order accuracy in

time, the authors in [González Andrade and Borz̀ı, 2012] suggest to use the second-order back-

ward differentiation formula (BDF2) together with the Crank-Nicolson scheme at the initial time

step. Though the BDF2 with Crank-Nicolson scheme is proved to have a second-order accuracy

in the case where control constraints are inactive, the averaging treatment in the Crank-Nicolson

scheme complicates the structure of the discretized optimality system. This will consequently

make it more difficult to develop an effective multigrid solver for the Jacobian systems arising

from the SSN method applied to the discretized optimality system.

It is shown in [Neitzel et al., 2011] under suitable conditions the optimality system is actually

equivalent to a V-elliptic problem on the space-time cylinder, and this motivates us to employ the

second-order leapfrog scheme (in time variable), which is known to have poor stability in terms

78

of classical stability definition for a single parabolic equation. However, we will show the stability

of the two-point boundary problem resulted from leapfrog scheme in next section. Our proposed

second-order scheme is set to be

−
ym+1
h − ym−1

h

2τ
+ σ∆hy

m
h + S(ymh)− Φ(pmh /γ) = fmh (4.11)

for 1 ≤ m ≤ nt − 1 and

pm+1
h − pm−1

h

2τ
+ σ∆hp

m
h + S′(ymh)pmh + αymh = αzmh (4.12)

for 1 ≤ m ≤ nt − 1. In addition, the above leapfrog scheme at the final time step (ynt
h and p0h)

need to be replaced by the BDF2 scheme since we could only use the one-sided finite difference

formula to approximate the time derivative at t = 0 and t = T , that is,

−
ynt−2
h − 4ynt−1

h + 3ynt
h

2τ
+ σ∆hy

nt
h + S(ynt

h)− Φ(pnt
h /γ) = fnt

h , (4.13)

−3p0h + 4p1h − p2h
2τ

+ σ∆hp
0
h + S′(y0h)p

0
h + αy0h = αz0h, (4.14)

We remark that our proposed scheme (4.8,4.11,4.12,4.13,4.14) does achieve a second-order accu-

racy in numerical simulations, and, more importantly, the simple structure of its corresponding

Jacobian matrices allows us to develop a very effective multigrid solver for SSN iterations as illus-

trated in the next section. The Jacobian matrices produced by the BDF2 with the Crank-Nicolson

scheme [González Andrade and Borz̀ı, 2012] will have much more complicated structure, which

may not guarantee an effective multigrid algorithm as our proposed approach. Alternatively, as

we already showed in the previous chapter, it is also possible to use a simpler backward Euler

scheme at the final time step without sacrificing the second-order accuracy. But its approximation

79

error is slightly larger than that of BDF2 even though it has the same order of accuracy. For the

case without control constraints, the error estimates by using energy norm is provided in Theorem

3.2.1 when the backward Euler scheme at the final time step is used. We mainly focus on the

difficulties resulting from non-linearity as well as control constraints, which requires more subtle

techniques for the implementation of a fast solver.

In order to illustrate the novelty and difference of our above leapfrog scheme from the

conventional unstable leapfrog scheme, we consider the following initial-boundary value problem

with heat equation



∂ty(x, t) = ∂xxy(x, t), (x, t) ∈ (0, 1)× (0, T],

y(x, 0) = sin(πx), x ∈ (0, 1),

y(0, t) = y(1, t) = 0, t ∈ [0, T],

(4.15)

with the known analytic solution y(x, t) = e−π2t sin(πx). Applying central finite difference in

space and the leapfrog discretization in time, the resulting coupled scheme defined on each grid

node xi reads (using previous notations)


ym+1
h −ym−1

h
2τ = ∆hy

m
h , 1 ≤ m ≤ nt − 1,

y
nt−2
h −4y

nt−1
h +3y

nt
h

2τ = ∆hy
nt
h ,

(4.16)

with ∆hy
m
h (xi) =

ymh (xi−1)−2ymh (xi)+ymh (xi+1)

h2 and the initial y0h(x
i) = sin(πxi). The above leapfrog

scheme (4.16) has to be solved in one-shot due to the coupling. This is different from the

classical unstable explicit three-level time-marching leapfrog scheme [Morton and Mayers, 2005,

Strikwerda, 2004, LeVeque, 2007], that is


y1h−y0h

τ = ∆hy
1
h,

ym+1
h −ym−1

h
2τ = ∆hy

m
h , 1 ≤ m ≤ nt − 1.

(4.17)

80

One may solve (4.17) in one-shot by stacking all time steps, but the instability persists in the

highly ill-conditioned coefficient matrix. Hence the intrinsic difference is the scheme itself instead

of the one-shot solving. In Table 4.1 we compare the maximum errors of solving the above heat

equation using both schemes (4.16) and (4.17). Our modified leapfrog scheme (4.16) demonstrates

an evident second-order accuracy, while the unstable leapfrog scheme (4.17) diverges rapidly as

the mesh is refined. Here the notation ‘Inf’ implies the computed solution already blows up to be

greater that the largest finite floating-point number (≈ 1.7977e308 in MATLAB) in IEEE double

precision. Although our modified leapfrog scheme may not be necessary in this case (a single

PDE) since it requires to solve a larger linear system, it does show a better efficiency for solving

our interested forward-backward PDEs (4.3). The instability of the classical leapfrog scheme for

a parabolic PDE is so recognized and thus is never used for optimal control of parabolic PDE. In

terms of the effort shown in this chapter, our modified leapfrog scheme fills in this gap.

Table 4.1. Maximum norm errors for solving the heat equation with different T .
Unstable leapfrog scheme (4.17) Our leapfrog scheme (4.16)

(n, nt) T = 0.01 T = 0.1 T = 1 T = 0.01 T = 0.1 T = 1

(16,16) 2.90e-04 2.33e-01 3.30e14 2.88e-04 1.42e-03 2.13e-02
(32,32) 4.03e-03 7.73e26 5.37e57 7.19e-05 3.55e-04 5.90e-03
(64,64) 7.43e28 7.18e90 7.01e153 1.80e-05 8.86e-05 1.51e-03

(128,128) 1.30e112 2.45e238 Inf 4.50e-06 2.21e-05 3.82e-04
(256,256) Inf Inf Inf 1.12e-06 5.53e-06 9.57e-05
(512,512) Inf Inf Inf 2.81e-07 1.38e-06 2.39e-05
(1024,1024) Inf Inf Inf 7.03e-08 3.46e-07 5.98e-06

4.3 STABILITY ANALYSIS FOR PERIODIC CASE

In this section, we conduct the stability analysis of the proposed scheme. For our proposed

scheme (4.8,4.11,4.12,4.13,4.14), those one-sided finite difference formulas greatly complicate the

theoretical analysis of the resulting discretized system. Hence, we further assume the solutions

are periodic in time [Abbeloos et al., 2011] with period T , that is y(·, 0) = y(·, T) and therefore

we have

ynt
h = y0h, y

nt−1
h = y−1

h , p0h = pnt
h , and p−1

h = pnt−1
h .

81

With the above assumptions, we can avoid the one-sided finite difference formulas (4.13,4.14) and

initial conditions (4.8). It allows us to formulate the discretized system from (4.11,4.12) with

unknowns ymh and pmh for 0 ≤ m ≤ nt − 1 as

Th :=

 Ch B⊺
h

Bh Dh


 yh

ph

 =

 ch

dh

 , (4.18)

where Ch = αI, Dh = −I/γ,

Bh =



σ∆h −I/(2τ) 0 · · · I/(2τ)

I/(2τ) σ∆h −I/(2τ) · · · 0

0
. . .

. . .
. . . 0

0 · · · I/(2τ) σ∆h −I/(2τ)

−I/(2τ) 0 · · · I/(2τ) σ∆h


,

and

ch = α



z0h

z1h

...

znt−2
h

znt−1
h


, dh =



f0h

f1h

...

fnt−2
h

fnt−1
h


.

Here B⊺
h denotes the transpose of Bh. Under the above framework, we actually do not need any

time forward iteration procedures as the classical approach. Thus, the traditional approach of

proving convergence by showing the scheme is consistent and stable for parabolic equations does

not fit in our framework. Instead, we turn to consider its stability from the perspective of elliptic

equations, that is to validate that Th has a uniformly bounded inverse as given in the following

theorem.

82

Theorem 4.3.1. In system (4.18), ∥T−1
h ∥2 is uniformly bounded for all h > 0 and τ > 0, where

∥ · ∥2 is the operator (spectral) norm associated with the discrete L2 norm.

Proof. We first show that Th is invertible and then prove ∥T−1
h ∥2 is uniformly bounded. Let

the eigenvalues of a square matrix A be arranged so that |λmax(A)| ≥ · · · ≥ |λmin(A)|, and the

singular values of A be ordered as smax(A) ≥ · · · ≥ smin(A). Let (λ, ξ) be any eigenpair of Th with

a normalized eigenvector ∥ξ∥22 = ξ∗ξ = 1. Partition ξ =

 ξ1

ξ2

 according to the block structure

of Th. Then Thξ = λξ gives 
Chξ1 +B⊺

hξ2 = λξ1

Bhξ1 +Dhξ2 = λξ2.

(4.19)

By multiplying the first equation by ξ∗1 and the second one by ξ∗2 we get


ξ∗1Chξ1 + ξ∗1B

⊺
hξ2 = λξ∗1ξ1

ξ∗2Bhξ1 + ξ∗2Dhξ2 = λξ∗2ξ2.

(4.20)

Notice
(
ξ∗1B

⊺
hξ2
)∗

= ξ∗2Bhξ1 and λ∗ = λ. By subtracting the second equation from the conjugate

of first one, we obtain

0 < αξ∗1ξ1 +
1

γ
ξ∗2ξ2 = ξ∗1Chξ1 − ξ∗2Dhξ2 = λ(ξ∗1ξ1 − ξ∗2ξ2), (4.21)

which implies λ ̸= 0 and thus Th is invertible.

Next, we will estimate the bounds of eigenvalues of Th. If λ > 0 then ξ1 ̸= 0, since otherwise

(4.19) implies ξ2 = 0, which contradicts to ξ∗1ξ1 + ξ∗2ξ2 = 1. Thus we get

(λ− α)ξ∗1ξ1 > (λ+ 1
γ)ξ

∗
2ξ2 ≥ 0,

which implies λ > α > 0 since ξ∗1ξ1 > 0.

83

Similarly, for λ < 0, (Ch−λI) is positive definite, from the first equation in (4.19) we obtain

ξ1 = −(Ch − λI)−1B⊺
hξ2, which can be substituted into the second equation to get

Bh(Ch − λI)−1B⊺
hξ2 −Dhξ2 = −λξ2.

Multiplying from the left by ξ∗2 and noticing (−Dh) is positive semidefinite we obtain

ξ∗2Bh(Ch − λI)−1B⊺
hξ2 ≤ −λξ∗2ξ2.

This further gives

(λmax(Ch)− λ)−1s2min(Bh) ≤ ξ∗2Bh(Ch−λI)−1B⊺
hξ2

ξ∗2BhB
⊺
hξ2

ξ∗2BhB
⊺
hξ2

ξ∗2ξ2

=
ξ∗2Bh(Ch−λI)−1B⊺

hξ2
ξ∗2ξ2

≤ −λ,

which is

λ2 − λmax(Ch)λ− s2min(Bh) ≥ 0.

Under the condition λ < 0, we derive

λ ≤ 1
2

(
λmax(Ch)−

√
λ2max(Ch) + 4s2min(Bh)

)
.

Denote the Hermitian part of Bh by H(Bh), then

H(Bh) = (Bh +B⊺
h)/2 = Int ⊗ (σ∆h).

84

From matrix theory, there holds [Horn and Johnson, 2013]

smin(Bh) = smin(−Bh) ≥ λmin(H(−Bh))

= σλmin(−∆h) = σ(2π2 −O(h2)) > σπ2

for any h < 1, where the estimation of λmin(−∆h) is a classical result from [Hackbusch, 2003].

Thus

λ < 1
2

(
λmax(Ch)−

√
λ2max(Ch) + 4σ2π4

)
= −2σ2π4

λmax(Ch)+
√

λ2
max(Ch)+4σ2π4

≤ −2σ2π4

α+
√
α2+4σ2π4

.

To this end, we have shown that either λ > α > 0 or λ < −2σ2π4

α+
√
α2+4σ2π4

, which gives

∥T−1
h ∥2 = 1

σmin(Th)
= 1

|λmin(Th)| ≤ max{ 1
α ,

α+
√
α2+4π4

2σ2π4 },

where α > 0 and σ > 0 are independent of h and τ . This completes the proof.

In the above theorem, we only discussed the time-periodic case without control constraints

and nonlinear term S(·). The time-periodicity allows us to derive a well-structured coefficient

matrix by neglecting sophisticated boundary schemes. The technique assumption on periodic

solutions is only for the purpose of theoretical analysis, our scheme also works for general non-

periodic cases as illustrated in the numerical examples section. As to be shown the following

section, the general nonlinear case with control constraints will be linearized at each SSN iteration.

According to Theorem 1.5.1, we need to validate the Jacobian systems (4.24) have a uniformly

bounded inverse. Those Jacobian matrices have a very similar structure as in the above linear

unconstrained time-periodic case. We briefly outline how the above proof can be generalized to

the nonlinear constrained time-periodic case under certain technical assumptions on the nonlinear

term S(·).

In the case with nonlinear term as well as control constraints, in terms of discretization

shown in the next section, those corresponding blocks Bh, Ch, and Dh appearing in (4.18) now

85

become

Bh =



σ∆h −I/(2τ) 0 · · · I/(2τ)

I/(2τ) σ∆h −I/(2τ) · · · 0

0
. . .

. . .
. . . 0

0 · · · I/(2τ) σ∆h −I/(2τ)

−I/(2τ) 0 · · · I/(2τ) σ∆h


+D(S′(yh)),

Ch = αI +D(S′′(yh)ph), Dh = −D(∂Φ(ph/γ)/γ).

Theorem 4.3.2. For the nonlinear case, we assume that there exists two positive constants κ1

and κ2, respectively, such that

(1) smin(Bh) ≥ κ1, and

(2) α+ S′′(yh)ph ≥ κ2

hold pointwisely. Then the inverse of Th is uniformly bounded for all h > 0 and τ > 0.

Although the above assumptions seem to be cumbersome, it is a sufficient condition for the

existence of a minimizer at least at the discrete level.

Proof. The assumption smin(Bh) ≥ κ1 gives ξ1 ̸= 0 and ξ2 ̸= 0 according to (4.19) since otherwise

(4.19) would lead to a contradiction smin(Bh) = 0. By the second assumption α+S′′(yh)ph ≥ κ2,

the inequality (4.21) now reads

0 < κ2ξ
∗
1ξ1 ≤ ξ∗1Chξ1 ≤ ξ∗1Chξ1 − ξ∗2Dhξ2 = λ(ξ∗1ξ1 − ξ∗2ξ2), (4.22)

which shows that Th is invertible. Notice that here Dh = −D(∂Φ(ph/γ)/γ) is negative semidef-

inite. The rest of the proof is omitted since it follows the arguments in Theorem 4.3.1 in a

straightforward manner, except for using the constants κ1 and κ2 in the derived bounds.

86

4.4 SSN-MULTIGRID METHOD FOR OPTIMALITY SYSTEM

In this section, we first reformulate the proposed scheme (4.8,4.11,4.12,4.13,4.14) in an or-

ganized way such that the resulting nonlinear systems of equations have well-structured Jacobian

matrices. Then we carefully construct all key components of a linear multigrid algorithm for

solving the linearized Jacobian systems in each SSN iteration. The critical technique here is to

separate the linear and nonlinear part of the discretized optimality system.

By using the above notation, we define the following vectors by vertically concatenation over

all time steps

yh = [y0h; y
1
h; · · · ; y

nt
h], ph = [p0h; p

1
h; · · · ; p

nt
h],

ŷh = [0h; y
1
h; · · · ; y

nt
h], p̂h = [0h; p

1
h; · · · ; p

nt
h],

y̌h = [y0h; y
1
h; · · · ; y

nt−1
h ; 0h], p̌h = [p0h; p

1
h; · · · ; p

nt−1
h ; 0h],

where 0h denotes the vectorization of a zero function on Ωh. After discretizing (4.7) with scheme

(4.8,4.11,4.14,4.13,4.12), we obtain the discrete optimality system in the form of

Fh(yh, ph) = 0 (4.23)

87

with

Fh(yh, ph) :=

y0h − gh

−y2
h−y0

h

2τ + σ∆hy
1
h + S(y1h)− Φ(p1h/γ)− f1h

...

−y
nt
h −y

nt−2
h

2τ + σ∆hy
nt−1
h + S(ynt−1

h)− Φ(pnt−1
h /γ)− fnt−1

h

−y
nt−2
h −4y

nt−1
h +3y

nt
h

2τ + σ∆hy
nt

h + S(ynt

h)− Φ(pnt

h /γ)− fnt

h

−3p0
h+4p1

h−p2
h

2τ + σ∆hp
0
h + S′(y0h)p

0
h + αy0h − αz0h

p2
h−p0

h

2τ + σ∆hp
1
h + S′(y1h)p

1
h + αy1h − αz1h

...

p
nt
h −p

nt−2
h

2τ + σ∆hp
nt−1
h + S′(ynt−1

h)pnt−1
h + αynt−1

h − αznt−1
h

pnt

h − β(ynt

h − znt

h)



,

where S(·), S′(·), and Φ(·) are element-wise defined and so is the multiplication S′(ymh)pmh . A

further employment of some matrix notation we can separate the above system into

Fh(yh, ph) = Lh

 yh

ph

+Nh(yh, ph) = 0,

where the linear part

Lh =

 Xh 0

Yh Zh



88

with

Xh =



I 0 0 · · · 0 0

I
2τ σ∆h − I

2τ · · · 0 0

0 I
2τ σ∆h − I

2τ · · · 0

0 0
. . .

. . .
. . . 0

0 0 · · · I
2τ σ∆h − I

2τ

0 0 · · · − I
2τ

4I
2τ (σ∆h − 3I

2τ)



,

Yh = diag(αI, αI, · · · , αI,−βI),

and

Zh =



(σ∆h − 3I
2τ)

4I
2τ − I

2τ 0 · · · 0

− I
2τ σ∆h

I
2τ · · · 0 0

0 − I
2τ σ∆h

I
2τ · · · 0

0 0
. . .

. . .
. . . 0

0 0 · · · − I
2τ σ∆h

I
2τ

0 0 0 · · · 0 I



,

89

and the nonlinear part

Nh(yh, ph) =



−gh

S(y1h)− Φ(p1h/γ)− f1h

...

S(ynt−1
h)− Φ(pnt−1

h /γ)− fnt−1
h

S(ynt

h)− Φ(pnt

h /γ)− fnt

h

S′(y0h)p
0
h − αz0h

S′(y1h)p
1
h − αz1h

...

S′(ynt−1
h)pnt−1

h − αznt−1
h

βznt

h



.

It is easy to verify that Fh in (4.23) has a generalized derivative

Gh(yh, ph) = Lh +N ′
h(yh, ph),

where

N ′
h(yh, ph) =

 D(S′(ŷh)) −D(∂Φ(p̂h/γ)/γ)

D(S′′(y̌h)p̌h) D(S′(y̌h))


where D(·) denotes a diagonal matrix with the input vector as the diagonal elements. Notice

that Lh is not dependent on yh and ph, which needs to be constructed only once during the SSN

iterations.

Analogously, we can iteratively solve the discrete optimality system (4.23) by the discrete

90

SSN method. However, to achieve a mesh-independent convergence, we do require that the

Jacobian matrix Gh has a uniformly bounded inverse in some open neighborhood containing the

optimal control and state with respect to h, as stated in Theorem 1.5.1. This requirement can

be tediously verified under certain assumptions on the system. Based on above discussions, the

discrete SSN iteration for solving (4.23) is

 y
(k+1)
h

p
(k+1)
h

 =

 y
(k)
h

p
(k)
h

−Gh(y
(k)
h , p

(k)
h)−1Fh(y

(k)
h , p

(k)
h)

with k = 0, 1, 2, · · · , where the initials (y
(0)
h , p

(0)
h) will be specified appropriately. In each SSN

iteration, we need to first (approximately) solve the linearized Jacobian system

(
Lh +N ′

h(y
(k)
h , p

(k)
h)
) δy(k)

δp(k)

 = Fh(y
(k)
h , p

(k)
h), (4.24)

and then update the current k-th approximation according to

 y
(k+1)
h

p
(k+1)
h

 =

 y
(k)
h

p
(k)
h

−

 δy(k)

δp(k)

 .

The desired super-linear or mesh-independent convergence could be fulfilled by the above SSN

iterations provided that the assumptions in Theorem 1.5.1 hold [Hintermüller and Ulbrich, 2004].

Since the algebraic system (4.24) is required to be exactly solved up to machine error, such an

approach becomes very inefficient as the mesh refines. Another difficulty is how to efficiently solve

the above linearized Jacobian system (4.24) by taking advantage of its high sparsity. When (4.24)

is only approximately solved, such as with only two multigrid V-cycles to be described in the

following, it gives the inexact Newton method [Ortega and Rheinboldt, 2000, Dembo et al., 1982,

Brown et al., 2003]. The review paper [Benzi et al., 2005] summarizes many numerical methods

91

for solving two-by-two block saddle-point systems, but our current system (4.24) has less algebraic

properties such as symmetry and definiteness. To the best of our knowledge, no iterative solvers

are available for handling the system (4.24). However, our modified leapfrog scheme provides an

effective path to handle these challenges for solving parabolic optimal control problems. More

specifically, our following multigrid iterative V-cycle aims at efficiently solving (4.24) with a

sufficient level of accuracy, which can assure the mesh-independence convergence of the above

SSN iterations. During the approach we also try to balance the accuracy of solving (4.24) and

the corresponding computational costs, in order to achieve the best overall performance.

We now carry out a specific multigrid implementation for our previous Jacobian system

(4.24), which can be simplified (by omitting subscript (k)) as

Ahwh :=
(
Lh +N ′

h(yh, ph)
) δy

δp

 = Fh(yh, ph), (4.25)

where

Ah :=

 Bh Dh

Ch Eh

 := Lh +N ′
h(yh, ph) = (4.26)

 Xh +D(S′(ŷh)) −D(∂Φ(p̂h/γ)/γ)

Yh +D(S′′(y̌h)p̌h) Zh +D(S′(y̌h))

 . (4.27)

Next, we discuss how to construct the coarse grid operator

AH :=

 BH DH

CH EH

 .

Here we only use semi-coarsening in space (no coarsening in time) for its faster convergence. The

blocks BH , CH , and EH are derived from the finite difference discretization with a coarse step-size

92

H in space and full-weighted restriction of those smooth nonlinear parts

BH = XH +D(S′(IHh ŷh)),

CH = YH +D(S′′(IHh y̌h)I
H
h p̌h),

EH = ZH +D(S′(IHh y̌h)).

However, there are two approaches [Liu and Xiao, 2014a] to coarse the non-smooth Dh. The first

strategy directly applies IHh to the adjoint ph

D̃H := −D(∂Φ(IHh p̂h/γ))/γ, (4.28)

which fails to achieve favorable convergence for small γ in our simulations. This type of de-

teriorated performance may results from those extra high frequency errors introduced by the

non-smooth operator ∂Φ, and these errors are supposed to be smoothed out by the smoother on

the fine grid. As an alternative, we place the restriction operator IHh on the non-smooth operator

∂Φ, that is,

DH := −D(IHh ∂Φ(p̂h/γ))/γ, (4.29)

which provides more information to the coarse operator compared with D̃H . Postponing the

restriction operator IHh after the non-smooth operator ∂Φ results in the iterations being able to

capture more nonlinear structure of the finer discrete system.

For the smoother smooth, considering its lower computational costs, we make use of a

damped collective Jacobi (C-JAC) smoother given in [Takacs and Zulehner, 2011]. Numerical

results indicate that the C-JAC smoother works better than conventional Gauss-Seidel (G-S)

smoother, especially when the regularization parameter γ is small. In particular, these iteration

schemes can be represented in one compact formula (with damping factor ω ∈ (0, 1] for C-JAC

93

smoother)  δy

δp


new

=

 δy

δp

+ ωP−1
h

Fh(yh, ph)−Ah

 δy

δp


 ,

with

Ph :=

 diag(Bh) diag(Dh)

diag(Ch) diag(Eh)

 (4.30)

where diag(·) stands for the diagonal part of the input matrix, respectively. Notice that we

have diag(Ch) = Ch and diag(Dh) = Dh since they are diagonal matrices. Here, the pre-

conditioning step P−1
h v can be computed efficiently based on the partitioned inverse formula

[Horn and Johnson, 2013]. Indeed, the time complexity of calculating P−1
h v is of linear O(N).

4.5 NUMERICAL EXAMPLES

In this section we demonstrate the second-order accuracy and mesh-independence conver-

gence of our developed SSN multigrid method and evaluate its computational performance with

respect to parameters. All simulations are implemented using MATLAB on a laptop PC with

Intel(R) Core(TM) i3-3120M CPU@2.50GHz and 12GB RAM. The CPU time is estimated by

timing functions tic/toc. Let ry and rp be the residual of the state and adjoint equation, respec-

tively. The SSN algorithm is usually only locally convergent, thus we need to carefully choose

the initial values. In outer SSN iterations, the state unknowns are initialized to be the desired

tracking trajectory, the adjoint unknowns are set as zero, and the stopping criterion is chosen as

∥r(k)y ∥+ ∥r(k)p ∥
max(1, ∥r(0)y ∥+ ∥r(0)p ∥)

≤ 10−8, (4.31)

where r
(k)
y and r

(k)
p denote the residuals at k-th SSN iteration. For a grid function defined on

Q, let ∥ · ∥ denotes the standard discrete L2 norm on Q. Similarly, for a grid function on Ω,

94

∥ · ∥ means the standard discrete L2 norm on Ω. The specific definition should be clear from the

context. When the exact optimal state y∗ and adjoint p∗ are known, we measure the order of

accuracy by using the norms of their approximation errors ey = ∥yh − y∗∥ and ep = ∥ph − p∗∥.

We also compute the tracking error ez = ∥yh − z∥ (when α > 0) and terminal observation error

eT = ∥yh(·, T)− zT ∥ (when β > 0). To approximately solve the inner Jacobian system (4.25), we

perform only 2 V-cycle multigrid iterations with zero initial and two pre- and post- smoothing

iterations. In case of very small γ, numerical tests show that using a W-cycle multigrid gives

better convergence. If the nonlinear term S is very complicated, we may increase the number

of inner iterations to recover the mesh-independence convergence. The damping factor is set as

ω = 2/3 for the C-JAC smoother. The coarsest mesh size is chosen as h0 = 1/8 and spatial

coarsening mesh size H = 2h.

Example 6.

Our first example is slightly modified from [González Andrade and Borz̀ı, 2012] such that it

includes both a nonlinear term and active control constraints. We let T = 1, α = 1, β = 0, σ =

1, ua = −1/2, ub = 1/2, and choose the following state, adjoint, and control functions

y∗ = t2(1− t)2 sin(πx1) sin(πx2),

p∗ = 2γt(1− t)(π2t2 − (π2 − 2)t− 1) sin(πx1) sin(πx2),

u∗ = max{ua,min{ub, p/γ}}.

The other corresponding functions are given by

f = −∂ty∗ + σ∆y∗ + S(y∗)− u∗,

z = 1
α(∂tp

∗ + σ∆p∗ + S′(y∗)p∗ + αy∗),

where we choose S(y) = exp(y). Here we assume α > 0, for otherwise we needn’t to specify

the tracking trajectory z and instead only the terminal state zT should be provided. The above

95

constructed exact solutions allows us to validate the order of accuracy of our method with a

comparison. Notice that we did not approximate the control variable u in our method directly,

thus its accuracy is completely determined by the accuracy of adjoint variable p. In Fig. 4.1,

0 0.2 0.4 0.6 0.8 1
−0.05

0

0.05

0.1

0.15

t

y(0.5,0.5,t)
z(0.5,0.5,t)

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

t

u(0.5,0.5,t)

Figure 4.1. The evolution of y, z, and u at (x1, x2) = (0.5, 0.5) for Ex. 6.

the time evolution (with n = 128) of the state variable p compared to the desired trajectory

z at a fix point (x1, x2) = (0.5, 0.5) is depicted, where the corresponding control function u

is also shown to attain the lower bound ua in a large portion of the time interval. Here the

dotted line in the bottom is p/γ. We also plot (with n = 128) in Fig. 4.2 the evolution of the

approximation error ∥ey(·, t)∥L2(Ω) to inspect any possible instability of the leapfrog scheme in

time. The peak occuring in the middle of the time interval indicates that the backward marching

adjoint equation suppresses the possible error propagation incurred by the leapfrog scheme. This

is a very interesting difference from the case of a single parabolic equation.

In Tables 4.2–4.3, we provide the approximation errors, the required SSN iteration numbers

(column ‘Iter’) and the corresponding CPU time in seconds (column ‘CPU’) of the our proposed

96

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

−6

t

Figure 4.2. The evolution of ey(·, t) for Ex. 6 with S(y) = exp(y) and γ = 10−3.

SSN multigrid (SSN-MG) algorithm (using C-JAC smoother) for different levels of mesh sizes

with different regularization parameter γ. They show that halving the space and time mesh sizes,

the approximation errors (ey, ep) reduce approximately by a factor of four, thus demonstrating

a second-order accuracy. We clearly observe the mesh-independent convergence of our proposed

SSN-MG method. More importantly, the SSN-MG algorithm numerically achieves the optimal

O(N) linear complexity since its CPU time increases roughly eight-fold as the number of unknowns

also increase by eight times from one level to the next. Also, the tracking errors ez becomes smaller

as γ decreases, which is as expected since the cost functional becomes more prone to tracking

trajectory. Our numerical tests show that the performance of our SSN-MG method is insensitive

to the choice of different nonlinear terms S(y).

To compare the performance of our SSN-MG method with the BDF2-based FAS multigrid

(FAS-MG) approach in [González Andrade and Borz̀ı, 2012], we also present the corresponding

numerical results of Ex. A solved by the FAS-MGmethod in Tables 4.4–4.5. Here the column ‘Iter’

97

Table 4.2. Results for Ex. 6 using SSN-MG method, with S(y) = exp(y), γ = 10−3.
(n, n, nt) ez ey ep ∥ry∥ ∥rp∥ Iter CPU

(8,8,8) 7.36e-03 3.41e-04 1.21e-05 4.03e-16 1.03e-17 4 0.18
(16,16,16) 7.54e-03 7.32e-05 3.01e-06 4.80e-10 8.58e-12 7 0.30
(32,32,32) 7.59e-03 1.74e-05 7.58e-07 2.11e-09 1.76e-11 7 1.13
(64,64,64) 7.60e-03 4.33e-06 1.90e-07 3.87e-09 2.38e-11 7 7.12

(128,128,128) 7.60e-03 1.08e-06 4.74e-08 5.14e-09 2.75e-11 7 55.55

Table 4.3. Results for Ex. 6 using SSN-MG method, with S(y) = exp(y), γ = 10−5.
(n, n, nt) ez ey ep ∥ry∥ ∥rp∥ Iter CPU

(8,8,8) 2.25e-04 2.18e-04 1.45e-06 7.22e-11 2.49e-12 3 0.16
(16,16,16) 7.74e-05 3.75e-05 5.21e-07 2.14e-09 5.44e-12 9 0.38
(32,32,32) 7.42e-05 6.77e-06 1.31e-07 1.72e-09 3.92e-12 10 1.71
(64,64,64) 7.55e-05 1.51e-06 3.32e-08 2.18e-09 4.56e-12 10 9.93

(128,128,128) 7.59e-05 3.67e-07 8.29e-09 2.44e-09 5.00e-12 10 76.95

Table 4.4. Results for Ex. 6 using FAS-MG method, with S(y) = exp(y), γ = 10−3.
(n, n, nt) ez ey ep ∥ry∥ ∥rp∥ Iter CPU

(8,8,8) 7.70e-03 2.90e-04 1.73e-05 1.70e-09 2.15e-10 10 0.67
(16,16,16) 7.60e-03 6.20e-05 5.28e-06 1.30e-09 2.34e-11 6 2.25
(32,32,32) 7.60e-03 1.43e-05 1.40e-06 1.97e-09 7.01e-12 5 12.47
(64,64,64) 7.60e-03 3.52e-06 3.60e-07 2.14e-09 2.00e-12 4 83.74

(128,128,128) 7.60e-03 8.78e-07 9.12e-08 4.31e-09 3.81e-12 3 528.74

Table 4.5. Results for Ex. 6 using FAS-MG method, with S(y) = exp(y), γ = 10−5.
(n, n, nt) ez ey ep ∥ry∥ ∥rp∥ Iter CPU

(8,8,8) 2.79e-04 2.57e-04 2.19e-06 3.96e-09 3.01e-11 5 0.42
(16,16,16) 8.42e-05 3.61e-05 4.31e-07 4.97e-09 1.53e-11 9 2.99
(32,32,32) 7.57e-05 6.30e-06 1.12e-07 5.96e-09 9.35e-12 6 15.37
(64,64,64) 7.58e-05 1.45e-06 2.91e-08 1.68e-09 9.64e-13 5 105.31

(128,128,128) 7.60e-05 3.60e-07 7.41e-09 9.18e-09 1.50e-12 3 514.96

denotes the required number of FAS multigrid iterations. In [González Andrade and Borz̀ı, 2012]

two different smoothing schemes (point-wise and line-wise) were discussed. Considering their

very similar performance, here we use the point-wise Gauss-Seidel smoothing scheme. Follow-

ing [González Andrade and Borz̀ı, 2012], for implementing the FAS-MG algorithm we choose W-

cycles, two pre- and two post-smoothing steps, and h0 = 1/8 as the coarsest space-mesh size. The

nonlinear system on the coarsest grid is approximately solved using 10 smoothing iterations. We

98

also set the same initial guess and stopping criterion as in our SSN-MG method. We remark that

the column ‘Iter’ in our SSN-MG method is completely different from the column ‘Iter’ in the

FAS-MG method, hence it is not meaningful to compare these values literally.

As also demonstrated in [González Andrade and Borz̀ı, 2012], the FAS-MG algorithm with

W-cycles shows a very decent convergence rate. However, our SSN-MG method is significantly

faster than the FAS-MG method (comparing with the CPU times) while both of them achieve a

comparable second-order accuracy. Notice that our simulations are programmed using MATLAB.

The ratios of CPU times may be slightly different if some other programming languages are used,

but the conclusion remains the same. The point-wise treatment of the non-linearity and non-

smoothness (due to control constraints) in the FAS-MG method becomes much less efficient when

the mesh refines. Therefore, our new leapfrog scheme delivers a comparable second-order accuracy

as the BDF2 scheme and, more attractively, the proposed SSN-MG method (based on our leapfrog

scheme) shows a much better computational efficiency than the one using the FAS-MG method

(based on the BDF2 scheme).

Example 7.

The second example is modified from [Borz̀ı, 2003] by adding a nonlinear term S(y) = 1
1+y2

.

We let T = 5, γ = 10−6, ua = −10, ub = 10, f = 0, and

z = sin(2πt) sin(πx1) sin(πx2).

Here the desired target trajectory is an oscillating function over time. For simplicity, we set the

desired terminal state zT = z(x1, x2, T) whenever β > 0. For this example, no exact solutions

are known. We will report the norm of corresponding residuals to validate the convergence.

For a long-time (large T) trajectory tracking, an alternative efficient strategy is to combine the

receding-horizon techniques developed in [Borz̀ı, 2007b], which is not implemented here.

In Tables 4.6–4.8, we report the tracking errors ez, terminal observation error eT , and resid-

99

Table 4.6. Results for Ex. 7 using SSN-MG method (α = 1, β = 0, σ = 1).
(n, n, nt) ez ∥ry∥ ∥rp∥ Iter CPU

(8,8,8) 1.36e-01 6.12e-12 3.77e-13 6 0.20
(16,16,16) 1.30e-01 9.53e-08 1.96e-10 22 0.84
(32,32,32) 1.38e-01 8.73e-08 1.42e-10 24 3.53
(64,64,64) 1.35e-01 1.24e-07 1.60e-10 26 24.52

(128,128,128) 1.31e-01 1.27e-07 1.55e-10 26 214.46

Table 4.7. Results for Ex. 7 using SSN-MG method (α = 0, β = 1, σ = 1).
(n, n, nt) eT ∥ry∥ ∥rp∥ Iter CPU

(8,8,8) 9.66e-07 7.75e-12 4.51e-19 3 0.16
(16,16,16) 1.11e-06 3.45e-08 2.44e-14 5 0.24
(32,32,32) 1.30e-06 8.03e-09 6.26e-15 6 0.94
(64,64,64) 1.53e-06 1.78e-08 1.81e-14 6 5.99

(128,128,128) 1.71e-06 2.71e-08 4.20e-14 6 53.81

Table 4.8. Results for Ex. 7 using SSN-MG method (α = 1, β = 1, σ = 10).
(n, n, nt) ez eT ∥ry∥ ∥rp∥ Iter CPU

(8,8,8) 7.13e-01 1.04e-06 1.87e-07 8.88e-09 3 0.16
(16,16,16) 7.10e-01 6.73e-07 6.06e-07 1.03e-09 7 0.31
(32,32,32) 7.09e-01 6.71e-07 2.94e-07 2.99e-10 8 1.23
(64,64,64) 7.09e-01 5.04e-07 8.29e-07 5.43e-10 8 8.02

(128,128,128) 7.09e-01 8.64e-07 1.13e-07 4.79e-11 9 80.19

uals of approximated solutions with different parameters. Notice that the residuals ry and rp are

only required to fulfill the stopping criterion after the last iteration, which may not necessarily

decrease as the mesh refines as in Tables 4.6–4.8. However, the residuals should be small enough

in order to recover the discretization error of approximated solutions. Surprisingly, although the

tracking error ez may be large due to the restricted control constraints, the terminal observation

error eT could be very small as in Tables 4.7 an 4.8. Our SSN multigrid algorithm demonstrates

a very robust high performance with respect to those parameters. In Fig. 4.3–4.4, we plot (with

n = 128) the time evolution of the state variable p compared to the desired trajectory z at a fixed

point (x1, x2) = (0.5, 0.5) and the corresponding control u with different β and σ. It shows the

capacity of the proposed method to track the desired trajectory over long-time simulation under

the control constraints.

100

0 1 2 3 4 5
−1

−0.5

0

0.5

1

t

y(0.5,0.5,t)

z(0.5,0.5,t)

0 1 2 3 4 5

−10

−5

0

5

10

t

u(0.5,0.5,t)

Figure 4.3. The trajectory of y, z, and u at (0.5, 0.5) for Ex. 7 (α = 1, β = 0, σ = 1).

Table 4.9. Results for Ex. 7 using FAS-MG method (α = 1, β = 0, σ = 1).
(n, n, nt) ez ∥ry∥ ∥rp∥ Iter CPU

(8,8,8) 2.46e-01 1.84e-08 1.88e-09 11 0.75
(16,16,16) 2.70e-01 5.71e-08 1.91e-10 56 19.43
(32,32,32) 1.50e-01 2.16e-08 1.62e-11 23 64.25
(64,64,64) >100

(128,128,128) >100

Table 4.10. Results for Ex. 7 using FAS-MG method (α = 0, β = 1, σ = 1).
(n, n, nt) eT ∥ry∥ ∥rp∥ Iter CPU

(8,8,8) 1.06e-06 4.52e-08 3.76e-12 11 0.75
(16,16,16) 1.26e-06 5.84e-08 2.37e-12 6 2.17
(32,32,32) 1.48e-06 1.26e-08 1.42e-12 6 16.73
(64,64,64) 1.66e-06 1.27e-08 8.26e-13 5 116.40

(128,128,128) 1.77e-06 4.24e-09 4.63e-13 5 933.39

The corresponding numerical results of Ex. 7 solved by the FAS-MG method are given in

Tables 4.9–4.11. Similar as in Ex. 6, our leapfrog-based SSN-MG method shows a much better

computational efficiency in terms of CPU time while achieving almost the same level of accuracy

101

0 1 2 3 4 5
−1

−0.5

0

0.5

1

t

y(0.5,0.5,t)

z(0.5,0.5,t)

0 1 2 3 4 5

−10

−5

0

5

10

t

u(0.5,0.5,t)

Figure 4.4. The evolution of y, z, and u at (0.5, 0.5) for Ex. 7 (α = 1, β = 1, σ = 10.

Table 4.11. Results for Ex. 7 using FAS-MG method (α = 1, β = 1, σ = 10).
(n, n, nt) ez eT ∥ry∥ ∥rp∥ Iter CPU

(8,8,8) 7.06e-01 1.03e-06 3.81e-07 3.15e-08 12 0.81
(16,16,16) 7.05e-01 6.81e-07 1.01e-07 5.19e-09 7 2.58
(32,32,32) 7.06e-01 6.78e-07 4.58e-08 4.60e-11 6 16.89
(64,64,64) 7.08e-01 5.09e-07 1.04e-08 1.51e-12 6 136.63

(128,128,128) 7.09e-01 7.63e-07 4.64e-08 2.36e-12 5 933.37

as the BDF2-based FAS-MG method. In particular, the FAS-MG method in Table 4.9 fails to

reach convergence within 100 iterations for a mesh size h ≤ 1/64. The worsening convergence rate

of FAS-MG method was also observed and discussed in [González Andrade and Borz̀ı, 2012] when

handling a very small γ = 10−6. The authors suggested that using finer meshes are necessary

to restore a decent convergence rate, but further refinements have become impractical due to

very high computational costs. In contrast, our SSN-MG method displays a very robust mesh-

independent convergence without restrictions on mesh sizes, as seen in Table 4.6.

102

4.6 CONCLUSIONS

A new second-order discretization scheme of control-constrained semilinear parabolic optimal

control problems was developed by a modified leapfrog scheme in the time variable. A semi-smooth

Newton method with a space-time multigrid algorithm as the inner solver was studied in order to

efficiently solve the resulting discretized nonlinear and non-smooth optimality system. Numerical

experiments were conducted to demonstrate the second-order accuracy, linear time complexity,

and robustness of the proposed SSN multigrid method.

103

CHAPTER 5

AN IMPLICIT PRECONDITIONED ITERATIVE METHOD FOR WAVE

CONTROL PROBLEMS WITHOUT CONTROL CONSTRAINTS

5.1 INTRODUCTION

In this chapter, we present an alternative fast iterative solver for solving the optimality PDE

system, arising from wave control problems, when the standard multigrid method fails to work.

Let Ω = (0, 1)d (1 ≤ d ≤ 3) be the spatial domain with boundary Γ := ∂Ω. Given a finite period

of time T > 0, define Q = Ω × (0, T) and Σ = Γ × (0, T). We consider the following standard

optimal control problem [Lions, 1971] of minimizing a tracking-type quadratic cost functional

{
J(y, u) = 1

2∥y − g∥2L2(Q) +
γ
2∥u∥

2
L2(Q)

(5.1)

subject to the linear wave equation:



ytt −∆y = f + u in Q,

y = 0 on Σ,

y(·, 0) = y0 in Ω,

yt(·, 0) = y1 in Ω,

(5.2)

where u ∈ U := L2(Q) is the distributed control function, g ∈ L2(Q) is the desired tracking

trajectory, γ > 0 represents either the weight of the cost of control or the Tikhonov regularization

parameter, f ∈ L2(Q), and the initial conditions y0 ∈ H1
0 (Ω) and y1 ∈ L2(Ω). The existence,

uniqueness and regularity of the solution to the above optimal control problem (5.1)-(5.2) are

well established [Lions, 1971]. By defining an appropriate Lagrange functional and making use

of the strict convexity, the optimal solution pair (y, u) to (5.1)-(5.2) is shown to be completely

104

characterized by the unique solution triplet (y, p, u) to the following optimality system



ytt −∆y − u = f in Q, y = 0 on Σ,

y(·, 0) = y0 in Ω, yt(·, 0) = y1 in Ω,

ptt −∆p+ y = g in Q, p = 0 on Σ,

p(·, T) = 0 in Ω, pt(·, T) = 0 in Ω,

γu− p = 0 in Q,

(5.3)

where the state y evolves forward in time and the adjoint state p marches backward in time. The

control u = p/γ can be eliminated from the above optimality system, giving



ytt −∆y − p/γ = f in Q, y = 0 on Σ,

y(·, 0) = y0 in Ω, yt(·, 0) = y1 in Ω,

ptt −∆p+ y = g in Q, p = 0 on Σ,

p(·, T) = 0 in Ω, pt(·, T) = 0 in Ω.

(5.4)

It is well-known that the main challenge for solving (5.4) results from the fact that the state y

and the adjoint state p are marching in opposite orientations. Its numerical discretizations will

create an enormously huge system of equations as we have to resolve all time steps simultaneously

[Heinkenschloss, 2005].

Different from elliptic and parabolic cases, there are few available results on fast com-

puting of optimal control of wave equations. There are some developments of numeri-

cal algorithms for the optimal control of hyperbolic or wave equations [Kröner et al., 2011,

Kröner, 2011a, Kröner, 2013, Luo et al., 2013, Kröner, 2011b, Kunisch and Wachsmuth, 2013b,

Kunisch and Wachsmuth, 2013a, Kröner and Kunisch, 2014, Bucci, 1992,

Zuazua, 2005, Gerdts et al., 2008, Gugat et al., 2009, Gugat and Grimm, 2011]. Some compre-

hensive and interesting results are given, for example, in [Kröner et al., 2011]. In their work,

105

the authors analyzed the superlinear convergence of the semismooth Newton method that is em-

ployed to treat the inequality control constraints in optimal control problems governed by the

wave equation. The discretization is through finite element approach for distributed control,

Neumann boundary control, and Dirichlet boundary control, respectively. The original second-

order wave equation is formulated as a first-order system for their discretizations, in which the

time variable is discretized by the Crank-Nicolson scheme based on the trapezoidal rule. How-

ever, there is no discussion on the implementation of proposal algorithms for solving the resultant

discretized systems. Furthermore, the reformulated first-order system introduces two extra depen-

dent variables, which increases the computational burdens. Another notable work can be found in

[Luo et al., 2013]. In their approach, the authors applied the finite volume element method to the

distributed control problems governed by second-order hyperbolic equations, where the optimal

error estimates in certain norm were proved for the spatially semi-discrete optimality system, but

the convergence of the full-discrete scheme is not seen. In the given numerical experiments, the

spatial and temporal step sizes are chosen to satisfy the CFL condition that is not desirable for

an efficient algorithm. For solving the discretized system, a nice fixed-point iterative algorithm is

provided in [Rincon and Liu, 2003]. However, when the regularization (or penalization) param-

eter γ in the cost functional becomes very small, the approach for our underlying problem may

suffer from slow convergence or even divergence. More recently, numerical methods were devel-

oped for the optimal control of nonlinear hyperbolic system with possible discontinuous solutions

[Chertock et al., 2014, Herty et al., 2015]. However, the implementation of fast computing for

solving the discretized optimality system has not been discussed. Although these second-order

schemes are available in literature, to the best of our knowledge, the study of an efficient numerical

implementation (fast solver) for the optimal control problem of wave equations has been seen yet.

Generally speaking, an efficient numerical implementation includes two steps: the first step

is to seek a numerical algorithm that is not only convergent but also can provide a well-structured

discretization, and the second step is to develop an efficient iteration for the obtained large

algebraic systems. These two steps are inevitably correlated. If a high-order numerical scheme

106

is developed with a poor structure, then an efficient implementation will be very difficult, if it

is not impossible. Therefore, in order to have an efficient computing, it is essential to develop

the numerical schemes that can be easily adapted to the later construction of iterative linear

solvers[Rees et al., 2010, Herzog and Sachs, 2010, Pearson et al., 2012, Pearson and Stoll, 2013,

Saad, 2003] so that it can handle large-scale degrees of freedom and high dimension.

In this chapter we develop a new implicit central difference scheme for both time and spatial

variables. The proposed numerical scheme for solving (5.4) is not only shown to be uncondi-

tionally stable but also to have a nice discretized structure. It is not required to satisfy the CFL

condition that usually is necessary in classical theory for solving hyperbolic equations by standard

explicit scheme[Strikwerda, 2004, LeVeque, 2007]. Based on our setting, we construct an effective

preconditioned iterative solver for solving the resultant discretized linear system.

The chapter is organized as follows. In next section we give a standard explicit scheme in

time with a central finite difference scheme in space for discretizing the optimality system (5.4)

and illustrate the drawback for this approach. As a development, we present a new implicit

scheme in time and the error estimate of the resulting full-discrete scheme in Section 5.3. Section

5.4 discusses the construction of an effective block upper triangular preconditioner by the well-

known GMRES method that is suitable for solving the fully discretized linear system. Numerical

experiments are performed in Section 5.5 to validate our theoretical outcome and to demonstrate

the effectiveness of the proposed preconditioner. Finally, the chapter ends with concluding remarks

in Section 5.6.

5.2 A STANDARD EXPLICIT CENTRAL DIFFERENCE SCHEME

We partition the time interval [0, T] uniformly into 0 = t0 < t1 < · · · < tN = T with

tk − tk−1 = τ = T/N , and discretize the space domain Ω uniformly into 0 = ξ0 < ξ1 < · · · <

ξM1 = 1 and 0 = ζ0 < ζ1 < · · · < ζM2 = 1, with h1 = ξi−ξi−1, h2 = ζj−ζj−1. Let h = max(h1, h2).

We define the discrete inner product (φn, ϕn) =
∑M1−1,M2−1

i,j=1 φn
ijϕ

n
ijh1h2 and the corresponding

107

discrete L2(Ω) norm ∥ϕn∥ =
√

(ϕn, ϕn). We also define the discrete gradient

∇hφ
n =

(
φn
i,j − φn

i−1,j

h1
,
φn
i,j − φn

i,j−1

h2

)M1,M2

i=1,j=1

,

and the discrete Laplacian (in 2D)

(∆hY
n)ij =

Y n
i−1,j − 2Y n

i,j + Y n
i+1,j

h21
+
Y n
i,j−1 − 2Y n

i,j + Y n
i,j+1

h22
.

We discretize the equations (5.4) by the explicit scheme in time with a standard five-point

second order central difference discretization in space

Y n+1 − 2Y n + Y n−1

τ2
−∆hY

n − Pn/γ = fn, n = 0, 1, 2, · · · , N − 1 (5.5)

Pn+1 − 2Pn + Pn−1

τ2
−∆hP

n + Y n = gn, n = 1, 2, · · · , N − 1, N (5.6)

where Y n = (Y n
ij)

M1−1,M2−1
i=1,j=1 and Pn = (Pn

ij)
M1−1,M2−1
i=1,j=1 with Y n

ij and Pn
ij being the discrete ap-

proximation of y(ξi, ζj , tn) and p(ξi, ζj , tn), respectively. Similarly notations are used for fn and

gn. The initial conditions are derived based on Taylor expansions using (5.4) to represent ytt and

ptt, that is,

Y 0
i,j = y0(ξi, ζj), Y 1

i,j = y0(ξi, ζj) + y1(ξi, ζj)τ +
τ2

2
(∆y0(ξi, ζj) + f0i,j +

1

γ
P 0
i,j), (5.7)

PN
i,j = 0, PN−1

i,j =
τ2

2
(−Y N

i,j + gNi,j), (5.8)

where we have used the final conditions p(·, T) = 0 and pt(·, T) = 0.

To illustrate the structure of the discretized system, we formulate the above explicit scheme

108

into a two-by-two block structured symmetric indefinite linear system

Sh

 yh

ph

 :=

 Ǐ F ⊺
h

Fh −Î/γ


 yh

ph

 =

 gh

fh

 , (5.9)

where

Fh =
1

τ2



I 0 · · · 0 0 0

−2I − τ2∆h I 0 · · · 0 0

I −2I − τ2∆h I 0 · · · 0

0
. . .

. . .
. . . 0 0

0 · · · I −2I − τ2∆h I 0

0 0 · · · I −2I − τ2∆h I



, (5.10)

Îh =



I/2 0 0 0 · · · 0

0 I 0 0 · · · 0

0 0 I 0
. . .

...

0 0
. . .

. . .
. . .

...

0 0 · · · 0 I 0

0 0 · · · 0 0 I



, Ǐh =



I 0 0 0 · · · 0

0 I 0 0 · · · 0

0 0 I 0
. . .

...

0 0
. . .

. . .
. . .

...

0 0 · · · 0 I 0

0 0 · · · 0 0 I/2



, (5.11)

109

fh =



f0/2 + y1/τ + (I/τ2 +∆h/2)y0

f1 − y0/τ
2

...

fN−2

fN−1


, (5.12)

gh =



g1

g2

g3

...

gN/2


, yh =



y1

y2

...

yN−1

yN


, and ph =



p0

p1

p2

...

pN−1


. (5.13)

Here I is an identity matrix of appropriate size and the vectors y0, y1, f
n, gn, yn, and pn are the

lexicographic ordering (vectorization) of the corresponding function approximations over spatial

grid points. Notice that the submatrix Fh becomes very ill-conditioned when the CFL condition

(τ ≤ h) does not hold, which is expected since it corresponds to the instability of explicit scheme

applied to a single wave equation. Although, due to the coupling effects, the whole system

seems to be well-conditioned regardless of the CFL condition, it is difficult to design efficient

iterative solvers by existing method, such as by precoditioned GMRES [Saad, 2003], with the ill-

conditioned Fh. We shall modify the above scheme in next section to remove the CFL condition

and to overcome the ill-conditioned problem caused by the standard discretization.

5.3 A NEW IMPLICIT SCHEME AND ITS ERROR ESTIMATE

One critical observation is that the above explicit scheme in time does not help us to ef-

ficiently solve the coupled system by any time-marching algorithms as usually found in dealing

110

with a single wave equation. This motivates us to change the explicit scheme that relies on CFL

condition to an implicit scheme so that restrictions on mesh size ratios can be eliminated. It

is expected that implicit schemes are more suitable for developing robust iterative solvers. In

this section, we introduce an implicit central difference scheme for optimality system, which not

only allows us to show the convergence but also to construct an effective preconditioner of the

discretized system.

We propose the following scheme (averaging the Laplacian term)

Y n+1 − 2Y n + Y n−1

τ2
− ∆hY

n+1 +∆hY
n−1

2
− Pn/γ = fn, n = 1, 2, · · · , N − 1 (5.14)

Pn+1 − 2Pn + Pn−1

τ2
− ∆hP

n+1 +∆hP
n−1

2
+ Y n = gn, n = 1, 2, · · · , N − 1 (5.15)

where Y n = (Y n
ij)

M1−1,M2−1
i=1,j=1 and Pn = (Pn

ij)
M1−1,M2−1
i=1,j=1 with Y n

ij and Pn
ij are the discrete approxi-

mations of y(ξi, ζj , tn) and p(ξi, ζj , tn), respectively. Compared to the standard central difference

scheme (5.5)-(5.8), we artificially introduce a second-order approximation over three consecutive

time steps, i.e.,

∆hY
n =

∆hY
n+1 +∆hY

n−1

2
+
τ2∆h

2

∂2y

∂t2
(tn) +O(τ4), (5.16)

∆hP
n =

∆hP
n+1 +∆hP

n−1

2
+
τ2∆h

2

∂2p

∂t2
(tn) +O(τ4), (5.17)

which maintains the same second order of accuracy as the standard central difference scheme

does. The initial conditions are derived based on Taylor expansions up to the order O(τ3), by

using (5.4) to represent ytt and ptt, i.e.

Y 0
i,j = y0(ξi, ζj),

(
1− τ2

2
∆h

)
Y 1
i,j = y0(ξi, ζj) + y1(ξi, ζj)τ +

τ2

2
(f0i,j +

1

γ
P 0
i,j), (5.18)

PN
i,j = 0,

(
1− τ2

2
∆h

)
PN−1
i,j =

τ2

2
(−Y N

i,j + gNi,j). (5.19)

111

where we have used implicit schemes in approximating Y 1
i,j and PN−1

i,j . In Section 5.4 we will see

that the implicit schemes used in (5.18)-(5.19) guarantees an effective preconditioner.

By denoting Dh = I − τ2

2 ∆h, the above scheme can be formulated as a symmetric indefinite

linear system

Mh

 yh

ph

 :=

 Ǐh L⊺
h

Lh −Îh/γ


 yh

ph

 =

 gh

fh

 , (5.20)

where

Lh =
1

τ2



Dh 0 0 0 · · · 0

−2I Dh 0 0 · · · 0

Dh −2I Dh 0 · · · 0

0
. . .

. . .
. . . 0 0

0 · · · Dh −2I Dh 0

0 0 · · · Dh −2I Dh



, (5.21)

fh =



f0/2 + y1/τ + y0/τ
2

f1 −Dhy0/τ
2

f2

...

fN−2

fN−1



, gh =



g1

g2

...

gN−1

gN/2


, (5.22)

where the first two components of fh are different from previous standard scheme. The matrix Lh

112

has a much smaller condition number than Fh in (5.9), which will be crucial to the development of

efficient iterative solvers. In the following Table 5.1, we report the numerically estimated condition

numbers of the explicit and implicit central difference scheme for the following Ex. 8 with T = 2

using MATLAB’s build-in function condest. Notice here we have τ = 2h, which of course violates

the CFL condition (τ ≤ h). We see that Fh is highly ill-conditioned compared with Lh, which will

inevitably incapacitate any numerical methods that rely on computing or approximating F−1
h v

for solving the linear system (5.9). Our implicit scheme does not suffer from this drawback since

the corresponding Lh is even much more well-conditioned than the whole system Mh. For our

approach, we do need to compute L−1
h v for the implementation of a desirable preconditioner.

Table 5.1. The condition numbers of the explicit and implicit scheme for

Ex. 8 (T = 2, γ = 10−2).
Explicit Scheme Implicit Scheme

(M,N) cond(Fh) cond(Sh) cond(Lh) cond(Mh)

(8,8) 1.59e9 1.53e3 1.54e2 8.23e2
(16,16) 2.47e18 6.57e3 6.97e2 2.34e3
(32,32) 5.00e36 2.85e4 1.55e3 8.05e3
(64,64) 2.01e73 1.26e5 9.96e3 3.33e4

(128,128) 3.26e146 5.56e5 3.71e4 1.29e5
(256,256) 8.55e292 2.44e6 8.74e4 5.49e5

We next present error estimates for the numerical solution given by the scheme (5.14)-(5.19).

The discrete version of Poincare inequality [Jovanović and Süli, 2014] will be used, i.e. there exists

a positive constant C0, independent of h, such that if y = (yij) satisfies the boundary condition

y0,j = yM1,j = yi,0 = yi,M2 = 0 for i = 1, · · · ,M1 − 1 and j = 1, · · · ,M2 − 1, then

∥y∥ ≤ C0∥∇hy∥ . (5.23)

The following discrete version of integration by parts will also be used:

(−∆hz, w) = (∇hz,∇hw)

113

where the functions z, w are defined on the mesh points and vanish on the boundary ∂Ω. We also

need the following two lemmas in the proof of Theorem 5.3.3.

Lemma 5.3.1 (Lemma 5.1 of [Heywood and Rannacher, 1990], Discrete Gronwall’s inequality).

Let τ = T/N . If En ≥ 0 for n = 0, 1, · · · , N − 1 and Ek ≤ α + β
∑k−1

n=0 τE
n for 0 ≤ k ≤ N − 1,

then

max
0≤n≤N−1

En ≤ Cβ,T α,

where the constant Cβ,T only depends on β and T .

Lemma 5.3.2. For any function w defined on the mesh points of Ω vanishing on the boundary

∂Ω, we have

∥D−1
h w∥ ≤ ∥w∥, (5.24)

∥D−1
h w∥ ≤ ∥D−1/2

h w∥, (5.25)

∥∇hD
−1
h w∥ ≤ ∥∇hw∥, (5.26)

τ2∥∇hD
−1
h w∥2 ≤ 1

2
∥w∥2 (5.27)

Proof. Since −∆h is symmetric and positive definite, we denote by ξj , j = 1, · · · , (M1 −

1)(M2 − 1), the orthonormal eigenfunctions of −∆h corresponding to the positive eigenvalues λj ,

j = 1, · · · , (M1 − 1)(M2 − 1), respectively. For any function u =
∑(M1−1)(M2−1)

j=1 αjξj we have

∥∇hD
−1
h u∥2 = (∇h(1− τ2∆h/2)

−1u,∇h(1− τ2∆h/2)
−1u)

= (−∆h(1− τ2∆h/2)
−1u, (1− τ2∆h/2)

−1u)

=

((M1−1)(M2−1)∑
j=1

αjλj
1 + τ2λj/2

ξj ,

(M1−1)(M2−1)∑
j=1

αj

1 + τ2λj/2
ξj

)

=

(M1−1)(M2−1)∑
j=1

|αj |2λj
(1 + τ2λj/2)2

114

≤
(M1−1)(M2−1)∑

j=1

|αj |2λj

= (−∆hu, u) = ∥∇hu∥2.

Similarly, we have

∥D−1
h u∥2 =

(M1−1)(M2−1)∑
j=1

|αj |2

(1 + τ2λj/2)2
≤

(M1−1)(M2−1)∑
j=1

|αj |2 = ∥u∥2,

∥D−1/2
h u∥2 =

(M1−1)(M2−1)∑
j=1

|αj |2

1 + τ2λj/2
≤

(M1−1)(M2−1)∑
j=1

|αj |2 = ∥u∥2,

and

τ2∥∇hD
−1
h u∥2 =

(M1−1)(M2−1)∑
j=1

|αj |2τ2λj
(1 + τ2λj/2)2

≤ 1

2

(M1−1)(M2−1)∑
j=1

|αj |2 =
1

2
∥u∥2.

Therefore, ∥D−1
h w∥ = ∥D−1/2

h D
−1/2
h w∥ ≤ ∥D−1/2

h w∥.

Theorem 5.3.3. Let 1 ≤ d ≤ 3. Assume the solution y, p ∈ C4,4(Q). Then there exists a positive

constant C∗ := C∗(γ, T) independent of h and τ such that

max
1≤n≤N

{∥Y n − yn∥+ ∥Pn − pn∥} ≤ C∗(τ
2 + h2) (5.28)

provided τ ≤ γ
1
4 .

Proof. To simplify the notations, we denote by C1, C2, · · · , positive constants which do not

depend on τ , h, n or k in the following arguments.

115

Note that the exact solution yni,j = y(ξi, ζj , tn) and p
n
i,j = p(ξi, ζj , tn) satisfy the equations

yn+1 − 2yn + yn−1

τ2
− ∆hy

n+1 +∆hy
n−1

2
− pn/γ = fn + Fn, n = 1, 2, · · · , N − 1 (5.29)

pn+1 − 2pn + pn−1

τ2
− ∆hp

n+1 +∆hp
n−1

2
+ yn = gn +Gn, n = 1, 2, · · · , N − 1 (5.30)

and

y0i,j = y0(ξi, ζj),(
1− τ2

2
∆h

)
y1i,j = y0(ξi, ζj) + y1(ξi, ζj)τ +

τ2

2

(
f0i,j +

1

γ
p0i,j

)
+ F 0

i,j , (5.31)

pNi,j = 0,(
1− τ2

2
∆h

)
pN−1
i,j = −1

2
yNi,jτ

2 +
1

2
gNi,jτ

2 +GN
i,j , (5.32)

where (5.31) and (5.32) are derived via Taylor expansions by using (5.4) to represent ytt and ptt.

Also, Fn and Gn denote the truncation errors, which satisfy

∥Fn∥+ ∥Gn∥ ≤ C1(τ
2 + h2) for n = 1, 2, · · · , N − 1,

∥F 0∥+ ∥GN∥+ ∥∇hF
0∥+ ∥∇hG

N∥ ≤ C1(τ
3 + τ2h),

for some positive constant C1 when the solution y, p ∈ C4,4(Q).

Let en = Y n − yn and ηn = Pn − pn. Then the difference between (5.14)-(5.19) and (5.29)-

(5.32) gives

en+1 − 2en + en−1

τ2
− ∆he

n+1 +∆he
n−1

2
− ηn/γ = −Fn, (5.33)

ηn+1 − 2ηn + ηn−1

τ2
− ∆hη

n+1 +∆hη
n−1

2
+ en = −Gn, (5.34)

116

for n = 1, 2, · · · , N − 1 and

e0 = 0,

(
1− τ2

2
∆h

)
e1 =

1

2γ
η0τ2 − F 0, (5.35)

ηN = 0,

(
1− τ2

2
∆h

)
ηN−1 = −1

2
eNτ2 −GN . (5.36)

The discrete inner product of (5.33) and en+1 − en−1 yields

∥en+1 − en∥2 − ∥en − en−1∥2

τ2
+

∥∇he
n+1∥2 − ∥∇he

n−1∥2

2
− (en+1 − en−1, ηn)/γ

= −(Fn, en+1 − en−1), (5.37)

and by summing up the equations for n = 1, · · · , N − 1, one can get

∥eN − eN−1∥2 − ∥e1 − e0∥2

τ2
+

1

2
∥∇he

N∥2 + 1

2
∥∇he

N−1∥2 − 1

2
∥∇he

1∥2 − 1

2
∥∇he

0∥2

=

N−1∑
n=1

(en+1 − en−1, ηn)/γ −
N−1∑
n=1

(Fn, en+1 − en−1) (5.38)

which together with (5.35) implies that

∥eN − eN−1∥2

τ2
+

1

2
∥∇he

N∥2 + 1

2
∥∇he

N−1∥2

=

N−1∑
n=1

(en+1 − en−1, ηn)/γ −
N−1∑
n=1

(Fn, en+1 − en−1)

+

∥∥∥∥D−1
h

(
1

2γ
η0τ − F 0/τ

)∥∥∥∥2 + τ2

2

∥∥∥∥∇hD
−1
h

(
1

2γ
η0τ − F 0/τ

)∥∥∥∥2. (5.39)

Similarly, the discrete inner product of (5.34) and ηn+1 − ηn−1 gives

∥ηn+1 − ηn∥2 − ∥ηn − ηn−1∥2

τ2
+

∥∇hη
n+1∥2 − ∥∇hη

n−1∥2

2
+ (ηn+1 − ηn−1, en)

= −(Gn, ηn+1 − ηn−1), (5.40)

117

and by summing up the equations for n = 1, · · · , N − 1, we have

∥η1 − η0∥2

τ2
+

1

2
∥∇hη

0∥2 + 1

2
∥∇hη

1∥2

=

N−1∑
n=1

(ηn+1 − ηn−1, en) +

N−1∑
n=1

(Gn, ηn+1 − ηn−1)

+

∥∥∥∥D−1
h

(
1

2
eNτ +GN/τ

)∥∥∥∥2 + τ2

2

∥∥∥∥∇hD
−1
h

(
1

2
eNτ +GN/τ

)∥∥∥∥2. (5.41)

By using Lemma 5.3.2, the sum of (5.41) and γ×(5.39) implies

γ∥eN − eN−1∥2 + ∥η1 − η0∥2

τ2
+
γ

2
∥∇he

N∥2 + γ

2
∥∇he

N−1∥2 + 1

2
∥∇hη

0∥2 + 1

2
∥∇hη

1∥2

=

N−1∑
n=1

(en+1 − en−1, ηn) +

N−1∑
n=1

(ηn+1 − ηn−1, en)

−
N−1∑
n=1

(γFn, en+1 − en−1) +

N−1∑
n=1

(Gn, ηn+1 − ηn−1)

+ γ

∥∥∥∥D−1
h

(
τ

2γ
η0 − F 0/τ

)∥∥∥∥2 + ∥∥∥∥D−1
h

(
τ

2
eN +GN/τ

)∥∥∥∥2
+
γ

2

∥∥∥∥∇hD
−1
h

(
τ2

2γ
η0 − F 0

)∥∥∥∥2 + 1

2

∥∥∥∥∇hD
−1
h

(
τ2

2
eN +GN

)∥∥∥∥2
= (eN , ηN−1)− (e1, η0)−

N−1∑
n=1

(γFn, en+1 − en−1) +
N−1∑
n=1

(Gn, ηn+1 − ηn−1)

+ γ

∥∥∥∥D−1
h

(
τ

2γ
η0 − F 0/τ

)∥∥∥∥2 + ∥∥∥∥D−1
h

(
τ

2
eN +GN/τ

)∥∥∥∥2
+
γ

2

∥∥∥∥∇hD
−1
h

(
τ2

2γ
η0 − F 0

)∥∥∥∥2 + 1

2

∥∥∥∥∇hD
−1
h

(
τ2

2
eN +GN

)∥∥∥∥2
≤ (eN ,−1

2
D−1

h eNτ2 −D−1
h GN)−

(
1

2γ
D−1

h η0τ2 −D−1
h F 0, η0

)
+

(N−1∑
n=1

τ∥γFn∥2
) 1

2
(N−1∑

n=1

τ
∥en+1 − en∥2 + ∥en − en−1∥2

τ2

) 1
2

+

(N−1∑
n=1

τ∥Gn∥2
) 1

2
(N−1∑

n=1

τ
∥ηn+1 − ηn∥2 + ∥ηn − ηn−1∥2

τ2

) 1
2

+ 2γ

∥∥∥∥ 1

2γ
D−1

h η0τ

∥∥∥∥2 + 2γ
∥∥D−1

h F 0/τ
∥∥2 + 2

∥∥∥∥τ2D−1
h eN

∥∥∥∥2 + 2
∥∥D−1

h GN/τ
∥∥2

118

+
τ4

4γ
∥∇hη

0∥2 + γ∥∇hF
0∥2 + τ4

4
∥∇he

N∥2 + ∥∇hG
N∥2

≤ ∥eN∥∥GN∥ − τ2

2
∥D−1/2

h eN∥2 + ∥F 0∥∥η0∥ − τ2

2γ
∥D−1/2

h η0∥2

+

(N−1∑
n=1

τ∥γFn∥2
) 1

2
(N−1∑

n=1

τ
∥en+1 − en∥2 + ∥en − en−1∥2

τ2

) 1
2

+

(N−1∑
n=1

τ∥Gn∥2
) 1

2
(N−1∑

n=1

τ
∥ηn+1 − ηn∥2 + ∥ηn − ηn−1∥2

τ2

) 1
2

+
τ2

2γ
∥D−1

h η0∥2 + 2γ
∥∥F 0/τ

∥∥2 + τ2

2
∥D−1

h eN∥2 + 2
∥∥GN/τ

∥∥2
+
τ4

4γ
∥∇hη

0∥2 + γ∥∇hF
0∥2 + τ4

4
∥∇he

N∥2 + ∥∇hG
N∥2

≤ C1(τ
3 + τ2h)(∥eN∥+ ∥η0∥)

+ 2(
√
γ + 1)C1

√
T (τ2 + h2)

(N−1∑
n=0

τ
γ∥en+1 − en∥2 + ∥ηn+1 − ηn∥2

τ2

) 1
2

+ (2γ + 2)C2
1 (τ

2 + τ)2 + (γ + 1)C2
1 (τ

3 + τ2h)2 +
τ4

4γ
∥∇hη

0∥2 + τ4

4
∥∇he

N∥2

≤ 2C1max(C0/γ, C0)(τ
3 + τ2h)(

γ

2
∥∇he

N∥+ 1

2
∥∇hη

0∥)

+ 2(
√
γ + 1)C1

√
T (τ2 + h2)

(N−1∑
n=0

τ
γ∥en+1 − en∥2 + ∥ηn+1 − ηn∥2

τ2

) 1
2

+ (2γ + 2)C2
1 (τ

2 + τ)2 + (γ + 1)C2
1 (τ

3 + τ2h)2 +
τ4

4γ
∥∇hη

0∥2 + τ4

4
∥∇he

N∥2

≤ [4C1max(C0/γ, C0)τ + 2(
√
γ + 1)C1

√
T](τ2 + h2)

{
γ

2
∥∇he

N∥+ 1

2
∥∇hη

0∥

+

(N−1∑
n=0

τ
γ∥en+1 − en∥2 + ∥ηn+1 − ηn∥2

τ2

) 1
2
}

+ (2γ + 2)C2
1 (τ

2 + τ)2 + (γ + 1)C2
1 (τ

3 + τ2h)2 +
τ4

4γ
∥∇hη

0∥2 + τ4

4
∥∇he

N∥2

≤ C2(τ
2 + h2)Eτ,h + C2(τ

4 + h4) +
τ4

4γ
∥∇hη

0∥2 + τ4

4
∥∇he

N∥2, (5.42)

where C2 is some positive constant and

Eτ,h := max
0≤n≤N−1

En
τ,h (5.43)

119

with

En
τ,h :=

(
γ∥en+1 − en∥2 + ∥ηn+1 − ηn∥2

τ2

+
γ

2
∥∇he

n+1∥2 + γ

2
∥∇he

n∥2 + 1

2
∥∇hη

n+1∥2 + 1

2
∥∇hη

n∥2
) 1

2

. (5.44)

When τ ≤ γ
1
4 , the two terms τ4

4γ ∥∇hη
0∥2 and τ4

4 ∥∇he
N∥2 are eliminated by the left-handed side,

and the last inequality thus reduces to

γ∥eN − eN−1∥2 + ∥η1 − η0∥2

τ2
+
γ

4
∥∇he

N∥2 + γ

4
∥∇he

N−1∥2 + 1

4
∥∇hη

0∥2 + 1

4
∥∇hη

1∥2

≤ C3(τ
2 + h2)Eτ,h + C3(τ

4 + h4). (5.45)

By using the last inequality, one can convert the analysis of the forward and backward

boundary value problem to the analysis of an initial-value problem, where the initial errors e0,

e1, η0 and η1 are well controlled.

Let 1 ≤ k ≤ N − 1 be fixed and sum up (5.40) for n = 1, · · · , k. Then we obtain that

∥ηk+1 − ηk∥2 − ∥η1 − η0∥2

τ2
+

∥∇hη
k+1∥2

2
+

∥∇hη
k∥2

2
− ∥∇hη

1∥2

2
− ∥∇hη

0∥2

2

= −
k∑

n=1

(ηn+1 − ηn−1, en)−
k∑

n=1

(Gn, ηn+1 − ηn−1). (5.46)

Summing up (5.37) for n = 1, · · · , k, we derive

∥ek+1 − ek∥2 − ∥e1 − e0∥2

τ2
+

1

2
∥∇he

k+1∥2 + 1

2
∥∇he

k∥2 − 1

2
∥∇he

1∥2 − 1

2
∥∇he

0∥2

=

k∑
n=1

(en+1 − en−1, ηn)/γ −
k∑

n=1

(Fn, en+1 − en−1). (5.47)

120

Adding (5.46) and γ×(5.47) and using (5.45), we obtain (note e0 = 0 and τ4 ≤ γ)

γ∥ek+1 − ek∥2 + ∥ηk+1 − ηk∥2

τ2
+
γ

2
∥∇he

k+1∥2 + γ

2
∥∇he

k∥2 + 1

2
∥∇hη

k+1∥2 + 1

2
∥∇hη

k∥2

=
γ∥e1 − e0∥2 + ∥η1 − η0∥2

τ2
+
γ

2
∥∇he

1∥2 + γ

2
∥∇he

0∥2 + 1

2
∥∇hη

1∥2 + 1

2
∥∇hη

0∥2

+

k∑
n=1

(en+1 − en−1, ηn)−
k∑

n=1

(γFn, en+1 − en−1)

−
k∑

n=1

(ηn+1 − ηn−1, en)−
k∑

n=1

(Gn, ηn+1 − ηn−1)

=
γ

τ2

∥∥∥∥D−1
h

(
1

2γ
η0τ2 − F 0

)∥∥∥∥2 + γ

2

∥∥∥∥∇hD
−1
h

(
1

2γ
η0τ2 − F 0

)∥∥∥∥2
+

∥η1 − η0∥2

τ2
+

1

2
∥∇hη

1∥2 + 1

2
∥∇hη

0∥2

+

k∑
n=1

(en+1 − en−1, ηn)−
k∑

n=1

(γFn, en+1 − en−1)

−
k∑

n=1

(ηn+1 − ηn−1, en)−
k∑

n=1

(Gn, ηn+1 − ηn−1)

≤ τ2

4γ
C2
0∥∇hη

0∥2 + γC2
1 (τ

2 + τh)2 +
τ4

8γ
∥∇hη

0∥2 + C2
1γ

2
(τ3 + τ2h)2 +

∥η1 − η0∥2

τ2

+
1

2
∥∇hη

1∥2 + 1

2
∥∇hη

0∥2 +
k∑

n=1

(en+1 − en−1, ηn)−
k∑

n=1

(γFn, en+1 − en−1)

−
k∑

n=1

(ηn+1 − ηn−1, en)−
k∑

n=1

(Gn, ηn+1 − ηn−1)

≤ 1

4
√
γ
C2
0∥∇hη

0∥2 + γC2
1 (τ

2 + τh)2 +
1

8
∥∇hη

0∥2 + C2
1γ

3/2

2
(τ2 + τh)2

+
∥η1 − η0∥2

τ2
+

1

2
∥∇hη

1∥2 + 1

2
∥∇hη

0∥2 +
k∑

n=1

(en+1 − en−1, ηn)−
k∑

n=1

(γFn, en+1 − en−1)

−
k∑

n=1

(ηn+1 − ηn−1, en)−
k∑

n=1

(Gn, ηn+1 − ηn−1)

≤ C4(τ
2 + h2)Eτ,h + C4(τ

4 + h4)

+

(k∑
n=1

τγ∥Fn∥2
) 1

2
(k∑

n=1

τ
γ∥en+1 − en∥2 + γ∥en − en−1∥2

τ2

) 1
2

+

(k∑
n=1

τ∥Gn∥2
) 1

2
(k∑

n=1

τ
∥ηn+1 − ηn∥2 + ∥ηn − ηn−1∥2

τ2

) 1
2

121

+ T
k∑

n=1

τ
(
∥ηn∥2/γ + ∥en∥2

)
+

1

4T

k∑
n=1

τ

(
γ∥en+1 − en∥2 + γ∥en − en−1∥2

τ2
+

∥ηn+1 − ηn∥2 + ∥ηn − ηn−1∥2

τ2

)

≤ C4(τ
2 + h2)Eτ,h + C4(τ

4 + h4) + C4(τ
2 + h2)Eτ,h

+
2C2

0T

γ

k∑
n=1

τ

(
1

2
∥∇hη

n∥2 + γ

2
∥∇he

n∥2
)
+

1

2T

k∑
n=0

τ

(
γ∥en+1 − en∥2 + ∥ηn+1 − ηn∥2

τ2

)

≤ 2C4(τ
2 + h2)Eτ,h + C4(τ

4 + h4) +
1

2

γ∥ek+1 − ek∥2 + ∥ηk+1 − ηk∥2

τ2

+

(
1

2T
+

2C2
0T

γ

) k−1∑
n=0

τ

(
γ∥en+1 − en∥2 + ∥ηn+1 − ηn∥2

τ2
+
γ

2
∥∇he

n+1∥2 + 1

2
∥∇hη

n+1∥2
)
.

(5.48)

By moving the term 1
2
γ∥ek+1−ek∥2+∥ηk+1−ηk∥2

τ2
to the left-handed side and using the definition of

En
τ,h we reduce (5.48) to

|Ek
τ,h|2 ≤ 4C4(τ

2 + h2)Eτ,h + 2C4(τ
4 + h4) +

(
1

T
+

4C2
0T

γ

) k−1∑
n=0

τ |En
τ,h|2, (5.49)

which holds for any 1 ≤ k ≤ N − 1. By applying discrete Gronwall’s inequality, we derive that

|Eτ,h|2 ≤ C5(τ
2 + h2)Eτ,h + C5(τ

4 + h4)

≤ 1

2
|Eτ,h|2 +

1

2
C2
5 (τ

2 + h2)2 + C5(τ
4 + h4), (5.50)

which further implies

|Eτ,h|2 ≤ C2
5 (τ

2 + h2)2 + 2C5(τ
4 + h4). (5.51)

Finally, by applying the discrete Poincare inequality, the proof of Theorem 5.3.3 is thus completed.

122

5.4 A FAST PRECONDITIONED ITERATIVE SOLVER

Next we are ready to utilize the preconditioned Krylov subspace methods, such as the

GMRES method [Saad, 2003], to solve the symmetric indefinite sparse linear system (5.20), i.e.,

Mh

 yh

ph

 :=

 Ǐh L⊺
h

Lh −Îh/γ


 yh

ph

 =

 gh

fh

 . (5.52)

The review paper [Benzi et al., 2005] summarized many modern numerical methods for the above

two-by-two block sparse linear system with a saddle point structure. One crucial task is to

find an effective and efficient preconditioner which can speed up the convergence under GMRES

approach by altering the spectrum distribution of the original system in a desirable way. Inspired

by the framework presented in [Schöberl and Zulehner, 2007, Sun and Liu, 2010], we construct

the following symmetric indefinite constrained preconditioner

Ph =

 0 L⊺
h

Lh −Îh/γ

 ,

where Lh has a block upper triangular structure with the same diagonal block Dh. Here L−1v

can be quickly computed by applying a block forward substitution as well as the well-known FFT

algorithm to solve each diagonal block. In particular, the preconditioning step P−1v can be done

with NM log(M) operations for 1D case and with NM1M2 log(M1M2) operations for 2D case.

From the expressions of Lh we know that Ph is nonsingular. Moreover, the right preconditioned

system is given by

MhP
−1
h =

 Ih + γ−1ǏhL
−1
h ÎhL

−T
h ǏhL

−1
h

0 Ih

 .

123

Clearly, half of the eigenvalues of MhP
−1
h are ones, while the remaining half are determined by

Rh := (Ih + γ−1ǏhL
−1
h ÎhL

−T
h).

By exploring the connection between the matrices L−1
h and L−T

h and the underlying discretized

linear system (5.14)-(5.15), we are able to show the following theorem, which implies that all eigen-

values of the preconditioned coefficient matrix MhP
−1
h are real numbers and they are uniformly

greater than one and less than an upper bound depending only on γ and T .

Theorem 5.4.1. Let λ(Rh) be any eigenvalue of Rh, then λ(Rh) ∈ R and

1 < λ(Rh) < 1 + κ/γ,

where κ is a positive constant independent of τ and h.

Proof. Using the fact that λ(AB) = λ(BA), we get

λ(ǏhL
−1
h ÎhL

−T
h) = λ(Ǐ

1/2
h L−1

h Î
1/2
h Î

1/2
h L−T

h Ǐ
1/2
h) = λ

(
(Ǐ

1/2
h L−1

h Î
1/2
h)(Ǐ

1/2
h L−1

h Î
1/2
h)⊺

)
, (5.53)

which indicates λ(ǏhL
−1
h ÎhL

−T
h) is a real number and so is λ(Rh). To show the lower bound, we

need to invoke the fact that λ(AA⊺) > 0 for any nonsingular matrix A. Obviously, the matrix

(Ǐ
1/2
h L−1

h Î
1/2
h) is nonsingular and thus it follows

λ(ǏhL
−1
h ÎhL

−T
h) = λ

(
(Ǐ

1/2
h L−1

h Î
1/2
h)(Ǐ

1/2
h L−1

h Î
1/2
h)⊺

)
> 0. (5.54)

To prove the upper bound of the eigenvalues, we first prove the boundedness of the matrix

norm ∥L−T
h ∥∞,2 induced by the following vector norm

∥q∥∞,2 := max
1≤k≤N

∥qn∥,

124

where q = (q1, q2, · · · , qN)⊺. Let ψ := (ψ0, ψ1, · · · , ψN−2, ψN−1)⊺ be a solution the linear system

L⊺
hψ = q, (5.55)

we need to show

∥ψ∥∞,2 = ||L−T
h q∥∞,2 ≤ C∥q∥∞,2. (5.56)

Recall that for the corresponding finite difference discretizations (5.15) of L⊺
h, the solution ψ

solves

ψn+1 − 2ψn + ψn−1

τ2
− ∆hψ

n+1 +∆hψ
n−1

2
= qn, n = 1, 2, · · · , N − 1 (5.57)

with the initial conditions ψN−1 = τ2D−1
h qN/2 and ψN = 0.

We consider the discrete inner product of (5.57) with ψn+1 − ψn−1, which gives

∥ψn+1 − ψn∥2 − ∥ψn − ψn−1∥2

τ2
+

∥∇hψ
n+1∥2 − ∥∇hψ

n−1∥2

2
= (qn, ψn+1 − ψn−1), (5.58)

and by summing up the equations for n = k, · · · , N − 1, we obtain

∥ψk − ψk−1∥2

τ2
+

∥∇hψ
k∥2 + ∥∇hψ

k−1∥2

2

=
N−1∑
n=k

(qn, ψn+1 − ψn−1) +
∥ψN − ψN−1∥2

τ2
+

∥∇hψ
N∥2 + ∥∇hψ

N−1∥2

2

≤
N−1∑
n=k

τ∥qn∥2

2
+

1

2

N∑
n=k

τ

(
∥ψn − ψn−1∥2

τ2
+

∥∇hψ
n∥2 + ∥∇hψ

n−1∥2

2

)

+
τ2∥D−1

h qN∥2

4
+
τ4∥∇hD

−1
h qN∥2

4

≤ τ2∥qN∥2

2
+

N−1∑
n=k

τ∥qn∥2

2
+

1

2

N∑
n=k

τ

(
∥ψn − ψn−1∥2

τ2
+

∥∇hψ
n∥2 + ∥∇hψ

n−1∥2

2

)
, (5.59)

125

where we have used Lemma 5.3.2 in the last step. By applying Gronwall’s inequality, we derive

max
1≤k≤N

(
∥ψk − ψk−1∥2

τ2
+

∥∇hψ
k∥2 + ∥∇hψ

k−1∥2

2

)
≤ C6

N∑
n=k

τ∥qn∥2 ≤ C6 max
1≤k≤N

∥qn∥2, (5.60)

where C6 is some positive constant which is independent of τ and h (but may depend on T). The

last inequality above, together with (5.23), yields

∥ψ∥∞,2 = ∥L−Tq∥∞,2 ≤ C7∥q∥∞,2,

that is ∥L−T ∥∞,2 ≤ C7 for some positive constant C7. Similarly, one can show that ∥L−1∥∞,2 ≤ C8

also holds for some positive constant C8. Moreover, it is obvious that ∥Î∥∞,2 = ∥Ǐ∥∞,2 ≤ 1.

Therefore,

λ(ǏhL
−1
h ÎhL

−T
h) ≤ ∥ǏhL−1

h ÎhL
−T
h ∥∞,2 ≤ C7C8 =: κ,

where κ is a positive constant that is independent of τ and h. The proof is thus completed.

To illustrate the effect of our above theoretical estimates, in the following Fig. 5.1 and

Fig. 5.2, we plot the numerically computed eigenvalues of Mh and MhP
−1
h for Ex. 8 with

γ = 10−2 using M = N = 16 and M = N = 32, respectively. As anticipated, the eigenvalues of

preconditioned systems are highly concentrated around one within a uniformly bounded interval,

which reasonably envisions a fast convergence of the preconditioned GMRES method. Notice

that the eigenvalue distributions of MhP
−1
h perfectly verified our estimated uniformly bounds.

Such desirable clustered spectrum distributions after preconditioning are possible only with our

implicit scheme, which is not readily achievable for the standard explicit scheme. According

to our above estimates, the preconditioned GMRES method may show a slower convergence

rate as the regularization parameter γ decreases to zero, but this is an inherent problem due

to the very weak convexity of the underlying cost function. How to come up with an effective

and regularization parameter robust preconditioner in such a case is another active and widely

open research topic, with many recent contributions [Stoll and Wathen, 2012, Porcelli et al., 2014,

126

Schiela and Ulbrich, 2014] as well as references therein.

−1000 0 1000
−1

−0.5

0

0.5

1

Eigenvalues of M
h

0 1 2 3 4 5 6 7
−1

−0.5

0

0.5

1

Eigenvalues of M
h
 P

h
−1

Figure 5.1. Eigenvalue distributions of Mh and MhP
−1
h in Ex. 8 (M = N = 16)

−5000 0 5000
−1

−0.5

0

0.5

1

Eigenvalues of M
h

0 1 2 3 4 5 6 7
−1

−0.5

0

0.5

1

Eigenvalues of M
h
 P

h
−1

Figure 5.2. Eigenvalue distributions of Mh and MhP
−1
h in Ex. 8 (M = N = 32)

5.5 NUMERICAL EXAMPLES

In this section, we will provide several numerical examples to validate the obtained theo-

retical results and to demonstrate the high efficiency of our proposed approach. All simulations

are implemented using MATLAB R2014a on a laptop PC with Intel(R) Core(TM) i3-3120M

CPU@2.50GHz and 12GB RAM. The CPU time (in seconds) is estimated by timing functions

tic/toc.

For simplicity, we will denote the discrete L2 norm on Q in short by ∥ · ∥, that is ∥ · ∥ :=

∥ · ∥L2
h(Q). Based on our error estimates, we also defined the discrete L∞(L2) norm ∥ · ∥L∞

τ (L2
h)
.

127

We first compute the discrete L∞(L2) norms of state and adjoint state approximation errors

ehy = ∥yh − y∥L∞
τ (L2

h)
and ehp = ∥ph − p∥L∞

τ (L2
h)

and then estimate the experimental order of accuracy by compute the logarithmic ratios of the

approximation errors between two successive refined meshes, i.e.,

Order = log2(e
2h/eh),

which should be close to two for a second-order accuracy. For initialization of the iterative

methods, the state y and the adjoint state p are set to be zero, and the stopping criterion is

chosen to be √
∥r(k)y ∥2 + ∥r(k)p ∥2√
∥r(0)y ∥2 + ∥r(0)p ∥2

≤ tol,

where r
(k)
y and r

(k)
p denote the residuals after k-th iteration. In our numerical simulations, ac-

cording to the level of discretization errors as well as the regularization parameter γ, we set

tol = γ × 10−6 and tol = γ × 10−4 for 1D and 2D examples, respectively. Note that in the

following numerical simulations the CFL condition does not hold since we choose τ/h = 2.

Example 8. Let Ω = (0, 1) and T = 2. Choose y0(x) = sin(πx), y1(x) = 0,

f = −π2 sin(πx) cos(πt) + π2 sin(πx) cos(πt)− sin(πx)(t− T)2/γ,

and

g = 2 sin(πx) + π2 sin(πx)(t− T)2 + sin(πx) cos(πt),

such that the exact solution is

y(x, t) = sin(πx) cos(πt) and p(x, t) = sin(πx)(t− T)2.

128

The numerical results of our implicit scheme solving by the preconditioned GMRES method

with regularization parameter γ = 10−2 and γ = 10−4 are reported in Table 5.2 and 5.3, respec-

tively. The implicit scheme delivers a clear second-order accuracy, which validates our proved

error estimates for the implicit scheme. The required number of iterations for achieving conver-

gence criterion is independent of mesh size and the computational CPU time grows roughly as a

linearithmic function (O(m log(m))) with respect to the degrees of freedom m, which shows the

excellent effectiveness of our proposed preconditioner. However, comparing the column ‘Iter’ in

Table 5.2 and 5.3, it does cost more iterations as γ decreasing, which is reasonable according to

our previous discussion.

For comparison, we also give the corresponding results of the standard explicit scheme solv-

ing by MATLAB’s backslash sparse direct solver in Tables 5.4 and 5.5. Notice that the standard

explicit scheme provides slightly better approximations than our implicit scheme providing the

same discretization step sizes, which is reasonable since the implicit scheme introduced extra

truncation error terms as in (5.16-5.17). However, our proposed implicit scheme with precon-

ditioned GMRES is computationally more efficient than the standard explicit scheme with the

sparse direct solver when more accuracy is required. We remark that MATLAB’s sparse direct

solver is highly optimized and robust. Hence it is reliable to use it as a benchmark when we have

no other available iterative solvers for the comparison. For such 1D problems, it seems that sparse

direct solver still has certain marginal advantage in CPU time when the mesh size is not very

small, but this is not the case when handling 2D or 3D problems. Furthermore, the corresponding

preconditioned GMRES method does not work for the standard explicit scheme due to the highly

ill-conditioned matrix Fh.

Example 9. Let Ω = (0, 1)2 and T = 2. Choose

y0(x1, x2) = sin(πx1) sin(πx2), y1(x) = sin(πx1) sin(πx2),

f = (1 + 2π2)et sin(πx1) sin(πx2)− (t− T)2 sin(πx1) sin(πx2)/γ,

129

Table 5.2. Results for Ex. 8 with γ = 10−2 (Implicit scheme with preconditioned GMRES).
(M,N) ehy Order ehp Order Iter CPU

(32,32) 2.70e-02 – 1.59e-03 – 8 0.067
(64,64) 6.76e-03 2.00 4.00e-04 1.99 8 0.142
(128,128) 1.69e-03 2.00 1.00e-04 2.00 8 0.332
(256,256) 4.23e-04 2.00 2.50e-05 2.00 8 0.851
(512,512) 1.06e-04 2.00 6.26e-06 2.00 8 2.661

(1024,1024) 2.64e-05 2.00 1.56e-06 2.00 8 7.655
(2048,2048) 6.61e-06 2.00 3.91e-07 2.00 8 31.419

Table 5.3. Results for Ex. 8 with γ = 10−4 (Implicit scheme with preconditioned GMRES).
(M,N) ehy Order ehp Order Iter CPU

(32,32) 2.76e-02 – 8.38e-05 – 21 0.156
(64,64) 6.92e-03 2.00 2.19e-05 1.94 20 0.344

(128,128) 1.73e-03 2.00 5.53e-06 1.99 21 0.836
(256,256) 4.33e-04 2.00 1.38e-06 2.00 21 2.581
(512,512) 1.08e-04 2.00 3.40e-07 2.02 21 7.385
(1024,1024) 2.71e-05 2.00 7.98e-08 2.09 21 24.218
(2048,2048) 6.77e-06 2.00 1.80e-08 2.15 22 116.744

Table 5.4. Results for Ex. 8 with γ = 10−2 (Explicit scheme with sparse direct solver).
(M,N) ehy Order ehp Order CPU

(32,32) 6.75e-03 – 1.39e-03 – 0.006
(64,64) 1.69e-03 2.00 3.48e-04 1.99 0.031
(128,128) 4.21e-04 2.00 8.71e-05 2.00 0.270
(256,256) 1.05e-04 2.00 2.18e-05 2.00 1.347
(512,512) 2.63e-05 2.00 5.44e-06 2.00 15.540
(1024,1024) 6.58e-06 2.00 1.36e-06 2.00 156.712

Table 5.5. Results for Ex. 8 with γ = 10−4 (Explicit scheme with sparse direct solver).
(M,N) ehy Order ehp Order CPU

(32,32) 1.61e-02 – 1.78e-04 – 0.006
(64,64) 4.03e-03 2.00 4.78e-05 1.90 0.029
(128,128) 1.01e-03 2.00 1.22e-05 1.97 0.148
(256,256) 2.52e-04 2.00 3.06e-06 1.99 0.772
(512,512) 6.30e-05 2.00 7.65e-07 2.00 5.149

(1024,1024) 1.58e-05 2.00 1.91e-07 2.00 37.128

and

g = (et + 2 + 2π2(t− T)2) sin(πx1) sin(πx2),

130

such that the exact solution is

y(x, t) = et sin(πx1) sin(πx2) and p(x, t) = (t− T)2 sin(πx1) sin(πx2).

Table 5.6. Results for Ex. 9 with γ = 10−2 (Implicit scheme with preconditioned GMRES).
(M1,M2, N) ehy Order ehp Order Iter CPU

(8,8,8) 2.81e-01 – 3.21e-02 – 6 0.099
(16,16,16) 7.68e-02 1.87 8.10e-03 1.99 6 0.099
(32,32,32) 1.98e-02 1.95 2.02e-03 2.00 7 0.355
(64,64,64) 4.99e-03 1.99 5.04e-04 2.00 7 1.969

(128,128,128) 1.25e-03 2.00 1.26e-04 2.00 7 14.539
(256,256,256) 3.13e-04 2.00 3.15e-05 2.00 7 124.004

Table 5.7. Results for Ex. 9 with γ = 10−4 (Implicit scheme with preconditioned GMRES).
(M1,M2, N) ehy Order ehp Order Iter CPU

(8,8,8) 6.03e-01 – 1.01e-03 – 9 0.122
(16,16,16) 1.53e-01 1.98 2.67e-04 1.92 15 0.201
(32,32,32) 3.87e-02 1.98 7.47e-05 1.84 16 0.775
(64,64,64) 9.69e-03 2.00 1.94e-05 1.94 16 5.222

(128,128,128) 2.42e-03 2.00 4.71e-06 2.04 16 35.181
(256,256,256) 6.05e-04 2.00 1.11e-06 2.09 17 374.137

Table 5.8. Results for Ex. 9 with γ = 10−2 (Explicit scheme with sparse direct solver).
(M1,M2, N) ehy Order ehp Order CPU

(8,8,8) 1.05e-01 – 1.86e-02 – 0.003
(16,16,16) 2.63e-02 2.00 4.90e-03 1.92 0.104
(32,32,32) 6.62e-03 1.99 1.24e-03 1.99 9.221

Table 5.9. Results for Ex. 9 with γ = 10−4 (Explicit scheme with sparse direct solver).
(M1,M2, N) ehy Order ehp Order CPU

(8,8,8) 3.60e-01 – 1.14e-03 – 0.014
(16,16,16) 9.03e-02 1.99 7.54e-04 0.60 0.225
(32,32,32) 2.30e-02 1.97 2.49e-04 1.60 10.146

The numerical results are reported in Table 5.6, 5.7, 5.8, and 5.9 for our implicit scheme

and the explicit scheme with different regularization parameter, respectively. Similar conclusions

can be drawn as in the previous example. With a laptop PC, the sparse direct solver can not

131

handle a 64 × 64 × 64 mesh (about 262,144 unknowns) easily due to too high memory costs,

while our preconditioned GMRES method can solve a 256 × 256 × 256 mesh (about 16,777,216

unknowns) in about two minutes. The key difference is that our preconditioned GMRES method

has a linearithmic time complexity while the sparse direct solver usually does not. This shows

a marvelous advantage of iterative methods over (sparse) direct solvers in treating large-scale

problems like we are confronting here.

5.6 CONCLUSIONS

In this chaper, we have shown the second-order accuracy of a new implicit scheme in time

for a system of forward-and-backward coupled wave equations arising from wave optimal control

problems. The proposed scheme is unconditionally stable and the favorable discretized struc-

ture allows us to build a fast solver using preconditioned iterative methods with a very effective

preconditioner. Numerical tests were conducted to validate our theoretical analysis. Based on

our approach, the proposed implicit scheme in time as well as the obtained preconditioner are

also expected to work seamlessly with finite element discretizations in space. Our next step is

to incorporate the control constraints, which can be effectively treated by utilizing semismooth

Newton methods (or equivalently primary-dual active set strategies) as the outer iteration. Some

other future work includes constructing higher order finite difference schemes in time, which is a

natural development to improve the overall efficiency (for both time and spatial variables) since

it allows us to attain the required accuracy with much coarser mesh size.

132

CHAPTER 6

SUMMARY AND FUTURE RESEARCH

6.1 SUMMARY

Nowadays, the methodology of mathematical modeling with computer simulations has been

applied to nearly all fields of science. To better analyze and optimize these sophisticated models,

users often have to utilize effective numerical methods for their approximated solutions whenever

the analytic approaches are impossible or impractical. Hence, efficient and reliable computational

methods have become more and more irreplaceable, especially for those industries involving large-

scale, nonlinear, time-dependent interdisciplinary models. In particular, optimization or optimal

control of nonlinear time-dependent PDE systems represents one of the most challenging problems

in scientific computing. Serving as two major goals of the current thesis, higher accuracy of

approximations and better computational efficiency are the two most fundamental pursuits in

theoretic and algorithmic developments of scientific computing.

In chapters 2, 3, and 4, we have successfully applied the multigrid method with the semis-

mooth Newton (SSN) method to optimal control problems governed by semilinear elliptic PDE

and semilinear parabolic PDE, respectively. The efficiency of our proposed SSN multigrid method

is significantly better than the available full-approximation-storage (FAS) multigrid in current

literature. For time discretizations of parabolic PDEs, different from the commonly used Crank-

Nicolson and BDF2 scheme, we developed a new provable second-order stable and convergent

leapfrog scheme. Its simpler structure allows us to further establish a fast multigrid linear solver.

Our new leapfrog multigrid solver is at least two orders of magnitude faster than the Crank-

Nicolson scheme that based on MATLAB’s sparse direct solver.

In chapter 5, we have also established a second-order accurate implicit scheme in time for

wave optimal control problems. Differing from the elliptic and parabolic cases, we suggested

to solve the discretized linear system using a preconditioned Krylov subspace method with an

efficient preconditioner. Again, our proposed fast implicit solver is significantly faster than the

133

standard explicit scheme based on MATLAB’s sparse direct solver.

From the viewpoint of numerical development, it is important for us to discretize the PDE

system in an ’optimal’ way so that it not only achieves the desired order of accuracy but also is

able to accommodate the later effective implementation of a fast solver with decent converging

property. In short, we have presented a new integrated perspective of designing fast-solver-

oriented discretizations in the context of PDE-constrained optimization. We expect to apply such

an integrated perspective in more applications involving discretizations of differential or integral

operators as well as their corresponding large-scale system solving. This assimilated thinking is

anticipated to become more and more important as we gradually shift to the parallel computing era

with more affordable and powerful computers built on many-core CPU/GPU architectures. Most

current sequential discretizations may not be well suitable for implementing parallel algorithms.

6.2 FUTURE RESEARCH

Based on our past experience in numerical methods for PDE-constrained optimization, we

would like to highlight a few possible interesting extensions of our current work.

• Generalization of the proposed methods to deal with more complicated boundary conditions

as well as other evolution PDE control problems associated with state and/or control and/or

gradient constraints, including the far more challenging non-stationary Stokes and Navier-

Stokes flow control problems [Kunisch et al., 2009].

• Another practical improvement of our leapfrog scheme is to construct some higher or-

der compact finite difference schemes [Spotz, 1995, Spotz and Carey, 2001, Lin et al., 2009,

Lee et al., 2014] in time, which is a natural development to improve the overall efficiency

(for both time and spatial variables) since it allows us to attain the required accuracy with

a much coarser mesh size. Such a high-order scheme would be very attractive to those

problems with sufficiently smooth solutions, because high-order accuracy usually requires

higher regularity of the solutions.

134

• To reduce the high computational costs for 3D problems, we certainly want to look into

some parallel algorithms based on domain decomposition techniques [Smith et al., 1996,

Toselli and Widlund, 2005, Mathew, 2008, Heinkenschloss, 2005] for solving the forward-

and-backward time-dependent PDE system. Parallel-in-time methods [Nievergelt, 1964]

have been investigated for evolutionary PDE problems over the last four decades. Its basic

idea is to distribute a tremendous computational task into many small connected parts,

which can be executed by many different processors simultaneously. This could become

very necessary when the size of the system is getting too large to fit into a single computer’s

memory, or it takes too much time for a well optimized method to converge.

• Many fast iterative methods [Pang and Sun, 2012, Lei and Sun, 2013, Pan et al., 2014] have

been proposed in the last decade for solving fractional PDEs [Podlubny, 1999]. However,

there are considerably less contributions devoted to optimal control of fractional PDEs. The

most challenging issue brought by the non-local fractional derivatives is the highly compu-

tational and memory costs from fully dense systems upon any standard discretizations. One

crucial principle is to keep certain computationally favorable structures when discretizing

the fractional operators so that one can employ those state of the art fast iterative solvers,

such as Toeplitiz solvers [Ng, 2004, Chan and Jin, 2007, Jin, 2010].

135

REFERENCES

[Abbeloos et al., 2011] Abbeloos, D., Diehl, M., Hinze, M., and Vandewalle, S. (2011). Nested

multigrid methods for time-periodic, parabolic optimal control problems. Comput. Vis. Sci.,

14(1):27–38.

[Ali et al., 2015] Ali, A. A., Deckelnick, K., and Hinze, M. (2015). Global minima for semilinear

optimal control problems. arXiv:1503.07086.

[Apel and Flaig, 2012] Apel, T. and Flaig, T. G. (2012). Crank-Nicolson schemes for optimal

control problems with evolution equations. SIAM J. Numer. Anal., 50(3):1484–1512.

[Arada et al., 2002] Arada, N., Casas, E., and Tröltzsch, F. (2002). Error estimates for the numer-

ical approximation of a semilinear elliptic control problem. Comput. Optim. Appl., 23(2):201–

229.

[Aubert and Kornprobst, 2006] Aubert, G. and Kornprobst, P. (2006). Mathematical problems

in image processing. Springer, New York.

[Axelsson and Verwer, 1985] Axelsson, A. O. H. and Verwer, J. G. (1985). Boundary value tech-

niques for initial value problems in ordinary differential equations. Math. Comp., 45(171):153–

171.

[Barrett et al., 1994] Barrett, R., Berry, M., Chan, T. F., Demmel, J., Donato, J., Dongarra, J.,

Eijkhout, V., Pozo, R., Romine, C., and der Vorst, H. V. (1994). Templates for the Solution of

Linear Systems: Building Blocks for Iterative Methods, 2nd Edition. SIAM, Philadelphia, PA.

[Benzi et al., 2005] Benzi, M., Golub, G. H., and Liesen, J. (2005). Numerical solution of saddle

point problems. Acta Numer., 14:1–137.

[Bergounioux et al., 2014] Bergounioux, M., Bonnefond, X., Haberkorn, T., and Privat, Y.

(2014). An optimal control problem in photoacoustic tomography. Math. Models Methods

Appl. Sci., 24(12):2525–2548.

[Bergounioux et al., 1999] Bergounioux, M., Ito, K., and Kunisch, K. (1999). Primal-dual strat-

egy for constrained optimal control problems. SIAM J. Control Optim., 37(4):1176–1194.

136

[Biegler et al., 2007] Biegler, L. T., Ghattas, O., Heinkenschloss, M., Keyes, D., and van Bloe-

men Waanders, B., editors (2007). Real-time PDE-constrained optimization. SIAM, Philadel-

phia, PA.

[Borz̀ı, 2003] Borz̀ı, A. (2003). Multigrid methods for parabolic distributed optimal control prob-

lems. J. Comput. Appl. Math., 157(2):365–382.

[Borz̀ı, 2007a] Borz̀ı, A. (2007a). High-order discretization and multigrid solution of elliptic non-

linear constrained optimal control problems. J. Comput. Appl. Math., 200(1):67–85.

[Borz̀ı, 2007b] Borz̀ı, A. (2007b). Space-time multigrid methods for solving unsteady optimal

control problems. In Real-time PDE-constrained optimization, volume 3 of Comput. Sci. Eng.,

pages 97–113. SIAM, Philadelphia, PA.

[Borz̀ı, 2008] Borz̀ı, A. (2008). Smoothers for control- and state-constrained optimal control

problems. Comput. Vis. Sci., 11(1):59–66.

[Borz̀ı and González Andrade, 2012] Borz̀ı, A. and González Andrade, S. (2012). Multigrid so-

lution of a Lavrentiev-regularized state-constrained parabolic control problem. Numer. Math.

Theory Methods Appl., 5(1):1–18.

[Borz̀ı and González Andrade, 2014] Borz̀ı, A. and González Andrade, S. (2014). Second-order

approximation and fast multigrid solution of parabolic bilinear optimization problems. Adv.

Comput. Math. To appear.

[Borz̀ı and Griesse, 2005] Borz̀ı, A. and Griesse, R. (2005). Experiences with a space-time multi-

grid method for the optimal control of a chemical turbulence model. Internat. J. Numer.

Methods Fluids, 47(8-9):879–885.

[Borz̀ı and Griesse, 2006] Borz̀ı, A. and Griesse, R. (2006). Distributed optimal control of lambda-

omega systems. J. Numer. Math., 14(1):17–40.

[Borźı and Kunisch, 2005] Borźı, A. and Kunisch, K. (2005). A multigrid scheme for elliptic

constrained optimal control problems. Comput. Optim. Appl., 31:309–333.

[Borz̀ı and Kunisch, 2006] Borz̀ı, A. and Kunisch, K. (2006). A globalization strategy for the

multigrid solution of elliptic optimal control problems. Optim. Methods Softw., 21(3):445–459.

137

[Borz̀ı and Schulz, 2009] Borz̀ı, A. and Schulz, V. (2009). Multigrid methods for PDE optimiza-

tion. SIAM Rev., 51(2):361–395.

[Borz̀ı and Schulz, 2012] Borz̀ı, A. and Schulz, V. (2012). Computational optimization of systems

governed by partial differential equations. SIAM, Philadelphia, PA.

[Borz̀ı and von Winckel, 2009] Borz̀ı, A. and von Winckel, G. (2009). Multigrid methods and

sparse-grid collocation techniques for parabolic optimal control problems with random coeffi-

cients. SIAM J. Sci. Comput., 31(3):2172–2192.

[Brabazon et al., 2014] Brabazon, K., Hubbard, M., and Jimack, P. (to appear, 2014). Nonlinear

multigrid methods for second order differential operators with nonlinear diffusion coefficient.

Computers & Mathematics with Applications.

[Brandt and Livne, 2011] Brandt, A. and Livne, O. (2011). Multigrid Techniques: 1984 Guide

with Applications to Fluid Dynamics, Revised Edition. Classics in Applied Mathematics. SIAM.

[Bredies et al., 2013] Bredies, K., Clason, C., Kunisch, K., and von Winckel, G., editors (2013).

Control and Optimization with PDE Constraints. Birkhäuser Verlag, Basel.

[Brenner and Scott, 2008] Brenner, S. C. and Scott, L. R. (2008). The mathematical theory of

finite element methods. Springer, New York, third edition.

[Briggs et al., 2000] Briggs, W. L., Henson, V. E., and McCormick, S. F. (2000). A multigrid

tutorial. SIAM, Philadelphia, PA.

[Brown et al., 2003] Brown, P. N., Vassilevski, P. S., and Woodward, C. S. (2003). On mesh-

independent convergence of an inexact Newton-multigrid algorithm. SIAM J. Sci. Comput.,

25(2):570–590.

[Brugnano and Trigiante, 1998] Brugnano, L. and Trigiante, D. (1998). Solving differential prob-

lems by multistep initial and boundary value methods. Gordon and Breach Science Publishers,

Amsterdam.

[Bucci, 1992] Bucci, F. (1992). A Dirichlet boundary control problem for the strongly damped

wave equation. SIAM J. Control Optim., 30(5):1092–1100.

[Casas, 2007] Casas, E. (2007). Using piecewise linear functions in the numerical approximation

138

of semilinear elliptic control problems. Adv. Comput. Math., 26(1-3):137–153.

[Casas and Tröltzsch, 2012] Casas, E. and Tröltzsch, F. (2012). Second order analysis for optimal

control problems: improving results expected from abstract theory. SIAM J. Optim., 22(1):261–

279.

[Casas and Tröltzsch, 2015] Casas, E. and Tröltzsch, F. (2015). Second order optimality condi-

tions and their role in PDE control. Jahresber. Dtsch. Math.-Ver., 117(1):3–44.

[Chan et al., 1998] Chan, R. H., Chang, Q.-S., and Sun, H.-W. (1998). Multigrid method for

ill-conditioned symmetric Toeplitz systems. SIAM J. Sci. Comput., 19(2):516–529.

[Chan and Jin, 2007] Chan, R. H.-F. and Jin, X.-Q. (2007). An introduction to iterative Toeplitz

solvers. SIAM, Philadelphia, PA.

[Chen et al., 2000] Chen, X., Nashed, Z., and Qi, L. (2000). Smoothing methods and semismooth

methods for nondifferentiable operator equations. SIAM J. Numer. Anal., 38(4):1200–1216.

[Chertock et al., 2014] Chertock, A., Herty, M., and Kurganov, A. (2014). An eulerian-lagrangian

method for optimization problems governed by multidimensional nonlinear hyperbolic pdes.

Comput. Optim. Appl., to appear.

[Chrysafinos, 2010] Chrysafinos, K. (2010). Convergence of discontinuous Galerkin approxima-

tions of an optimal control problem associated to semilinear parabolic PDE’s. M2AN Math.

Model. Numer. Anal., 44(1):189–206.

[Davis, 2006] Davis, T. A. (2006). Direct methods for sparse linear systems. SIAM, Philadelphia,

PA.

[De los Reyes, 2015] De los Reyes, J. C. (2015). Numerical PDE-Constrained Optimization.

Springer International Publishing.

[Debnath, 2012] Debnath, L. (2012). Nonlinear partial differential equations for scientists and

engineers. Birkhäuser/Springer, New York.

[Dembo et al., 1982] Dembo, R., Eisenstat, S., and Steihaug, T. (1982). Inexact newton methods.

SIAM J. Numer. Anal., 19(2):400–408.

[Engel and Griebel, 2011] Engel, M. and Griebel, M. (2011). A multigrid method for constrained

139

optimal control problems. J. Comput. Appl. Math., 235(15):4368–4388.

[Evans, 2010] Evans, L. C. (2010). Partial differential equations. AMS, Providence, RI, second

edition.

[Gerdts et al., 2008] Gerdts, M., Greif, G., and Pesch, H. J. (2008). Numerical optimal control of

the wave equation: optimal boundary control of a string to rest in finite time. Math. Comput.

Simulation, 79(4):1020–1032.

[Golub and Van Loan, 2013] Golub, G. H. and Van Loan, C. F. (2013). Matrix computations.

Johns Hopkins University Press, Baltimore, MD, fourth edition.

[Gong et al., 2012] Gong, W., Hinze, M., and Zhou, Z. J. (2012). Space-time finite element

approximation of parabolic optimal control problems. J. Numer. Math., 20(2):111–145.

[González Andrade and Borz̀ı, 2012] González Andrade, S. and Borz̀ı, A. (2012). Multigrid

second-order accurate solution of parabolic control-constrained problems. Comput. Optim.

Appl., 51(2):835–866.

[Gugat and Grimm, 2011] Gugat, M. and Grimm, V. (2011). Optimal boundary control of the

wave equation with pointwise control constraints. Comput. Optim. Appl., 49(1):123–147.

[Gugat et al., 2009] Gugat, M., Keimer, A., and Leugering, G. (2009). Optimal distributed

control of the wave equation subject to state constraints. ZAMM Z. Angew. Math. Mech.,

89(6):420–444.

[Gunzburger, 2003] Gunzburger, M. D. (2003). Perspectives in flow control and optimization.

SIAM.

[Hackbusch, 1978] Hackbusch, W. (1978). A numerical method for solving parabolic equations

with opposite orientations. Computing, 20(3):229–240.

[Hackbusch, 1979] Hackbusch, W. (1979). On the fast solving of parabolic boundary control

problems. SIAM J. Control Optim., 17(2):231–244.

[Hackbusch, 1980] Hackbusch, W. (1980). Fast solution of elliptic control problems. J. Optim.

Theory Appl., 31(4):565–581.

[Hackbusch, 1981] Hackbusch, W. (1981). Numerical solution of linear and nonlinear parabolic

140

control problems. In Optimization and optimal control (Proc. Conf., Math. Res. Inst., Ober-

wolfach, 1980), volume 30 of Lecture Notes in Control and Information Sci., pages 179–185.

Springer, Berlin-New York.

[Hackbusch, 2003] Hackbusch, W. (2003). Elliptic Differential Equations: Theory and Numerical

Treatment. Springer.

[Heinkenschloss, 2005] Heinkenschloss, M. (2005). A time-domain decomposition iterative method

for the solution of distributed linear quadratic optimal control problems. J. Comput. Appl.

Math., 173(1):169–198.

[Herty et al., 2015] Herty, M., Kurganov, A., and Kurochkin, D. (2015). Numerical method for

optimal control problems governed by nonlinear hyperbolic systems of PDEs. Commun. Math.

Sci., 13(1):15–48.

[Herzog and Sachs, 2010] Herzog, R. and Sachs, E. (2010). Preconditioned conjugate gradient

method for optimal control problems with control and state constraints. SIAM J. Matrix Anal.

Appl., 31(5):2291–2317.

[Heywood and Rannacher, 1990] Heywood, J. G. and Rannacher, R. (1990). Finite-element ap-

proximation of the nonstationary Navier-Stokes problem. IV. Error analysis for second-order

time discretization. SIAM J. Numer. Anal., 27(2):353–384.

[Hintermüller et al., 2002] Hintermüller, M., Ito, K., and Kunisch, K. (2002). The primal-dual

active set strategy as a semismooth newton method. SIAM J. Optim., 13(3):865–888.

[Hintermüller et al., 2008] Hintermüller, M., Tröltzsch, F., and Yousept, I. (2008). Mesh-

independence of semismooth Newton methods for Lavrentiev-regularized state constrained non-

linear optimal control problems. Numer. Math., 108(4):571–603.

[Hintermüller and Ulbrich, 2004] Hintermüller, M. and Ulbrich, M. (2004). A mesh-independence

result for semismooth Newton methods. Math. Program., 101(1):151–184.

[Hinze et al., 2012] Hinze, M., Köster, M., and Turek, S. (2012). A space-time multigrid method

for optimal flow control. In Constrained optimization and optimal control for partial differential

equations, pages 147–170. Birkhäuser/Springer, Basel.

141

[Hinze et al., 2009] Hinze, M., Pinnau, R., Ulbrich, M., and Ulbrich, S. (2009). Optimization with

PDE constraints. Springer, New York.

[Hinze and Vierling, 2012] Hinze, M. and Vierling, M. (2012). The semi-smooth Newton method

for variationally discretized control constrained elliptic optimal control problems; implementa-

tion, convergence and globalization. Optim. Methods Softw., 27(6):933–950.

[Horn and Johnson, 2013] Horn, R. A. and Johnson, C. R. (2013). Matrix analysis. Cambridge

University Press, Cambridge.

[Horton and Vandewalle, 1995] Horton, G. and Vandewalle, S. (1995). A space-time multigrid

method for parabolic partial differential equations. SIAM J. Sci. Comput., 16(4):848–864.

[Ito and Kunisch, 2008] Ito, K. and Kunisch, K. (2008). Lagrange multiplier approach to varia-

tional problems and applications. SIAM, Philadelphia, PA.

[Jameson, 1988] Jameson, A. (1988). Aerodynamic design via control theory. J. Sci. Comput.,

3(3):233–260.

[Jin, 2010] Jin, X.-Q. (2010). Preconditioning Techniques for Toeplitz Systems. Higher Education

Press, Beijing.

[Jovanović and Süli, 2014] Jovanović, B. S. and Süli, E. (2014). Analysis of finite difference

schemes. Springer, London.

[Kelley, 2003] Kelley, C. T. (2003). Solving nonlinear equations with Newton’s method. SIAM,

Philadelphia, PA.

[Knabner and Angermann, 2003] Knabner, P. and Angermann, L. (2003). Numerical methods for

elliptic and parabolic partial differential equations. Springer-Verlag, New York.

[Kröner, 2011a] Kröner, A. (2011a). Adaptive finite element methods for optimal control of second

order hyperbolic equations. Comput. Methods Appl. Math., 11(2):214–240.

[Kröner, 2011b] Kröner, A. (2011b). Numerical Methods for Control of Second Order Hyperbolic

Equations. PhD thesis, Fakultät für Mathematik, Technische Universität München.

[Kröner, 2013] Kröner, A. (2013). Semi-smooth Newton methods for optimal control of the dy-

namical Lamé system with control constraints. Numer. Funct. Anal. Optim., 34(7):741–769.

142

[Kröner and Kunisch, 2014] Kröner, A. and Kunisch, K. (2014). A minimum effort optimal con-

trol problem for the wave equation. Comput. Optim. Appl., 57(1):241–270.

[Kröner et al., 2011] Kröner, A., Kunisch, K., and Vexler, B. (2011). Semismooth Newton meth-

ods for optimal control of the wave equation with control constraints. SIAM J. Control Optim.,

49(2):830–858.

[Kunisch et al., 2009] Kunisch, K., Leugering, G., Sprekels, J., and Tröltzsch, F., editors (2009).

Optimal control of coupled systems of partial differential equations. Birkhäuser Verlag, Basel.

[Kunisch and Wachsmuth, 2013a] Kunisch, K. and Wachsmuth, D. (2013a). On time optimal

control of the wave equation and its numerical realization as parametric optimization problem.

SIAM J. Control Optim., 51(2):1232–1262.

[Kunisch and Wachsmuth, 2013b] Kunisch, K. and Wachsmuth, D. (2013b). On time optimal

control of the wave equation, its regularization and optimality system. ESAIM Control Optim.

Calc. Var., 19(2):317–336.

[Lass et al., 2009] Lass, O., Vallejos, M., Borz̀ı, A., and Douglas, C. C. (2009). Implementation

and analysis of multigrid schemes with finite elements for elliptic optimal control problems.

Computing, 84(1-2):27–48.

[Lee et al., 2014] Lee, S. T., Liu, J., and Sun, H.-W. (2014). Combined compact difference scheme

for linear second-order partial differential equations with mixed derivative. J. Comput. Appl.

Math., 264:23–37.

[Lei and Sun, 2013] Lei, S.-L. and Sun, H.-W. (2013). A circulant preconditioner for fractional

diffusion equations. J. Comput. Phys., 242:715–725.

[Leugering et al., 2014] Leugering, G., Benner, P., Engell, S., Griewank, A., Harbrecht, H., Hinze,

M., Rannacher, R., and Ulbrich, S., editors (2014). Trends in PDE Constrained Optimization.

Springer International Publishing, Switzerland.

[Leugering et al., 2012] Leugering, G., Engell, S., Griewank, A., Hinze, M., Rannacher, R.,

Schulz, V., Ulbrich, M., and Ulbrich, S., editors (2012). Constrained optimization and op-

timal control for partial differential equations. Birkhäuser/Springer, Basel.

143

[LeVeque, 2007] LeVeque, R. (2007). Finite Difference Methods for Ordinary and Partial Dif-

ferential Equations: Steady-State and Time-Dependent Problems. SIAM, Philadelphia, PA,

USA.

[Lin et al., 2009] Lin, Y., Gao, X., and Xiao, M. (2009). A high-order finite difference method for

1D nonhomogeneous heat equations. Numer. Methods Partial Differential Equations, 25(2):327–

346.

[Lions, 1971] Lions, J.-L. (1971). Optimal control of systems governed by partial differential equa-

tions. Springer-Verlag, New York.

[Liu and Xiao, 2014b] Liu, J. and Xiao, M. (2014b). A new semi-smooth newton multigrid method

for parabolic pde optimal control problems. Proc. of the 53rd IEEE Conference on Decision

and Control, pages 5568–5573.

[Liu and Xiao, 2014a] Liu, J. and Xiao, M. (to appear, 2014a). A new semi-smooth newton

multigrid method for control-constrained semi-linear elliptic pde problems. J. Global Optim.

[Liu et al., 2004] Liu, W., Ma, H., Tang, T., and Yan, N. (2004). A posteriori error estimates

for discontinuous Galerkin time-stepping method for optimal control problems governed by

parabolic equations. SIAM J. Numer. Anal., 42(3):1032–1061.

[Luo et al., 2013] Luo, X., Chen, Y., and Huang, Y. (2013). A priori error estimates of finite

volume element method for hyperbolic optimal control problems. Sci. China Math., 56(5):901–

914.

[Mathew, 2008] Mathew, T. P. A. (2008). Domain decomposition methods for the numerical

solution of partial differential equations. Springer-Verlag, Berlin.

[Meidner and Vexler, 2008a] Meidner, D. and Vexler, B. (2008a). A priori error estimates for

space-time finite element discretization of parabolic optimal control problems. I. Problems

without control constraints. SIAM J. Control Optim., 47(3):1150–1177.

[Meidner and Vexler, 2008b] Meidner, D. and Vexler, B. (2008b). A priori error estimates for

space-time finite element discretization of parabolic optimal control problems. II. Problems

with control constraints. SIAM J. Control Optim., 47(3):1301–1329.

144

[Meidner and Vexler, 2011] Meidner, D. and Vexler, B. (2011). A priori error analysis of the

Petrov-Galerkin Crank-Nicolson scheme for parabolic optimal control problems. SIAM J. Con-

trol Optim., 49(5):2183–2211.

[Morton and Mayers, 2005] Morton, K. W. and Mayers, D. F. (2005). Numerical solution of

partial differential equations. Cambridge University Press, Cambridge, second edition.

[Nagaiah et al., 2011] Nagaiah, C., Kunisch, K., and Plank, G. (2011). Numerical solution for

optimal control of the reaction-diffusion equations in cardiac electrophysiology. Comput. Optim.

Appl., 49(1):149–178.

[Neittaanmaki and Tiba, 1994] Neittaanmaki, P. and Tiba, D. (1994). Optimal Control of Non-

linear Parabolic Systems: Theory, Algorithms, and Applications. Taylor & Francis.

[Neitzel et al., 2011] Neitzel, I., Prüfert, U., and Slawig, T. (2011). A smooth regularization of the

projection formula for constrained parabolic optimal control problems. Numer. Funct. Anal.

Optim., 32(12):1283–1315.

[Neitzel and Tröltzsch, 2009] Neitzel, I. and Tröltzsch, F. (2009). On regularization methods for

the numerical solution of parabolic control problems with pointwise state constraints. ESAIM

Control Optim. Calc. Var., 15(2):426–453.

[Ng, 2004] Ng, M. K. (2004). Iterative methods for Toeplitz systems. Oxford University Press,

New York.

[Nievergelt, 1964] Nievergelt, J. (1964). Parallel methods for integrating ordinary differential

equations. Comm. ACM, 7:731–733.

[Nocedal and Wright, 2006] Nocedal, J. and Wright, S. J. (2006). Numerical optimization.

Springer, New York, second edition.

[Ortega and Rheinboldt, 2000] Ortega, J. M. and Rheinboldt, W. C. (2000). Iterative solution of

nonlinear equations in several variables. SIAM, Philadelphia, PA.

[Pan et al., 2014] Pan, J., Ke, R., Ng, M. K., and Sun, H.-W. (2014). Preconditioning techniques

for diagonal-times-Toeplitz matrices in fractional diffusion equations. SIAM J. Sci. Comput.,

36(6):A2698–A2719.

145

[Pang and Sun, 2012] Pang, H.-K. and Sun, H.-W. (2012). Multigrid method for fractional diffu-

sion equations. J. Comput. Phys., 231(2):693–703.

[Pearson and Stoll, 2013] Pearson, J. W. and Stoll, M. (2013). Fast iterative solution of reaction-

diffusion control problems arising from chemical processes. SIAM J. Sci. Comput., 35(5):B987–

B1009.

[Pearson et al., 2012] Pearson, J. W., Stoll, M., and Wathen, A. J. (2012). Regularization-robust

preconditioners for time-dependent PDE-constrained optimization problems. SIAM J. Matrix

Anal. Appl., 33(4):1126–1152.

[Podlubny, 1999] Podlubny, I. (1999). Fractional differential equations. Academic Press, Inc., San

Diego, CA.

[Porcelli et al., 2014] Porcelli, M., Simoncini, V., and Tani, M. (2014). Preconditioning of Active-

Set Newton Methods for PDE-constrained Optimal Control Problems. arXiv:1407.1144.

[Rees et al., 2010] Rees, T., Dollar, H. S., and Wathen, A. J. (2010). Optimal solvers for PDE-

constrained optimization. SIAM J. Sci. Comput., 32(1):271–298.

[Rincon and Liu, 2003] Rincon, A. and Liu, I.-S. (2003). On numerical approximation of an

optimal control problem in linear elasticity. Divulg. Mat., 11(2):91–107.

[Saad, 2003] Saad, Y. (2003). Iterative methods for sparse linear systems. SIAM, Philadelphia,

PA.

[Saad and Schultz, 1986] Saad, Y. and Schultz, M. H. (1986). Gmres: a generalized minimal

residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 7(3).

[Schiela and Ulbrich, 2014] Schiela, A. and Ulbrich, S. (2014). Operator preconditioning for a

class of inequality constrained optimal control problems. SIAM J. Optim., 24(1):435–466.

[Schöberl et al., 2011] Schöberl, J., Simon, R., and Zulehner, W. (2011). A robust multigrid

method for elliptic optimal control problems. SIAM J. Numer. Anal., 49(4):1482–1503.

[Schöberl and Zulehner, 2007] Schöberl, J. and Zulehner, W. (2007). Symmetric indefinite pre-

conditioners for saddle point problems with applications to PDE-constrained optimization prob-

lems. SIAM J. Matrix Anal. Appl., 29(3):752–773.

146

[Silvester and Wathen, 1994] Silvester, D. and Wathen, A. (1994). Fast iterative solution of

stabilised Stokes systems. II. Using general block preconditioners. SIAM J. Numer. Anal.,

31(5):1352–1367.

[Smith et al., 1996] Smith, B. F., Bjorstad, P. E., and Gropp, W. D. (1996). Domain decomposi-

tion. Cambridge University Press, Cambridge. Parallel multilevel methods for elliptic partial

differential equations.

[Spotz, 1995] Spotz, W. F. (1995). High-Order Compact Finite Difference Schemes for Compu-

tational Mechanics. PhD thesis, The University of Texas at Austin.

[Spotz and Carey, 2001] Spotz, W. F. and Carey, G. F. (2001). Extension of high-order com-

pact schemes to time-dependent problems. Numer. Methods Partial Differential Equations,

17(6):657–672.

[Stoll and Wathen, 2012] Stoll, M. and Wathen, A. (2012). Preconditioning for partial differential

equation constrained optimization with control constraints. Numer. Linear Algebra Appl.,

19(1):53–71.

[Strikwerda, 2004] Strikwerda, J. C. (2004). Finite difference schemes and partial differential

equations. SIAM, Philadelphia, PA, second edition.

[Sun and Liu, 2010] Sun, L.-Y. and Liu, J. (2010). Constraint preconditioning for nonsymmetric

indefinite linear systems. Numer. Linear Algebra Appl., 17(4):677–689.

[Takacs and Zulehner, 2011] Takacs, S. and Zulehner, W. (2011). Convergence analysis of multi-

grid methods with collective point smoothers for optimal control problems. Comput. Vis. Sci.,

14(3):131–141.

[Takacs and Zulehner, 2013] Takacs, S. and Zulehner, W. (2013). Convergence analysis of all-at-

once multigrid methods for elliptic control problems under partial elliptic regularity. SIAM J.

Numer. Anal., 51(3):1853–1874.

[Thomas, 1995] Thomas, J. W. (1995). Numerical partial differential equations: finite difference

methods. Springer-Verlag, New York.

[Thomas, 1999] Thomas, J. W. (1999). Numerical partial differential equations: conservation

147

laws and elliptic equations. Springer-Verlag, New York.

[Toselli and Widlund, 2005] Toselli, A. and Widlund, O. (2005). Domain decomposition

methods—algorithms and theory. Springer-Verlag, Berlin.

[Trefethen and Bau, 1997] Trefethen, L. N. and Bau, III, D. (1997). Numerical linear algebra.

SIAM, Philadelphia, PA.

[Tröltzsch, 2010] Tröltzsch, F. (2010). Optimal control of partial differential equations. AMS,

Providence, RI.

[Trottenberg et al., 2001] Trottenberg, U., Oosterlee, C. W., and Schüller, A. (2001). Multigrid.

Academic Press Inc., San Diego, CA.

[Ulbrich, 2011] Ulbrich, M. (2011). Semismooth Newton methods for variational inequalities and

constrained optimization problems in function spaces. SIAM, Philadelphia, PA.

[Zuazua, 2005] Zuazua, E. (2005). Propagation, observation, and control of waves approximated

by finite difference methods. SIAM Rev., 47(2):197–243.

148

VITA

Graduate School

Southern Illinois University

Name: Jun Liu Email: gdctor@gmail.com, junliu2010@siu.edu

Education:

M.S., Computational Mathematics, South China Normal University, China, 2010.

B.S., Information and Computing Science, Guangdong University of Technology, China, 2004.

Employment:

Software Engineer, China National Software and Service Co., Ltd., China, 2004-2007.

Publications:

1. Jun Liu, and Mingqing Xiao, A leapfrog semi-smooth Newton-multigrid method for semi-

linear parabolic optimal control problems, to appear in Computational Optimization and

Applications (DOI:10.1007/s10589-015-9759-z), 2015.

2. Jun Liu and Mingqing Xiao, A new semi-smooth Newton multigrid method for control-

constrained semi-linear elliptic PDE problems, to appear in Journal of Global Optimization

(DOI:10.1007/s10898-014-0206-y), 2014.

3. Jun Liu and Haiwei Sun, A fast high-order sinc-based algorithm for pricing options un-

der jump-diffusion processes, International Journal of Computer Mathematics, 91(10), pp.

2163–2184, 2014.

4. Xuejun Gao, Tingwen Huang, Yu Huang, Jun Liu, and Mingqing Xiao, Observer design

for axial flow compressor, ASME Journal of Dynamic Systems, Measurement, and Control,

136, 051017:1–12, 2014.

5. Spike T. Lee, Jun Liu, and Haiwei Sun, Combined compact difference scheme for linear

second-order partial differential equations with mixed derivative, Journal of Computational

and Applied Mathematics, 264, pp. 23–37, 2014.

6. Jun Liu, and Mingqing Xiao, Rank-one characterization of joint spectral radius of finite

matrix family, Linear Algebra and its Applications, 438(8), pp. 3258–3277, 2013.

7. Xiongping Dai, Yu Huang, Jun Liu, Mingqing Xiao, The finite-step realizability of the joint

spectral radius of a pair of d-by-d matrices one of which being rank-one, Linear Algebra and

its Applications, 437(7), pp. 1548–1561, 2012.

8. Xiaoshan Chen, Wen Li, Xiaojun Chen, and Jun Liu, Structured backward errors for

generalized saddle point systems, Linear Algebra and its Applications, 436(9), pp. 3109–

3119, 2012.

149

9. Jun Liu and Haiwei Sun, Sinc-Galerkin method for the option pricing under jump-diffusion

model, East-West Journal of Mathematics, pp. 317–327, 2009.

10. Liying Sun and Jun Liu, Constraint preconditioning for nonsymmetric indefinite linear

systems, Numerical Linear Algebra with Applications, 17(4), pp. 677–689, 2009.

11. Buyang Li, Jun Liu, and Mingqing Xiao, Leapfrog multigrid methods for parabolic optimal

control problems, to appear in Proc. of the 27th Chinese Control and Decision Conference,

2015. (In the Finalists for Zhang Si-Ying Outstanding Youth Paper Award).

12. Jun Liu, Tingwen Huang, and Mingqing Xiao, A semismooth Newton multigrid method

for constrained elliptic optimal control problems, Advances in Global Optimization, Springer

Proceedings in Mathematics & Statistics Vol. 95, pp. 397–405, 2015.

13. Jun Liu and Mingqing Xiao, A new semi-smooth Newton multigrid method for parabolic

PDE optimal control problems, Proc. of the 53rd IEEE Conference on Decision and Control,

pp. 5568–5573, 2014. (Received the IEEE Student Travel Award).

14. Jun Liu, Yu Huang, Haiwei Sun, and Mingqing Xiao, High-order numerical methods for

wave equations with van der Pol type boundary conditions, Proc. of the SIAM Conference

on Control and Its Applications (CT13), pp. 144–151, 2013.

15. Jun Liu and Mingqing Xiao, Computation of joint spectral radius for network model as-

sociated with rank-one matrix set, Proc. of the 19th International Conference on Neural

Information Processing, Lecture Notes in Computer Science, Springer, Vol. 7665, pp. 356–

363, 2012.

16. Xuejun Gao, Tingwen Huang, Jun Liu, and Mingqing Xiao, Local observer for axial flow

aeroengine compressors, Proc. of the 10th World Congress on Intelligent Control and Au-

tomation, pp. 2233–2238, 2012.

Preprints:

1. Buyang Li, Jun Liu, and Mingqing Xiao, A fast and stable preconditioned iterative method

for optimal control of wave equations, under review, 2015.

2. Jun Liu, Brittany D. Froese, Adam M. Oberman, and Mingqing Xiao, A multigrid solver

for the three dimensional Monge-Ampere equations, under review, 2014.

3. Buyang Li, Jun Liu, and Mingqing Xiao, A second-order leapfrog multigrid method for the

numerical solution of parabolic optimal control problems, under review, 2014.

4. Jun Liu, Yu Huang, Haiwei Sun, and Mingqing Xiao, Numerical methods for weak solution

of wave equation with van der Pol type nonlinear boundary conditions, under review, 2014.

150

	Southern Illinois University Carbondale
	OpenSIUC
	8-1-2015

	NEW COMPUTATIONAL METHODS FOR OPTIMAL CONTROL OF PARTIAL DIFFERENTIAL EQUATIONS
	Jun Liu
	Recommended Citation

	Abstract
	Acknowledgments
	List of Tables
	List of Figures
	Backgrounds and preliminaries
	Motivating applications
	General framework of PDE-constrained optimization
	Finite difference discretization
	Iterative methods for solving linear system
	Multigrid method
	Krylov subspace method

	Iterative methods for solving nonlinear system
	Semismooth Newton (SSN) method
	Full approximation scheme (FAS) multigrid method

	A new SSN-multigrid method for semilinear elliptic control problems with control constraints
	Introduction
	SSN method for optimality system
	Multigrid method for Jacobian system
	FAS multigrid method for optimality system
	Numerical examples
	Conclusions

	A new leapfrog multigrid method for linear parabolic control problems without control constraints
	Introduction
	A leapfrog scheme and its error estimate
	Multigrid method for linear system
	Numerical examples
	Conclusions

	A leapfrog SSN-multigrid method for semilinear parabolic control problems with control constraints
	Introduction
	Optimality system with a leapfrog scheme
	Stability analysis for periodic case
	SSN-multigrid method for optimality system
	Numerical examples
	Conclusions

	An implicit preconditioned iterative method for wave control problems without control constraints
	Introduction
	A standard explicit central difference scheme
	A new implicit scheme and its error estimate
	A fast preconditioned iterative solver
	Numerical examples
	Conclusions

	Summary and future research
	Summary
	Future research

	Vita

