
 

Evolution equations for systems governed by social
interactions
Citation for published version (APA):
Evers, J. H. M. (2015). Evolution equations for systems governed by social interactions. [Phd Thesis 1
(Research TU/e / Graduation TU/e), Mathematics and Computer Science]. Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2015

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 17. Nov. 2023

https://research.tue.nl/en/publications/5a7d4eb5-40b6-4f10-bf82-5c5dd7c65c72


Evolution Equations for Systems

Governed by Social Interactions

Joep Evers

Evolution Equations for System
s G

overned by Social Interactions
Joep Evers INVITATION

to attend the public
defense of my PhD

thesis

Evolution Equations for 
Systems Governed by 

Social Interactions

on Monday 1 June 2015
at 16:00 

in the Auditorium of
Eindhoven University

of Technology.

Afterwards there will be 
a reception to which you 
are also cordially invited.

Joep Evers
j.h.m.evers@tue.nl





Evolution Equations for Systems
Governed by Social Interactions

Joep Evers



Cover: Sculpture based on the work of M.C. Escher (Houtrustweg 120, The Hague).
Photo by the author, used with kind permission of the M.C. Escher Company.

All M.C. Escher works © 2015 – The M.C. Escher Company – The Netherlands.
All rights reserved. www.mcescher.com

A catalogue record is available from the Eindhoven University of Technology Library

ISBN: 978-90-386-3851-5

Copyright © 2015 by J.H.M. Evers.
All rights are reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photocopy-
ing, recording or otherwise, without prior permission of the author.



Evolution Equations for Systems
Governed by Social Interactions

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de
rector magnificus prof.dr.ir. F.P.T. Baaijens, voor een

commissie aangewezen door het College voor
Promoties, in het openbaar te verdedigen
op maandag 1 juni 2015 om 16:00 uur

door

Joseph Hubertus Marianne Evers

geboren te Roermond



Dit proefschrift is goedgekeurd door de promotoren en de samenstelling van
de promotiecommissie is als volgt:

voorzitter: prof.dr. E.H.L. Aarts
1e promotor: prof.dr. M.A. Peletier
copromotor: dr.habil. A. Muntean
leden: prof.dr. J.A. Carrillo de la Plata (Imperial College London)

dr. R.C. Fetecau (Simon Fraser University)
prof.dr.ir. B. Koren

adviseurs: dr. S.C. Hille (Universiteit Leiden)
dr. H.M. Wyss



[Percy enters, wearing an extremely wide new neckruff]
Blackadder: “You look like a bird who’s swallowed a

plate. What do you think of Percy’s ruff, Baldrick?”
Baldrick: “I think he looks like a bird who’s swallowed a

plate, my Lord.”
Blackadder: “No, that’s what I think. What do you

think? Try to have a thought of your own, Baldrick;
thinking is so important. What do you think?”

Baldrick: “I think thinking is so important, my Lord.”

– Blackadder II 2
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Abstract

In this thesis we consider mathematical models for systems of individuals that interact in
a social way. Typical examples of such systems are crowds of pedestrians, flocks of birds
or schools of fish. The models that we use are similar in spirit to descriptions of non-living
particles and their physical interactions.
We consider the anisotropy that follows from the fact that people and animals have a
field of vision: the influence a reference person experiences from another individual is
weighted according to the direction in which he perceives the other. We obtain a model
with implicitly defined velocity from which we deduce unique solutions via a regularization
of the underlying ODE.
Measure theory provides a generalized framework that incorporates several perspectives
ranging from ODEs for particle positions to PDEs for particle densities. We use this frame-
work to derive systematically particle schemes for continuum equations and to prove their
convergence in the Wasserstein distance.
We derive flux boundary conditions for measure-valued evolutions on bounded domains
in the context of semigroups. First, we obtain the result for prescribed velocity field. Af-
terwards we use this result as a building block to deal with measure-dependent velocities.
Finally, we quantify the error related to the approximation of a finite-size mass-emitting
object by a point source.
The tools and techniques used are a combination of concepts taken from partial differential
equations, measure theory, semigroup theory, continuum mechanics, functional analysis,
probability theory, singular perturbation theory and numerical analysis.

Keywords: Measure-valued equations; mild solutions; particle systems; conservation laws; regu-
larization; singular perturbation; convergence rate; pedestrian flows.

MSC 2010: 46E27; 28A33; 35Q91; 70Fxx; 34A12; 35L65; 65L11; 91Cxx.

PACS 2010: 02.30.Cj; 89.65.-s; 45.50.-j; 47.10.ab.
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Chapter 1

Introduction

Underlying the work presented in this thesis is the very broad question:

How can we describe and predict
the behaviour of living, social individuals?

The attempt to capture social phenomena in (mathematical) formalism is not new. Sci-
entists have had this idea ever since the Renaissance, in particular concerning human
behaviour, as is described elaborately by Philip Ball in [Bal04]. In the scope of this thesis,
we understand the word ‘behaviour’ primarily as meaning ‘motion’. That is, we model how
groups of social individuals move (in space) as the result of inter-individual interactions.

This work is relevant, because nowadays more and more large-scale events take place,
where huge crowds gather. A combination of overcrowding, badly designed infrastructure
and human emotions might lead to uncomfortable or even life-threatening situations. A
clear example of how things can go wrong is the Love Parade that took place on the 24th
of July 2010 in the German city of Duisburg: 21 people lost their lives in a stampede.
More information can be found e.g. in [Gua, Sue, Tag]. For me personally, the events
in Duisburg are significant too, since this drama happened around the time when I first
started studying models for crowd behaviour.

There are other important, but less dramatic reasons for modelling social individuals:

• Civil engineers need to be sure at the design stage that train stations, airports and
other public buildings can cope with the expected flow of people.

• In biological aggregations often complex dynamic patterns arise. Can such patterns
form without a ‘leader’ or ‘mastermind’?

• To be able to ‘fluidize’ motion in traffic jams, understanding of the basic mechanisms
of vehicular traffic is required.

• Related to the two previous points: Self-organizing biological groups have been a
source of inspiration for designing interacting robots. Based on the same ideas

1



2 Chapter 1. Introduction

smart self-driving cars are built. Such cars can be used e.g. to regulate traffic on
highways.

Over the last decades, mathematical models inspired by biology, social sciences and life
sciences have become a substantial area of interest for researchers working in the fields
of (partial) differential equations, functional analysis and measure theory. Formerly, the
associated problems were mostly treated heuristically and only by means of numerical
simulations. This research has a broad variety of applications, while the mathematics
involved is challenging in its own right.

It is exactly this combination of societal relevance and modern mathematics that was
the main motivation for the work presented here. However, before we can solve any major
real-world problem, we need to understand the pieces that make up the whole. In this
thesis, we contribute to a better understanding of those pieces. The approach we take
travels along and across the borders between partial differential equations, measure theory,
semigroup theory, continuum mechanics, functional analysis, probability theory, singular
perturbation theory and numerical analysis.

We use the following mathematical question as a guide:

Can ideas from mathematical physics provide inspiration when
modelling and analyzing systems of socially interacting individuals?

We focus on models in which the solutions are measure-valued. More specifically, we
consider trajectories in the space of measures parameterized by time, where the measure
represents the distribution of our individuals in space.

Why do we choose to work in this measure-theoretical setting?

• Measure-valued evolutions provide a useful framework for unifying in a single form-
alism several points of view ranging from ODEs for particle positions to PDEs for
particle densities, and from stochastic equations to equations for statistical data
of low regularity. Such unification moreover facilitates the transition between per-
spectives, e.g. in discrete-to-continuum limits.

• Measure-valued equations allow for solutions that concentrate on lower-dimensional
manifolds, e.g. on curves in two-dimensional space. Additionally, point masses and
contributions with a density may be present. Models with ‘hybrid’ solutions of this
type have the advantage that keeping track of the individual parts in an explicit,
artificial way is not necessary.

This chapter is an introduction to the main ideas of this thesis with particular emphasis
on the measure-theoretical concepts we use. We explain in Sections 1.1 and 1.2 the two
basic ingredients of the title of this thesis: ‘evolution equations’ and ‘social interactions’.
The remainder of the chapter describes the wider context of the topics treated in the
individual chapters and the connections between them. Also, references to the relevant
literature are provided. Since we focus on the general message, many details are omitted
here or postponed to the coming chapters. A chapter-wise overview of the thesis is given
in Section 1.7.
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1.1 Evolution equations
The central equation of this thesis is the formal expression

∂µ

∂t
+∇ · (µ v) = 0, (1.1)

which closely resembles the well-known continuity equation. Here, µ is a measure describ-
ing the distribution of mass in space, t is the time variable and v is a velocity field to be
specified. The continuity equation is omnipresent in mathematical physics; it is the math-
ematical formulation of the concept of local conservation of mass. The evolution in time
of a solution to (1.1) is dictated by v. Choosing v is a crucial step in the modelling process.

In (1.1) the continuity equation is written in terms of measures, which should merely
be interpreted as a short-hand notation for its weak formulation. Let M+(Rd) be the
space of positive, finite Borel measures on Rd and let T > 0 be some fixed final time.
Then µ ∈ C([0, T ];M+(Rd)) is a continuous trajectory (in an appropriate metric) in
M+(Rd) parameterized by t ∈ [0, T ]. It is said to be a weak solution of (1.1) with initial
condition ν0 ∈M+(Rd) if it satisfies

∫
Rd

ψ(T, x) dµT (x)−
∫
Rd

ψ(0, x) dν0(x) =
T∫

0

∫
Rd

∂ψ

∂t
(t, x) +∇ψ(t, x) · v(x) dµt(x) dt (1.2)

for all ψ : [0, T ] × Rd → R in a class of test functions. A typical choice is ψ ∈
C∞c ([0, T ]×Rd), the space of infinitely continuously differentiable functions with compact
support, or ψ ∈ C1

b ([0, T ] × Rd), the space of bounded and continuous functions with
bounded and continuous first derivatives. The exact space of test functions is usually
problem-dependent. See e.g. [Tai04], pp. 62–64, for an overview of how the modelling
of different kinds of boundaries leads to different boundary conditions on the test functions.

For simplicity, we assume for the moment that the velocity field v is a Lipschitz continuous
function on Rd. Whenever we write ‘Lipschitz continuous’ without further specification,
we mean ‘globally Lipschitz continuous’. Hence, by the Picard-Lindelöf Theorem, the
initial value problem 

dx

dt
= v(x(t));

x(0) = x0,

(1.3)

has a unique global solution x( · ;x0) : [0,∞)→ Rd for all x0 ∈ Rd. We associate to this
solution a mapping Φt that maps the initial position x0 to the solution of (1.3) at time t:

Φt(x0) := x(t;x0),

for all t ∈ [0,∞) and x0 ∈ Rd. The family of mappings (Φt)t>0, often called motion
mapping , is a semigroup. That is, it satisfies the property that Φ0 is the identity, and
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ΦsΦt = Φs+t for all s, t > 0. For each t and µ ∈ M(Rd), we call the object Φt#µ, the
push-forward measure of µ by Φt if∫

Rd

f(x) d(Φt#µ)(x) =
∫
Rd

f(Φt(x)) dµ(x) (1.4)

holds for all measurable, bounded functions f on Rd. The measure Φt#µ represents the
distribution of mass after a transformation of all material points by the motion mapping
Φt, if mass was originally distributed according to µ. Essentially, what we see in (1.4) is
a coordinate transform.

We use the push-forward operator to lift the semigroup (Φt)t>0 on Rd to the space
of measuresM(Rd), and we define Pt :M(Rd)→M(Rd) for each t > 0 by

Ptµ := Φt#µ (1.5)

for all µ ∈M(Rd). The fact that (Φt)t>0 is a semigroup implies that (Pt)t>0 is a semig-
roup. Moreover, (Pt)t>0 preserves positivity.

We now present an alternative solution concept for (1.1) that is closely related to the
semigroup defined in (1.5). A mild solution of (1.1) is defined as a trajectory µ ∈
C([0, T ];M+(Rd)) that satisfies

µt = Ptν0 (1.6)
for all t ∈ [0, T ], where ν0 ∈M+(Rd) is the given initial condition. Equation (1.6) expli-
citly defines the measure µt for all t. It is a simplified example of a more involved concept
that is introduced in (1.10). Let us show first that mild solutions are weak solutions.

Let ν0 ∈M+(Rd) be given and assume that µ ∈ C([0, T ];M+(Rd)) satisfies µt = Ptν0
for all t ∈ [0, T ]. Then a simple calculation shows that

T∫
0

∫
Rd

[
∂ψ

∂t
(t, x) +∇ψ(t, x) · v(x)

]
dµt(x) dt

(1.4)=
T∫

0

∫
Rd

[
∂ψ

∂t
(t,Φt(x)) +∇ψ(t,Φt(x)) · v(Φt(x))

]
dν0(x) dt

(1.3)=
T∫

0

∫
Rd

d

dt
[ψ(t,Φt(x))] dν0(x) dt

=
∫
Rd

ψ(T, x) dµT (x)−
∫
Rd

ψ(0, x) dν0(x), (1.7)

for all ψ ∈ C1
b ([0, T ]× Rd). Hence µ is a weak solution.

Remark 1.1.1. Weak solutions, however, are not necessarily mild solutions.
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The definition of a mild solution becomes more involved if we introduce a source or sink
term in (1.1):

∂µ

∂t
+∇ · (µ v) = F (t, µ), (1.8)

where F : [0, T ]×M(Rd)→M(Rd). The weak formulation corresponding to (1.8) is:

∫
Rd

ψ(T, x) dµT (x)−
∫
Rd

ψ(0, x) dν0(x) =
T∫

0

∫
Rd

∂ψ

∂t
(t, x) +∇ψ(t, x) · v(x) dµt(x) dt

+
T∫

0

∫
Rd

ψ(t, x) dµF,t(x) dt, (1.9)

for all ψ : Rd → R in the same class of test functions as in (1.2), say ψ ∈ C1
b ([0, T ]×Rd).

The measure µF,t is for all t ∈ [0, T ] defined as µF,t := F (t, µt).

Mild solutions satisfy, by definition, a generalized variant of (1.6). Recall that (Pt)t>0
is the semigroup on M(Rd) associated to the flow induced by v. A trajectory µ ∈
C([0, T ];M+(Rd)) is called a mild solution of (1.8) if it satisfies

µt = Ptν0 +
t∫

0

Pt−sF (s, µs) ds for all t ∈ [0, T ]. (1.10)

This equation is referred to as the variation of constants formula; cf. e.g. Chapter 6 of
[Paz83].1 The integral in (1.10) is itself a measure and should be understood in the sense
of Bochner integrals. Further details about integration of measure-valued maps are given
in Chapter 2 of [DU77] and in Appendix B of this thesis. One can prove, in the spirit of
(1.7), that mild solutions in the sense of (1.10) are weak solutions in the sense of (1.9).
See also the proof of Proposition 3.7 in [Hoo13] that treats a comparable case.

We have now introduced the basic ingredients that are used in the remainder of this
thesis in the following way:

(i) We consider a particle system in Chapter 2; that is, we consider a discrete measure ν0
in (1.6). This implies that we only need to trace the positions of the corresponding
point masses. The underlying equation for the mapping Φ occurs in Chapter 2 first
as a system of coupled first-order (in time) ODEs, secondly as an implicit equation
for Φ̇, and thirdly as a second-order ODE. The third formulation is used as a tool
to approximate the implicit expression by means of a small parameter. A more
extensive introduction to Chapter 2 is given in Section 1.7.1.

(ii) In Chapter 3, Φ follows from a second-order equation which is derived from physical
considerations. The resulting measure-valued evolution follows from (1.6). This

1The concept of a mild solution can be defined in the same way for general differential operators
A, such that −A generates a (strongly continuous) semigroup. This is done in Chapter 6 of [Paz83].
Compare this also to Duhamel’s principle; [Eva10], p. 49.
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chapter focusses on approximating the initial data and proves that the corresponding
solutions converge. A special case is the approximation of a continuum by a particle
system. More details are provided in Section 1.7.2 and in Chapter 3.

(iii) Chapter 4 starts from (1.10). The semigroup (Pt)t>0 however follows from the evo-
lution restricted to a bounded domain (the interval [0, 1]). We derive flux boundary
conditions at 0 and 1 by means of a vanishing absorption zone near the boundary. In
this zone, mass is taken away at a certain rate according to F that is non-Lipschitz
in µ. Due to the fact that F lacks sufficient regularity, a non-standard approach
is required in the analysis. In Chapter 5 we proceed along the lines of Chapter 4
and we introduce a procedure that resembles the forward-Euler method for ODEs
(see Chapter 2 in [But03]), to define mild solutions when v depends on the solution
itself; see also Section 1.7.3.

(iv) We treat the diffusion equation with a measure-valued point source in Chapter 6.
Mild solutions to this equation are defined via the variation of constants formula
(1.10) with (Pt)t>0 replaced by the diffusion semigroup. For more details, see
Section 1.7.4.

The extension from v : Rd → Rd to measure-dependent velocity fields in Chapter 5
enables us to incorporate mutual interactions that influence individuals’ motion. This is
what the words ‘social interactions’ in the title of this thesis refer to. In (i) and (ii) above,
these interactions play a role too, although they were not mentioned explicitly.

1.2 Social interactions
In the previous section we used the velocity field v : Rd → Rd for simplicity of presentation.
Much more interesting are those cases in which v is also time-dependent or even depends
on the solution itself. In this thesis, one of the central choices for v is of the form

v[µt](x) := (K ∗ µt)(x) =
∫
Rd

K(x− y) dµt(y). (1.11)

This expression represents interactions between the ‘individuals’ that are described by
µt. Typically, K includes a short-range repulsion zone and a long-range attraction zone.
These are natural mechanisms in social groups: on the one hand an individual (person,
bird, fish,. . . ) wants to avoid collisions, but on the other hand he/she does not want to
lose contact with the rest of the group.
Often, K arises from an interaction potential , i.e. there is a function K : R+

0 → R
such that K(ξ) := −∇ξK(|ξ|) = −K ′(|ξ|) ξ

|ξ| . A common choice for K is the Morse
potential [LTB09, CDM+07]. In this thesis we will only occasionally be concerned with
issues about the regularity of K, such as boundedness or differentiability in the origin. In
[BCL09] such issues are addressed for particle solutions based on (1.3) and (1.11) with
attractive interaction kernels. Depending on the behaviour of the kernel around the origin
(cf. in particular the so-called Osgood condition) collisions and collapse into a single point
can happen in finite or infinite time; see Theorem 2.1 in [BCL09]. See also [CDF+11] for
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further results. To avoid these degeneracy problems, one needs to choose an appropriate
interaction potential such that particle collisions do not happen.

A particular feature that makes living individuals different from non-living particles is
that most species have a restricted zone of social perception, defined by the limitations
of their field of vision or of other perception senses [SK81, KH12]. We assume that vision
is the most important factor in the decision-making process that leads to an individual’s
motion and we disregard all other senses. Due to anatomy, i.e. the position of the eyes,
the amount of information received is not the same for each direction. In the models that
are studied in this thesis, this is reflected by incorporating weights (see Chapter 2) to the
influence one reference individual experiences from another, depending on the direction
in which he/she perceives the other. See Figure 1.1 for a schematic illustration. We use
a function ḡ : (−π, π]→ [0, 1] to relate these weights, ḡ(φik), to the angle φik as defined
in Figure 1.1.

iReference

k

φik

Figure 1.1: Illustration of the angle-dependent visual perception of the individual i. In-
dividual i perceives individual k under an angle φik with respect to the velocity of i.
We distinguish between three basic regions: the field of vision (dark grey), the zone of
peripheral vision (light grey) and the blind zone (white).

Sometimes the word cone of vision is used in this context. We avoided this word up to
now, because it suggests that inside this cone (say, the dark grey area in Figure 1.1) there
is full vision, while outside there is none. We opt for an approach in which there is a more
gradual transition from full vision in the direction of motion to (nearly) no vision: the
function ḡ is continuous. In Figure 1.1, three zones are indicated: the dark grey field of
vision, the light grey periphery and the white blind zone. The function ḡ is a continuous
representation of these zones. In the field of vision ḡ is nearly 1, in the periphery there is
a sharp but smooth transition, and in the blind zone ḡ is nearly 0; see also Figure 2.2a
and the corresponding graph in Figure 2.2b.

The field of vision as introduced in this section is the central topic of Chapter 2 where
our main concern is to guarantee existence and uniqueness of solutions (see also Section
1.7.1). Velocity fields of the form (1.11) appear in a first-order model in Chapters 2 and
5. Moreover, a convolution term resembling (1.11) is used in Chapter 3 where it repres-
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ents mutual interactions in a force balance. This force balance is given as a second-order
in time evolution equation. In the next section, Section 1.3, we explain how first- and
second-order models relate.

1.3 First- and second-order equations
Note that (1.1) is an equation written (formally) as a PDE in Eulerian coordinates. By
introducing the concept of mild solutions, in some sense we made a transition to a La-
grangian formulation, in which the transport of mass is linked via (1.6) and (1.5) to an
underlying ODE (1.3) that defines the trajectories of individual material points. Let us
now place this underlying equation (1.3) in a slightly broader perspective.

In Section 1.1, the measure-valued trajectory µ is induced by the motion mapping (Φt)t>0
that is in turn the solution of the simple equation of motion

Φ̇t(x) = F(Φt(x)), (1.12)

for each x ∈ Rd, where F : Rd → Rd is given. As explained in Section 1.2, ultimately we
are interested in systems that have the structure{

Φ̇t(x) = F [µt](Φt(x)); (1.13a)
µt = Φt#ν0, (1.13b)

where F is of the form (1.11). We introduce the symbol F instead of the symbol v used
in (1.3), since this term will be interpreted as a force in (1.14). If the initial measure ν0
is discrete or absolutely continuous, then (1.13) reduces to a system of coupled ODEs for
the positions of the point masses, or a PDE for the density, respectively. The density of
an absolutely continuous measure is also called Radon-Nikodym derivative; see Sections
30 and 31 in [Hal59] for more details.
Remark 1.3.1 (Existence and uniqueness of solutions). At the level of ODEs (with or
without interactions) existence and uniqueness are typically proved using the Picard-
Lindelöf Theorem (also called Cauchy-Lipschitz Theorem, see [Tes12], Theorem 2.2).
Such arguments are used in Chapters 2, 3 and 4 of this thesis. In Chapter 4, the Picard-
Lindelöf Theorem is used to derive well-posedness for the underlying motion mapping with
prescribed velocity (before a restriction to [0, 1] is imposed and mass decay is considered).
At the PDE level, the well-posedness of the model with interactions was studied in [BV06,
BL07, BLR11], and its long-time behaviour in [BDF08, LTB09, FHK11, FH13]. One focus
of the analytical investigations was on the possibility of the blow-up of the solutions via
mass concentration into one or several Dirac measures when the potential K is attrac-
tive [FR10, BCL09, HB10, CDF+11].
For general measures however (i.e. without any prior knowledge about whether the mea-
sure is discrete or absolutely continuous), the solution concept related to (1.13) is not as
straightforward as in Section 1.1. There, the procedure is unidirectional in the sense that
Φt does not depend on µt, and µt is simply defined by the variation of constants formula.
More effort is needed to obtain well-posedness of the system if the equation for Φt does
depend on the measure µt, like in (1.13). This issue will be addressed in Chapter 3, in
particular in Part 1 of Theorem 3.3.10, and throughout Chapter 5.
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The discrete and continuum formulations appear (in several different ways) in many places
in literature, for instance in the context of mathematical models for biological aggrega-
tions; see e.g. the list of references in [MEK99, TBL06]. In Section 1.4, we take a closer
look at discrete and continuum views (and what lies in between).

The first-order ODE (1.12) is closely related to a second-order damped Newton-like equa-
tion of the form

mΦ̈t(x) = −Φ̇t(x) + F(Φt(x)), (1.14)
where m is a particle’s (read: material point’s) mass. We see that the choice for the sym-
bol F in (1.14) is appropriate, because this term refers to (external) forces. Depending
on the specific setting we are considering, F may be of the form F = F [µt]. Formally,
(1.12) follows from (1.14) in the limit m ↓ 0. In literature, different terms are used to
describe this and closely related procedures, and they occur in several distinct settings.
We discuss the terminology and context now.

In [BV05], (1.13a) is used with F of the form (1.11). In comparison with the second-
order equation, (1.12) is described from a mechanical point of view as a situation in which
mass is negligible (cf. the limit m ↓ 0 in the above) and motion is dominated by fric-
tion. Changes in velocity occur instantaneously as a reaction to external and interaction
forces. The authors of [BV05] concentrate on cell movement and also provide a biological
interpretation. Equation (1.12) reflects the absence of persistence (or: inertia [FS14]) of
cells. Rigorous results about the convergence of solutions in the limit m ↓ 0 are given
in e.g. [Tik52, Vas63, FS14]. In opposite direction, (1.14) follows from (1.12) by the
introduction of a small response time for the individuals; see [EFR14] (or Chapter 2 of
this thesis), which elaborates on this point.

Furthermore, the passage from second- to first-order equations is well-established in the
context of stochastic differential equations (SDE). The Langevin equation (see e.g. [Pav14,
Sch02]) is the stochastic counterpart of (1.14), that follows from the particular choice
F = −∇V for some V : Rd → R, and the incorporation of a noise term. Analo-
gously to taking the limit m ↓ 0 in (1.14), a first-order equation can be obtained from
the Langevin equation by sending a friction coefficient to infinity; cf. [Nel67], Chapter
10 and [LRS10], Remark 2.16. This procedure is called the (highly) overdamped limit
[Nel67, LRS10, Pav14], Smoluchowski limit [Pav14], high friction limit [GPK12], or large
viscosity limit [Kra40]. The resulting first-order equation is called the Smoluchowski SDE
[Nel67], or simply overdamped Langevin equation. Note that (1.14) and (1.12) are the
deterministic counterparts of the Langevin and Smoluchowski SDEs, respectively.

Both the Langevin equation and the Smoluchowski equation are SDEs for a random
variable. They each have an associated PDE for the corresponding probability density,
which we refer to as the kinetic equation and the Fokker-Planck equation, respectively.
One can pass from the kinetic to the Fokker-Planck equation in a way that is com-
patible with the overdamped limit. This procedure was described first by [Kra40]; see
also e.g. [LRS10], Proposition 2.15. The kinetic equation associated to a deterministic
second-order ODE is usually interpreted via the many-particle limit. Further details are
given in Section 1.4. Performing the overdamped limit is also possible in this determi-
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nistic setting. A rigorous result is given in [FS14] for those F that are of convolution type.

In Chapter 2 (and [EFR14]) we explicitly exploit the relation between (1.13a) and (1.14)
for the vanishing inertia term. A result by Tikhonov, see [Tik52, Vas63], shows that the
limit m ↓ 0 can be performed in the smooth regime, provided that the solutions of the
first-order equation are asymptotically stable in a certain sense (further details are delayed
until Section 1.7.1 and Chapter 2). Typically, the solution of the second-order equation
for any m > 0 fixed is a ‘smoothed’ version of the solution of the first-order equation.

1.4 Modelling perspectives
In the previous section, Section 1.3, we have mentioned discrete and continuum descrip-
tions as special cases associated to (1.13) or, more generally, associated to (1.1). Let us
now discuss more elaborately the level at which our systems are described. To facilitate
the exposition we use the overview presented in Figure 1.2, in which we also incorporate
some of the ideas mentioned in Section 1.3.

Let the initial measure ν0 be a discrete measure; that is, a weighted sum of N Dirac
measures: ν0 :=

∑N
i=1 αiδxi,0 . Here, the set of prefactors (αi)Ni=1 ⊂ R+ is fixed and the

set (xi,0)Ni=1 ⊂ Rd denotes the initial configuration. In Chapter 3 we treat probability
measures of this kind, which satisfy the constraint

∑N
i=1 αi = 1. The space of all prob-

ability measures is denoted by P(Rd). The so-called empirical measure is an example of
such measure for which αi = 1/N for all i.

Assume that the (possibly measure-dependent) equation of motion for Φ, see e.g. (1.12)
or (1.13a), is well-posed and yields a unique trajectory (Φt(x0))t>0 for each x0 ∈ Rd,
or at least if x0 = xi,0, for any i ∈ {1, . . . , N}. Then the corresponding solution is a
discrete measure for all time t > 0 and is of the form

µt =
N∑
i=1

αiδΦt(xi,0). (1.15)

We are now in a microscopic setting : we follow individual material points (or simply:
individuals). The term ‘microscopic’ typically refers only to situations in which we have a
discrete measure and hence a system of (coupled) ODEs describing particle positions. The
way in which we defined mass evolution (by means of a push-forward) implies however
that the motion mapping (and thus the ODE, or SDE) is also present if we have a mass
density or general mass distribution. The second- and first-order equations in the two
blocks at the top of Figure 1.2 are underlying all our approaches; they are however only
called ‘microscopic equations’ if we consider a particle system.

In Section 1.3 we have discussed the blocks in Figure 1.2 named ‘kinetic’ and ‘Fokker-
Planck’ in the context of the Langevin and Smoluchowski SDEs and their related PDE
for probability densities. In [BV05], the authors perform (formally) the transition between
the first-order ODE/SDE and the macroscopic PDE (Fokker-Planck) both in the presence
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Figure 1.2: Schematic overview of model perspectives and the relation between first- and
second-order equations of motion. The given references are indicative and certainly not
exhaustive. Chapter numbers refer to chapters of this thesis.

and in the absence of the stochastic term. A stochastic interpretation of this transi-
tion between equations is that we take the limit N → ∞ of N independent realizations
(Xi(t))t>0, i ∈ {1, . . . , N}, of the dynamics dictated by the SDE. Random effects are
present in each realization both via the randomness of the initial position and via the
stochastic noise term. The result obtained by taking the limit N →∞ is closely related
to the law of large numbers. This approach is demonstrated in [MCO05], in which the
authors show (weak) convergence of the aforementioned empirical measure (or empirical
distribution)

ρNt = 1
N

N∑
i=1

δXi(t). (1.16)

with Xi(t) the independent realizations according to the Smoluchowski SDE. The limit
equation is called the mean-field equation. In the deterministic case, the limit object ρ
is considered as a mass density rather than as a probability measure. Nevertheless, it
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is possible to use (1.16) as some approximating discrete measure, still called empirical
measure, but without the stochastic interpretation of Xi(t). Rigorous results regarding
the convergence as N → ∞ were given in [Oel90] using the empirical measure. Well-
posedness for (a specific form) of the limit equation was proved in [BV06].

The kinetic equation follows from the Langevin SDE in a law of large numbers-like proce-
dure called mean-field limit2. There is an underlying equation for Ẍi(t), i ∈ {1, . . . , N},
in terms of Ẋi(t) and Xi(t). The crucial point is now to consider the empirical measure
not just on the space of positions (i.e. Rd) but on the product space of positions and velo-
cities: Rd×Rd. The empirical measure to approximate the limit density ft ∈ P(Rd×Rd)
is given by

fNt = 1
N

N∑
i=1

δXi(t) ⊗ δẊi(t), (1.17)

for each t > 0. Equation (1.17) is the counterpart of (1.16). The limit equation for
ft is derived formally in the context of weak formulations in [CFTV10] for two specific
microscopic equations. The rigorous statements (in terms of the 1-Wasserstein distance
between measures) are also given; see also [CCR11]. The Wasserstein distance is intro-
duced in Chapter 3, Definition 3.3.3. In [FS14] the formal limit is derived in a similar
fashion for an equation with the same structure as (1.14). The resulting equation is a
PDE for f : [0,∞)→ P(Rd ×Rd) with partial derivatives in both the x and v variables.
The kinetic equation describes what is called the mesoscopic level (as indicated in Figure
1.2). This is an intermediate level: in one position the velocity is not prescribed but
distributed according to a certain probability density.

The next step, called ‘macroscopic limit’ in Figure 1.2, is to lose the v-dependency.
To this aim, we redefine ρt as

ρt :=
∫
Rd

ft(·, dv), (1.18)

i.e. we integrate out the velocity. The quantity ρt is called the macroscopic density of ft.

Similarly, the mean velocity u is defined by

ρt ut :=
∫
Rd

v ft(·, dv). (1.19)

The limit equations (for ρ and u) are called hydrodynamic equations – cf. the terminology
in Figure 1.2 – and are obtained by integrating the kinetic equation over the velocity
coordinate, as we will show now. Note that we deliberately did not show the kinetic
equation to avoid an overabundance of notation, but we refer to the examples given in
e.g. [CFTV10, FS14]. If we integrate the kinetic equation over v then we obtain the
continuity equation

∂ρ

∂t
+∇ · (ρ u) = 0, (1.20)

2The word ‘mean-field’ is also used e.g. in [MCO05] for the limit of the first-order equation.
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for the macroscopic density. The second step is to multiply the kinetic equation by v and
integrate afterwards. A term of the form

∫
Rd |v|

2 ft(·, dv) will appear, which cannot be
readily expressed in terms of ρ and u. Instead, an extra assumption (closure relation) is
needed. We use here the monokinetic assumption, which states that all material points
at the same position move according to the mean velocity:∫

Rd

|v − ut|2 ft(·, dv) = 0, (1.21)

or
ft(x, v) = ρt(x) δv−ut(x). (1.22)

The equation that results from multiplication by v and integration, followed by application
of the monokinetic assumption, is a PDE that reflects the conservation of momentum. It
is a vector-valued equation for which the kth component has the form

∂

∂t
(ρuk) +∇ · (ρuuk) = fk[ρ, u], (1.23)

cf. (16) in [CDM+07] and (2.4) in [CC08]. The right-hand side f in (1.23) is model-
dependent and includes a (functional) dependence on ρ and u. See the exposition in
[CFTV10] for more details.

In view of the limit object ρ, the hydrodynamic limit (1.20)–(1.23) resembles the mean-
field limit for first-order dynamics. Both reflect the macroscopic perspective – cf. Figure
1.2. Note that an alternative for the introduction of the monokinetic assumption is to
multiply by |v|2, integrate and use a different closure relation in the equation for the
second moment. This yields an additional equation representing conservation of energy.

Formulated in terms of measures, the transition from the second-order ODE to the kinetic
equation and, subsequently, to the hydrodynamic limit, is treated in Chapter 8 of [CPT14].
In Chapter 3 of this thesis we perform the discrete-to-continuum limit immediately from
a second-order ODE to the hydrodynamic limit. This is in fact a special case of the more
general result presented in Chapter 3 involving the convergence of general measure-valued
solutions in the 1-Wasserstein distance. The special case holds for measures of the form
(1.15), hence also for the empirical measure. In [Oel91] convergence of the empirical
measure is proven, using weak convergence. The equation of motion is simpler than the
one used in Chapter 3. Both approaches are represented by an extra arrow in Figure 1.2.

Assume that f in (1.23) is of the form ρ(−u + f̃[ρ])/ε for some ε > 0. Then (1.20)
and (1.23) yield

ε

(
∂u

∂t
+ (u · ∇)u

)
= −u+ f̃[ρ]. (1.24)

Compare the part on ‘isentropic Euler equations’ on p. 2523 of [DPZ14], in particular
(27). Note that in brackets on the left-hand side the Eulerian formulation of Lagrangian
(material) acceleration Φ̈t appears. Taking the limit ε ↓ 0 thus resembles taking the



14 Chapter 1. Introduction

overdamped limit in (1.14). Indeed, in the limit we obtain (at least formally) that u = f̃[ρ]
which, substituted in (1.20), yields

∂ρ

∂t
+∇ · (ρ f̃[ρ]) = 0. (1.25)

This is a Fokker-Planck equation. In Figure 1.2, we indicate this transition by the ar-
row from ‘hydrodynamic’ to ‘Fokker-Planck’ again labelled ‘overdamped limit’. Existing
approaches in literature regarding this transition are mainly formal. One example is the
work by Chavanis, see Section III.A of [Cha03]. Note that the hydrodynamic equations
are derived in [Cha03] using a closure relation different from (read: more general than)
the monokinetic assumption. We mention Chapters 2–3 in brackets in Figure 1.2 because
we refer in their respective discussion sections to the transition from hydrodynamic to
Fokker-Planck; rather than results we give comments and ideas for further research there.

As briefly mentioned in Section 1.1, Chapters 4 and 5 treat measure-valued evolutions
with boundary conditions. The underlying equation of motion is first-order in time. The
modelling perspective depends on whether the initial measure is for instance discrete (mi-
croscopic perspective) or absolutely continuous (macroscopic perspective). This explains
the depiction of Chapters 4 and 5 in Figure 1.2.

Remark 1.4.1 (Scaling in N). When going from the microscopic level to a higher level of
description (meso- or macroscopic, cf. Figure 1.2) via the passage to the limit N → ∞,
the exact form of the limit equation depends on the way in which space, time, interaction
lengths (and possibly other quantities) are scaled with respect to N . The issue of finding
proper, meaningful scalings is beyond the scope of this thesis. However, we indicate here
concisely where and how this aspect is addressed in the literature related to the models
mentioned above. In [BV05], the average distance between particles (cells) is compared
to the average interaction length. The structure of the limit equation is determined by
both the nature of the interaction kernel and the asymptotic relation between these two
length scales. An explicit distinction between three scaling regimes is made in [MCO05],
p. 53. These regimes are described in terms of the typical number of interactions with
others that each individual is involved in. In [Oel91], where a second-order equation of
motion is treated, it is explicitly mentioned that the range of the interactions is large
compared to the typical distance between individuals.

1.5 First-order models: gradient flows and pattern form-
ation

Let us return to the ODE (1.14) with F containing interactions of convolution type –
cf. (1.11). To simplify the notation, we write

dxi
dt

= vi, (1.26a)

m
dvi
dt

= −vi −
1
N

∑
j 6=i
∇K(|xi − xj |), (1.26b)
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for each i ∈ {1, . . . , N}. Here, xi and vi are to be understood as mappings t 7→ xi(t)
and t 7→ vi(t), respectively, for each t. We define the corresponding total energy (i.e. the
sum of kinetic and potential parts) as

EN2 (x1, . . . , xN , v1, . . . , vN ) := m

2N
∑
i

|vi|2 + 1
2N2

∑
i

∑
j 6=i

K(|xi − xj |). (1.27)

We add the subscript 2 to indicate that this is the energy corresponding to a second-order
model. Let EN2 (t) denote (1.27) evaluated along solutions of (1.26). It follows that

dEN2
dt

= − 1
N

∑
i

|vi|2, (1.28)

which is independent of m. The right-hand side is often called dissipation. In case the
friction term −vi is absent in (1.26b), then the energy is conserved in time. If we set
m = ε and perform the overdamped limit ε ↓ 0 (see Section 1.3), we obtain the first-order
equation 

dxi
dt

= vi, (1.29a)

vi = − 1
N

∑
j 6=i
∇K(|xi − xj |), (1.29b)

for each i; cf. (1.13a). We define the corresponding energy as

EN1 (x1, . . . , xN ) := 1
2N2

∑
i

∑
j 6=i

K(|xi − xj |), (1.30)

evaluate it along solutions of (1.29) to obtain the quantity EN1 (t) and calculate its time-
derivative, which is

dEN1
dt

= − 1
N

∑
i

|vi|2. (1.31)

We see that the definition of EN1 follows naturally from (1.27), with m = 0 substituted.
As the right-hand side of (1.28) is independent ofm, an expression for dEN1 /dt is formally
obtained from the limit m ↓ 0 in (1.28). This coincides with (1.31).

However, the structure of the system has changed drastically by the overdamped limit.
From Hamiltonian systems with damping we have entered the research area of gradient
flows. For a general introduction to gradient flows we refer to the standard work [AGS08].
Without going into too many details, we point out here some properties that are especially
relevant in the context of this thesis.

Gradient flows are characterized by the combination of an energy and a mechanism ac-
cording to which this energy is dissipated. The key characteristic is that solutions go down
the energy landscape in a steepest-descent fashion. The evolution in (1.29b) represents,
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together with the energy defined in (1.30), a gradient flow in the Euclidean space RNd.
See e.g. [KSUB11]. For the vector x := (x1, . . . , xN )T ∈ RNd we can write

dx
dt

= −N ∇EN1 (x), (1.32)

where ∇ denotes the gradient on RNd. Due to (1.31), EN1 can be used as a Lyapunov
functional to characterize equilibria of the system. Asymptotically, the solution tends to
a minimizer of (1.30). First, assume that K : R+

0 → R is a convex function, that is

K(α ξ + (1− α) ζ) 6 αK(ξ) + (1− α)K(ζ), (1.33)

for all ξ, ζ ∈ R+
0 and all α ∈ [0, 1]. If K is moreover strictly increasing, then EN1 is strictly

convex3 and has (for each initial configuration) exactly one minimizer: the configuration
in which all individuals are in the same position. The corresponding interactions are purely
attractive, hence it is intuitively clear that all mass will accumulate in one point. When
defining what ‘uniqueness’ of a steady state means in this setting, one has to take into
account that the energy (1.30) depends on pairwise distances only. Hence the set of all
minimizers of the energy is invariant e.g. under translations (and rotations, which are ir-
relevant in this specific case). One should consider all of these configurations as instances
of the same steady state, though. Note that the specific initial configuration determines
the exact limit configuration. Furthermore, the evolution dictated by (1.29) is such that
the centre of mass is preserved. One can therefore rule out the translation invariance of
steady states by restricting to initial configurations with centre of mass in the origin.

If K is strictly decreasing, then the energy is not convex, and the particles tend to a
(rather trivial) ‘configuration’ in which they are ‘infinitely far’ apart. This is not a genuine
steady state of the system or minimizer of the energy as this limit state is not actually
attained by any x ∈ RNd. There are no other steady states.

Remark 1.5.1. Steady states are also invariant under permutations of the particles’
indices. This issue is one of the reasons to introduce a formulation in terms of measures.

Of much interest are the situations in which the interaction potential is non-monotonic and
non-convex; cf. [McC97]. These are cases in which the interplay between repulsion and
attraction results in very diverse steady states: uniform densities in a ball, uniform densities
on a co-dimension one manifold (ring in 2D, sphere in 3D), annuli, soccer balls, etc. See
e.g. [FHK11, FH13, vBUKB12, KSUB11, LTB09, vBU12, BCLR13a]; the pattern that
arises depends on the exact form ofK. Many of these patterns are observed experimentally
in self-assembled biological aggregations [PK99, BCC+08, CDF+03, TGCD03], which
gives practical ground and motivation to study this model.

Remark 1.5.2. The steady states (patterns) discussed here are also relevant for second-
order models. Consider a possible steady state of (1.26) such that all velocities and
accelerations are zero. It follows from (1.26b) that the corresponding configuration of

3The definition of strict convexity is (1.33) with ‘6’ replaced by ‘<’. Note that convexity of K is not
sufficient to deduce convexity of the energy, even though the Euclidean distance is convex itself (triangle
inequality). The composition of the two, that appears in (1.30), is only (strictly) convex under the extra
assumption that K is (strictly) increasing.
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the positions must be a stationary point of (1.30). The same observation was made in
[CFTV10], be it that for their equations dynamic patterns can arise: spatial minimizers
of (1.30) that move with nonzero velocity.

In Chapter 2, we ‘destroy’ the gradient flow structure by inclusion of a field of vision in the
model. The long-time behaviour of the resulting model is even much more challenging
and is subject of ongoing work. Preliminary results on a related approach were presented
in [EMvdV13], where the field of vision is taken with respect to a fixed direction. There
we focus on Lyapunov-like functionals to obtain an equation compatible with (1.31). Also
here, the study of equilibria is work in progress.

There are two features that make the description of the evolution as a gradient flow
in Euclidean space not completely satisfactory: the explicit appearance of a prefactor N
in (1.32); and the issue about permutations in particle indices mentioned in Remark 1.5.1.
A more sophisticated approach involves a lift to the space of probability measures (i.c. the
empirical measure) and the introduction of Wasserstein gradient flows. Their relevance
and the associated literature are both vast. Wasserstein gradient flows are introduced
here mainly to show the broader context of the systems in this thesis, while they are not
studied explicitly in the rest of this thesis. Therefore we only mention the main points
and do not go into the technicalities. For more information the reader is referred to
Chapter 8 of [Vil03] and Section 8.1 of [AGS08]. In the latter reference also the link with
the underlying ODE is treated.

Assume that we have an energy functional E : P(Rd) → R. In simplistic language,
the Wassertein gradient flow of this energy is the evolution equation

µ̇t = − gradW E(µt),

where gradW denotes a gradient concept that depends on the 2-Wasserstein distance,
hence the subscript W . We remark that, in fact, this is an evolution equation on the
space of probability measures with bounded second moment. Further details about the
background and interpretation of this equation are deliberately omitted. For our setting,
it is important that gradW can be expressed in the following way

− gradW E(µ) = ∇ ·
(
µ∇

(
δE
δµ

))
,

see [Vil03], Chapter 8, or [Ren13], Section 1.7. By δE/δµ we denote the variational
derivative (or L2-gradient of a functional). The empirical measure associated to the
solution of (1.32) satisfies the general equation for measures

∂µ

∂t
−∇ ·

(
µ∇

(
δE
δµ

))
= 0, (1.34)

with

E(µ) := 1
2

∫
Rd

∫
Rd

K(|x− y|) dµ(y) dµ(x). (1.35)
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See [BCLR13b] for more information. Note that δE/δµ = K(| · |)∗µ, and compare (1.34)
to (1.1) with v = −∇ (δE/δµ).

In (1.29b) and (1.30) the diagonal terms (self-interactions) are explicitly excluded, while
in (1.35) this is not the case. This is quite a subtle issue, which is however solved if
K(| · |) ∈ C2(Rd). The system does not change if we add a constant to or subtract
it from the energy; in this case the constant is N · K(0). Namely, the requirement
K(| · |) ∈ C2(Rd) implies automatically that K ′(0) = 0. Hence, the explicitly excluded
diagonal terms in (1.29b) are all zero.

Other choices for E are provided in [CMV03, CMV06, Vil03]. For us, the most relev-
ant ones are

E(µ) :=
∫
Rd

V dµ, (1.36)

and, if µ is absolutely continuous with density ρ,

E(ρ) :=
∫
Rd

U(ρ) dx,

which lead to
∂µ

∂t
−∇ · (µ∇V ) = 0,

and
∂ρ

∂t
−∇ · (ρ∇U ′(ρ)) = 0,

respectively. The latter example yields the diffusion equation for U(ρ) = ρ log(ρ). The
structure is preserved under addition of such energies.

The aforementioned advantages of setting models in a measure space should be stressed
here once more. The structure of the equations is independent of the perspective (mi-
cro/macro) that we choose, and hence linking the two (e.g. by many-particle limits) is
easier. The relevance of this link lies – for example – in the fact that doing analysis about
equilibria and their stability is more convenient in a setting of PDEs and measure theory,
see e.g. [BCLR13b], while from the point of view of numerical implementation, treating
particle systems is advantageous4; see e.g. [vBUKB12].

1.6 Related work
Before giving a chapter-wise introduction to the content of the thesis in Section 1.7, let
us point out some related work done by others.

4In a personal communication, Razvan Fetecau told me that a numerical strategy sometimes used to
find equilibria is to evolve that particle system with large timestep and simply accept the update if the
energy decreases. Accurate approximation of the dynamics is not aimed for. This strategy is based on
the central idea in gradient flows.
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(a) (b)

Figure 1.3: Illustration of pattern emergence in a first-order model for pedestrians: lane
formation. Dynamics in a corridor are imitated by periodic boundary conditions (left and
right in Figure 1.3b) and repulsive walls (top and bottom in Figure 1.3b). The images are
based on our simulation results. See also www.youtube.com/watch?v=Txrs4ssiAz0.
Visualization: ICMS Animation Studio, TU/e.

Both the discrete and the continuous versions of the first-order model appear not only
in various works on biological aggregations [MEK99, TBL06] but also arise in a number
of other applications, such as the granular media [LT04, CMV06], the self-assembly of
nanoparticles [HP06], the Ginzburg-Landau vortices [DZ03] and the molecular dynamics
simulations of (soft) matter [Hai92].

The field of crowd dynamics must certainly be mentioned here too, since in that field
for me the scientific path started, which has led to this thesis. Crowd dynamics is the
research area that is concerned with modelling, explaining and predicting the motion of
pedestrians. The idea of combining mechanics with human social behaviour dates back
to at least [Har10, Por12]. The seminal work in this field is by Helbing [HM95] who
proposed a social force model5 by which individuals move according to a Newton-like
law where the physical forces are replaced by social forces. Such forces model personal
targets, interactions with others and geometrical restrictions. Both first- and second-order
models are in use. The formation of certain (dynamic) patterns observed in real crowds
have driven scientists to reproduce these with simple models. A benchmark example is
the formation of lanes in a corridor in which two groups of people move in opposite direc-
tions (counterflow). In each such lane, pedestrians tend to align in such a way that they
simply follow someone going in the same direction. This phenomenon is observed both in
pedestrian walking experiments6 and in simulation studies. See Figure 1.3 for simulation
results obtained by means of a first-order model.

The validation of models with experimental or real-life data is very important and is an
art in itself; see e.g. Section 1.3 of [CPT14] for a brief introduction. A frequently used

5The name given to this model inspired me, many years later, for the title of this thesis.
6A video of a bidirectional flow experiment is available at www.youtube.com/watch?v=J4J__lOOV2E.

Lanes are formed without the participants being instructed to do so. See [ZKSS12] in which snapshots
of the experiment are shown.



20 Chapter 1. Introduction

object is the so-called fundamental diagram: a constitutive relation between the density
and the velocity or between the density and the flux, which is the product of the density
and the velocity. The resemblance between the theoretically and experimentally obtained
fundamental diagrams is studied e.g. in [ZKSS12]. This work uses experimental data
from a counterflow experiment executed under ‘laboratory conditions’: the experiments
involve volunteers and take place in set-ups (walls, corridors, doors) created for the oc-
casion. Experiments of this in vitro type are also used in [HD07, DH13], which focus on
a bottleneck scenario. From the data, maximum likelihood estimators are derived for the
parameters of certain models. In particular, [HD07] compares and judges different models
based on the quality of the parameter fit.
Real-life data is analyzed e.g. in [CBMT14, CMV15]. Their data was acquired at Eind-
hoven University of Technology. Higher-order statistics related to the probability density
of the ensemble of all recorded trajectories are presented in [CBMT14]. The aforemen-
tioned fundamental diagram is one of these statistics. The approach in [CMV15] resembles
[HD07] in the sense that maximum likelihood estimators for parameters are used to assess
which variants of a model are better than others.
An interesting idea is presented in [GPF+15], where data of sheep passing a bottleneck
in a farm is studied. The authors explicitly point out the possible relevance of their work
to pedestrian dynamics.
Processing experimental data is not one of the key topics of the present work. This aspect
is not touched in the rest of this thesis, except for Section 7.2.

The study of colloidal particles is an area of research with similarities to our work. Colloids
are particles floating in a solvent that are of such size that

1. they are small enough to undergo Brownian motion due to collisions with solvent
molecules;

2. they are large enough to be considered discrete particles embedded in a continuum.
It should not be a surprise that the theory of colloids connects to the subject of this thesis.
Smoluchowski [vS06, vS17] was one of the founding fathers of this theory, while his name
was used here in the context of the Smoluchowski SDE. Indeed, the Smoluchowski SDE
can be used to model the motion of a single colloidal particle. In the many-colloids limit,
upscaling to a Fokker-Planck-like PDE would be a natural thing to do. What is interesting
for us, is the fact that colloids have mutual interactions due to the attractive Van der
Waals force, repulsive hard-core interaction and more subtle hydrodynamic interactions
that are transmitted via the solvent; see [Dho96] Section 1.1.2 and Chapter 4. Pattern
formation also occurs. A connection to Figure 1.3 is provided in [VWR+11] and [Löw10],
Figures 3 and 4, in which lane formation is observed (both experimentally and by sim-
ulations) in a system of oppositely charged colloids in an electric field. In Section 2 of
[MCKB14] a model for colloids is explicitly applied to crowd dynamics and group forma-
tion. Also [FW14] is interesting in this respect. An experimental procedure for producing
oblong colloids is considered. The creation of such particles is relevant, since these can
be used to build systems that are governed by anisotropic interactions. Although the
correspondence between this type of anisotropy and a field of vision (see Section 1.2 of
this thesis) is not one-to-one, the resemblance between non-living and living ‘particles’ is
still striking. An interesting idea is to test crowd dynamics models via traffic experiments
involving colloidal particles.



1.7. Content of this thesis 21

A first-order equation is also used for modelling the motion of defects in crystallographic
lattices (called dislocations, see [HB11]). The movement of these imperfections results on
the macroscopic scale in plastic deformation of metals. Therefore the collective dynamics
of these dislocations is a subject of scientific interest. A linear drag law is used, which
relates the velocity directly to internal stresses; see (3.5) and (4.36) in [HB11]. A specific
modelling assumption is that dislocations moving in two-dimensional space are arranged
equidistantly along vertical lines (called walls). Summation of the interactions over the
dislocations in a wall, yields a one-dimensional model for the positions of the walls. This
model possesses a gradient flow structure, and the corresponding energy is a combination
of (1.35) for interactions and (1.36) for an externally applied force; see (2.1) in [vMM14].
In [GPPS13, vMMP14, vMM14], Γ-convergence is used to perform the many-dislocation
limit. An implication of Γ-convergence (under additional conditions) is that minimizers
of the energy converge to minimizers of the limit energy. Another advantage is the fact
that (un)boundedness of the interaction potential around the origin is not a problem.
Steady states are the focus of [GPPS13, vMMP14] (note the importance of scaling in
these works), while (upscaling of) the dynamics leading to such steady state is treated in
[vMM14]. Their equation of motion is surprisingly similar to the transport equations that
appear in this thesis.

1.7 Content of this thesis
This section contains an outline of the content of this thesis. In this overview we explain
how the chapters of the thesis fit in the broader picture drawn in the previous sections of
this introductory chapter.

1.7.1 Anisotropy
Our focus on systems of social individuals leads to the general question:

Can we include visual perception in our modelling procedure?

In Section 1.2 we already introduced part of the answer. In Chapter 2 we address this ques-
tion for a model for the dynamics of N individuals with positions xi ∈ Rd, i ∈ {1, . . . , N}.
The starting point is the system (1.29), with K a general (application-dependent) poten-
tial, which incorporates inter-individual social interactions such as long-range attraction
and short-range repulsion.

In biological applications, (1.29) is used to model animal aggregations, such as insect
swarms, fish schools, bird flocks, etc. [MEK99]. The interaction potential K in (1.29) is
isotropic, as it depends only on the pairwise distances between individuals. As argued in
Section 1.2, this assumption is often unrealistic, since individuals have a field of vision.
However, despite the extensive literature on model (1.29), there has been no system-
atic study of its (more realistic) anisotropic extensions. The primary goal of Chapter
2 is to fill this gap. We note that anisotropy/non-symmetry of interactions was con-
sidered, both analytically and numerically, in works on second-order aggregation models
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[CFTV10, Fro12, AP13], where the velocity is governed by a differential equation itself.
However, adding anisotropy to first-order models, though similar conceptually, is very
different at a mathematical and numerical level.

We introduce perception restrictions in (1.29) via weights in (1.29b) that limit the influ-
ence by individuals j on the reference individual i:

vi = − 1
N

∑
j 6=i
∇xiK(|xi − xj |)wij . (1.37)

The weights wij depend on the relative position xj − xi of individual j with respect to
the current direction of motion vi of individual i and hence incorporate the angle under
which individual i perceives individual j. Mathematically, we model wij as

wij = g

(
xi − xj
|xi − xj |

· vi
|vi|

)
, (1.38)

with a function g chosen such that wij is largest when j is right ahead of individual i
(xj − xi is in the same direction of vi) and smallest when j is right behind individual i
(xj − xi in the opposite direction of vi). The weights wij are not symmetric: in general,
wij 6= wji.

At this point we raise the mathematical question:

How to guarantee existence and uniqueness of solutions
to the first-order model with included field of vision?

By (1.37) and (1.38), the velocities vi are no longer explicitly given in terms of the spatial
configuration {x1, x2, . . . , xN} as in (1.29), but are defined implicitly through (1.37)–
(1.38), which, in general, may have multiple solutions. Hence, non-uniqueness of the
velocity is a major issue immediately brought up by the anisotropic extension.

The second important issue is the loss of smoothness of the velocity as a function of
time. The roots of (1.37)–(1.38) may disappear dynamically, as the spatial configuration
{x1, x2, . . . , xN} changes in time. Hence, velocities have to be allowed to be discon-
tinuous at these jump times, and a selection criterion for the allowable/physical jumps
should be defined and enforced. Finally, a third issue is that velocities in (1.37)–(1.38)
can become zero (particles can stop) in finite time, and the model, at least as it appears
in (1.37)–(1.38), is not even defined if some vi = 0.

The main tool in dealing with the issues above is to introduce a relaxation term in the
equation for the velocities vi. More precisely, we consider the following regularized system

dxi
dt

= vi,

ε
dvi
dt

= −vi −
1
N

∑
j 6=i
∇xiK(|xi − xj |) g

(
xi − xj
|xi − xj |

· vi
|vi|

)
.

(1.39)
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The interpretation of (1.39) and its connection to the first-order model we started from,
was discussed extensively in Section 1.3. This regularization turns out to be essential in
dealing with the anisotropic interactions.

As already anticipated in Section 1.3, the limit ε → 0 in (1.39) exists in the smooth
regime (that is, away from jumps), under some stability condition. This is a result by
Tikhonov [Tik52, Vas63], and relies on the notion of asymptotic stability; more details are
given in Section 2.3.1. At the times of velocity jumps in the first-order model, we use the
relaxation model (1.39) to enforce a ‘physical’ jump selection criterion. The main goal of
Chapter 2 is to demonstrate how the regularization (1.39) can be used as an analytical,
and a numerical tool to understand and simulate solutions to the first-order anisotropic
model. We restrict ourselves to two-dimensional simulations, where we show how (1.39)
can be used to deal with instantaneous root losses, as well as particle stopping.

1.7.2 Convergence of measure-valued evolutions
Chapter 3 is driven by the following general question:

How to use particles to approximate a continuum?

Our desire to approximate a continuum arises in this chapter primarily from computational
considerations. The intrinsic discrete character of any numerical tool is compatible with
the use of a finite number of particles. The chapter is inspired by the philosophy of
continuum mechanics. We use a Lagrangian way of describing the motion of material
points, which leads to a mesh-free numerical method. As opposed to e.g. the Finite
Element Method (cf. Chapter XX of [DL00]) that does require a fixed mesh, mesh-free
methods are beneficial for problems in which either there is a substantial amount of
deformation or free boundaries are present. In Chapter 3 we answer the following two
mathematical questions:

How can we derive particle schemes in a systematic way?

In what sense do these schemes converge in the many-particle limit
to the continuum equations of motion?

The central object of interest in Chapter 3 is a system of the form
∂ρ

∂t
+∇ · (ρ v) = 0 ,

∂

∂t
(ρ vk) +∇ · (ρ v vk) = ρ

(
−∇P (ρ)− η v −∇V +K ∗ ρ

)
k
,

(1.40)

where the subscript k denotes the kth component of a vector in Rd. Compare (1.20)
and (1.23) in Section 1.4. We use the functions P , η, V and K for modelling pressure,
friction, external conservative forces and interactions, respectively. The system (1.40) is
a specific form of the Euler equations with an additional nonlocal term.

In view of the questions we ask, Chapter 3 consists of the following two parts:



24 Chapter 1. Introduction

• A systematic procedure for deriving a measure-valued formulation of (1.40) from
the Lagrangian that builds on the principle of least action and leads ultimately to a
particle system.

• A convergence result using the Wasserstein distance on the space of probability
measures, that connects the particle system to the continuum limit.

The chapter is motivated in particular by the numerical method called Smoothed Particle
Hydrodynamics (SPH). An overview of the applications of this method is given in [Mon12].
The term ‘particle’ should not be interpreted as a physical object of any scale (like an
atom, molecule or grain) but rather as a numerical, artificial entity attributed with mass,
position, velocity and other properties of the medium it represents.

We derive systematically the equation of motion for a measure from the Lagrangian and
the principle of least action. To make the step from continuum mechanics to measures,
a regularization of the density is required. We obtain eventually a second-order equation
for a motion mapping Φ that dictates the evolution of the measure by means of push-
forward, cf. (1.5)–(1.6). The exact form of the equation of motion for Φ depends on the
order in which regularization and the principle of least action are applied. We obtain two
different equations, whose discrete counterparts coincide with two different schemes: the
one traditionally used in SPH, and the one treated in [LGP98], respectively. We also show
how to incorporate nonconservative forces.

We prove that measure-valued solutions converge in the Wasserstein distance as the
initial measure is approximated. The order of convergence is determined by the rate at
which the initial (continuum) measure is approximated. A result similar in nature to
ours is given in [CCR11]. Particularly relevant is Corollary 5.4, where convergence in the
Wasserstein distance is proven locally in time. A difference with our work is that the
intermediate level of the kinetic equation plays an important role; cf. Corollary 5.2 and
Lemma 5.3 of [CCR11] and also Proposition 3.2 of [CDP09]. Moreover, they consider a
different class of right-hand sides. Our line of arguments is mainly inspired by [LGP98],
the first reference in which measures are employed in combination with the Wasserstein
distance to prove the convergence of the SPH method. The earlier work [Oel91] uses
a different technique and considers only mutual interactions between particles (see Sec-
tion 1.4). In [Sch14], measure-valued solutions and the Wasserstein distance are used;
this paper establishes Γ-convergence of the Lagrangian and convergence of the stationary
points. Other approaches to obtain convergence are given e.g. by [Ben06, BSO12] using
local maximum entropy estimates, [QBL06] employing estimates for the truncation error,
and [Rav85, IK10].
It should be noted that the scheme treated in [LGP98] is not the aforementioned tra-
ditional scheme. Our proof applies both to traditional SPH and to the scheme covered
by [LGP98]. Moreover, we allow for a much more general class of force fields, including
external and internal conservative forces, as well as friction and nonlocal interactions.
These interactions are of particular interest in the scope of this thesis.

Chapter 3 contains a general result (Theorem 3.3.10), in the sense that convergence
holds for a general sequence of approximating measures, and is not restricted to particle
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systems. Although SPH is used as a numerical tool, the underlying connection between
discrete and continuum formulations is interesting in its own right. Note that only a few
convergence proofs for SPH-like methods exist.

1.7.3 Boundary conditions
Often it is essential to model (measure-valued) evolutions on bounded domains. We treat
this issue in Chapters 4 and 5. Inspired by applying our models to a pedestrian dynamics
scenario, we ask the following two general questions:

Can we use our way of modelling also on bounded domains?

If yes, how should we incorporate impermeable walls,
exits and entrances?

Typically, in the context of PDEs one answers these questions by introducing Neumann
boundary conditions for the flux, where zero flux denotes a wall and nonzero flux denotes
in- or outflow. We should realize however that for measures the concept of a normal
derivative is not even defined. Our guiding mathematical question is therefore:

What is the correct way to define zero-flux or
general flux boundary conditions in terms of measures?

In Chapter 4, we consider the flow induced by a bounded Lipschitz velocity field v, which
is restricted to the interval [0, 1]. The result is a stopped flow that allows for a description
in terms of a semigroup. Flux boundary conditions are established by a combination of
this stopped flow and a (local) source-sink term. That is, in the style of (1.1) and (1.8),
we write the short-hand notation

∂

∂t
µt + ∂

∂x
(µtv) = f · µt on [0, 1], (1.41)

where f : [0, 1]→ R is a piecewise bounded Lipschitz function with finitely many discon-
tinuities. The product f ·µt is a measure on [0, 1] with density f with respect to µt. The
particular choice f(x) = −a1{1}(x), where 1E is the indicator function of the set E and
a > 0, reduces equation (1.41) to

∂

∂t
µt + ∂

∂x
(µt v) = −aµt({1})δ1. (1.42)

If v(1) > 0, then (1.42) represents a system with mass transport and sticking boundaries
[Tai04] of which x = 1 is partially absorbing: mass arriving at x = 1 stays there, while it
is removed at a constant rate a. This represents a flux boundary condition, or Robin-like
boundary condition, in a measure-valued formulation. Note that in this formulation the
flux condition appears as a discontinuous perturbation boundary term in the bulk equa-
tion. This way of introducing boundary conditions does not require a concept of normal
derivative of measures on the boundary.

Finding the correct flux boundary conditions is a topic often addressed in the literat-
ure, but this has not yet been treated in the measure-theoretical framework. We refer
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here for instance to [AJCRB08, FGHS07, JCRB11, MS08] (in the context of reaction
and diffusion scenarios) and Gurtin [Gur93] (the shrinking pillbox principle in continuum
mechanics).

In Chapter 4 we first prove existence and uniqueness of measure-valued mild solutions and
continuous dependence of these solutions on initial data. The solution is a continuous
map from R+ to the spaceM([0, 1]) of finite Borel measures that satisfies the variation
of constants formula with linear, but discontinuous perturbation. The subsequent part of
the chapter is on approximation by regularization (Section 4.4). We replace the piecewise
bounded Lipschitz function f in (1.41) by a bounded Lipschitz function fε that differs
from f on an ε-thin neighbourhood of each discontinuity. We show, that if we pick a
sequence of such functions fn = fεn with εn ↓ 0, then the corresponding solutions µ(n)

t

converge to the solution µt of (1.41). Moreover, we compute the rate of convergence of
the solution as n → ∞. Such result shows on the one hand that (1.41) with instantan-
eous spatial change in f can be viewed as an idealization of a continuous (Lipschitzian),
but very fast, change. On the other hand, it shows that (1.42) indeed represents a flux
boundary condition, as it results from appropriate interaction with the boundary in a thin
boundary layer, in the limit of vanishing thickness.

Formulation (1.41) unifies a continuum formulation in terms of density functions with
respect to the Lebesgue measure and a particle description for this mass evolution prob-
lem within the framework of measure-valued differential equations. We investigate this
resemblance numerically in Sections 4.5.1 and 4.5.2. The result on continuous depend-
ence on initial data implies (as a special case) a discrete-to-continuum limit, provided
that a discrete (continuum) initial condition yields a discrete (continuum) solution for all
time. This is – at least in the interior of [0, 1] – the case. Hence, Chapter 4 contains the
arrow from ‘first-order ODE’ to ‘Fokker-Planck’ in Figure 1.2.

Chapter 5 is an extension of Chapter 4, in the sense that we obtain the well-posedness of

∂

∂t
µt + ∂

∂x
(µtv[µt]) = f · µt on [0, 1], (1.43)

for velocity fields that are no longer fixed elements of BL([0, 1]). In (1.43), the velocity
v[µt] depends functionally on the solution µt.

By the introduction of measure-dependent velocity fields the transport problem becomes
nonlinear. The way the semigroup approach was presented in Section 1.1 is a one-
directional approach where the ODE is solved and the time-evolution of the measure
follows by push-forward. This approach works in Chapter 4, but does not readily extend
to measure-dependent v. Inevitably, this forces us to look for alternative techniques to
prove well-posedness. This is exactly what is presented in Chapter 5. We use a forward-
Euler-like approach for a partition of the time interval [0, T ]. On each subinterval, we fix
the velocity and let our measure-valued solution evolve accordingly. Hence, restricted to a
subinterval, the evolution satisfies the requirements of Chapter 4. We then refine the par-
titioning of [0, T ], estimate the difference between the subsequent Euler approximations
and show that this procedure converges. Here, we rely on completeness of the encom-
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passing space of measure-valued trajectories. We were inspired by [CG09] and [Hoo13],
the latter of which was in turn inspired by [GLMC10].

1.7.4 Approximation of a finite-size object by a point source
In physics it is common practice to replace objects of negligible size by point masses. For
instance, grains or colloids in a solution [JN82], electrostatic particles [Jac75] or defects
in crystalline structures [CB13, vMMP14]. Of particular interest is the setting in which
the exchange of mass, energy etc. between the interior and the exterior of the object takes
place at its boundary. In this case the object is approximated not by a mere point mass,
but by a point source. The question that we ask is:

What error do we make when approximating
a small object by a point source?

We address this question in Chapter 6, focussing on a simple scenario.

In R2, we consider an object of fixed shape and position and of finite size that con-
tains the origin. In the exterior of the object – called Ω – there is a concentration of mass
u that evolves by diffusion:

∂u

∂t
= D∆u,

where D > 0 denotes the constant diffusion coefficient. On the boundary Γ of the object
there is prescribed mass flux in normal direction: D∇u · n = φ, with n the outward-
pointing unit normal and φ the prescribed flux. This flux is a simplistic way of describing
the result of processes that occur in the interior of the object. We wish to approximate
this object by a point source. To this aim we replace the original diffusion equation on
the exterior domain Ω by a diffusion equation on the whole of R2 with a Dirac measure
included at its right-hand side:

∂û

∂t
= D∆û+ φ̄ δ0,

where φ̄ represents the magnitude of the mass source. Of course this requires the exten-
sion of the initial conditions of the first problem to the whole space. The exact formulation
of the equations will be made clear in Section 6.1.

This is a first step towards modelling and analyzing the mass distribution dynamics in
realistic settings involving a large number of small objects moving around in a bounded
domain while exchanging mass. Our motivation comes from the intracellular transport of
chemical compounds in vesicles, like neurotransmitters in neurons (cf. [LE97]) or the hypo-
thetical vesicular transport mechanism for the plant hormone auxin proposed in [BŠM03]
as an alternative to the conventional auxin transport paradigm (in analogy to neurotrans-
mitters). Auxin is a crucial molecule regulating growth and shape in plants. The vesicles
are small membrane-bound balls covered by specific transmembrane transporter proteins
that take up auxin from the surrounding cytoplasm. The vesicles are driven by molecular
motors over a network of intracellular filaments [HNT10, Rav13], e.g. from one end of
the cell to the other as in Polar Auxin Transport (PAT). Experimental investigations of
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PAT in Chara species [BLH+12] revealed that neither diffusion nor cytoplasmic streaming
can be the driving mechanism of PAT in the long (3-8 cm) internodal Chara cells. See
[BLH+12, Rav13] for further discussion and an overview.

A substantial amount of mathematical modelling efforts on PAT have focussed on pat-
tern formation in plant cell tissues (see [vBdBStT13, Kra08, MdPIB07] and the references
cited therein). Upscaling to an effective macroscopic continuum description for transport
at tissue level was considered in [CKP10]. All models are based however on the assump-
tion of diffusion as intracellular transport mechanism for auxin. Ultimately, we aim at
obtaining a convenient mathematical description of the vesicle-driven transport dynamics
within a cell, in particular in terms of an effective continuum model, which is needed to
replace diffusion in an upscaling argument similar to [CKP10]. In view of the absence of
relevant mathematical literature, this perspective seems to be rather unexplored.

For the problem posed on Ω, we consider as solutions functions in a suitable Sobolev
space. The well-posedness of the problem is guaranteed since we are in a special case
covered by [DHP03, DHP07]. The measure-valued source makes that for the correspond-
ing problem on R2 a different solution concept is needed. We consider mild solutions
(cf. Chapters 4–5) that satisfy the variation of constants formula involving the diffusion
semigroup with the source as a perturbation. We are interested in comparing the solutions
on Ω, while Ω is assumed to be bounded away from the origin. Due to the regularizing
effect of the diffusion semigroup and the fact that Ω is at positive distance from the origin,
the mild solution is absolutely continuous with density û in a suitable Sobolev space. This
density satisfies a weak formulation of the problem.

We posed the question what error we make when approximating a small object by a
point source. In Chapter 6 we answer its mathematical counterpart:

Can we quantify the difference between the solutions u and û
and their fluxes on Γ in a suitable Sobolev norm?

For all time t, we derive an L2([0, t];L2(Γ))-bound on the difference in flux on the bound-
ary. Moreover, we derive for all t > 0 an L2(Ω)-bound and an L2([0, t];H1(Ω))-bound
for the difference of the solutions to the two models u and û. A conjecture is given about
when we expect these bounds actually to go to zero.

Why do we introduce measures to this problem? This modelling strategy is especially
useful once we wish to describe the interaction between multiple moving objects (ves-
icles). We expect the mathematical description to be much simpler in terms of dis-
crete measures and the analysis and numerical approximation likewise (see, for instance,
[RKM03, SGTK12] for a related case). Here, we emphasize that a model for moving full-
size vesicles would lead to a moving-boundary problem (Stefan-like), with all its associated
difficulties; see e.g. [MB09, AM13]. In view of the aforementioned discrete-to-continuum
limits, one could coin the approximation of a vesicle by a point as a ‘continuum-to-discrete
limit’.

The concentration of auxin within a cell can be modelled as a multiscale measure (see
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e.g. [CPT11, CPT14]) or a system of coupled measures, in which Dirac measures account
for the auxin content of (now zero-size) vesicles and the absolutely continuous part rep-
resents the concentration in the cytoplasm. Mutual interactions between point masses
determine the dynamics (cf. also the topic of colloidal particles described in Section 1.6),
and hence the results of Chapter 6 are connected to the rest of this thesis. However,
before we can go to this advanced setting, we first need to investigate the quality of the
vesicle approximation for a simple reference scenario; this is the main concern of Chapter 6.

The main results of Chapter 6 are formulated in terms of Sobolev norms, while it is
not directly clear that a semigroup approach was used to obtain solutions for the problem
with measure-valued source. However, because of the use of semigroups, also from a
purely technical and mathematical point of view Chapter 6 is in line with the other parts
of the thesis.





Chapter 2

Anisotropy

In this chapter we start off from a first-order model with interactions, formulated at the
level of ODEs and extend it by including a field of vision. This is one of the ingredients that
makes systems of living individuals different from systems of nonliving particles. We model
anisotropy by limited sensorial perception of individuals that depends on their current
direction of motion. Consequently, the first-order model becomes implicit, which leads to
new analytical issues, such as non-uniqueness and jump discontinuities in velocities. Our
main concern in this chapter is to answer the question:

How to guarantee existence and uniqueness of solutions
to the first-order model with included field of vision?

2.1 Introduction
Consider the following system of equations for the positions xi of N particles in Rd:

dxi
dt

= vi; (2.1a)

vi = − 1
N

∑
j 6=i
∇xiK(|xi − xj |). (2.1b)

We introduce weights wij in (2.1b) to model the effect of perception on the influence
that individual j has on the reference individual i:

vi = − 1
N

∑
j 6=i
∇xiK(|xi − xj |)wij . (2.2)

The choice of the weights wij depends on what limitations on the field of perception
one wants to consider. We assume that the social perception is entirely visual and that

This chapter is based on joint work with Razvan Fetecau and Lenya Ryzhik, submitted for publication
in Nonlinearity [EFR14]. A substantial part of this work was done during my visit to Simon Fraser
University, Burnaby, Canada, in February-March 2014.
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individuals have a limited field of vision centred around their direction of motion. We
come back to this choice for the direction of the field of vision in the discussion of this
chapter, Section 2.6. Given a reference individual located at xi moving with velocity vi,
the weights wij depend on the angle under which individual i perceives individual j when
looking in the direction of vi. Mathematically, this is denoted by a dependence on the
position of individual j relative to individual i, i.e. xj − xi, and on the current direction
of motion vi. Hence, we define wij as

wij := g

(
xi − xj
|xi − xj |

· vi
|vi|

)
. (2.3)

As explained in Section 1.7.1, the function g : [−1, 1]→ [0, 1] is such that wij is largest
when xj − xi is in the same direction as vi (j is right ahead of individual i) and smal-
lest when xj−xi and vi point in opposite directions (j is behind i). In general, wij 6= wji.

The modifications introduced in (2.2) and (2.3), turn the original model (2.1) into
dxi
dt

= vi; (2.4a)

vi = − 1
N

∑
j 6=i
∇xiK(|xi − xj |) g

(
xi − xj
|xi − xj |

· vi
|vi|

)
, (2.4b)

which is the model that we study in this chapter; its main properties are discussed in Sec-
tion 2.2. The implicit equation (2.4b) may, in general, have multiple solutions. Moreover,
solutions of (2.4) may lack smoothness. Velocities have to be allowed to be discontinu-
ous, as roots of (2.4b) may disappear in time due to changes in the spatial configuration
{x1, x2, . . . , xN}. At these jump times, a selection criterion for the jumps is needed. Note
moreover that particles can stop, as velocities in (2.4) can become zero in finite time.
This is a degeneracy problem since (2.4) is not defined if vi = 0 for some particle i.

In the spirit of Section 1.3, we associate to (2.4) the following second-order system:
dxi
dt

= vi;

ε
dvi
dt

= −vi −
1
N

∑
j 6=i
∇xiK(|xi − xj |) g

(
xi − xj
|xi − xj |

· vi
|vi|

)
.

(2.5)

If ∇K(| · |) and g are bounded and Lipschitz continuous (cf. the assumptions at the end
of Section 2.2.1), solutions to the system (2.5) exist (locally in time) and are unique.
The results by Tikhonov concerning the limit ε → 0, which were mentioned in Section
1.7.1, are stated in Section 2.3. We use (2.5) with small or vanishing ε to serve as a jump
criterion when the velocity in (2.4) becomes discontinuous. The relaxation term in (2.5)
smoothes out the trajectories of (2.4), as is illustrated by Figures 2.1b–2.1c.

The modes of breakdown of (2.4) and the jump selection through the relaxation model
(2.5) are presented in Section 2.4 of this chapter. We do not deal here with extensive
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Figure 2.1: Time evolution of a random initial configuration of four particles. The arrows
indicate the direction in which the particles move. (a): The solid line represents the
solution of the anisotropic first-order model (2.4). The extension of the solution beyond
breakdown times (indicated by squares) is explained in Section 2.4. On top of this plot
we graph the solution of the relaxation model (2.5) for three values of ε: ε = 10−2, 10−3,
and 10−4. The plots are indistinguishable at the scale of the figure. (b) and (c): Zoomed
images near two of the breakdown times of model (2.4). Note how the ε-model (2.5)
captures the discontinuities in velocity, as well as approximates solutions of (2.4) away
from the jumps.
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numerical simulations and the complex issue of the long term behaviour of (2.4) is only
briefly addressed in Section 2.5. We restrict ourselves to the two-dimensional simulations
of (2.4), using (2.5) to deal with instantaneous root losses, as well as particle stopping.

2.2 The anisotropic model (2.4)
Given a fixed spatial configuration {xi}Ni=1, we study the existence of a velocity field
that satisfies the fixed point equation (2.4b). Then we study the dynamic evolution of
solutions to (2.4), initialized at some configuration xi(0) = x0

i .

2.2.1 The interaction kernel
The system (2.4) with g ≡ 1 is a well-established model, extensively studied in the last
decade; see also Sections 1.3, 1.5 and 1.7.1. The properties of the interaction potential K
are crucial for obtaining the well-posedness and the long-time behaviour of the solutions
to (2.1) (or its continuum limit). We are interested in biologically relevant choices of K
which incorporate short-range repulsive and long-range attractive interactions. One such
choice is the Morse potential [LTB09, CDM+07], which has the form

K(|x|) = −Cae−|x|/la + Cre
−|x|/lr , (2.6)

with the constants Ca, Cr, la and lr representing the strengths and ranges of the at-
tractive and repulsive interactions, respectively. Our theoretical results apply both to
the Morse potential, and to a large set of other choices of K (for example, power-laws
with positive exponents and the antiderivative of the tanh function [KSUB11, vBUKB12]).

The function g that models the field of vision is the main new ingredient and its choice
is far from unique. Denote by φij the angle between xj − xi and vi. See Figure 2.2a for
an illustration. Hence

xi − xj
|xi − xj |

· vi
|vi|

= − cosφij .

The weights wij = g(− cosφij) should be the largest (value 1) for φij = 0 (when the
vectors xj−xi and vi are parallel) and the smallest (possibly 0) for φij = π (when xj−xi
and vi anti-parallel). Two choices of g that capture this behaviour are

g(− cosφ) = [tanh(a(cosφ+ 1− b/π)) + 1]/c, (2.7)

with c a normalization constant such that g(−1) = 1, and

g(− cosφ) = [a cosφ+ b]/(a+ b). (2.8)

The tanh function (2.7) is illustrated in Figure 2.2b. The function takes values close to
1 in the field of vision (around φ = 0) and decays steeply toward the blind zone. These
regions of high values, steep descent and low values are indicated in dark grey, light grey
and white in Figure 2.2a. In (2.7) the parameter a controls the steepness of the graph
and b controls its width (size of field of vision).



2.2. The anisotropic model (2.4) 35

i
Reference

j

k `

φij

φik
φi`

(a)

−3 −2 −1 0 1 2 3

0

0.2

0.4

0.6

0.8

1

φ

g(
−c

os
 φ

)

 

 

a=5, b=π
a=2, b=5π/4

(b)

Figure 2.2: (a): Illustration of the angle dependency in the visual perception of a reference
individual i: the field of vision (dark grey), the peripheral vision (light grey) and the blind
zone (white). Interactions are weighted: wik > wij > wi`. (b): The weight function g
given by (2.7). The following parameters are shown: a = 5 and b = π (solid), a = 2 and
b = 5π/4 (dashed) – a controls the steepness of the graph and b controls its width. The
function takes values close to 1 in a region around φ = 0 (field of vision), has a steep
decay to nearly 0 in the peripheral vision, and takes negligible values near φ = ±π (blind
zone).
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In this chapter we are not concerned with sharp analytical results and we assume that K
and g satisfy enough properties for the analysis to be carried over simply and with the
least technical difficulties. Some of the results can be obtained under weaker assumptions.
In general, the following assumptions on K and g are needed:

K : R+
0 → R is C2, with bounded derivatives, (2.9)

and
g : [−1, 1]→ [0, 1] is C1. (2.10)

In particular, K ′ and g are bounded and Lipschitz continuous.

2.2.2 The implicit equation for vi – existence and non-uniqueness
We investigate the existence and uniqueness of a fixed point of the implicit equation (2.4b)
for vi. Note that particle stopping (vi = 0 for some i) is not well-defined for (2.4). The
reason is that the field of vision of an individual is intrinsically defined in terms of its
current direction of motion, along vi. However, we observe in numerical simulations that
particles do have a tendency to stop. Stopping may occur for instance when a particle loses
sense of the others, brakes down and stops before making a sudden turn to redirect itself
toward the rest of the group. Or, in an opposite situation, when a particle gets to a point
where its repulsive interactions are dominant, and makes a turn to avoid getting too close
to the rest. Such a sudden change in direction due to stopping is illustrated in Figure 2.1c.

To deal with the stopping, as is common in the ODE theory with discontinuous non-
linearities [CL71, Fil88], we introduce a generalized definition of a fixed point of (2.4b).
We will regard sgn(z) as a set-valued function given by the subdifferential of the Euclidean
norm |z|:

sgn(z) := ∂|z| =
{ z
|z| z 6= 0,

B(0, 1) z = 0.

Given a spatial configuration {xi}, the resting scenario can now be considered as a solution
of (2.4b) if the following generalization of a solution is taken1.

Definition 2.2.1 (Generalized fixed point). We call v ∈ Rd a generalized solution of
(2.4b) if there exists an s ∈ sgn(v) such that

v = − 1
N

∑
j 6=i
∇xiK(|xi − xj |) g

(
(xi − xj)
|xi − xj |

· s
)
. (2.11)

We show in Theorem 2.2.2 that the implicit equation (2.4b) always has at least one
generalized solution in the sense of Definition 2.2.1. However, in view of the next example,
we do not expect such solutions to be unique.

1The idea for this approach arose during one of our CASA ‘Wednesday morning sessions’, for which I
thank Giovanni Bonaschi, Manh Hong Duong, Patrick van Meurs, Georg Prokert and, in particular, Mark
Peletier.
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Non-uniqueness

To show that solutions of (2.4b) are generally non-unique, we look at a simple example
in two dimensions (d = 2) with four particles (N = 4) situated at the four corners of a
square, where each equation for vi (i = 1, . . . , 4) has three solutions. Hence, there are
81 = 34 different combinations of vi that solve (2.4b) (i = 1, . . . , 4) for this particular
example! To be more precise, we take the anisotropy function g to be linear, as in (2.8):
g(ω) = (1 − ω)/2, and K to be the Morse potential (2.6). For such K, the derivative
K ′(r) is negative (repulsive) at short distances and positive (attractive) at long ranges.
It is easy to see that we can find β > 0 with K ′(β) < 0 (β in the repulsive range) such
that

K ′(β) + 1
2
√

2K ′(β
√

2) = 0. (2.12)

Let the four particles be located at the corners of a square of size β (see Figure 2.3):

x1 = β

2

[
1
1

]
, x2 = β

2

[
−1
1

]
, x3 = β

2

[
−1
−1

]
, x4 = β

2

[
1
−1

]
.

Then, for each particle there are three admissible velocities in the sense of Definition 2.2.1,
as illustrated in Figure 2.3. The first is the stopping/zero velocity indicated by a circle.
The second is a velocity vector pointing inward (toward the centre) and the third solution
is a velocity pointing outward, opposite in direction and equal in size to the previous.

x1x2

x3 x4

β

β

Figure 2.3: Four particles positioned on the corners of a square of size β. Each of them
has three admissible velocities (generalized solutions of (2.4b)): one pointing inward, one
pointing outward and v = 0 (indicated by a circle).

Indeed, consider, for instance, particle 1 in this square configuration and the velocity
equation (2.4b) with i = 1. We have

x1 − x2 = β

[
1
0

]
, x1 − x3 = β

[
1
1

]
, x1 − x4 = β

[
0
1

]
, (2.13)
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and
|x1 − x2| = β, |x1 − x3| = β

√
2, |x1 − x4| = β, (2.14)

so that

−1
4
∑
j 6=1
∇x1K(|x1 − xj |) g

(
(x1 − xj)
|x1 − xj |

· s
)

= −1
8
∑
j 6=1

K ′(|x1 − xj |)
x1 − xj
|x1 − xj |︸ ︷︷ ︸

=0

+1
8
∑
j 6=1

K ′(|x1 − xj |)
x1 − xj
|x1 − xj |

(x1 − xj)
|x1 − xj |

· s,

(2.15)

for any s ∈ B(0, 1). The first term on the right-hand side vanishes due to (2.12), (2.13)
and (2.14). This is equivalent to the fact that the square configuration with size β is an
equilibrium of the isotropic model (g ≡ 1). For v = 0, s = 0 is an element of sgn(v) and

0 = 1
8
∑
j 6=1

K ′(|x1 − xj |)
x1 − xj
|x1 − xj |

(x1 − xj)
|x1 − xj |

· 0.

Hence, v1 = 0 is a generalized fixed point of (2.4b).

We look now for a nonzero solution v = (v1, v2) of (2.4b). Given (2.15), we have
to solve for v in

v = 1
8
∑
j 6=1

K ′(|x1 − xj |)
x1 − xj
|x1 − xj |

(x1 − xj)
|x1 − xj |

· v
|v|

= 1
8|v|

(
v1K ′(β)

[
1
0

]
+ 1

2 (v1 + v2)K ′(β
√

2)
[
1
1

]
+ v2K ′(β)

[
0
1

])
.

Looking for a particular solution with v1 = v2, we find

v1 = 1
8
√

2
v1

|v1|

(
K ′(β) +K ′(β

√
2)
)
,

or, in view of (2.12),

|v1| =
√

2
16

(
1− 1

2
√

2
)
K ′(β

√
2). (2.16)

Note that since K ′(β
√

2) > 0, the right-hand side of (2.16) is, indeed, positive. Hence,
there are two (opposite in sign, but equal in magnitude) solutions for v1. This yields
two velocity vectors as illustrated in Figure 2.3. The same argument applies to the other
particles due to the rotational symmetry.

Existence

We now prove the existence of a generalized solution of (2.4b). Let {xj}Nj=1 ⊂ Rd be a
fixed set of distinct positions and take a specific index i ∈ {1, . . . , N}.
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Theorem 2.2.2. Assume that K : R+ → R has a bounded derivative, and g : [−1, 1]→
[0, 1] is continuous. Then there exists a generalized fixed point in the sense of Definition
2.2.1.

Proof. To deal with the singularity of (2.4b) at v = 0, we use a regularization argument.
For any α > 0, define the mapping Fα : Rd → Rd by

Fα(v) := − 1
N

∑
j 6=i
∇xiK(|xi − xj |) g

(
(xi − xj)
|xi − xj |

· v

α+ |v|

)
for all v ∈ Rd. (2.17)

The map Fα is continuous and uniformly bounded on Rd with

|Fα(v)| 6 ‖K ′‖∞ ‖g‖∞ for all v ∈ Rd.

Brouwer’s Fixed Point Theorem implies that Fα has a fixed point (which depends on α)
in the closed ball B(0, ρ) where ρ := ‖K ′‖∞ ‖g‖∞. We now show that a generalized
fixed point satisfying (2.11) can be obtained by passing to the limit α ↓ 0. Assume
that αn → 0, with αn > 0, and let {vαn} be a corresponding set of fixed points of Fαn :

vαn = − 1
N

∑
j 6=i
∇xiK(|xi − xj |) g

(
(xi − xj)
|xi − xj |

· vαn

αn + |vαn |

)
. (2.18)

Since |vαn | 6 ρ is uniformly bounded, {vαn} converges along a subsequence. For con-
venience, relabel this subsequence as {vαn} and define its limit:

v = lim
n→∞

vαn .

If v 6= 0, then, as

lim
n→∞

vαn

αn + |vαn | = v

|v|
,

we can simply pass to the limit n→∞ in the fixed point equation (2.18), and conclude
that v is a fixed point.

On the other hand, if v = 0, we set

wn = vαn

αn + |vαn | ,

and note that |wn| < 1. Thus, up to extraction of a subsequence, wn converges to a limit

s = lim
k→∞

wnk ,

with |s| 6 1. Sending k → ∞ in the fixed point equation (2.18) for vαnk we find that
v = 0 satisfies (2.11), with s ∈ B(0, 1) = sgn(v).
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2.2.3 Local continuity of trajectories
Given that a velocity field always exists for a given configuration, we study now the local
existence of continuous solutions to (2.4). We denote by bold characters x and v the
concatenation of all particles’ locations and velocities, respectively, i.e.,

x = (x1, . . . , xN ), v = (v1, . . . , vN ).

To rule out issues such as collisions or particle stopping, we look for solutions (x(t),v(t)),
in the set

Rλ,µ :=
{

(x1, . . . , xN , v1, . . . , vN ) ∈ R2Nd : |xi − xj | > λ if i 6= j, |vi| > µ
}
, (2.19)

for fixed λ > 0 and µ > 0.

The implicit equation (2.4b) for vi does not depend on the velocities vj of the other
particles j 6= i. This motivates the definition of

Fi : R̃λ,µ → Rd,

Fi(x, v) = Fi(x1, . . . , xN , v) := −v − 1
N

∑
j 6=i
∇xiK(|xi − xj |) g

(
(xi − xj)
|xi − xj |

· v
|v|

)
,

(2.20)
where

R̃λ,µ :=
{

(x1, . . . , xN , v) ∈ RNd × Rd : |xi − xj | > λ if i 6= j, |v| > µ
}
,

for any λ, µ > 0. For a given configuration x, the velocity vi is among the zeros of
Fi(x, ·) regarded as a function of v. Let JvFi denote the Jacobian matrix of Fi with
respect to its v-dependence. Hence, JvFi is a mapping into Rd×d. The Implicit Function
Theorem – see [Eva10], Appendix C.7 – implies immediately the following:

Theorem 2.2.3 (Local continuity). Assume that at time τ the phase space configuration
(x(τ),v(τ)) ∈ Rλ,µ, with Fi(x(τ), vi(τ)) = 0 for all i ∈ {1, . . . , N}, satisfies

det JvFi(x(τ), vi(τ)) 6= 0 for all i ∈ {1, . . . , N}.

Then there is a ∆τ > 0 such that the system
dx
dt

= v,

Fi(x, vi) = 0, for all i ∈ {1, . . . , N},
(2.21)

has a unique (local) solution (x,v) : (τ −∆τ, τ + ∆τ) → Rλ,µ that is continuous and
that passes through (x(τ),v(τ)) at time τ .

Proof. The proof is elementary. It follows from the Implicit Function Theorem that for
each i ∈ {1, . . . , N} there exists an open set Wi and a unique map γi ∈ C1(Wi;Rd),
such that x(τ) ∈ Wi, the image γi(Wi) is an open set containing vi(τ) = γi(x(τ)),
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and Fi(x, γi(x)) = 0 for all x ∈ Wi. Define Γ(x) := (γ1(x), . . . , γN (x)) on a closed
bounded subset of Ω :=

⋂N
i=1Wi. Since Γ is C1, it is Lipschitz continuous, and the

theorem follows from the Picard-Lindelöf Theorem (cf. [Tes12], Theorem 2.2) applied to
the system

dx
dt

= Γ(x).

Remark 2.2.4. Given x∗ a space configuration and v∗ = (v∗1 , . . . , v∗N ) a correspond-
ing velocity, i.e. Fi(x∗, v∗i ) = 0 for all i ∈ {1, . . . , N}, the non-vanishing determinant
condition

det JvFi(x∗, v∗i ) 6= 0 for all i ∈ {1, . . . , N}
guarantees that the fixed point v∗ is isolated, and Theorem 2.2.3 provides a unique
solution of (2.4) starting at configuration x∗ in the direction v∗. There could be multiple
velocities v∗ corresponding to the same configuration x∗ but as long as such a velocity
vector is isolated, there exists a unique continuous trajectory through x∗ in its direction.
This will be revisited in Section 2.3 in connection with the ε → 0 limit of the relaxation
system (2.5).
Remark 2.2.5. The (local) continuous solutions provided by Theorem 2.2.3 can be ex-
tended in time for as long as we do not encounter collisions or particle stopping (see
definition (2.19) of Rλ,µ) and the Jacobian matrices JvFi remain invertible along the
trajectory. Ruling out collisions and stopping, we conclude that model (2.4) has a unique
solution that is continuous in position and velocity up to the moment that det JvFi = 0
for some i. Numerical experiments in Section 2.4 show that, in the absence of collisions
or stopping, discontinuities in velocities occur at such times. To deal with such velocity
jumps both analytically and numerically, we use the relaxation model (2.5) (see Sections
2.3 and 2.4).

The two-dimensional case

We now apply the above considerations to two dimensions to show that the nonzero de-
terminant condition can be reduced to a very simple scalar form.

Assume that the configuration {x1, . . . , xN} ⊂ R2 is given, and that we search for a
nonzero solution of (2.4b). Using the polar coordinate representation vi = ri[cos θi, sin θi]T ,
we write (2.4b) as

ri

[
cos θi
sin θi

]
= − 1

N

∑
j 6=i
∇xiK(|xi − xj |) g

(
xi − xj
|xi − xj |

·
[
cos θi
sin θi

])
. (2.22)

Taking the inner product with [− sin θi, cos θi]T and [cos θi, sin θi]T , the vector equation
(2.22) can be written as

0 = − 1
N

∑
j 6=i
∇xiK(|xi − xj |) ·

[
− sin θi
cos θi

]
g

(
xi − xj
|xi − xj |

·
[
cos θi
sin θi

])
,

ri = − 1
N

∑
j 6=i
∇xiK(|xi − xj |) ·

[
cos θi
sin θi

]
g

(
xi − xj
|xi − xj |

·
[
cos θi
sin θi

])
.

(2.23)
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The advantage of the polar coordinates is that the first equation in (2.23) is for θi only.
Define the following functions (i = 1, . . . , N):

Hi(θ) = − 1
N

∑
j 6=i
∇xiK(|xi − xj |) ·

[
− sin θ
cos θ

]
g

(
xi − xj
|xi − xj |

·
[
cos θ
sin θ

])
, (2.24a)

Ri(θ) = − 1
N

∑
j 6=i
∇xiK(|xi − xj |) ·

[
cos θ
sin θ

]
g

(
xi − xj
|xi − xj |

·
[
cos θ
sin θ

])
. (2.24b)

Using (2.23) to solve for θi and ri is equivalent to finding a root θi of Hi and subsequently
expressing ri explicitly:

Hi(θi) = 0, ri = Ri(θi). (2.25)

Note that a root θi of Hi generates a (nonzero) admissible velocity if Ri(θi) > 0.

For a fixed choice of x, we introduce the notation

F̃i (r, θ) := Fi
(

x, r
[
cos θ
sin θ

])
=
(

cos θ − sin θ
sin θ cos θ

)
·
[
−r +Ri(θ)
Hi(θ)

]
, (2.26)

with Fi defined in (2.20). The chain rule of differentiation yields

J(r,θ)F̃i = JvFi · J(r,θ)v, (2.27)

where J(r,θ)v is the Jacobian matrix of the coordinate transform. Differentiating (2.26),
we find that the second column of J(r,θ)F̃i is

∂F̃i
∂θ

=
(

cos θ − sin θ
sin θ cos θ

)
·
[
R′i(θ)
H ′i(θ)

]
+
(
− sin θ − cos θ
cos θ − sin θ

)
·
[
−r +Ri(θ)
Hi(θ)

]
. (2.28)

Let (x∗, v∗) ∈ R̃λ,µ satisfy Fi(x∗, v∗) = 0, so that F̃i (r∗, θ∗) = 0, whence[
−r∗ +Ri(θ∗)

Hi(θ∗)

]
= 0. (2.29)

Thus, we have

J(r,θ)F̃i =
(

cos θ∗ − sin θ∗
sin θ∗ cos θ∗

)(
−1 R′i(θ∗)
0 H ′i(θ∗)

)
. (2.30)

Finally, taking the determinant on both sides of (2.27) and using (2.30), we obtain

|H ′i(θ∗)| = r∗ |det JvFi(x∗, v∗)|.

The condition det JvFi(x∗, v∗) 6= 0 is thus equivalent to H ′i(θ∗) 6= 0. In other words, in
two dimensions, the continuity issues are only to be expected either when H ′i becomes
zero, or when trajectories reach the boundary of Rλ,µ (particles collide or one of the
velocities reaches zero).
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2.3 Relaxation model (2.5): convergence for ε→ 0
In this section we investigate the relaxation system (2.5). This system is well-posed locally
in time. We explain in what sense solutions of (2.5) converge to those of (2.4) as ε→ 0.

2.3.1 Convergence of solutions to (2.5) as ε→ 0
As opposed to (2.4), the regularized system (2.5) has unique local solutions, for each
ε > 0, provided that ∇K(| · |) and g are bounded and Lipschitz continuous.

We now apply the theory developed by Tikhonov [Tik52, Vas63] to study the limit ε→ 0
of solutions to (2.5). We start by paraphrasing some of the results presented in [Vas63].
Consider the system of equations 

dx
dt

= v,

ε
dv
dt

= F(x,v),
(2.31)

where x,v ∈ RNd and ε > 0 is a small parameter. On a closed and bounded setD ⊂ RNd,
let Γ : D → RNd be such that v = Γ(x) is a solution of the system of equations

F(x,v) = 0. (2.32)

The function Γ is called a root of (2.32). The system
dx
dt

= v,

v = Γ(x),
(2.33)

is called the degenerate system of equations corresponding to the root v = Γ(x).

Note that the systems of our interest (2.4) and (2.5) can be written in the short-hand
notation (2.33) and (2.31), respectively. Indeed, define F : Rλ,µ → RNd using (2.20) as

F(x,v) := (F1(x, v1), . . . ,FN (x, vN )) , (2.34)

for all (x,v) ∈ Rλ,µ. Then, locally in time, (2.5) can be written compactly as (2.31), and
(2.4) is a degenerate system in the form (2.33), with function Γ = (γ1, . . . , γN ) provided
by the Implicit Function Theorem (see Theorem 2.2.3 and its proof).

Definition 2.3.1 (Isolated root). The root Γ is called isolated if there is a δ > 0 such
that for all x ∈ D the only element in B(Γ(x), δ) that satisfies F(x,v) = 0 is v = Γ(x).

Definition 2.3.2 (Adjoined system and positive stability). For fixed x∗, the system

dv
dτ

= F(x∗,v), (2.35)
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is called the adjoined system of equations. An isolated root Γ is called positively stable
in D, if v∗ = Γ(x∗) is an asymptotically stable stationary point of (2.35) as τ →∞, for
each x∗ ∈ D.

Definition 2.3.3 (Domain of influence). The domain of influence of an isolated positively
stable root Γ is the set of points (x∗, ṽ) such that the solution of (2.35) satisfying
v|τ=0 = ṽ tends to v∗ = Γ(x∗) as τ →∞.

The following theorem, due to Tikhonov [Tik52], states under which conditions and in
what sense solutions of (2.31) converge to solutions of the degenerate system (2.33).

Theorem 2.3.4 (cf. [Tik52] or [Vas63], Thm. 1.1). Assume that Γ is an isolated positively
stable root of (2.32) in some bounded closed domain D. Consider a point (x0,v0) in
the domain of influence of this root, and assume that the degenerate system (2.33) has a
solution x(t) initialized at x(t0) = x0, that lies in D for all t ∈ [t0, T ]. Then, as ε→ 0,
the solution (xε(t),vε(t)) of (2.31) initialized at (x0,v0), converges to (x(t),v(t)) :=
(x(t),Γ(x(t))) in the following sense:

(i) lim
ε→0

vε(t) = v(t) for all t ∈ (t0, T ∗], and

(ii) lim
ε→0

xε(t) = x(t) for all t ∈ [t0, T ∗],

for some T ∗ < T .

Remark 2.3.5. The degenerate system requires an initial condition x0 only for positions,
while for the ε-system both x0 and v0 need to be provided. It is possible that v0 is
incompatible in the sense that v0 6= Γ(x0). This is exactly why the convergence of vε(t)
to v(t) only holds for t > t0. In case of incompatible initial conditions an initial layer
forms, which gets narrower as ε→ 0.

The following result is a direct consequence of Theorem 2.3.4; it shows convergence of
solutions of (2.5) to solutions of (2.4).

Theorem 2.3.6 (Convergence of the relaxation model as ε → 0). Assume that the
isolated root Γ is positively stable in D, and take (x0,v0) in the domain of influence
of this root. Denote by x(t) the (local) solution in D of the degenerate system (2.4)
with initial configuration x0 (the existence of this solution is provided by Theorem 2.2.3).
Then, the solution (xε(t),vε(t)) of the regularized system (2.5), initialized at (x0,v0),
converges as ε → 0 to (x(t),v(t)) := (x(t),Γ(x(t))) in the sense (i) and (ii) given in
Theorem 2.3.4.

Remark 2.3.7. Unless collisions or stopping occur, a C1 solution x(t) of (2.4) exists
as long as det JvFi(x(t), vi(t)) 6= 0 for all i ∈ {1, . . . , N}. Compare Remark 2.2.5.
Positive stability of v(t) = Γ(x(t)) is guaranteed if the eigenvalues of JvFi(x(t), vi(t)) are
negative along the trajectory, for all i ∈ {1, . . . , N}. Moreover, once all these eigenvalues
are negative at the initial time, they remain negative through the domain of existence
of x(t), because none of these eigenvalues can change sign before det JvFi(x(t), vi(t))
touches 0 for some i. Hence, we infer that the convergence in Theorem 2.3.6 applies in
all smooth regions of solutions x(t) of (2.4), before a breakdown of the solution occurs.
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Remark 2.3.8. Theorem 2.3.6 (trivially) implies the convergence result for the isotropic
case g ≡ 1 as ε → 0. Note that the assumption (2.9) on K warrants a unique global-
in-time solution of the isotropic model (2.1) – no collisions can occur – and hence,
the convergence in Theorem 2.3.6 holds for all times t > t0. Less regular potentials
(e.g. K(r) ∼ r1+α, 0 < α < 1; cf. [BCL09]) can lead to collisions in the isotropic model
(2.1), in which case the convergence of the relaxation model is only local in time, as for
the anisotropic case.

2.3.2 Positive stability of roots in two dimensions
Next, we elaborate the above convergence result with an example in dimension d = 2.
In particular, we show that the stability of the fixed point Γ is essential, as otherwise
the convergence fails. The notion of asymptotic stability in Definition 2.3.2 should
be understood in the sense of Lyapunov. A stationary point v∗ = Γ(x∗) of (2.35) is
asymptotically stable, if all eigenvalues of JvF(x∗,v∗) have strictly negative real part.
Due to (2.34), the set of eigenvalues of JvF equals the union of the eigenvalues of all
JvFi, i ∈ {1, . . . , N}. Let v∗ = (v∗1 , . . . , v∗N ) be a stationary point of (2.35), that is,
Fi(x∗, v∗i ) = 0 for all i ∈ {1, . . . , N}. We write each velocity v∗i in the polar coordinates,
v∗i = r∗i [cos θ∗i , sin θ∗i ]T . To compute the eigenvalues of JvFi(x∗, v∗i ), we use (2.27) and
(2.30), to get(

cos θ∗i − sin θ∗i
sin θ∗i cos θ∗i

)
︸ ︷︷ ︸

=:M

(
−1 R′i(θ∗i )
0 H ′i(θ∗i )

)
= JvFi(x∗, v∗i )

(
cos θ∗i −r∗i sin θ∗i
sin θ∗i r∗i cos θ∗i

)
︸ ︷︷ ︸

=:Mr

.

(2.36)
The functions Hi and Ri used here (see (2.24)) correspond to the fixed spatial config-
uration x∗. The matrices M−1

r JvFiMr and JvFi have the same set of eigenvalues, and
hence, we conclude from (2.36) that JvFi(x∗, v∗i ) only has eigenvalues with negative real
part, if and only if this is the case for

M−1
r M

(
−1 R′i(θ∗i )
0 H ′i(θ∗i )

)
.

We have
M−1
r M =

(
1 0
0 1/r∗i

)
,

and the eigenvalues of (
1 0
0 1/r∗i

)(
−1 R′i(θ∗i )
0 H ′i(θ∗i )

)
are

λ1 = −1 and λ2 = H ′i(θ∗i )/r∗i . (2.37)

Note that (within Rλ,µ) all eigenvalues are real-valued. Therefore, in view of (2.37), a
sufficient condition for v∗ = Γ(x∗) to be asymptotically stable is

H ′i(θ∗i ) < 0 for all i ∈ {1, . . . , N}. (2.38)
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Remark 2.3.9. An even more direct way of reaching (2.38) is to express the adjoined
system (2.35) in terms of polar coordinates. Indeed, for each index i, (2.35) yields

dvi
dτ

= Fi(x∗, vi). (2.39)

Let us write vi in polar coordinates vi = ri[cos θi, sin θi]T and use (2.20) and nota-
tion (2.24) (with functions Hi and Ri corresponding to the spatial configuration x∗ =
(x∗1, . . . , x∗N )), to derive from (2.39):

dθi
dτ

= 1
ri
Hi(θi), (2.40a)

dri
dτ

= −ri +Ri(θi). (2.40b)

The condition (2.38) for the asymptotic stability can then be seen directly from (2.40).
Indeed, the linearization of (2.40) around the stationary point (r∗i , θ∗i ) yields the Jacobian
matrix (

H ′i(θ∗i )/r∗i 0
R′i(θ∗i ) −1

)
,

with the eigenvalues given by (2.37).

Remark 2.3.10. We note that using the polar coordinates in two dimensions reduces the
problem to scalar expressions. For a better clarification of this point, let us summarize
the findings so far. For convenience of notations, we drop the ∗ superscript.

Consider a given spatial configuration x = (x1, . . . , xN ). Then the following statements
hold:

• To find the velocities vi corresponding to this configuration (solve Fi(x, vi) = 0),
it is more convenient to use polar coordinates vi = ri[cos θi, sin θi]T . The problem
reduces to finding the roots θi of Hi(θ) = 0. Then take ri = Ri(θi) for all
i ∈ {1, . . . , N}. For a θi to be admissible, Ri(θi) > 0 is required.

• The condition det JvFi(x, vi) 6= 0 for all i = 1, . . . , N guarantees that the fixed
point v = Γ(x) is isolated and that (2.4) has a unique continuous solution through
x in the direction v (see Remark 2.2.4). In polar coordinates this condition is
equivalent to H ′i(θi) 6= 0, that is, θi is a simple root of Hi for all i ∈ {1, . . . , N}.

• The isolated root v = Γ(x) is positively stable, as required for the convergence of
the ε-regularization (see Theorem 2.3.6), if H ′i(θi) < 0 for all i ∈ {1, . . . , N}.

2.3.3 Numerical example
In all numerical experiments presented in this chapter we use the same choices of the po-
tential K and field-of-vision function g. For the potential K we take the Morse potential
(2.6) with Ca = 3, Cr = 2, la = 2, lr = 1. The function g for the field of vision is
taken as in (2.7) with parameters a = 5, b = π. This choice corresponds to the solid line
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in Figure 2.2b. Note that the width of the field of vision is approximately 180◦ (frontal
vision).

We present here a numerical example in two dimensions to illustrate the convergence
of the ε system in Theorem 2.3.6. We consider a randomly-generated initial configuration
of four particles – see Figure 2.4a. For the top left particle, labeled as particle 1, we
plot the functions H1 and R1 defined by (2.24), and note that there are three admissible
initial directions (see (2.25) and Figure 2.4b): θ1 ≈ −1.78, θ1 ≈ −1.28, θ1 ≈ −1.00,
and they are all simple roots since H ′1(θ1) 6= 0. Consequently, there are three isolated
fixed points v1 that represent the possible initial velocities for particle 1. The other three
particles have unique velocities at this configuration; see Figure 2.4a where the admissible
velocities are indicated by arrows.

Each such v1 corresponds to a continuous trajectory of (2.4) starting from the initial
configuration in Figure 2.4a. In the numerical implementation one has to select one of
these admissible initial velocities and then evolve the system (2.4) in time. We use the
4th-order Runge-Kutta method for the numerical implementation. Figure 2.4c shows the
trajectories of particle 1 that correspond to two of these admissible initial velocities: grey
dashed (corresponding to root θ1 ≈ −1.28) and grey solid (corresponding to θ1 ≈ −1.00).
Each trajectory in Figure 2.4c is the unique continuous solution given by Theorem 2.2.3
plotted on its maximal interval of existence – the possible modes of breakdown are dis-
cussed in detail in Section 2.4.

We turn now to the convergence of the ε regularization (2.5) and the role of the positive
stability assumption in Theorem 2.3.6. Note that at the centre root θ1 ≈ −1.28, H1
has positive slope, while H ′1 < 0 at the other two roots. It means that only the roots at
θ1 ≈ −1.78 and θ1 ≈ −1.00 are positively stable, the centre one is not. The regularized
system (2.5) is not expected to converge to the trajectory corresponding to the centre
root and Figure 2.4c illustrates this fact. More specifically, the dash-dotted line shows
the trajectory xε1(t) of particle 1, obtained by integrating numerically (2.5) starting from
the configuration in Figure 2.4a and an initial velocity that corresponds to the root at
θ1 ≈ −1.28. Here, ε = 10−4. Note that, due to the instability of this root, the tra-
jectory of the ε-model does not follow the dashed trajectory of model (2.4). Instead,
it approaches in a thin initial layer, the solid trajectory of (2.4) that corresponds to the
stable root θ1 ≈ −1.00.

Since identifying domains of influence of stable roots is a challenge in itself, we do not
address here the question why the root at θ1 ≈ −1.00 was ‘chosen’ instead of θ1 ≈ −1.78.
We simply note that the initial velocity we provided for the ε-system happened to be in the
domain of influence of θ1 ≈ −1.00. For an enhanced visualization, the stability/instability
of the roots is also illustrated in Figure 2.4d. This figure shows the time evolution of the
polar angle θ1(t) of v1(t). The dashed grey and solid grey lines represent the evolution
θ1(t) corresponding to the like-marked trajectories in Figure 2.4c. These trajectories are
continuous solutions of (2.4) that correspond to initial θ1 ≈ −1.28 and θ1 ≈ −1.00, re-
spectively. The black dash-dotted line represents the evolution θε1(t) obtained from (2.5).
Initialized at the unstable root, θε1 undergoes a fast transition and approaches the solid
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Figure 2.4: Illustration of the limit ε→ 0. (a): A randomly generated initial configuration
of 4 particles, with indication of their admissible velocities. Only one of them (the top
left particle, labeled as particle 1) allows for multiple initial velocities. (b): Plot of the
functions H1 and R1 for particle 1. There are three admissible values of θ1 for which
H1(θ1) = 0 and R1(θ1) > 0, each indicated by a square. All the three roots are simple,
resulting in the three isolated velocities shown on the left. The centre root is unstable,
while the other two are stable. (c): Trajectories x1(t) of the anisotropic (degenerate)
system (2.4) starting in the directions of the centre root θ1 ≈ −1.28 and of the right-side
root θ1 ≈ −1.00, are shown in grey dashed and grey solid, respectively. The dash-dotted
line represents the trajectory xε1(t) of the ε-system (2.5) with ε = 10−4, initialized in
the direction of the centre root. Since this root is unstable, xε1 leaves this direction and
approaches in an initial layer (see the insert) the solution of the degenerate system that
corresponds to a stable root (in this case, the right-side root). The arrows indicate the
direction of motion along the trajectories. (d): The same numerical experiment as in (c),
now showing the polar angle θ1 of the velocity v1 as a function of time. The ε-system
starts at the unstable root θ1 ≈ −1.28 and relaxes via an initial layer (see the insert) to
the the solution of the degenerate system that starts at the stable root θ1 ≈ −1.00.
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grey line corresponding to the stable initial root θ1 ≈ −1.00.

2.4 Breakdown and jump selection
Smooth solutions to (2.1) may cease to exist due to various factors. In this section, we
investigate modes of breakdown and explain how jumps can be meaningfully enforced.
We provide numerical illustrations in two dimensions.

2.4.1 Modes of breakdown: classification
A possible breakdown of C1 solutions to (2.4) was already indicated in previous sections
(see Remark 2.2.5). Namely, it may occur when one of the Jacobian matrices JvFi be-
comes singular for some particle i. At such time, the phase-space trajectory (xi(t), vi(t))
may cease to be continuous, provided that, for any continuous extension of {x1, . . . , xN}
in the direction of {v1, . . . , vN}, there is no zero of (2.20) in a (sufficiently small) neigh-
bourhood of vi. In other words, the current velocity vi may cease to be a zero of (2.20)
beyond this time and a jump in vi has to be enforced. We call such a discontinuity in
velocities, due to root losses of Fi, a jump of Type I.

Other modes of breakdown are also possible: collision of particles and stopping. Col-
lisions are a delicate matter, even in the context of isotropic models. Particle collisions
have been discussed in [BCL09, CDF+11, BCDP15] for instance, but the corresponding
potentials are purely attractive. Using a measure-valued formulation, [CDF+11] shows
that if collisions happen in finite time, colliding particles merge into one particle and sim-
ultaneously move on. For general interaction potentials K, collisions and collapse do not
occur – in finite or infinite time – if the repulsion component of K is strong enough to
counteract the attraction. For our purpose, we sidestep this issue, and focus instead on
particle stopping, that is, when one vi = 0. In fact, this mode of breakdown is not present
in the isotropic model (2.1), being entirely characteristic to the anisotropic model (2.4).

Note that, as given by (2.4), the anisotropic model is not even defined when one particle is
at rest (vi = 0). This is because the definition of the field of vision assumes the existence
of a current direction of motion (an individual facing a certain direction). However, vi = 0
can be considered as a solution of (2.4b) in the generalized interpretation of Definition
2.2.1. In our numerical computations, we observe that vi = 0 does occur, in a sense that
is consistent with this definition. More precisely, we observe numerically that a generic
particle i brakes and then stops in a continuous fashion along its direction of motion.
One-sided continuity of vi/|vi| at the stopping time (called here t∗) is essential, as this
enables us to pass to the limit t ↗ t∗ in (2.4b) and find that vi = 0 is a solution of
(2.11), with s = limt↗t∗ vi(t)/|vi(t)|.

To illustrate the stopping idea in two dimensions, take the polar coordinate represent-
ation vi(t) = ri(t)[cos θi(t), sin θi(t)]T . Then, by braking continuously and stopping at
time t∗, we mean that:

lim
t↗t∗

ri(t) = 0, lim
t↗t∗

θi(t) = θ∗i , (2.41)
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for some angle θ∗i . Hence, since vi(t)/|vi(t)| = [cos θi(t), sin θi(t)]T , equation (2.4b) has
a well defined limit t↗ t∗. By passing to the limit we find

0 = − 1
N

∑
j 6=i
∇xiK(|x∗i − x∗j |) g

(
(x∗i − x∗j )
|x∗i − x∗j |

·
[
cos θ∗i
sin θ∗i

])
,

where {x∗j} represent the spatial configuration at t∗. Hence, vi = 0 solves (2.11) at
t = t∗ with s = [cos θ∗i , sin θ∗i ]T .

In all numerical experiments we performed, we noticed that particles stop continuously in
the sense of (2.41). However, the typical scenario is that there is no continuous phase-
space trajectory (xi(t), vi(t)) for particle i beyond its stopping at time t∗. Similar to the
root loss jump (Type I), vi = 0 is a (generalized) solution of (2.20) at t = t∗, but to
evolve the system further in time a jump in vi has to be enforced. We call the jumps due
to particle stopping, jumps of Type II.

We emphasize that throughout this section, by jump discontinuities for (2.4) we mean
jumps in velocities vi, and not in the actual trajectories xi. The latter remain continuous
through jumps.

2.4.2 Numerical illustrations in two dimensions
We illustrate the two modes of breakdown in two dimensions. A breakdown of Type I
occurs when H ′i(θi) = 0 for some i at t = t∗ (see Remark 2.3.10). Equivalently, θi is no
longer a simple root of Hi. For a numerical illustration, we reconsider the run of (2.4)
indicated by solid grey lines in Figures 2.4c and (d), that is, the solution that starts in
the direction of the stable initial root θ1 ≈ −1.00. At t∗ = 1.41, the current direction
θ1 ≈ −0.57 becomes a double root of H1, as illustrated in Figure 2.5. The empty circle
represents the root θ1 just before the jump at t∗ occurs.

Moreover, there exists no continuous extension of the phase-space trajectory beyond
t = t∗ (since the double root would disappear and would no longer be a root imme-
diately after t∗!). The insert in Figure 2.5 illustrates this transition. The solid black line
shows the graph of H1(θ) before the jump, where the root θ1 ≈ −0.57 is still present.
By extending the dynamics in the direction of the current velocity, this root disappears
(the dash-dotted line in the insert).

Assume for now that we have a criterion for setting a velocity jump at t∗ = 1.41. Assume
moreover that we reinitialize (2.4) at the current spatial configuration x(t∗), but in the
direction of the new velocity, and that we can continue the time evolution of (2.4) until a
new breakdown occurs. Anticipating the results, suppose that θ1 takes after the jump the
new value indicated by the filled circle in Figure 2.5 (θ1 ≈ 0.22) and that the evolution of
(2.4) continues in this new direction. The motivating Figure 2.1a corresponds in fact to
the same run of (2.4) as that considered here, and shows this extended trajectory. More
precisely, let us inspect the trajectory x1(t) of the top left particle (particle 1) indicated
by a solid line in Figure 2.1a. The first segment of this trajectory (up to the first break-
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Figure 2.5: Functions H1 and R1 (see (2.24)) at breakdown t∗ = 1.41 when root loss
(jump of Type I) occurs for particle i = 1. The dynamics of (2.4) cannot continue in
the direction of the current root θ1 ≈ −0.57 (indicated by an empty circle), as this value
would no longer be a root immediately after t∗. The zoomed-in insert illustrates this
scenario: before jump (solid line), when the root indicated by an empty circle is still
present, and an extension (dash-dotted line) in the direction of the current velocity, which
leads to root loss. A jump in velocity has to be enforced in order to extend the dynamics
of (2.4) beyond breakdown. The new value is indicated by a filled circle – see Section
2.4.3.

down time t∗ indicated by a square) is the same as the solid grey line in Figure 2.4c.
At t∗ = 1.41 the trajectory x1(t) makes a sharp turn (θ1 jumps from the empty-circle
to the filled-circle value) and then continues until a second breakdown is encountered.
This next breakdown, indicated by the second square along the trajectory of particle 1, is
also a breakdown of Type I, and can be discussed using similar considerations as for the
first jump. We do not treat this breakdown in detail, but enforce a jump (as discussed in
Section 2.4.3), and continue the evolution.

We focus instead on the breakdown indicated by the square on the trajectory of the
particle that starts from top right in Figure 2.1a; we label this particle as particle 2. This
breakdown is of Type II. Particle 2 brakes continuously, as described in Section 2.4.1,
and stops. Figure 2.6 shows the plots of H2 and R2 at this stopping time t∗ = 34.34.
The particle stops in the direction θ∗2 ≈ −2.09 indicated by the empty circle, which is
simultaneously a root of H2 and R2. This is equivalent to the fixed point equation (2.22)
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Figure 2.6: Functions H2 and R2 (see (2.24)) at breakdown t∗ = 34.34 when particle
i = 2 stops (jump of Type II). Particle 2 has stopped in the direction θ∗2 ≈ −2.09
(empty circle), which is simultaneously a root of H2 and R2 (see (2.25)). The bottom
left insert shows zoomed-in plots of H2 (solid black) and R2 (dashed grey) near θ∗2 ,
shortly before the breakdown at t = t∗. Had the numerical integration continued in the
current direction, R2(θ) would become negative (dash-dotted black), and the root would
no longer be admissible. A jump in velocity has to be enforced in order to extend the
dynamics of (2.4) beyond the stopping breakdown. The post-jump direction is indicated
by a filled circle – see Section 2.4.3. The top right insert shows that indeed, this new root
is admissible, as R2 is positive (but small) there.

(for i = 2) to have the solution r2 = 0, θ2 = θ∗2 (see also (2.25)). In the bottom left
insert of Figure 2.6 we show the functions H2 (solid black) and R2 (dashed grey) shortly
before breakdown. Since R2 is positive (but very small, note the scale of the vertical axis
in the insert) at the root of H2 indicated by the empty circle, the corresponding velocity
is admissible. However, by evolving numerically (2.4) in the direction of the current root
θ∗2 ≈ −2.09, R2(θ) becomes negative (dash-dotted black line) and the root is no longer
admissible. We conclude that beyond stopping time, phase-space trajectories cannot be
extended continuously, and a jump in v2 has to occur. We remark that the two graphs
of H2 (before breakdown and after extension) nearly coincide and the difference is not
visible in the plot. The filled circle in Figure 2.6 indicates the value of θ2 after the jump
(see Section 2.4.3). We include the top right insert in Figure 2.6 to clarify that R2 is
indeed positive at the new θ2.
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2.4.3 Jump selection through the relaxation model

A central issue in this chapter is how to continue the solutions of (2.4) beyond a break-
down time, by enforcing a jump in velocity. Note that, having reached a breakdown time,
there could be multiple options for a jump in velocity. For instance, at the breakdown
time t∗ = 1.41 in Figure 2.5, there are three simple roots of H1 which are admissible
(that is, R1 > 0 at these roots). Enforcing a jump in θ1 to any of these isolated roots
would enable us to continue the dynamics of (2.4) beyond the breakdown.

The question is how to select which jump to perform. This is done using the relaxation
system (2.5). Based on the interpretation of this model as including small but positive
inertia or response time, we expect that physically relevant solutions of the anisotropic
model (2.4) should be attained as limits ε → 0 of solutions to (2.5). It would thus be
meaningful to choose the jump that the ε-system selects in the ε→ 0 limit.

We perform runs of the relaxation model (2.5) using three values of ε: ε = 10−2, 10−3,
and 10−4. We initialize (2.5) with a phase-space configuration that corresponds to the
numerical run presented in Section 2.3.2 and used in the considerations above: initial spa-
tial configuration as in Figure 2.4a, and initial velocity as the fixed point of (2.4b) that
corresponds to the stable root θ1 ≈ −1.00 in Figure 2.4b. As discussed and illustrated in
Section 2.3, starting from a stable root, we have convergence of the ε-model to solutions
of (2.4), before a breakdown of (2.4) occurs. Figure 2.1a shows the trajectories of (2.5),
though on the scale of the figure they are indistinguishable from the solution of (2.4).

Upon approaching the first breakdown time of (2.4), t∗ = 1.41, solutions of (2.5) steepen
and approach, via a fast dynamics, a different isolated stable root of (2.4). The zoomed
plots in Figure 2.1b, as well as those in Figure 2.7, show this evolution of the ε-system
near t∗ = 1.41. Figure 2.1b shows the trajectory xε1(t), while Figures 2.7a and 2.7b
plot θε1(t) and |vε1(t)|, respectively. In each such figure, we observe the fast transition of
solutions within an O(ε) time interval. Returning to Figure 2.5, and inspecting Figure
2.7a, we notice that indeed, the stable root θ1 ≈ 0.22 (filled circle) of the degenerate
system is being selected by the ε-model. Note again that this is not the only admissible
stable root (with H ′1 < 0, R1 > 0) available at the jump (see Figure 2.5). But in light of
the convergence result in Section 2.3.1, the selection of θ1 at the filled circle was in fact
expected, and the reason is discussed in the following paragraph.

Consider the adjoined system associated to the ε-model – see (2.39) and (2.40) for i = 1.
At a fixed spatial configuration x∗, evolving the fictitious time τ → ∞ yields indication
on the asymptotic stability of a root. Hence, consider hypothetically the adjoined system
(2.40) with i = 1 for a spatial configuration x∗+ consisting of an infinitesimal extension
from t = t∗ to t = t∗+ of the spatial configuration x∗ at the jump of the degenerate
system (2.4), extension taken in the current direction of motion of (2.4). The plots of H1
and R1 corresponding to such an extension to t∗+ would be infinitesimal perturbations of
the plots in Figure 2.5, where most importantly, the double root indicated by an empty
circle is no longer a root of H1 at t∗+ (this “root loss” is the reason for the breakdown,
cf. the insert in Figure 2.5). Evolving the adjoined system (2.40) with i = 1 at the frozen,
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hypothetical, post-jump configuration x∗+ is expected to provide the new asymptotically
stable root that the ε-system would converge to. The evolution of θ1 is simply driven by
the sign of the right-hand-side in (2.40a) (i = 1), and since r1 > 0, this sign is given
by H1 at t∗+. It is now clear from Figure 2.5 that initializing (2.40a) (i = 1) with θ1
near the empty circle, which is the value it had before jump, would result in selecting the
stable fixed point indicated by the filled circle. This observation serves as the starting
point in designing the numerical method to simulate model (2.4) presented in Section 2.5.

Model (2.4) encounters a breakdown of Type II at t∗ = 34.34, when particle 2 stops
in the current direction θ∗ ≈ −2.09 (the root of H2 indicated by empty circle in Figure
2.6). On the contrary, solutions of the ε-model (2.5) continue through t∗ and capture
again a jump in a certain direction. Figure 2.1c plots the trajectory xε2(t) near the second
jump t∗ = 34.34, while Figures 2.8a and 2.8b show θε2(t) and |vε2(t)|, respectively. Note
indeed that Figure 2.8b captures the braking of particle 2 that occurs in the degenerate
system (|v2| reaches order O(10−8)). The difference though is that solutions of the ε-
system do not actually stop, as particle 2 changes direction (see Figure 2.8a where θ2
evolves fast from ≈ −2.09 to ≈ 0.11), picks up a higher velocity (of order O(10−5)), and
continues the motion. This fast transition results in a very sharp turn in the trajectory,
as illustrated in the zoomed plot Figure 2.1c (see also the insert in the figure).

By inspecting Figure 2.6 one observes that the ε-system has selected the jump to root
θ2 ≈ 0.11 indicated by the filled circle. In this case this was in fact the only admissible
root of H2 at t∗, as the others have R2 < 0. However, were there more admissible roots,
it is not as clear as it was for the Type I jump in Figure 2.5, whether similar considerations
regarding the adjoined system (2.40) can be used to predict the selection of the post-
jump velocity. First, there is no natural extension (from t∗ to t∗+) of a configuration x∗
at a breakdown that involves a resting particle. In a numerical simulation however, this
point is less relevant, as the numerical value of a particle that attempts to stop becomes
very small, but it does not actually reach zero. Hence, extending the numerics into a
post-jump configuration is possible (this was done for instance to produce the insert in
Figure 2.6). Second, from a theoretical point of view, the evolution τ → ∞ in (2.40a)
with i = 2, at an infinitesimally extended spatial configuration x∗+, cannot be argued
as for jump I, by invoking the sign of the right-hand-side (in this case, the sign of H2
at t∗+). The full two-dimensional evolution of the adjoined system (2.39) would have to
be employed instead, and issues such as the domain of influence and getting attracted
into a certain fixed point, are more subtle. We conclude by noting that in practice, for
numerical simulations, the frozen/adjoined-system idea seems to work fine for jumps of
Type II as well, it is just its theoretical foundation that is less solid than for jumps of Type
I. Alternatively, one could use the real time evolution of the ε-system near the breakdown
in order to select a jump (as discussed below in Section 2.5).

The numerical observations reported in this section have been confirmed with various
other simulations, involving different initial conditions and larger number of particles.
The two types of jumps discussed here and the shock-capturing of the ε-system are typ-
ical findings.
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Figure 2.7: Solution of the relaxation system (2.5) near the first breakdown time t∗ = 1.41
of the anisotropic model (2.4), due to root loss. The plots show (a): θε1(t) and (b): |vε1(t)|.
Three values of ε are used to illustrate shock capturing: 10−2, 10−3, and 10−4. Near t∗,
the direction changes from θ1 ≈ −0.57 to θ1 ≈ 0.22, values indicated, respectively, by
the empty and filled circles in Figure 2.5. Complete trajectories for this run can be found
in Figure 2.1a. The breakdown time t∗ = 1.41 is indicated by the first square along the
trajectory of the top-left particle (particle 1). A zoomed trajectory xε1(t) near t∗ can be
found in Figure 2.1b.
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Figure 2.8: Solution of the relaxation system (2.5) near the third breakdown time t∗ =
34.34 of (2.4), due to stopping of particle 2. The plots show (a): θε2(t) and (b): |vε2(t)|.
Three values of ε are used to illustrate shock capturing: 10−2, 10−3, and 10−4. The
direction changes from θ2 ≈ −2.09 to θ2 ≈ 0.11, values indicated, respectively, by the
empty and filled circles in Figure 2.6. The complete trajectories can be found in Figure
2.1a, where the breakdown time t∗ = 34.34 is indicated by the square along the trajectory
of particle 2 (top right). A zoomed trajectory xε2(t) near breakdown can be found in
Figure 2.1c.



56 Chapter 2. Anisotropy

2.5 Implementation and long-time evolution

2.5.1 Numerical implementation of (2.4) in two dimensions
Evolving the relaxation system (2.5) with small ε for large times is not practically feas-
ible. The numerical strategy for the long-time evolution of (2.4) is to run the anisotropic
model through its intervals of continuity and use the ε-model only to capture the jumps.
For jumps of Type I, this procedure is rather easy to implement in two dimensions, as
illustrated in Section 2.4.3. Indeed, suppose that in a numerical simulation of (2.4) a
root loss has been identified in the discrete time step from tn−1 to tn. That is, for some
particle i, the numerical velocity vni at time tn is no longer a fixed point of Fi. Then, by
“freezing” the post-jump spatial configuration xn at the time tn, one can run the adjoined
system (2.39) with the fictitious time τ →∞, in order to select the new, asymptotically
stable root. Rename this root vni and then continue the evolution of (2.4). This proce-
dure is the time-discrete version of the considerations from Section 2.4.3 on the selection
of a jump by an infinitesimal extension of the spatial configuration at the breakdown time.

Jumps of Type II can be similarly recovered, by freezing the post-jump spatial config-
uration. As explained in Section 2.4.3, this procedure is less theoretically grounded for
jumps of Type II, but we found that it works well in practice and captures the correct
jumps. We confirmed this with full, real-time evolutions of the relaxation model through
Type II discontinuities. That is, after detecting a jump in the discrete time interval from
tn−1 to tn, return to the pre-jump phase-space configuration (xn−1,vn−1) at time tn−1,
initialize (2.5) with this data, and run the relaxation system with a fine time resolution
to capture the steep solution that selects the post-jump root vn.

2.5.2 Long-time behaviour
An extensive numerical study of the long-time behaviour of solutions to (2.4) is beyond
the scope of this chapter. We only report our preliminary observations. The main fea-
ture is that the dynamics slows down significantly after a relatively short initial interval.
For instance, particles in the numerical simulation considered above (referred to as IC 1
here) reach velocities of order O(10−4) by the stopping breakdown time t∗ = 34.34, and
continue to decrease steadily after the jump. In Figure 2.9b we plot the maximum speed
maxi |vi| over time, to t = 5, 000. We also considered the long time run corresponding
to the same initial spatial configuration from Figure 2.4a, but with an initial velocity v1
pointing in the other stable direction, θ1 ≈ −1.78; we refer to this initial condition as
IC 2. The evolution of maxi |vi| is also shown in Figure 2.9b, with similar qualitative
behaviour as for IC 1.

The full evolution of the trajectories for IC 2 is shown in Figure 2.9a, with the final
configuration at t = 5, 000 indicated by filled diamonds. The empty diamonds in the
figure represent the state at t = 5, 000 of the run with IC 1. We do not plot the full
evolution of the trajectories corresponding to IC 1, since at the scale of the figure these
would be indistinguishable from the solutions shown in Figure 2.1a. Note that the two
sets of configurations have different centres of mass. The centre of mass is not being



2.6. Discussion 57

−1 −0.5 0 0.5 1

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x

y

 

 

final IC 1
trajectories IC 2
final IC 2

(a)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

t

m
ax

(|
v i|)

 

 

IC 1
IC 2

(b)

Figure 2.9: Long-time behaviour of (2.4). (a): The solid grey lines represent the evolution
of (2.4) starting from the initial configuration in Figure 2.4a, in the direction of the stable
root θ1 ≈ −1.78 – we refer to this initial condition as IC 2. The initialization in the
direction of the other stable root, θ1 ≈ −1.00, is referred to as IC 1. The filled and empty
diamonds indicate the configurations of the two runs at t = 5, 000. (b): Plot of maxi |vi|
over time, for the two sets of initial conditions. Particles reduce their speed and seem to
approach a quasi-equilibrium.

conserved by the anisotropic model (2.4), as it is for the isotropic model (2.1).

Figure 2.9 shows that both runs feature a fast initial dynamics (involving several jumps
of both types), followed by slow motion. The numerical results suggest that velocities
continue to decrease indefinitely, and the system reaches a quasi-steady state. Stopping
jumps become more typical at low speeds, as particles make small jiggles, turning toward
and from the others, trying to reach an equilibrium. This jiggling aspect is not present in
the isotropic model, as there, the unobstructed sensing of the others drives the particles
quickly into an equilibrium configuration.

2.6 Discussion
In this chapter we proposed a procedure for obtaining a unique solution to the first-order
model in which the field of vision is taken into account. We provided a selection criterion
for jumps in velocity and illustrated this criterion numerically.

There are some subtleties in the numerical procedure described in Section 2.5. Often
it is clear from a figure like Figure 2.7 what the new velocity should be – the limit τ →∞
in (2.40a) – but it is not sufficient if we can only manually determine what the jump should
be. Hence we need to be able to rely on our numerical implementation in the sense that it
always makes the proper selection. In case of a jump, the configuration after root loss is



58 Chapter 2. Anisotropy

required to obtain the new velocity: the root needs to be actually lost, otherwise the jump
criterion will select the original root. The question is however how far to extrapolate into
the post-jump time. This question is a consequence of the intrinsic discreteness of any
numerical approach. In fact we approximate the post-jump configuration x∗+ by x∗+δ · ṽ,
where x∗ is the pre-jump configuration, ṽ is the pre-jump velocity and δ > 0 is fixed.
Consider the adjoined system (2.35) with x∗ replaced by x∗+ δ · ṽ. Assume that for each
δ > 0 its limit as τ →∞ is given by v∗δ . Hence, what we really want to find is limδ↓0 v∗δ
as our post-jump velocity. This idea was described in words in Section 2.4.3. Numerically,
finding a sufficiently small δ such that the proper post-jump velocity is found, is often a
matter of trial-and-error. Here, proper means that this post-jump velocity coincides with
the one predicted by the full ε-system. The rigorous investigation of the limit δ ↓ 0 is a
direction for future research.

We have seen in Sections 2.2.3 (the second half) and 2.3.2 how polar coordinates help
us to get intuition and they essentially reduce the problem to a scalar one. However, if
we perform the limit τ → ∞ in (2.40), rather than in (2.39), this induces extra issues
in some cases and is therefore not recommended to obtain a robust implementation. We
illustrate such cases in which problems arise, using Figure 2.5. Assume that the function
H1 is as in the figure, but that R1 is instead positive near the open circle but negative
near the closed circle. Consequently, the closed circle is not an admissible root. From the
figure we deduce that there is only one other admissible root: the one to the left of the
open circle where H ′1 is negative. This root is admissible under the assumption that R1
is positive there. Now, ‘simply’ performing the limit τ →∞ in (2.40) is impossible. Due
to (2.40a) θ1 converges to the filled circle at θ1 ≈ 0.22, but hence R1 becomes negative
at some point and due to (2.40b), r1 decreases until it becomes zero. Once r1 reaches
zero, with R1 < 0 (2.40b) has the tendency to decrease r1 even further and hence the
original definition of the polar coordinates is no longer valid. This example shows that
the implementation of (2.39) is preferred.

The considerations in the previous two paragraphs mainly concern jumps of Type I. In
Section 2.5, we stated that for jumps of Type II, often the adjoined system can be used,
although there is no theoretical basis for its effectiveness. Our implementation is such that
if the approach using the adjoined system does not work, then the full ε-system is used.
An additional difficulty is the choice of ε. Figures 2.7 and 2.8 show that even ε = 10−2

(which is not extremely small) is sufficient to predict the correct jump. However, this is
not guaranteed a priori.

In view of existing literature, a valid question to ask is whether the field of vision should
or should not be centred around the direction of the actual velocity. A so-called desired
velocity can be easily incorporated in our definition of the velocity. This is an extra con-
tribution, independent of the other particles’ positions, that models the velocity that an
individual would have if no others were around. In principle this desired velocity field is
given, and can be considered as being part of the model data. It is common practice in
literature to define the field of vision with respect to the direction of the desired velocity;
see e.g. Section 5.2.2 of [CPT14], or Equation (7) in [HM95]. The (implicitly stated) mo-
tivation for this modelling choice is that individuals look in the direction of their desired



2.6. Discussion 59

motion – that is, towards their goal – and not in the direction of their actual velocity. My
preliminary work [GEML13] and [EMvdV13] follows this approach. On the other hand,
on p. 321 of [CFTV10] the cone of vision is directed along the actual velocity. Note that
in first-order models the latter choice causes the difficulties described in this chapter. In
second-order models, this choice has less drastic effects and only makes the model slightly
more involved; cf. [BHW13], Section 2.

There is a resemblance between the approach taken in this chapter, and the method
of vanishing viscosity in hyperbolic PDEs. In the latter method, a diffusion term (Lapla-
cian) multiplied by a small parameter is included in the original equation. The effect is that
solutions are regularized. In the limit for vanishing parameter, weak solutions (shocks)
are obtained. For more details about the vanishing viscosity method the reader is referred
e.g. to Section 7.3 of [Eva10]. In this chapter, the small parameter also corresponds to a
term with higher derivatives than the other terms in the equation. The similarity between
the vanishing viscosity approach and the approach in this chapter concerns mainly their
philosophy. There is no direct analogy.

As the number of particles becomes large, accounting for all jumps that take place in
the dynamics of (2.4) becomes quite challenging. Formally, the continuum limit (see
Section 1.4) of (2.4) consists of the continuity equation for the density ρ:

∂ρ

∂t
+∇ · (ρ v) = 0, (2.42)

completed with the following implicit expression for v:

v(x) = −
∫
Rd

∇K(|x− y|)g
(
x− y
|x− y|

· v(x)
|v(x)|

)
ρ(y) dy for all x ∈ Rd. (2.43)

Here K and g have the same meaning as throughout the chapter. We refer for the
limit procedure and properties of the limit equation for the system without anisotropy, to
[BV05, BV06, CCH14, FS14]. A direction for future research is to investigate whether
similar results can be derived for the anisotropic model. Rather than just a goal in its own
right, the PDE can be a tool. Our analytical considerations for the limit ε → 0 in the
ODE are not yet completely satisfactory. On the PDE level we would have the momentum
equation with a parameter ε and the use of PDE techniques might be a better way to go
when letting ε vanish. This limit ε→ 0 is indicated by the arrow (labelled also ‘Chapter
2’) from the hydrodynamic equation to the Fokker-Planck equation in Figure 1.2.





Chapter 3

Convergence of measure-valued
evolutions in the Wasserstein
distance

In this chapter we derive the equation of motion for a system, starting from its action.
The equation of motion we obtain is the Lagrangian formulation of (a regularized version
of) the PDE (1.40) given in Section 1.7.2, which is formulated in a Eulerian way. We
use the solution of this equation of motion in Lagrangian form as a motion mapping that
dictates the evolution of a particle approximation. Our question in this approach is:

How can we derive particle-based schemes in a systematic way?

Our systematic procedure consists of three steps: application of the principle of least
action; formulation of the problem in terms of measures (which requires a regularization
of the density); and substitution of a discrete measure. The obtained equation of motion
depends on the order in which regularization and the principle of least action are applied.
We also show how to generalize this procedure to systems involving nonconservative forces.

The second question that we ask, concerns the quality of our particle approximation:

In what sense do these schemes converge in the many-particle limit
to the continuum equations of motion?

In this chapter, we prove the convergence in the Wasserstein distance of the corresponding
measure-valued evolutions, to the solution of the regularized limit equation. Moreover,
we provide the order of convergence of the SPH method.

This chapter is based on joint work with Iason Zisis, Bas van der Linden and Manh Hong Duong,
submitted for publication in Archive for Rational Mechanics and Analysis [EZvdLD15].
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3.1 Introduction
The numerical method called Smoothed Particle Hydrodynamics (SPH) was initially intro-
duced to solve the equations governing the motion of astrophysical flows. In the course
of time, SPH found application to equations for a great variety of physical processes
(cf. [Mon12]). The main idea of the method is to approximate a continuum by a col-
lection of particles. One expects that the approximation improves when the number of
particles increases.

It is well-established that the classical scheme in SPH can be derived formally by applying
the principle of least action to the particle system, where the specific way in which the
density is approximated in SPH acts as a constraint; see e.g. [Mon05, Pri12, ZvdLGK14].
The importance of the particle system’s Lagrangian function was already recognized in
the first articles describing SPH; cf. [GM78]. A subtlety lies in the fact that in the deriva-
tion of the SPH equations, the action of the particle system is minimized rather than the
action of the continuum. The minimization of the action at the continuum level and the
subsequent discretization of the motion equation in terms of particles does not necessarily
yield the same equation.

The two main achievements of this chapter are:

• We introduce a systematic procedure for deriving measure-valued and particle for-
mulations of continuum mechanics equations. We obtain two different schemes
depending on the stage at which a regularization of the density is introduced. See
Section 3.2.

• We prove the convergence of both schemes using the Wasserstein distance defined
on the space of probability measures; cf. Section 3.3.

In the first part (Section 3.2), we aim at clarifying the exact difference in outcome between
minimizing the action of the particle system and minimizing the action at the continuum
level. To achieve this, we introduce a systematic procedure consisting of the following
three steps:

A formulation in terms of measures and, simultaneously, the regularization of the
density;

B introduction of a particle formulation;

C application of the principle of least action.

These three steps are introduced in more detail in Section 3.2.2. It turns out that the or-
der in which these steps are executed, determines the structure of the resulting equation.
To be more precise, the classical SPH scheme (as described e.g. in [Mon05]) is obtained,
whenever the regularization of the density takes place before applying the principle of least
action. That is, whenever the steps are executed in the order A-B-C or A-C-B. Both
procedures are presented here; see Sections 3.2.3 and 3.2.4. If we apply the principle
of least action (to the action at the continuum mechanics level) before regularizing the
density then we obtain a scheme that appears in [LGP98] and [CGP14]. However, this
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variant of the scheme is studied far less in literature. The procedure to derive this scheme
follows the order C-A-B; see Section 3.2.5. We underline that although both schemes
originate from the principle of least action, the latter can also be obtained directly by
taking Newton’s Second Law and replacing the density by the regularized density.

In Section 3.2.7, we show that this three-step strategy can be generalized to include
nonconservative forces.

Regularization of the density practically means that the original problem is deliberately
turned into a regularized one, which is afterwards solved by means of some variant of an
SPH scheme. Hence, by choosing SPH as solution method one is automatically bound to
studying a different problem than the original one at the continuum level. Thus, regarding
the convergence of our particle approximation, two questions naturally rise:

• Does the solution of the regularized problem converge (in a certain sense) to the
solution of the original problem?

• Does the particle solution corresponding to the regularized problem converge (in a
certain sense) to the solution of the regularized continuum problem?

The former is out of the scope of this chapter (it was treated in [LGP97]), while the latter
is the topic of Section 3.3 and further.

Inspired by the approach in [LGP98], we use in this chapter the Wasserstein distance
on the space of probability measures. For an overview of related literature and alternative
approaches to prove convergence, the reader is referred to Section 1.7.2. The Wasserstein
distance has the advantage that it can be formulated as the infimum over a set of joint
representations (more details follow in Definitions 3.3.2 and 3.3.3). This is convenient,
since one can thus obtain an upper bound (needed to prove convergence) by choosing
any admissible joint representation. We refer the reader also to [Vil09], Chapter 6, for
further discussion on the Wasserstein distance.

The theoretical result of this chapter is supported by a numerical investigation of the
order of convergence in Section 3.6 for one- and two-dimensional examples involving dif-
ferent force fields.

3.2 Systematic derivation of the equations of motion
In this section we derive equations of motion from Hamilton’s principle of least action,
which involves the Lagrangian function posed in a continuum mechanics setting. We de-
scribe an explicit ‘recipe’, hence avoiding the need to introduce approximations in an ad
hoc manner. This recipe consists of three building blocks (coined A, B and C; see Section
3.2.2). The order in which these blocks are executed, determines the final outcome. As
such, the systematic procedure we describe here also shows exactly how different schemes
arise from the same basic principles.
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Ultimately, we show how to generalize this recipe to systems in which nonconservative
forces are present; see Section 3.2.7.

3.2.1 Derivation of the action in a continuous setting
Assume that for fixed time t a mass density ρt on a spatial domain Ωt is given. We define
the Lagrangian density of our system as

L(ρt, y, u) :=
(

1
2 |u|

2 − e(ρt(y), y)
)
ρt(y),

where y and u are independent Eulerian position and velocity coordinates, and e denotes
the internal energy density. To obtain the Lagrangian L, we integrate L over the spatial
domain Ωt:

L(t) :=
∫
Ωt

L(ρt, y, u) dy. (3.1)

For this integration to make sense, we assume that u is actually a function of t and y:
u := u(t, y). Furthermore, we assume that there is a motion mapping Φt that governs the
transition of the system at time 0 to the system at time t. Then in particular, Ωt = Φt(Ω0)
holds for some initial domain Ω0. We transform the integral (3.1) according to y = Φt(x)
with x ∈ Ω0 and obtain

L[Φ](t) =
∫
Ω0

(
1
2 |u(t,Φt(x))|2 − e

(
ρt(Φt(x)),Φt(x)

))
ρt(Φt(x)) |JΦt(x)| dx. (3.2)

The functional dependence of L on the motion mapping is indicated by explicitly including
Φ in square brackets. The expression |JΦt(x)| denotes the determinant of the Jacobian
matrix of the transformation, consisting of the derivatives of the components of Φt with
respect to the components of x. Because we assumed that Φt governs the evolution, the
density ρt relates to the initial density ρ0 in the following way (see e.g. [Cha76], p. 90):

ρ0(x) = ρt(Φt(x)) |JΦt(x)| . (3.3)

Combined, (3.2) and (3.3) yield

L[Φ](t) =
∫
Ω0

(
1
2 |u(t,Φt(x))|2 − e

(
ρt(Φt(x)),Φt(x)

))
ρ0(x) dx.

In the above we fixed t, but all arguments can be repeated for every t in some interval
[0, T ]. We are interested in those motion mappings that are continuous and differentiable
in time, and we wish to obtain the corresponding equation of motion. The introduction of
the motion mapping (Φt)t∈[0,T ] has taken us from Eulerian coordinates in (3.1) towards
Lagrangian (material) coordinates in (3.2). The crucial and final step to complete this
procedure is to specify the velocity field u. To remain consistent with the motion mapping
we introduced, we identify u with the time derivative of Φt. More precisely, we postulate
the relation:

u(t,Φt(x)) = Φ̇t(x) for all x ∈ Ω0. (3.4)
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The velocity u at time t and position Φt(x) is the velocity at time t of a material point
that started in x at time 0, and – in words – (3.4) means that this velocity is equal to the
time derivative at time t of the position of that particular material point. By connecting
the Eulerian velocity u to the Lagrangian velocity Φ̇t, we obtain the Lagrangian functional

L[Φ](t) =
∫
Ω0

(
1
2 |Φ̇t(x))|2 − e

(
ρt(Φt(x)),Φt(x)

))
ρ0(x) dx. (3.5)

We define the action of our system by

S[Φ] :=
T∫

0

L[Φ](t) dt. (3.6)

3.2.2 Three derivation procedures
Our aim is to derive equations of motion from the action (3.6), by means of the Euler-
Lagrange equations. These will appear in different forms. Moreover, we wish to derive
these equations of motion for a particle system (which naturally induces a numerical
scheme). A methodological way to go from the continuum (Section 3.2.1) to a particle
system, is via a measure-valued formulation. Our motivation to do so is the fact that we
need a framework that incorporates the ‘real physics’, i.c. the density ρt, and an approxim-
ating particle system to establish the convergence of the particle scheme to the continuum.

To obtain the transition from the continuous action (3.6) to equations of motion for
the particle positions, three steps are necessary:

A introduction of measures: replace ρt(x)dx by dµt(x) and where needed approximate
ρt by some ρ̃t that depends on µt;

B substituting for µt a discrete measure µ̄Nt =
∑
miδxi(t);

C deriving the Euler-Lagrange equations (either classically or in variational sense).
The steps are described here in a simplified way; their true meaning becomes clear in
Sections 3.2.3, 3.2.4 and 3.2.5. Step A introduces a regularized version of the problem,
which is a problem different from the original one. Step B cannot happen before A, but
we have the freedom to choose the further ordering. This gives rise to three different
derivations:
ABC this procedure discretizes the Lagrangian and derives the corresponding equations

of motion afterwards; see Section 3.2.3.
ACB this procedure derives the equations of motion from the measure-valued Lagrangian

and discretizes these equations afterwards; see Section 3.2.4.
CAB this procedure derives the equations of motion from the continuum Lagrangian,

writes them in measure-valued form and discretizes afterwards; see Section 3.2.5.
Procedures ABC and ACB eventually yield the same particle scheme. This is the scheme
traditionally used in the SPH community (cf. [Mon05]). Procedure CAB is the one that
yields the equations used in [LGP98] and [CGP14].
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3.2.3 Equations of motion via the route ABC
Step A

In Section 3.2.1 we introduced (for each t) the density ρt as the image of the initial density
ρ0 under the mapping Φt. In this section, we lift the evolution of ρt to the space of (time-
dependent) measures. Let µ0 and µt be measures with densities ρ0 and ρt, respectively.
These measures relate via µt = Φt#µ0. We substitute ρ0(x)dx by dµ0(x) in (3.5)–(3.6).
Afterwards, there is one more aspect that we need to ‘repair’ before obtaining a measure-
formulation. The internal energy density e depends on ρt itself, via pointwise evaluation.
An approximation of ρt is needed to obtain a general expression that is even well-defined
for measures that do not have a density (with respect to the Lebesgue measure). We
propose to introduce a regularization – cf. [Fri44] – via convolution with a smoothing
function:

ρ̃t(ξ) := (γ ∗ µt) (ξ) =
∫
Ωt

γ(ξ − y) dµt(y), (3.7)

for all ξ ∈ suppµt. The smoothing function γ is nonnegative and even. The convolution
regularizes the solution, introducing an artificial ‘density’ ρ̃t, such that pointwise evalu-
ation and its gradient are defined even if ρt does not exist pointwise or is not differentiable.
Remark 3.2.1. In the literature on SPH, the notation Wh is used for the smoothing
function γ entering (3.7). Here, h > 0 is a small parameter, and Wh is such that
Wh ⇀ δ0 in the narrow topology as h → 0 (i.e. tested against bounded continuous
functions). A typical example is the Gaussian with zero mean and variance h2/2. If µt
has a density ρt then the convergence of ρ̃t = Wh ∗ µt to ρt holds pointwise for every t
for instance if ρt is continuous and bounded (by definition of Wh ⇀ δ0). In this chapter
we do not consider varying h or the limit h → 0, hence we use the notation γ for a
fixed smoothing function. This avoids confusion with the Wasserstein distance of order p
(introduced in Definition 3.3.3) which is denoted by Wp.
Note that ρ̃t can also be written as

ρ̃t(ξ) =
∫
Ω0

γ(ξ − Φt(x)) dµ0(x),

by definition of the push-forward; see (1.4). Hence, we ought to keep in mind that ρ̃t has
either a functional dependence on µt, or an extra dependence on Φt(·) (depending on the
formulation we choose), but we do not write this dependence explicitly.

We substitute ρ̃t for ρt in e and redefine the Lagrangian (in a measure-formulation)
such that the action becomes

S[Φ] =
T∫

0

L[Φ](t) dt =
T∫

0

∫
Ω0

(
1
2 |Φ̇t(x)|2 − e

(
ρ̃t(Φt(x)),Φt(x)

))
dµ0(x) dt. (3.8)

This new, generalized formulation in terms of measures makes it possible to consider more
types of solutions, simply by allowing more general initial conditions. This is exactly what
we exploit in the following step, substituting a particle approximation.
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Step B

In this step, we substitute for µ0 a discrete measure of the form µ̄N0 =
∑N
i=1miδxi,0 .

Under push-forward, the measure remains a discrete measure with positions of the Diracs
{xi(t)} evolving under the motion mapping: xi(t) = Φt(xi,0). We emphasize that the
equation for Φt is yet unknown and is to be derived in the next step.

The Lagrangian takes the form

L[Φ](t) =
N∑
i=1

mi

(
1
2 |ẋi(t)|

2 − e
(
ρ̃t(xi(t)), xi(t)

))
, (3.9)

with

ρ̃t(xi(t)) =
N∑
j=1

mj γ
(
xi(t)− xj(t)

)
,

for all t > 0.

Step C

The equations of motion are obtained via the ‘classical’ Euler-Lagrange equations, applied
to the Lagrangian

L[Φ](t) =
N∑
i=1

mi

1
2 |ui|

2 − e

 N∑
j=1

mj γ(yi − yj) , yi

 ,

cf. (3.9). The corresponding Euler-Lagrange equations – cf. (1.57) in [GPS01] – are

d

dt

(
∇ukL

∣∣∣(yi,ui)=(Φt(xi,0),Φ̇t(xi,0))

)
−∇ykL

∣∣∣
(yi,ui)=(Φt(xi,0),Φ̇t(xi,0))

= 0, (3.10)

for each k ∈ {1, . . . , N}. The subscript “(yi, ui) = (Φt(xi,0), Φ̇t(xi,0))” denotes a sub-
stitution for all i ∈ {1, . . . , N}.

After calculating the derivatives ∇uk and ∇yk in (3.10), we obtain

mk
d

dt
Φ̇t(xk,0) =−mk

∂e

∂ρ

(
ρ̃t(Φt(xk,0)),Φt(xk,0)

)
∇ρ̃t(Φt(xk,0))

+
N∑
i=1

mi
∂e

∂ρ

(
ρ̃t(Φt(xi,0)),Φt(xi,0)

)
mk∇γ

(
Φt(xi,0)− Φt(xk,0)

)
−mk∇ye (ρ̃t(Φt(xk,0)),Φt(xk,0)) , (3.11)

with

ρ̃t(Φt(x`,0)) =
N∑
j=1

mj γ
(

Φt(x`,0)− Φt(xj,0)
)

for all ` ∈ {1, . . . , N}.
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We denote by ∇ye the gradient of e only in the explicit spatial coordinate; that is,
the second variable of e. We divide all terms by mk (which is nonzero without loss of
generality). If we take ∂e/∂ρ in the first line inside the sum and we use in the second
line that ∇γ is an odd function, then the corresponding terms in (3.11) can be combined,
and we obtain

Φ̈t(xk,0) =−
N∑
i=1

mi∇γ
(

Φt(xk,0)− Φt(xi,0)
)[∂e

∂ρ

(
ρ̃t(Φt(xk,0)),Φt(xk,0)

)
+ ∂e

∂ρ

(
ρ̃t(Φt(xi,0)),Φt(xi,0)

)]
−∇ye

(
ρ̃t(Φt(xk,0)),Φt(xk,0)

)
, (3.12)

for each k ∈ {1, . . . , N}.

3.2.4 Equations of motion via the route ACB

Step A

This step is exactly the same as in Section 3.2.3.

Step C

We start off from the action given in (3.8). Instead of using the classical Euler-Lagrange
equations directly, we employ here the principle of least action as described e.g. on p. 127
of [Ber09]. This principle states that the evolution of the system is described by Φt such
that the action is stationary. That is,

S′[Φ](Ψ) = 0, (3.13)

for all test functions Ψ ∈ C∞c ((0, T );C∞c (Ω0;Rd)), where S′[Φ](Ψ) denotes the variation
of S in the direction of Ψ. We have:

S′[Φ](Ψ) := d

dε
S[Φ + εΨ]

∣∣∣∣
ε=0

. (3.14)
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Note that

d

dε

e
 ∫

Ω0

γ
(

Φt(x) + εΨt(x)− Φt(y)− εΨt(y)
)
µ0(dy) , Φt(x) + εΨt(x)


ε=0

= ∂e

∂ρ

 ∫
Ω0

γ
(

Φt(x)− Φt(y)
)
dµ0(y) , Φt(x)

 ·
·
∫
Ω0

∇γ
(

Φt(x)− Φt(y)
)
· (Ψt(x)−Ψt(y)) dµ0(y)

+∇ye

 ∫
Ω0

γ
(

Φt(x)− Φt(y)
)
dµ0(y) , Φt(x)

 ·Ψt(x). (3.15)

To avoid lengthy notation, we denote by e′[Φ](Ψ)(x) the whole expression in (3.15). The
variation of S can then be expressed as

S′[Φ](Ψ) =
T∫

0

∫
Ω0

(
Φ̇t(x) · Ψ̇t(x)− e′[Φ](Ψ)(x)

)
dµ0(x) dt

=
T∫

0

∫
Ω0

(
− Φ̈t(x) ·Ψt(x)− e′[Φ](Ψ)(x)

)
dµ0(x) dt, (3.16)

where the last step follows from integration by parts. The boundary terms disappear
because Ψ has compact support within (0, T ).

We rewrite the part involving Ψt(y) in (3.15) as follows:

T∫
0

∫
Ω0

−∂e
∂ρ

(
ρ̃t(Φt(x)),Φt(x)

) ∫
Ω0

∇γ
(

Φt(x)− Φt(y)
)
·Ψt(y) dµ0(y) dµ0(x) dt

=
T∫

0

∫
Ω0

∫
Ω0

∂e

∂ρ

(
ρ̃t(Φt(y)),Φt(y)

)
∇γ
(

Φt(x)− Φt(y)
)
dµ0(y) ·Ψt(x) dµ0(x) dt, (3.17)

by subsequently interchanging the order of integration, using that the function ∇γ is odd,
and replacing x by y and vice versa. A combination of (3.13), (3.15), (3.16) and (3.17)
yields for S′[Φ](Ψ) an integral of the form

T∫
0

∫
Ω0

[. . .] ·Ψt(x) dµ0(x) dt, (3.18)

where we deliberately do not write the integrand in square brackets explicitly. Since this
integral vanishes for all Ψ ∈ C∞c ((0, T );C∞c (Ω0;Rd)) – cf. (3.13) – the part of the
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integrand in square brackets vanishes for almost all t ∈ [0, T ] and for µ0-almost every x.
Hence, we obtain

Φ̈t(x) =−
∫
Ω0

∇γ
(

Φt(x)− Φt(y)
)[∂e
∂ρ

(
ρ̃t(Φt(x)),Φt(x)

)

+ ∂e

∂ρ

(
ρ̃t(Φt(y)),Φt(y)

)]
dµ0(y)

−∇ye
(
ρ̃t(Φt(x)),Φt(x)

)
. (3.19)

Step B

The transition to a particle system takes place by substitution of µ̄N0 =
∑N
i=1mi δxi,0

for µ0 in (3.19). Moreover, in ρ̃t we replace µt by µ̄Nt := Φt#µ̄N0 . Note that, after
substitution, (3.19) holds µ̄N0 -a.e. and should therefore (only) be evaluated at x = xk,0
for all k ∈ {1, . . . , N}. In this way, we obtain (3.12).

3.2.5 Equations of motion via the route CAB
Step C

At the continuum level, deriving the Euler-Lagrange equations resembles considerably
what we did in Section 3.2.4 starting from (3.13). Here, the action is used as defined in
(3.5)–(3.6). In (3.5), the explicit dependence of ρt(Φt(x)) on Φt(x) corresponds to the
position at which ρt is evaluated. However, if the mapping Φt is varied, also the function
ρt itself changes. This is an implicit, ‘hidden’ dependence of ρt on the motion mapping
Φt. The exact relation is given by (3.3), which we therefore substitute in (3.5). The
variation becomes

S′[Φ](Ψ) = d

dε

( T∫
0

∫
Ω0

[
1
2 |Φ̇t(x) + ε Ψ̇t(x)|2

−e
(

ρ0(x)
|J(Φt + εΨt)(x)| , Φt(x) + εΨt(x)

)]
ρ0(x) dx dt

)∣∣∣∣∣
ε=0

,

cf. (3.14). Regarding the ε-dependence of the Jacobian matrix, we refer to Section 2 of
[SW68], where the equation of motion is derived from the action for the case where e has
no explicit dependence on the spatial coordinate; i.e. e = e(ρ). The determinant of the
Jacobian matrix is a polynomial in the entries of that matrix. The basic idea in [SW68]
is to apply the chain rule with respect to every element of the Jacobian matrix. To avoid
extra notation, we only state the result of [SW68], viz.

Φ̈t(x) = − 1
ρt
∇
(
ρ2
t

∂e

∂ρ

)∣∣∣∣
Φt(x)

=−
(

2∂e
∂ρ

(
ρt(Φt(x))

)
+ ρt(Φt(x))∂

2e

∂ρ2

(
ρt(Φt(x))

))
∇ρt(Φt(x)). (3.20)
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On the right-hand side of (3.20) the gradient of the pressure P appears, essentially due
to the thermodynamic relation ∂e/∂ρ = P/ρ2; cf. (9) in [SW68] in the absence of the
entropy term T dS. The notation used in [SW68] differs substantially from ours, but the
philosophy of deriving the equations of motion is the same.

If e = e(ρ, y), then instead of (3.20) we have

Φ̈t(x) =−
(

2∂e
∂ρ

(
ρt(Φt(x)),Φt(x)

)
+ ρt(Φt(x))∂

2e

∂ρ2

(
ρt(Φt(x)),Φt(x)

))
∇ρt(Φt(x))

−∇ye
(
ρt(Φt(x)),Φt(x)

)
, (3.21)

due to similar steps as the ones leading to (3.19). We omit further details here.

Step A

In this step, we formulate (3.21) in terms of measures. We approximate ρt in (3.21) by
ρ̃t as defined in (3.7) and obtain

Φ̈t(x) =−
(

2∂e
∂ρ

(
ρ̃t(Φt(x)),Φt(x)

)
+ ρ̃t(Φt(x))∂

2e

∂ρ2

(
ρ̃t(Φt(x)),Φt(x)

))
∇ρ̃t(Φt(x))

−∇ye
(
ρ̃t(Φt(x)),Φt(x)

)
. (3.22)

Step B

We take µ̄N0 :=
∑N
i=1mi δxi,0 and replace µt by µ̄Nt := Φt#µ̄N0 in ρ̃t that appears in

(3.22). We evaluate the resulting equation at x = xk,0 for all k ∈ {1, . . . , N} to obtain

Φ̈t(xk,0) =−
(

2∂e
∂ρ

(
ρ̃t(Φt(xk,0)),Φt(xk,0)

)
+ ρ̃t(Φt(xk,0))∂

2e

∂ρ2

(
ρ̃t(Φt(xk,0)),Φt(xk,0)

))
∇ρ̃t(Φt(xk,0))

−∇ye
(
ρ̃t(Φt(xk,0)),Φt(xk,0)

)
, (3.23)

where each appearance of ρ̃t denotes a sum over all particle positions. Namely,

ρ̃t(Φt(xk,0)) =
N∑
j=1

mj γ
(

Φt(xk,0)− Φt(xj,0)
)
, and (3.24)

∇ρ̃t(Φt(xk,0)) =
N∑
j=1

mj ∇γ
(

Φt(xk,0)− Φt(xj,0)
)
. (3.25)

3.2.6 Comparison of the resulting equations (3.12) and (3.23)
Procedures ABC and ACB yield the same equations of motion, namely (3.12). As
announced already in Section 3.2.2, the equation resulting from Procedure CAB is dif-
ferent; see (3.23). This difference between the two resulting equations arose because we
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introduced the regularization via ρ̃ at different stages. In fact, (3.12) contains an extra
regularization in space, as we will show now.

Only the term involving ∂e/∂ρ and ∂2e/∂ρ2 is different. In (3.12), we have

−
N∑
i=1

mi∇γ
(

Φt(xk,0)− Φt(xi,0)
)
·

·
[
∂e

∂ρ

(
ρ̃t(Φt(xk,0)),Φt(xk,0)

)
+ ∂e

∂ρ

(
ρ̃t(Φt(xi,0)),Φt(xi,0)

)]
,

while the corresponding part in (3.23) is

−
(

2∂e
∂ρ

(
ρ̃t(Φt(xk,0)),Φt(xk,0)

)
+ ρ̃t(Φt(xk,0))∂

2e

∂ρ2

(
ρ̃t(Φt(xk,0)),Φt(xk,0)

))
∇ρ̃t(Φt(xk,0)).

Note that both of them contain a part

−∂e
∂ρ

(
ρ̃t(Φt(xk,0)),Φt(xk,0)

)
∇ρ̃t(Φt(xk,0)).

Hence, let us consider in (3.23) only

−
(
∂e

∂ρ

(
ρ̃t(Φt(xk,0)),Φt(xk,0)

)
+ ρ̃t(Φt(xk,0))∂

2e

∂ρ2

(
ρ̃t(Φt(xk,0)),Φt(xk,0)

))
∇ρ̃t(Φt(xk,0))

=−∇
(
ρ̃t(Φt(xk,0))∂e

∂ρ

(
ρ̃t(Φt(xk,0)),Φt(xk,0)

))
. (3.26)

To obtain (3.26), we have assumed that ∇y∂e/∂ρ ≡ 0; this assumption anticipates the
choice we make in (3.35). Let us go back one more step and consider this term before
the introduction of ρ̃, i.e. as in (3.21). To see how this term relates to the corresponding
one in (3.12), we take the convolution with γ, and proceed as follows:

−
∫
Ωt

γ(ξ − y)∇y
(
ρt(y)∂e

∂ρ
(ρt(y), y)

)
dy

=
∫
Ωt

∇yγ(ξ − y) ρt(y) ∂e
∂ρ

(ρt(y), y) dy

=−
∫
Ω0

∇γ
(
ξ − Φt(y)

) ∂e
∂ρ

(
ρt(Φt(y)),Φt(y)

)
ρt(Φt(y))|JΦt(y)| dy

=−
∫
Ω0

∇γ
(
ξ − Φt(y)

) ∂e
∂ρ

(
ρt(Φt(y)),Φt(y)

)
ρ0(y) dy. (3.27)
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In the first step, we performed an integration by parts, with vanishing boundary terms
on ∂Ωt. This is because Ωt = supp ρt and hence ρt vanishes on its boundary. Now,
we replace ρ0(y)dy by dµ0(y) and approximate ρt by ρ̃t. Take µ0 :=

∑N
i=1mi δxi,0 and

evaluate at ξ = Φt(xk,0) to obtain

−
N∑
i=1

mi∇γ
(

Φt(xk,0)− Φt(xi,0)
) ∂e
∂ρ

(
ρ̃t(Φt(xi,0)),Φt(xi,0)

)
.

This expression appears in (3.12). To summarize: the connection between (3.12) and
(3.23) is that in the former during the derivation procedure an extra regularization in
space was introduced for a part of the right-hand side.

If we only consider the part involving ∂e/∂ρ, then (3.12) is the same as Equation (3.8)
in [Mon05]. The notation used in (3.8) of [Mon05] shows the direct dependence on the
pressure. In Equation (3.5) of [Mon05], the equivalent of (3.23) is given. The reason why
(3.12) is traditionally used in the SPH community is given in [Mon05]: it does conserve
linear and angular momentum exactly, as opposed to (3.23). Moreover, the first part on
the right-hand side of (3.23) is of the form

−1
ρ̃
P ′(ρ̃)∇ρ̃,

due to the relation ∂e/∂ρ = P/ρ2 that was mentioned in Section 3.2.5. Hence, an
analytical expression for dP/dρ is needed.

3.2.7 Nonconservative forces
In the previous sections, we assumed implicitly that there were no nonconservative forces.
If these are present, it is still possible to use to action as an ingredient to derive the equa-
tions of motion. Instead of a variational principle (3.13), which characterizes a stationary
point of the action, we formulate a variational equation in which the variation of the
action is not zero but equal to another functional; cf. e.g. [Ber09], Section 4.4.

In this section we discuss how to generalize the results of Sections 3.2.3, 3.2.4 and 3.2.5
in this respect.

Route ABC

In Section 3.2.3, only Step C needs to be reconsidered. The required generalization of
(3.10) is given on p. 23 of [GPS01]:

d

dt

(
∇ukL

∣∣∣(yi,ui)=(Φt(xi,0),Φ̇t(xi,0))

)
−∇ykL

∣∣∣
(yi,ui)=(Φt(xi,0),Φ̇t(xi,0))

= mk q[µ̄Nt ](Φt(xk,0), Φ̇t(xk,0)), (3.28)
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for each k ∈ {1, . . . , N}, where q is the force density (per unit mass) of the nonconser-
vative forces. The functional dependence in square brackets denotes that q incorporates
a nonlocal interaction term. More details are given in (3.37). The resulting equations of
motion are obtained in the same way as (3.12). They are

Φ̈t(xk,0) =−
N∑
i=1

mi∇γ
(

Φt(xk,0)− Φt(xi,0)
)[∂e

∂ρ

(
ρ̃t(Φt(xk,0)),Φt(xk,0)

)
+ ∂e

∂ρ

(
ρ̃t(Φt(xi,0)),Φt(xi,0)

)]
−∇ye

(
ρ̃t(Φt(xk,0)),Φt(xk,0)

)
+ q[µ̄Nt ](Φt(xk,0), Φ̇t(xk,0)), (3.29)

for each k ∈ {1, . . . , N}.

Route ACB

Equation (4.49) in [Ber09] provides the main idea of how to generalize (3.13) to a vari-
ational equation including nonconservative forces. The specific right-hand side ‘δA’ that
leads to (4.50) in [Ber09] indicates how to remain consistent with the way in which we
included nonconservative forces in (3.28). Following the idea of [Ber09], we use the
variational equation

S′[Φ](Ψ) = −Q[Φ](Ψ), (3.30)

for all test functions Ψ ∈ C∞c ((0, T );C∞c (Ω0;Rd)), with a functional Q[Φ](Ψ) of the
form

Q[Φ](Ψ) :=
T∫

0

∫
Ω0

q[µt](Φt(x), Φ̇t(x)) ·Ψt(x) dµ0(x) dt (3.31)

to generalize Step C of Section 3.2.4. Here, q is the same force density as in (3.28). By
the same idea as in Section 3.2.4, we obtain an equation of the form (3.18). It follows
directly from the structure of (3.31) that an extra term q[µt](Φt(x), Φ̇t(x)) is present
within the square brackets of this modified equation. This is the only difference with the
former (3.18). Consequently, in the presence of nonconservative forces, we obtain instead
of (3.19) the following equation:

Φ̈t(x) =−
∫
Ω0

∇γ
(

Φt(x)− Φt(y)
)[∂e
∂ρ

(
ρ̃t(Φt(x)),Φt(x)

)

+ ∂e

∂ρ

(
ρ̃t(Φt(y)),Φt(y)

)]
dµ0(y)

−∇ye
(
ρ̃t(Φt(x)),Φt(x)

)
+ q[µt](Φt(x), Φ̇t(x)). (3.32)

To perform Step B, we substitute µ̄N0 and µ̄Nt := Φt#µ̄N0 for µ0 and µt, respectively,
and evaluate the equation at x = xk,0 for all k ∈ {1, . . . , N}. The resulting equation of
motion is the same as (3.29).
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Route CAB

To generalize Step C of Section 3.2.5, we use (3.30) and

Q[Φ](Ψ) :=
T∫

0

∫
Ω0

q[ρt](Φt(x), Φ̇t(x)) ·Ψt(x) ρ0(x) dx dt. (3.33)

Note that, in correspondence with q as it was introduced underneath (3.28), the depend-
ence on ρt (in square brackets) indicates the presence of a nonlocal term; cf. (3.37).
When we generalize Step A of Section 3.2.5, this becomes a dependence on the measure
µt like before. The measure-valued equation obtained is

Φ̈t(x) =−
(

2∂e
∂ρ

(
ρ̃t(Φt(x)),Φt(x)

)
+ ρ̃t(Φt(x))∂

2e

∂ρ2

(
ρ̃t(Φt(x)),Φt(x)

))
∇ρ̃t(Φt(x))

−∇ye
(
ρ̃t(Φt(x)),Φt(x)

)
+ q[µt](Φt(x), Φ̇t(x)). (3.34)

Finally, performing the transition to discrete measures as in Step A of Section 3.2.5, we
obtain an equation like (3.23) with an additional term q[µ̄Nt ](Φt(xk,0), Φ̇t(xk,0)) on the
right-hand side.

Remark 3.2.2. The contributions of the nonconservative forces to (3.32) and (3.34) are
the same. The discussion about the difference between the two schemes in Section 3.2.6
is therefore analogous if we include nonconservative forces.

3.2.8 Measure-valued formulation
In Sections 3.2.3, 3.2.4 and 3.2.5 we derived particle-based approximation schemes and
we incorporated nonconservative forces in Section 3.2.7. To establish the convergence of
these schemes as N → ∞ we use a measure-valued framework. Hence, we focus on the
measure-formulations (3.32) and (3.34), without the specific choice µ0 = µ̄N0 .

Although (3.32) and (3.34) are different (cf. Section 3.2.6), we wish to establish the
convergence proof for both formulations simultaneously. Hence, we introduce a switching
parameter θ ∈ {0, 1} to unify both variants in a single equation of motion. First, we
assume that e is of the form

e(ρ, y) := V (y) + F̄ (ρ), (3.35)

in agreement with the remark we already made underneath (3.26). Here, V ∈ C2
b (Rd;R)

and F̄ ∈ C2(R+;R), where R+ := (0,∞). Note that ∂e/∂ρ = F̄ ′ and ∇ye = ∇V . We
introduce an auxiliary function Fθ, with θ ∈ {0, 1}, that is defined by

F0(ρ) := 1
ρ

d

dρ

(
ρ2F̄ ′(ρ)

)
, and F1(ρ) := F̄ ′(ρ). (3.36)

We choose q to be of the form

q[µ](y, u) := −η(y)u+ (K ∗ µ)(y), (3.37)
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with η ∈ C1
b (Rd;R+) and K ∈ C1

b (Rd;Rd).

We assign the value θ = 0 to the formulation in (3.34), and θ = 1 to (3.32). Both
equations are now simultaneously written as

Φ̈t(x) = −Fθ (ρ̃t(Φt(x)))∇ρ̃t(Φt(x))− θ (∇γ ∗ [(Fθ ◦ ρ̃t)µt])(Φt(x))
−∇V (Φt(x))− η(Φt(x)) Φ̇t(x) + (K ∗ µt)(Φt(x)). (3.38)

Here we use the shorthand notation

(∇γ ∗ [(Fθ ◦ ρ̃t)µt])(ξ) =
∫
Ωt

∇γ(ξ − y)Fθ(ρ̃t(y)) dµt(y).

In (3.38) we slightly abuse notation. The equation should be read as follows: whenever
θ = 0 we disregard the term θ (∇γ ∗ [(Fθ ◦ ρ̃t)µt])(Φt(x)) completely, irrespective of
whether the convolution term is well-defined, bounded etc.
Remark 3.2.3. We emphasize that F0 and F1 are physically different objects in the sense
that F0 contains all contributions of F̄ to the flow, while F1 only contains part of that
influence. Hence, although the notation might suggest so, by setting θ = 1 we are not
adding terms. However, F0 and F1 do have the same physical dimension and if, for
instance, F̄ is given by F̄ (ρ) ∼ ρκ for some κ ∈ R \ {0}, then both F0, F1 ∼ ρκ−1. We
use one function Fθ for the ease of presentation in the sequel.
Now, we arrive at the evolution problem that is central to the rest of this chapter. Fix a
final time T > 0. Recall from Chapter 1 that P(Rd) is the space of probability measures
on Rd. Assume that µ0 ∈ P(Rd) and that there is an r0 > 0 such that

suppµ0 ⊂ B(r0). (3.39)

Let v0 ∈ C1
b (Rd;Rd) and θ ∈ {0, 1} be fixed. We consider the system

Φ̈t(x) = −Fθ (ρ̃t(Φt(x)))∇ρ̃t(Φt(x))− θ (∇γ ∗ [(Fθ ◦ ρ̃t)µt])(Φt(x))
−∇V (Φt(x))− η(Φt(x)) Φ̇t(x) + (K ∗ µt)(Φt(x));

ρ̃t := γ ∗ µt;
µt = Φt#µ0;
Φ0(x) = x, Φ̇0(x) = v0(x),

(3.40)
for all x ∈ suppµ0 and all t ∈ (0, T ].
Remark 3.2.4. We could have taken K̄∗(γ ∗µt) for some K̄, instead of K∗µt, to comply
with the pressure term (i.e. the one involving Fθ) that only depends on the regularized
density ρ̃t. We prefer the shorter form K ∗ µt. This choice can be made without loss of
generality if we take K = K̄ ∗ γ.
Remark 3.2.5. It is not a priori clear whether the term K ∗ µt is a conservative or a
nonconservative force density, hence it is not clear whether it should be part of q or be
related to e. Assume there is a K such that K(ξ) = −K ′(|ξ|)ξ/|ξ|. Then either way
yields the same equation of motion. Indeed, if we include the energy density 1

2K ∗ µt in
e instead of including K ∗ µt in q, we also obtain (3.38).
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3.3 Main convergence result
In this section we first introduce some preliminary notions. Afterwards, we summarize
the assumptions required to derive the main convergence result (Theorem 3.3.10). This
theorem is a general result, of which the convergence of SPH schemes is a special case;
see Corollary 3.3.11. The proof of Theorem 3.3.10 is given in Section 3.4.

3.3.1 Preliminaries
We recall the concept of push-forward which was already introduced in (1.4). The fol-
lowing is a more precise definition:
Definition 3.3.1 (Push-forward). The push-forward of a probability measure µ ∈ P(Rd)
by a Borel measurable mapping Φ : Rd → Rd, notation Φ#µ, is defined by

(Φ#µ)(B) := µ(Φ−1(B))

for all sets B in the Borel σ-algebra of Rd. Equivalently, we can define Φ#µ as the
push-forward of µ by Φ if∫

Rd

f(x) d(Φ#µ)(x) =
∫
Rd

f(Φ(x)) dµ(x) (3.41)

for all measurable, bounded functions f on Rd.
Definition 3.3.2 (Joint representation). A joint representation of two measures µ1, µ2 ∈
P(Rd) is a measure π on Rd × Rd such that

π(A× Rd) = µ1(A), and π(Rd ×B) = µ2(B),

for all sets A and B taken from the Borel σ-algebra of Rd. We denote by Π(µ1, µ2) the
set of all joint representations of µ1 and µ2.
Joint representations are also called couplings. The measures µ1 and µ2 are called mar-
ginals of π. A useful property of any joint representation π ∈ Π(µ1, µ2) is that for each
i ∈ {1, 2} one has the identity∫

Rd×Rd

f(xi) dπ(x1, x2) =
∫
Rd

f(x) dµi(x)

for all measurable, bounded functions f on Rd. In fact, this can be seen as an alternative
definition.
Definition 3.3.3 (Wasserstein distance). For any p ∈ [1,∞), the Wasserstein distance
of order p, or p-Wasserstein distance, between two probability measures µ1, µ2 ∈ P(Rd)
is defined as

Wp(µ1, µ2) :=

 inf
π∈Π(µ1,µ2)

∫
Rd×Rd

|x− y|p dπ(x, y)


1/p

. (3.42)
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In this chapter, we use the 1-Wasserstein distance; that is, (3.42) for p = 1. The particular
choice p = 1 is compatible with the Lipschitz properties of the functions and the kind
of motion mapping that we use. For more details on the Wasserstein distance and the
related concept of optimal transport, we refer to [Vil03, Vil09] and the references cited
therein.

3.3.2 Assumptions
We assume the following:

Assumption 3.3.4. The functions V , η and K satisfy the following regularity constraints:
V ∈ C2

b (Rd;R), η ∈ C1
b (Rd;R+) and K ∈ C1

b (Rd;Rd).

Remark 3.3.5. Assumption 3.3.4 implies in particular that ∇V and K are Lipschitz
continuous. We denote their Lipschitz constants by |∇V |L and |K|L, respectively. In
general, the Lipschitz constant of any Lipschitz continuous φ : Rd → Rk, k ∈ N+, is
defined by

|φ|L := sup
{
|φ(x)− φ(y)|
|x− y|

∣∣∣ x, y ∈ Rd, x 6= y

}
. (3.43)

The conditions on Fθ and γ depend on the value of θ. Recall that R+ := (0,∞) and
define R+

0 := [0,∞).

Assumption 3.3.6. The function γ ∈ C2
b (Rd;R+

0 ) is even and satisfies
∫
Rd γ(x) dx = 1.

Assumption 3.3.7 (The case θ = 0). We require that F0 ∈ C1(R+;R). Moreover, we
assume that there is an M1 > 0 such that for all µ ∈ P(Rd)

sup
x∈suppµ

|F0 ((γ ∗ µ)(x))∇(γ ∗ µ)(x)| 6M1, (3.44)

and we assume there are constants M2,M3 > 0 such that

sup
u∈UT,γ

|F0(u)| 6M2, and

sup
u∈UT,γ

|F ′0(u)| 6M3,

where

UT,γ :=
{
u ∈ R+

0 :
(

inf
B(2r(T ))

γ

)
6 u 6 ‖γ‖∞

}
, and

r(T ) := r0 + T ‖v0‖∞ + 1
2 T

2 (‖∇V ‖∞ +M1 + ‖K‖∞).

The value of r(T ) follows from Lemma 3.4.1 and Corollary 3.4.2. Under these assump-
tions, F0 may have singularities at the origin, but only if γ is strictly positive everywhere
in B(2r(T )). Such choices of F0 and γ are used in [LGP98]; see also Section 3.5.

If θ = 1 we need the following assumption:
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Assumption 3.3.8 (The case θ = 1). We require that F1 ∈ C1(R+
0 ;R). Moreover, let

M2,M3 > 0 be such that
sup

u∈[0,‖γ‖∞]
|F1(u)| 6M2, and

sup
u∈[0,‖γ‖∞]

|F ′1(u)| 6M3.

Take M1 := 2M2 ‖∇γ‖∞.
To simplify the notation, we use the same letters for the constants.
Remark 3.3.9. Condition (3.44) in Assumption 3.3.7 is needed to get an a priori bound
on the propagation speed in Lemma 3.4.1. Hence, we can restrict ourselves to measures
with bounded support afterwards; cf. Corollary 3.4.2. To achieve the result of Lemma 3.4.1
for θ = 1, we need Assumption 3.3.8. This assumption does not allow for singularities in
F1 around zero.
We indicate now why a weaker assumption for F1, resembling (3.44) is not feasible.
Assume that F1(ρ) := ρα with α ∈ (−1, 0). This is the case also considered in [LGP98].
To bound the first term on the right-hand side of (3.38), [LGP98] assumes that

|∇γ(ξ)| 6 c|γ(ξ)|−α

for some c > 0 and for all ξ ∈ Rd. In our case, an estimate on
sup

x∈suppµ
|(∇γ ∗ [(F1 ◦ (γ ∗ µ))µ])(x)| (3.45)

is needed. Let γ be strictly positive everywhere. Since γ ∈ L1(Rd), we have that
limξ→∞ γ(ξ) = 0. Let γ satisfy the aforementioned condition |∇γ(ξ)| 6 c|γ(ξ)|−α.
Then also limξ→∞ |∇γ(ξ)| = 0. Under these (not very strict) conditions one can show
that (3.45) is unbounded. We use e.g. the sequence of measures (µk)k∈N+ defined by

µk := (δ−ke1
+ δke1

+ δ(k+1)e1
)/3 for each k ∈ N+,

where e1 is the first unit vector in Rd. Note in particular that (3.45) is unbounded if γ
is a Gaussian. However, we want the Gaussian to be admissible, since it is one of the
standard choices for γ.

3.3.3 Convergence result
Let {µN0 }N∈N ⊂ P(Rd), and assume that

suppµN0 ⊂ B(r0) for all N ∈ N,

where r0 > 0 is the same constant as in (3.39). For each N ∈ N we associate to the
measure µN0 a system of equations analogous to (3.40):

Φ̈Nt (x) = −Fθ
(
ρ̃Nt (ΦNt (x))

)
∇ρ̃Nt (ΦNt (x))− θ (∇γ ∗ [(Fθ ◦ ρ̃Nt )µNt ])(ΦNt (x))
−∇V

(
ΦNt (x)

)
− η(ΦNt (x)) Φ̇Nt (x) + (K ∗ µNt )(ΦNt (x));

ρ̃Nt := γ ∗ µNt ;
µNt = ΦNt #µN0 ;
ΦN0 (x) = x, Φ̇N0 (x) = v0(x),

(3.46)
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for all x ∈ suppµN0 and all t ∈ [0, T ]. Note that the only difference with (3.40) lies in
the initial distribution µN0 versus µ0; the initial velocity v0 is the same.

For any r > 0, define Pr(Rd) :=
{
µ ∈ P(Rd) : suppµ ⊂ B(r)

}
.

The main result of this chapter is the following theorem:
Theorem 3.3.10. Fix θ ∈ {0, 1}. Assume that v0 ∈ C1

b (Rd;Rd), and that Assumptions
3.3.4 and 3.3.6 hold. Let moreover (depending on the value of θ) Assumption 3.3.7 or
3.3.8 be satisfied, and take the sequence {µN0 } ⊂ Pr0(Rd) such that

W1(µN0 , µ0) N→∞−→ 0, (3.47)

for some µ0 ∈ Pr0(Rd). Then:
1. there is a unique pair

(µ,Φ) ∈ C([0, T ];Pr(T )(Rd))× C2([0, T ]; {φ : suppµ0 → Rd})

that satisfies (3.40);

2. if, for all N ∈ N, the pair

(µN ,ΦN ) ∈ C([0, T ];Pr(T )(Rd))× C2([0, T ]; {φ : suppµ0 → Rd})

is a solution of (3.46), then

sup
t∈[0,T ]

W1(µNt , µt)
N→∞−→ 0.

The proof of Theorem 3.3.10 is given in Section 3.4. As a direct consequence, we obtain
the convergence of the SPH scheme in the many-particle limit N →∞.
Corollary 3.3.11. Fix θ ∈ {0, 1}. For each N ∈ N+, let

µ̄N0 :=
N∑
j=1

mjδxj,0 ∈ Pr0(Rd)

for some {mj}Nj=1 ⊂ R+ such that
∑N
j=1mj = 1, and for some {xj,0}Nj=1 ⊂ B(r0).

Assume that W1(µ̄N0 , µ0) N→∞−→ 0 for some µ0 ∈ Pr0(Rd).
Then the discrete measure µ̄Nt =

∑N
k=1mkδΦt(xk,0) associated to the particle scheme

defined for each k ∈ {1, . . . , N} by:

Φ̈t(xk,0) =−
N∑
i=1

mi∇γ(Φt(xk,0)− Φt(xi,0)) [Fθ (ρ̃t(Φt(xk,0))) + θFθ (ρ̃t(Φt(xi,0)))]

−∇V (Φt(xk,0))− η(Φt(xk,0)) Φ̇t(xk,0) + (K ∗ µ̄Nt )(Φt(xk,0)), (3.48)

converges to the solution µt of (3.40) in the following sense:

sup
t∈[0,T ]

W1(µ̄Nt , µt)
N→∞−→ 0. (3.49)
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3.4 Proof of Theorem 3.3.10 – Convergence
Before proving the main result, Theorem 3.3.10, we provide two lemmas concerning basic
properties of the motion mapping Φt. The first lemma is an upper estimate for Φt.
Lemma 3.4.1. Let Assumptions 3.3.4, 3.3.6 and 3.3.7 or 3.3.8 (depending on the value
of θ) be satisfied. Then for any given µ ∈ C([0, T ];P(Rd)) the mapping Φt in (3.38),
completed with ρ̃t := γ ∗ µt, Φ0(x) = x and Φ̇0(x) = v0(x), satisfies

|Φt(x)| 6 |x|+ t‖v0‖∞ + 1
2 t

2 (M1 + ‖∇V ‖∞ + ‖K‖∞), (3.50)

for all x ∈ suppµt=0 and all t ∈ [0, T ].
Proof. For µ fixed, and for each x ∈ suppµt=0, the ODE (3.38) is well-posed on [0, T ],
given the assumptions on V , η, Fθ, γ and K, and the fact that µ is continuous in time.
The well-posedness follows from the Picard-Lindelöf Theorem; further details on the proof
are omitted.
Using an integrating factor H(t) := exp

(∫ t
0η(Φr(x)) dr

)
, we deduce from (3.38) that

|Φt(x)| 6|Φ0(x)|+ |v0(x) t|+

∣∣∣∣∣∣
t∫

0

1
H(s)

s∫
0

H(r)
(

Φ̈r(x) + η(Φr(x)) Φ̇r(x)
)
dr ds

∣∣∣∣∣∣
6|x|+ t ‖v0‖∞ +

t∫
0

s∫
0

H(r)
H(s)

∣∣Φ̈r(x) + η(Φr(x)) Φ̇r(x)
∣∣ dr ds.

Since η is a positive function and hence 0 6 H(r)/H(s) 6 1 in the inner integral, it
follows that

|Φt(x)| 6 |x|+ t ‖v0‖∞ +
t∫

0

s∫
0

∣∣∣∣−∇V (Φr(x)) + (K ∗ µr)(Φr(x))

− Fθ ((γ ∗ µr)(Φr(x)))∇(γ ∗ µr)(Φr(x))

− θ (∇γ ∗ [(Fθ ◦ (γ ∗ µr))µr])(Φr(x)))
∣∣∣∣ dr ds. (3.51)

In the case θ = 0, the following estimate holds due to Assumption 3.3.7:∣∣Fθ ((γ ∗ µr)(Φr(x)))∇(γ ∗ µr)(Φr(x))
+θ (∇γ ∗ [(Fθ ◦ (γ ∗ µr))µr])(Φr(x)))

∣∣ = |F0 ((γ ∗ µr)(Φr(x)))∇(γ ∗ µr)(Φr(x))|
6M1. (3.52)

Note that for any µ ∈ P(Rd) the estimate ‖γ ∗µ‖∞ 6 ‖γ‖∞ holds. Hence, for θ = 1 we
obtain: ∣∣Fθ ((γ ∗ µr)(Φr(x)))∇(γ ∗ µr)(Φr(x))

+θ (∇γ ∗ [(Fθ ◦ (γ ∗ µr))µr])(Φr(x)))
∣∣ 6M2 ‖∇γ‖∞ + ‖∇γ‖∞M2

= M1, (3.53)
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where the bounds from Assumption 3.3.8 are used.

A suitable combination of (3.51), (3.52) and (3.53) yields that for each θ ∈ {0, 1}

|Φt(x)| 6 |x|+ t ‖v0‖∞ +
t∫

0

s∫
0

(‖∇V ‖∞ + ‖K‖∞ +M1) dr ds

holds for all x ∈ suppµt=0 and t ∈ [0, T ], from which the statement of the lemma
follows.

Corollary 3.4.2. Let µ0 ∈ Pr0(Rd), and let Assumptions 3.3.4, 3.3.6 and 3.3.7 or 3.3.8
(depending on the value of θ) be satisfied. Then any solution of (3.40) must satisfy

suppµt ⊂ B(r(t)),

for each t ∈ [0, T ], where

r(t) := r0 + t‖v0‖∞ + 1
2 t

2 (M1 + ‖∇V ‖∞ + ‖K‖∞). (3.54)

The next lemma provides a Lipschitz-like estimate on Φt.

Lemma 3.4.3. Let ν1, ν2 ∈ C([0, T ];Pr(T )(Rd)) be given. Consider the motion map-
pings corresponding to νi (i ∈ {1, 2}) defined by

Φ̈ν
i

t (ξ) =− Fθ
(

(γ ∗ νit)(Φν
i

t (ξ))
)
∇(γ ∗ νit)(Φν

i

t (ξ))

− θ (∇γ ∗ [(Fθ ◦ (γ ∗ νit)) νit ])(Φν
i

t (ξ))

−∇V (Φν
i

t (ξ))− η(Φν
i

t (ξ))Φ̇ν
i

t (ξ) + (K ∗ νit)(Φν
i

t (ξ)) (3.55)

for all ξ ∈ supp νi0 and all t ∈ [0, T ], completed with initial conditions Φνi0 (ξ) = ξ and
Φ̇νi0 (ξ) = v0(ξ). Then, for all t ∈ [0, T ], x ∈ supp ν1

0 and y ∈ supp ν2
0 , it holds that

|Φν
1

t (x)− Φν
2

t (y)| 6 (1 + t ‖η‖∞) |x− y|+ t |v0(x)− v0(y)|

+
t∫

0

(M4 (t− s) + ‖η‖∞)
∣∣∣Φν1

s (x)− Φν
2

s (y)
∣∣∣ ds

+M5

t∫
0

(t− s)
∫
|z − w| dπ̃s(z, w) ds, (3.56)

where

M4 := |∇V |L + (1 + θ)M2 ‖Hess γ‖∞ +M3 ‖∇γ‖2∞ + |K|L,
M5 := (1 + θ)M2 ‖Hess γ‖∞ + (1 + θ)M3 ‖∇γ‖2∞ + |K|L,

and π̃s is an arbitrary element of Π(ν1
s , ν

2
s ) for all s ∈ [0, t].
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Proof. Note that, by the Fubini’s Theorem, for any integrable function f , we have
t∫

0

r∫
0

f(s) ds dr =
t∫

0

t∫
s

f(s) dr ds =
t∫

0

(t− s)f(s) ds. (3.57)

Integration of (3.55) in time together with (3.57) yields that

|Φν
1

t (x)− Φν
2

t (y)| 6 |x− y|+ t |v0(x)− v0(y)|

+
t∫

0

(t− s)|∇V (Φν
1

s (x))−∇V (Φν
2

s (y))| ds

+

∣∣∣∣∣∣
t∫

0

r∫
0

η(Φν
1

s (x))Φ̇ν
1

s (x)− η(Φν
2

s (y))Φ̇ν
2

s (y) ds dr

∣∣∣∣∣∣
+

t∫
0

(t− s)
∣∣∣Fθ ((γ ∗ ν1

s )(Φν
1

s (x))
)
∇(γ ∗ ν1

s )(Φν
1

s (x))

−Fθ
(

(γ ∗ ν2
s )(Φν

2

s (y))
)
∇(γ ∗ ν2

s )(Φν
2

s (y))
∣∣∣ ds

+ θ

t∫
0

(t− s)
∣∣∣(∇γ ∗ [(Fθ ◦ (γ ∗ ν1

s ))ν1
s ])(Φν

1

s (x))

−(∇γ ∗ [(Fθ ◦ (γ ∗ ν2
s ))ν2

s ])(Φν
2

s (y))
∣∣∣ ds

+
t∫

0

(t− s)
∣∣∣(K ∗ ν1

s )(Φν
1

s (x))− (K ∗ ν2
s )(Φν

2

s (y))
∣∣∣ ds. (3.58)

Furthermore, we have
t∫

0

(t−s)|∇V (Φν
1

s (x))−∇V (Φν
2

s (y))| ds 6 |∇V |L
t∫

0

(t−s)|Φν
1

s (x)−Φν
2

s (y)| ds, (3.59)

and∣∣∣∣∣∣
t∫

0

r∫
0

η(Φν
1

s (x))Φ̇ν
1

s (x)− η(Φν
2

s (y))Φ̇ν
2

s (y) ds dr

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
t∫

0

r∫
0

d

ds


Φν

1
s (x)∫

Φν2
s (y)

η(z) dz

 ds dr

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
t∫

0


Φν

1
r (x)∫

Φν2
r (y)

η(z) dz −
x∫
y

η(z) dz

 dr

∣∣∣∣∣∣∣∣ 6 ‖η‖∞
t∫

0

|Φν
1

r (x)−Φν
2

r (y)| dr+‖η‖∞ t |x−y|.

(3.60)
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Regarding the term involving Fθ on the fourth and fifth line of (3.58), we proceed as
follows: we have∣∣Fθ ((γ ∗ ν1

s )(ξ1)
)
∇(γ ∗ ν1

s )(ξ1)− Fθ
(
(γ ∗ ν2

s )(ξ2)
)
∇(γ ∗ ν2

s )(ξ2)
∣∣

6
∣∣Fθ ((γ ∗ ν1

s )(ξ1)
)∣∣ ∣∣∇(γ ∗ ν1

s )(ξ1)−∇(γ ∗ ν1
s )(ξ2)

∣∣
+
∣∣Fθ ((γ ∗ ν1

s )(ξ1)
)∣∣ ∣∣∇(γ ∗ ν1

s )(ξ2)−∇(γ ∗ ν2
s )(ξ2)

∣∣
+
∣∣Fθ ((γ ∗ ν1

s )(ξ1)
)
− Fθ

(
(γ ∗ ν1

s )(ξ2)
)∣∣ ∣∣∇(γ ∗ ν2

s )(ξ2)
∣∣

+
∣∣Fθ ((γ ∗ ν1

s )(ξ2)
)
− Fθ

(
(γ ∗ ν2

s )(ξ2)
)∣∣ ∣∣∇(γ ∗ ν2

s )(ξ2)
∣∣ . (3.61)

We only consider ξ1 ∈ supp ν1
s and ξ2 ∈ supp ν2

s . This actually implies that ξ1, ξ2 ∈
B(r(T )). For each i, j ∈ {1, 2}, we have the following estimates:

(γ ∗ νis)(ξj) 6 ‖γ‖∞,

and
(γ ∗ νis)(ξj) > inf

ξj ,z∈B(r(T ))
γ(ξj − z) = inf

B(2r(T ))
γ.

Thus we get (γ ∗ νis)(ξj) ∈ UT,γ . We continue the estimation of (3.61) with

∣∣Fθ ((γ ∗ ν1
s )(ξ1)

)
∇(γ ∗ ν1

s )(ξ1)− Fθ
(
(γ ∗ ν2

s )(ξ2)
)
∇(γ ∗ ν2

s )(ξ2)
∣∣

6 M2 ‖Hess γ‖∞ |ξ1 − ξ2|+M2
∣∣∇(γ ∗ ν1

s )(ξ2)−∇(γ ∗ ν2
s )(ξ2)

∣∣
+M3 ‖∇γ‖2∞ |ξ1 − ξ2|+M3 ‖∇γ‖∞

∣∣(γ ∗ ν1
s )(ξ2)− (γ ∗ ν2

s )(ξ2)
∣∣ , (3.62)

where Hess γ denotes the Hessian matrix containing the second derivatives of γ. We used
here that ‖∇(γ ∗ ν2

s )‖∞ 6 ‖∇γ‖∞, ‖Hess(γ ∗ ν2
s )‖∞ 6 ‖Hess γ‖∞ and the fact that

|ψ|L = ‖∇ψ‖∞ and |∇ψ|L = ‖Hessψ‖∞ for any differentiable function ψ. Note that:

∣∣(γ ∗ ν1
s )(ξ2)− (γ ∗ ν2

s )(ξ2)
∣∣ =

∣∣∣∣∣∣
∫
γ(ξ2 − z) dν1

s (z)−
∫
γ(ξ2 − w) dν2

s (w)

∣∣∣∣∣∣
6
∫
|γ(ξ2 − z)− γ(ξ2 − w)| dπ̃s(z, w)

6‖∇γ‖∞
∫
|z − w| dπ̃s(z, w), (3.63)

where π̃s ∈ Π(ν1
s , ν

2
s ) is arbitrary. We emphasize that the bound (3.63) is independent

of the choice of ξ1, ξ2. Analogously, we have

∣∣∇(γ ∗ ν1
s )(ξ2)−∇(γ ∗ ν2

s )(ξ2)
∣∣ 6 ‖Hess γ‖∞

∫
|z − w| d̃π̃s(z, w), (3.64)
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for an arbitrary ˜̃πs ∈ Π(ν1
s , ν

2
s ). We choose ˜̃πs = π̃s. It follows that∣∣Fθ ((γ ∗ ν1

s )(ξ1)
)
∇(γ ∗ ν1

s )(ξ1)− Fθ
(
(γ ∗ ν2

s )(ξ2)
)
∇(γ ∗ ν2

s )(ξ2)
∣∣

6
(
M2 ‖Hess γ‖∞ +M3 ‖∇γ‖2∞

) |ξ1 − ξ2|+ ∫ |z − w| dπ̃s(z, w)

 . (3.65)

If θ = 1, then similar estimates as in the first term on the right-hand side of (3.62), and
as in (3.63) and (3.64) yield∣∣∣∣(∇γ ∗ [(Fθ ◦ (γ ∗ ν1

s ))ν1
s ])(ξ1)

−(∇γ ∗ [(Fθ ◦ (γ ∗ ν2
s ))ν2

s ])(ξ2)
∣∣∣∣ 6M2 ‖Hess γ‖∞ |ξ1 − ξ2|

+M3 ‖∇γ‖2∞
∫
|z − w| dπ̃s(z, w)

+M2 ‖Hess γ‖∞
∫
|z − w| dπ̃s(z, w), (3.66)

where the same π̃s ∈ Π(ν1
s , ν

2
s ) as in (3.63) is chosen.

We treat the last term in (3.58) as follows:∣∣(K ∗ ν1
s )(ξ1)− (K ∗ ν2

s )(ξ2)
∣∣ 6 ∣∣(K ∗ ν1

s )(ξ1)− (K ∗ ν1
s )(ξ2)

∣∣
+
∣∣(K ∗ ν1

s )(ξ2)− (K ∗ ν2
s )(ξ2)

∣∣
6 |K|L

|ξ1 − ξ2|+ ∫ |z − w| dπ̃s(z, w)

 . (3.67)

The bound on the second term is obtained like in (3.63).

We combine (3.58), (3.59), (3.60), (3.65), (3.66) and (3.67) to get

|Φν
1

t (x)− Φν
2

t (y)| 6 (1 + t ‖η‖∞) |x− y|+ t |v0(x)− v0(y)|

+
t∫

0

(M4 (t− s) + ‖η‖∞) |Φν
1

s (x)− Φν
2

s (y)| ds

+M5

t∫
0

(t− s)
∫
|z − w| dπ̃s(z, w) ds,

with M4 and M5 as defined in the statement of the lemma.

We now have all ingredients to prove Theorem 3.3.10.
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Proof of Part 1 of Theorem 3.3.10.

Proof. (Existence and uniqueness of solutions). If M5 = 0, then the well-posedness of
(3.40) is straightforward. In that case, Fθ ◦ (γ ∗µt) = 0 on suppµt for all t and moreover
K must be constant, so the first equation in (3.40) is independent of µt. For each
x ∈ suppµ0, the Picard-Lindelöf Theorem guarantees the existence and uniqueness of
the motion mapping (as mentioned before). The solution (µt)06t6T is therefore uniquely
defined by the push-forward µt = Φt#µ0.

If M5 6= 0, then the well-posedness proof is based on Banach’s Fixed Point Theorem.
Let T > 0 be fixed. Choose N ∈ N+ large enough, such that T ∗ := T/N satisfies

κT∗ := 1
2 (T ∗)2M5 exp

(
‖η‖∞ T ∗ + 1

2 M4 (T ∗)2
)
< 1. (3.68)

Let j ∈ {1, . . . ,N} be fixed. Suppose that µ(j)
0 ∈ P(Rd) and v(j)

0 ∈ C1
b (Rd;Rd) are

given. Consider a mapping F (j) : ν 7→ µ := F (j)(ν) from the space

Cj :=
{
ν ∈ C([0, T ∗];Pr(jT∗)(Rd)) : ν|t=0 = µ

(j)
0

}
(3.69)

to itself, where, given ν, the image µt = (F (j)ν)t is defined for all t ∈ [0, T ∗] by

µt = [Φ(j)
t ]ν#µ(j)

0 .

The motion mapping [Φ(j)]ν : R+ × Rd → Rd solves the following ODE

[Φ̈(j)
t ]ν(x) = −Fθ

(
ρ̃t([Φ(j)

t ]ν(x))
)
∇ρ̃t([Φ(j)]νt (x))

−θ (∇γ ∗ [(Fθ ◦ ρ̃t)νt])([Φ(j)
t ]ν(x))

−∇V
(

[Φ(j)
t ]ν(x)

)
− η

(
[Φ(j)
t ]ν(x)

)
[Φ̇(j)
t ]ν(x)

+(K ∗ νt)([Φ(j)
t ]ν(x));

ρ̃t := γ ∗ νt;
Φν0(x) = x, Φ̇ν0(x) = v

(j)
0 (x),

(3.70)

for all x ∈ suppµ(j)
0 and all t ∈ (0, T ∗].

The space Cj is complete for arbitrary j ∈ {1, . . . ,N} due to Corollary A.4 in Appendix
A. Note that a fixed point µ(j) of this mapping together with the corresponding motion
mapping Φ(j) is a solution of (3.40) on [0, T ∗] with initial data µ(j)

0 and v(j)
0 .

We create a hierarchy of the mappings F (j) for j ∈ {1, . . . ,N} by defining the initial
conditions for F (j+1) based on the fixed point of F (j):

µ
(j+1)
0 :=µ

(j)
T∗

v
(j+1)
0 := Φ̇(j)

T∗

completed with µ(1)
0 := µ0 and v(1)

0 := v0. We now prove that the mapping F (j) has a
unique fixed point and thus µ(j)

T∗ and Φ̇(j)
T∗ are well-defined.
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For any ν ∈ Cj the image µ = F (j)(ν) exists and is an element of Cj , as we show now.
Well-posedness of the motion mapping (for given ν and for each x ∈ suppµ(j)

0 ) follows
from the Picard-Lindelöf Theorem (see before), and hence the existence and uniqueness
of µ is guaranteed.
The support of the image measure, suppµt, is contained in a ball of radius

r(jT ∗) = r0 + jT ∗ ‖v0‖∞ + 1
2(jT ∗)2 (M1 + ‖∇V ‖∞ + ‖K‖∞).

This is easily checked by use of (3.50) and a recursive relation involving ‖[Φ̇(k)
T∗ ]ν‖∞ =

‖v(k+1)
0 ‖∞ for each k ∈ {1, . . . ,N − 1}. Thus, the image µ of our mapping F (j) is an

element of Cj .

Consider two measures ν1, ν2 ∈ Cj and their corresponding images µ1 := F (j)(ν1) and
µ2 := F (j)(ν2). Let π0 ∈ Π(µ(j)

0 , µ
(j)
0 ) be arbitrary. For an arbitrary fixed t ∈ [0, T ∗],

define πt ∈ Π(µ1
t , µ

2
t ) by

πt :=
(

[Φ(j)
t ]ν

1
, [Φ(j)

t ]ν
2
)

#π0.

Note that this πt is a joint representation of µ1
t and µ2

t for each t. We do not indicate
explicitly the dependence on j of π0, µ1, µ2 and πt since no ambiguity appears. By
definition of the push-forward operator and of the Wasserstein distance (see Definitions
3.3.1 and 3.3.3), we have that

W1(µ1
t , µ

2
t ) 6

∫
|z − w| dπt(z, w) =

∫ ∣∣∣[Φ(j)
t ]ν

1
(x)− [Φ(j)

t ]ν
2
(y)
∣∣∣ dπ0(x, y) (3.71)

holds for each t ∈ [0, T ∗]. Applied to (3.56), Gronwall’s Lemma yields that for each
x, y ∈ suppµ(j)

0 it holds that∣∣∣[Φ(j)
t ]ν

1
(x)− [Φ(j)

t ]ν
2
(y)
∣∣∣ 6 [

(1 + t ‖η‖∞) |x− y|+ t |v(j)
0 (x)− v(j)

0 (y)|

+M5

t∫
0

(t− s)
∫
|z − w| π̃s(dz, dw) ds

]
exp

(
‖η‖∞ t+ 1

2 M4 t
2
)
. (3.72)

We remark that Gronwall’s Lemma may be applied, mainly because the term |v(j)
0 (x) −

v
(j)
0 (y)| is bounded. One can show this fact using estimates similar to those in the proof
of Lemma 3.4.1. Now, we combine (3.71) and (3.72) and obtain

W1(µ1
t , µ

2
t ) 6

[
(1 + t ‖η‖∞)

∫
|x− y| dπ0(x, y) + t

∫
|v(j)

0 (x)− v(j)
0 (y)| dπ0(x, y)

+M5

t∫
0

(t− s)
∫
|z − w| dπ̃s(z, w) ds

]
exp

(
‖η‖∞ t+ 1

2 M4 t
2
)
. (3.73)
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The integration with respect to dπ0(x, y) disappeared from the third term inside the
square brackets, since this term is independent of x and y, and moreover

∫
dπ0(x, y) = 1.

Recall furthermore that π̃s ∈ Π(ν1
s , ν

2
s ) is arbitrary (and in particular independent of π0).

Thus, choosing a specific π0 on the right-hand side does not affect the third term. We
take

π0 := (I ⊗ I)#µ(j)
0 ,

which is the measure concentrated on the diagonal x = y with both marginals equal to
µ

(j)
0 . With some abuse of notation this particular π0 can also be written as

dπ0(x, y) := δ(x− y)dµ(j)
0 (y).

For this choice of π0, we have that∫
|x− y| dπ0(x, y) = 0,

and ∫
|v(j)

0 (x)− v(j)
0 (y)| dπ0(x, y) = 0.

Only the third term in the square brackets on the right-hand side of (3.73) remains.
Within the integral we take the infimum over π̃s ∈ Π(ν1

s , ν
2
s ) for each s independently

(which is allowed by Lebesgue’s Dominated Convergence Theorem, [Bog07a], Theorem
2.8.1) and continue to estimate:

W1(µ1
t , µ

2
t ) 6

1
2 t

2M5 exp
(
‖η‖∞ t+ 1

2 M4 t
2
)

sup
s∈[0,t]

W1(ν1
s , ν

2
s ).

Finally, we take the supremum over t ∈ [0, T ∗]:

sup
t∈[0,T∗]

W1(µ1
t , µ

2
t ) 6

1
2 (T ∗)2M5 exp

(
‖η‖∞ T ∗ + 1

2 M4 (T ∗)2
)

sup
t∈[0,T∗]

W1(ν1
t , ν

2
t ).

By the specific choice of T ∗, F (j) is a contraction mapping for each j, since

sup
t∈[0,T∗]

W1(µ1
t , µ

2
t ) 6 κT∗ sup

t∈[0,T∗]
W1(ν1

t , ν
2
t ),

where κT∗ < 1 by assumption; cf. (3.68). As mentioned underneath (3.70), the space
Cj is a complete metric space for each j due to Corollary A.4 in Appendix A. Banach’s
Fixed Point Theorem guarantees the existence of a unique fixed point of F (j) for each j.

Using the construction of (µ(j),Φ(j)) on [0, T ∗] for j ∈ {1, . . . ,N}, we define a couple
(µ,Φ) of a measure and a motion mapping on the interval [0, T ] as follows

(µt,Φt) :=
(
µ

(j)
t−(j−1)T∗ ,Φ

(j)
t−(j−1)T∗

)
if t ∈ ((j − 1)T ∗, jT ∗],
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for each j ∈ {1, . . . ,N}.

By construction, we have that

(µ,Φ) ∈ C([0, T ];Pr(T )(Rd))× C2([0, T ]; {φ : suppµ0 → Rd})

and (µ,Φ) uniquely satisfies (3.40) with initial data µ0 and v0.

Proof of Part 2 of Theorem 3.3.10.

Proof. (Convergence of approximate solutions). Note that Part 1 of the proof implies
that for all initial measures µ0 and µN0 (for any N ∈ N) there are corresponding unique
solutions (µ,Φ) and (µN ,ΦN ), respectively. Fix N ∈ N and π0 ∈ Π(µN0 , µ0) arbitrarily.
We use (3.56) with ν1 = µN and ν2 = µ. Thus Φν1 = ΦN and Φν2 = Φ. First of all,
we observe that

|v0(x)− v0(y)| 6 ‖∇v0‖∞ |x− y|, (3.74)

for all x ∈ suppµN0 and all y ∈ suppµ0. This estimate holds, since v0 ∈ C1
b (Rd;Rd)

is given, is defined on the whole of Rd and has bounded derivative. It is not possible
to use a similar estimate in (3.72), because v(j)

0 is part of the solution and only defined
on suppµ(j)

0 . In general, ∇v(j)
0 might not even be defined. Using the Lipschitz estimate

(3.74) and integrating (3.56) against dπ0(x, y), we obtain∫
|ΦNt (x)− Φt(y)| dπ0(x, y) 6(1 + t (‖∇v0‖∞ + ‖η‖∞))

∫
|x− y| dπ0(x, y)

+
t∫

0

(M4(t− s) + ‖η‖∞)
∫
|ΦNs (x)− Φs(y)| dπ0(x, y) ds

+M5

t∫
0

(t− s)
∫
|z − w| dπ̃s(z, w) ds, (3.75)

where we use that the last term is independent of x and y, and the fact that π0 is a
probability measure on Rd×Rd. Recall that π̃s ∈ Π(ν1

s , ν
2
s ) = Π(µNs , µs) is arbitrary and

in general does not depend on π0. We now introduce an explicit relation between π̃s and
π0 by choosing

π̃s := (ΦNs ,Φs)#π0 (3.76)

for each s ∈ [0, T ]. We substitute (3.76) in (3.75) and apply Gronwall’s Lemma to obtain∫
|ΦNt (x)− Φt(y)| dπ0(x, y) 6 (1 + t (‖∇v0‖∞ + ‖η‖∞))

∫
|x− y| dπ0(x, y)·

· exp
(
‖η‖∞ t+ 1

2 (M4 +M5) t2
)
. (3.77)
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Using the already defined joint representation π̃t = (ΦNt ,Φt)#π0 ∈ Π(µNt , µt), we obtain
an estimate like in (3.71). Together with (3.77) this estimate yields the bound

W1(µNt , µt) 6(
(1 + t (‖∇v0‖∞ + ‖η‖∞))

∫
|x− y| dπ0(x, y)

)
exp

(
‖η‖∞ t+ 1

2 (M4 +M5) t2
)
.

We take the infimum over π0 ∈ Π(µN0 , µ0) on the right-hand side:

W1(µNt , µt) 6 (1+t (‖∇v0‖∞ + ‖η‖∞)) exp
(
‖η‖∞ t+ 1

2 (M4 +M5) t2
)
W1(µN0 , µ0).

Finally, we take the supremum over t ∈ [0, T ] on both sides of the inequality and obtain

sup
t∈[0,T ]

W1(µNt , µt) 6

(1 + T (‖∇v0‖∞ + ‖η‖∞)) exp
(
‖η‖∞ T + 1

2 (M4 +M5)T 2
)
W1(µN0 , µ0).

Hence W1(µN0 , µ0) N→∞−→ 0 implies

sup
t∈[0,T ]

W1(µNt , µt)
N→∞−→ 0.

The proof is now complete.

3.5 Comments on Assumptions 3.3.7 and 3.3.8, and the
condition (3.47)

In this section, we comment on the assumptions needed for Theorem 3.3.10.

Assumptions on Fθ and γ: We observe that in [LGP98] only θ = 0 is used, and
furthermore ∇V ≡ 0, η ≡ 0 and K ≡ 0. All possible choices of F0 and γ treated in
[LGP98] satisfy Assumption 3.3.7:

1. F0(u) = uα, for α > 0, satisfies the assumptions for all choices of γ ∈ C2
b (Rd;R+

0 );

2. F0(u) = uα, for −1 < α < 0, satisfies the assumptions if γ is an element of
C2
b (Rd;R+) and satisfies the extra condition |∇γ(x)| 6 c |γ(x)|−α for all x, for

some constant c > 0.

The class of admissible pairs (F0, γ) covered by Assumption 3.3.7 is more general than
the class of admissible pairs in [LGP98], where only F0 of the form F0(u) = uα is treated.
For instance, in our case any F0 ∈ C1

b (R+
0 ;R+

0 ) (bounded and with bounded derivative)
is allowed in combination with an arbitrary γ ∈ C2

b (Rd;R+
0 ).
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Assumption (3.47) on convergence of initial data: Given the initial probability mea-
sure µ0 supported in the closed ball B(r0), we demonstrate here two ways of constructing
an approximating sequence of measures (µN0 )N∈N+ .

The first way of constructing µN0 is deterministic and has been used in [Bol08]. For
simplicity of presentation, we assume d = 1 and suppµ0 ⊂ [0, 1]. For each N ∈ N+,
define

µN0 :=
N∑
i=1

mi δ i
N−

1
2N
, (3.78)

where mi :=
∫

[ i−1
N , iN ) dµ0(x), for each i = 1, . . . , N − 1, and mN :=

∫
[1− 1

N ,1] dµ0(x).
It follows that

∑
imi =

∫
dµ0(x) = 1 and µN0 ∈ P(R). Define a map

Ψ : [0, 1]→
{
i

N
− 1

2N : 1 ≤ i ≤ N
}

by Ψ(x) := i
N −

1
2N if i−1

N ≤ x < i
N and Ψ(1) := 1 − 1

2N . For every measurable and
bounded function f defined on [0, 1], we have that∫

[0,1]

f(x)dµN0 (x) =
∫

[0,1]

f(Ψ(x)) dµ0(x).

Hence, µN0 = Ψ#µ0. Note that |x−Ψ(x)| 6 1
2N for every x ∈ [0, 1]. Therefore,

W1(µN0 , µ0) ≤
∫

[0,1]

|x−Ψ(x)| dµ0(x) ≤ 1
2N

∫
[0,1]

dµ0(x) = 1
2N , (3.79)

where we obtain the first inequality by defining π ∈ Π(µN0 , µ0) as π := (I×Ψ)#µ0. This
implies that W1(µN0 , µ0) N→∞−→ 0.

This procedure can be generalized to the case d > 1 (but with more involved nota-
tion). Let suppµ0 ⊂ [0, 1]d and let N ∈ {kd : k ∈ N+}. Dividing the hypercube [0, 1]d
into N equal subcubes, we obtain, similarly as in (3.79), that the convergence rate is
O(1/ d

√
N).

A second way of constructing µN0 is probabilistic and is based on the law of large num-
bers as was already pointed out in [LGP98]. Suppose that the points Xi, with indices
i ∈ {1, . . . , N}, are independent identically distributed random variables with the same
distribution µ0 ∈ P

(
B(r0)

)
. Let µN0 be the empirical measure, defined by

µN0 := 1
N

N∑
i=1

δXi .

According to [Dud04], Theorem 11.4.1, the sequence (µN0 ) converges almost surely to
µ0. This implies that for almost every realization X̄1, X̄2, . . . the corresponding sequence
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of measures
(
µ̄N0
)
⊂ P

(
B(r0)

)
given by µ̄N0 := 1/N

∑
i δX̄i , converges in the narrow

topology to µ0. That is,∫
B(r0)

f(x)dµN0 (x)→
∫

B(r0)

f(x)dµ0(x) for all f ∈ Cb
(
B(r0)

)
.

In fact there is an underlying probability space Ω and Xi : Ω → B(r0). Hence µN0 is,
strictly speaking, a mapping from Ω to P

(
B(r0)

)
; i.e. µN0 : Ω → P(B(r0)). The term

‘almost every realization’ refers to the fact that the set (in Ω) on which the narrow con-
vergence does not hold, has zero probability (with respect to the probability distribution
on Ω). In layman’s terms, this means that if we draw a random sample X̄1, X̄2, . . ., it is
‘unlikely’ that the corresponding sequence (µ̄N0 ) does not converge narrowly.

Assume that our random sample did yield such narrowly converging sequence (µ̄N0 ). Since
all µ̄N0 are probability measures on a bounded domain B(r0), their first moments are uni-
formly integrable (i.e. uniformly in N). Consequently, Theorem 7.1.5 in [AGS08] implies
that

W1(µ̄N0 , µ0) N→∞−→ 0.

3.6 Numerical illustration
We illustrate the theoretical convergence result of Theorem 3.3.10 by two simple numer-
ical examples. The first one involves only the first term on the right-hand side of (3.48).
We consider both schemes (θ = 0 and θ = 1), in dimension d = 1 and d = 2. In the
second example only the nonlocal interaction term and a drag force in (3.48) are present
and we take d = 2. We use a leapfrog algorithm – cf. [LRS96] – with a constant timestep.
This algorithm is a second-order symplectic integrator, thus the momentum of the system
is preserved, when conservative processes are studied.

We assume that the initial measure µ0 has a density ρ0 such that ρ0(x) = 1 for all
x ∈ [0, 1]d and ρ0(x) = 0 otherwise. We construct the measure µN0 , corresponding to the
N -particle approximation, according to (3.78) or its d-dimensional counterpart. Hence,
the initial particle configuration is realized for d = 1 by equipartitioning the initial domain
[0, 1] into N intervals. For the two-dimensional examples, the initial domain is the square
[0, 1]2 ⊂ R2, which we subdivide in N square subcells. Particles are placed initially in the
center of each subcell. For both d = 1 and d = 2, masses are assigned as mi = ρ0(xi)/N
for each i ∈ {1, . . . , N}, the factor 1/N denoting the length (if d = 1) or area (if d = 2)
of each subcell.
As argued underneath (3.78), the sequence (µN0 )N∈N+ constructed in this way con-
verges to µ0 and the convergence rate is O(1/ d

√
N). Hence, the corresponding solutions

(µN )N∈N+ converge at the same rate; see the last lines of the proof of Part 2 of Theorem
3.3.10.

The problem involving only the pressure-related force, considers the spontaneous expan-
sion of a gas cloud (initially at rest, v0 ≡ 0) until time T = 1, governed by the equation
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Figure 3.1: The density ρ̃ at final time T = 1 for N = 29 particles in the system with a
pressure term only. Solid grey and dashed black plots refer to the schemes for θ = 0 and
θ = 1, respectively. (a): For the exponent κ = 2 the two schemes coincide. (b): For the
exponent κ = 7 the two schemes give different results.

of state P (ρ) = cρκ, where c is a parameter and κ is the so-called polytropic exponent.
We recall that P relates to e via ∂e/∂ρ = P/ρ2. In dimension d = 1, we use a Gaussian
regularization function, defined by

γ(x) := 1√
π
e−|x|

2
, (3.80)

for all x ∈ R. We take c = 1. In Figure 3.1, results are shown for κ = 2 and κ = 7,
respectively. Solid grey graphs correspond to the scheme for θ = 0 and dashed black
graphs to the scheme θ = 1. The plots show the result for the density ρ̃ at T = 1, as
obtained for N = 29 particles.

For d = 1, we perform calculations subsequently for N = 2k particles, where k ∈
{1, . . . , 9}, and compute the supremum over time of the Wasserstein distance between
subsequent solutions; cf. (3.49). We compute the Wasserstein distance by solving a linear
programming problem based on a formulation in terms of optimal transportation. Due to
the high computational cost (for large k), we use the following approximation to reduce
the number of evaluations of W1:

sup
t∈[0,T ]

W1(µ2k
t , µ

2k+1

t ) ≈ max
τ∈I

W1(µ2k
τ , µ

2k+1

τ ) =: A(1)
k,k+1. (3.81)

Here,
I :=

{
jT

NW − 1 : j = 0, . . . , (NW − 1)
}

(3.82)

and we take NW = 10. For the majority of the computations however, the maximum
distance is observed at the final time T .
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We estimate numerically the order of convergence q, that is the value of q such that

sup
t∈[0,T ]

W1(µ2k
t , µt) = O

((
1
2k

)q)
,

as k →∞, where µt denotes the limit measure. As mentioned before, q = 1 should hold
in the one-dimensional case; cf. (3.79). We use the quantity

log2

(
A

(1)
k,k+1

A
(1)
k+1,k+2

)
(3.83)

to approximate the value of q. The results (for κ = 2 and κ = 7) are given in Table 3.1
and support our theoretical claim.

θ = 0 θ = 1
k κ = 2 κ = 7 κ = 7
1 1.0144 1.0119 1.0048
2 1.0035 1.0029 1.0012
3 1.0009 1.0009 1.0001
4 1.0005 0.9999 1.0005
5 0.9998 1.0001 0.9997
6 1.0000 1.0003 0.9991
7 0.9992 1.0008 1.0004

Table 3.1: Estimation of the order of convergence q for the system with only a pressure
term, where d = 1. The table shows the quantity log2(A(1)

k,k+1/A
(1)
k+1,k+2), see (3.83),

where k refers to the number N = 2k of particles involved. Note that for κ = 7 the order
of convergence is demonstrated both for θ = 0 and for θ = 1, while for κ = 2 these two
schemes coincide. The values in the table confirm the theoretical result from Theorem
3.3.10 combined with (3.79) stating that the order of convergence is O(1/N).

There are several points to be mentioned about Figure 3.1 and Table 3.1. First, note that
for κ = 2 the schemes corresponding to θ = 0 and θ = 1 are identical. This is because in
this case ∂e/∂ρ = F̄ ′ ≡ c; cf. (3.36). Both for θ = 0 and for θ = 1 the pressure-related
force (i.e. the first line of the right-hand side) in (3.38) is −2c∇ρ̃t. Table 3.1 implies that
in all three cases presented the solution converges in the many-particle limit. However,
for κ = 7 the two schemes do not converge to the same limit, as Figure 3.1b shows. As
argued in Section 3.2.6, compared to the scheme for θ = 0, the scheme for θ = 1 contains
an extra regularization. We only expect the effect of this regularization to vanish (and
hence the schemes to coincide) when “γ → δ0”. In this chapter we only treat fixed γ
– cf. Remark 3.2.1 – but we will comment on vanishing regularization in the discussion
section, Section 3.7.

In two spatial dimensions, the corresponding problem is the expansion of an initially square
gas cloud, until time T = 1. We include a nonzero velocity field (v0,x, v0,y) = (−y, x).
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The same equation of state as in the one-dimensional computation is used, with κ ∈ {2, 7}.
For d = 2, the cubic Wendland function – cf. (2.16) in [MR13] – is used, whence for all
x ∈ R2:

γ(x) :=
{

1
8 (1 + 3|x|/2)(2− |x|)3, |x| ≤ 2,
0, |x| > 2.

This choice deviates from (3.80) to illustrate that we can handle γ both with bounded
and with unbounded support.

To be able to construct initially a square arrangement of particles, we consider for d = 2
a sequence of approximations of the form N = (2k)2 for k ∈ {1, . . . , 6}. Analogous to
the case d = 1 we approximate the supremum of the wasserstein distance by

sup
t∈[0,T ]

W1(µ4k
t , µ

4k+1

t ) ≈ max
τ∈I

W1(µ4k
τ , µ

4k+1

τ ) =: A(2)
k,k+1, (3.84)

with I given by (3.82). The order of convergence is in this case the value q such that

sup
t∈[0,T ]

W1(µ4k
t , µt) = O

((
1
4k

)q)
,

as k →∞, where µt denotes the limit measure. We estimate q by

1
2 log2

(
A

(2)
k,k+1

A
(2)
k+1,k+2

)
. (3.85)

The d-dimensional counterpart of (3.79) suggests that q = 1/d, hence we expect to
find q = 1/2 here. This claim is supported by Table 3.2. The computational effort for
the calculation of the Wasserstein distance makes the investigation of larger k not feasible.

θ = 0 θ = 1
k κ = 2 κ = 7 κ = 7
1 0.5078 0.5063 0.5022
2 0.5018 0.5016 0.5005
3 0.5005 0.5003 0.5001
4 0.4988 0.4981 0.5023

Table 3.2: Estimation of the order of convergence q for the system with only a pressure
term, where d = 2. The table shows the quantity 1/2·log2(A(2)

k,k+1/A
(2)
k+1,k+2), see (3.85),

where k refers to the number N = 4k of particles involved. As in Table 3.1, there is only
one column for κ = 2 since the schemes for θ = 0 and θ = 1 coincide. The values in the
table confirm the theoretical result that the order of convergence is O(1/

√
N).

The second numerical example considers the nonlocal force and the drag term corres-
ponding to K and η, respectively. There are no contributions from the pressure and the
external potential V . Therefore the problem does not depend on θ nor on γ. We take
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Figure 3.2: Configuration of N = 45 = 1024 particles at final time T = 100 corresponding
to the nonlocal force and drag term. The drag coefficient is η ≡ 10.

K such that it is the gradient of the Morse potential (2.6) with parameters Ca = 2.0,
Cr = 1.5, la = 1.0 and lr = 2.0. To enforce the required C1

b -regularity of K, we included
a short-range regularization around the origin to the potential K. A side-effect is that
automatically self-interactions are no longer present.
We take a constant drag coefficient η ≡ 10. Initially the particles are at rest. Figure 3.2
shows the configuration at final time T = 100. We verified numerically that at that time
an equilibrium has been reached. Due to the relatively large drag coefficient, one still
recognizes the square grid of the original configuration in the equilibrium state. Compare
the plot for η ≡ 0.1 in [EZvdLD15], which exhibits a different pattern.

We use (3.85) to estimate the order of convergence. The theoretical prediction q = 1/2
is supported by the results in Table 3.3. The deviation from the predicted value is small
compared to Tables 3.1 and 3.2, whence the values in Table 3.3 are given with higher
precision.

3.7 Discussion
In this chapter we answered the question how to derive particle schemes in a systematic
way, by proposing a three-step procedure. These three steps are: the formulation of the
equations in terms of measures (including a regularization of the density); substitution
of a discrete measure; and the application of the principle of least action. We have seen
that the equation of motion we obtain for the particle system depends on the order in
which regularization and the principle of least action are applied. We also showed how
this procedure works if there are nonconservative forces.
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k 1/2 · log2(A(2)
k,k+1/A

(2)
k+1,k+2)

1 0.5000000074
2 0.5000000017
3 0.4999999994
4 0.4999999967

Table 3.3: Estimation of the order of convergence q for the system with a nonlocal force
term, where d = 2. The table shows the quantity 1/2 · log2(A(2)

k,k+1/A
(2)
k+1,k+2), see

(3.85), where k refers to the number N = 4k of particles involved. The values in the
table confirm the theoretical prediction that the order of convergence is O(1/

√
N).

The second question that we asked concerns the convergence of the particle schemes
in the limit N →∞.
The proof in Section 3.4 for the existence and uniqueness of a solution to the scheme
required a fixed-point argument (on a concatenation of sufficiently small time-intervals).
The argument relies on the completeness of the space of measure-valued trajectories that
we use. In the introduction of this thesis (see Section 1.1), we presented a semigroup
approach for finding a solution. This is a one-directional approach where the equation
of motion is solved for the motion mapping and the solution measure follows by push-
forward. This approach does not readily extend to the situation in which the right-hand
side is measure-dependent. Therefore, in this chapter an alternative method was required.

In this chapter we provided a proof for the convergence of the particle solutions to the solu-
tion of the regularized continuum equation. The convergence result (in the 1-Wasserstein
distance) is not restricted to particle approximations. The theorem provides convergence
of solutions given a general sequence of corresponding initial measures approximating the
initial condition of the limit problem.

The result of Theorem 3.3.10 however does not state:

• whether the approximations corresponding to θ = 0 and θ = 1, respectively, actually
converge to the same limit solution. Our computations show (see Figure 3.1) that
this is certainly not the case for fixed γ, except for the trivial case κ = 2 in which
the schemes coincide.

• whether the limit N →∞ in any of the two cases θ = 0 or θ = 1 is actually like the
‘real physics’. To investigate this, in principle one would need to consider the limit
γ ⇀ δ0 and prove in which sense the solutions of the regularized equation converge
to the solutions of the original Euler-like equation, e.g. (1.40). As said before, this
is beyond the scope of this chapter.

The latter point refers to a situation in which first the limitN →∞ is taken and afterwards
the limit γ ⇀ δ0. A more favourable approach (also from a numerical point of view) would
be to have the convergence N → ∞ and γ ⇀ δ0 simultaneously. This is an issue only
if the pressure-related term is present. This is the only part where regularization is needed.
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In the SPH literature, the smoothing function γ is typically written as Wh, where the
subscript h denotes explicitly the dependence on the parameter h called smoothing length;
see Remark 3.2.1. The convergence γ ⇀ δ0 should now be read as Wh ⇀ δ0 as h → 0.
Let V0 denote a representative volume assigned initially to each particle based on the
initial configuration. In Section 3.6, V0 corresponded to either a subinterval of [0, 1] with
length 1/N (for d = 1), or a square subcell of [0, 1]d with area 1/N (for d = 2). In a gen-
eral bounded domain, V0 typically scales as V0 ∼ 1/N . It is common practice to achieve
h→ 0 simultaneously with N →∞ by taking h = σ d

√
V0, with parameter 1.2 6 σ 6 1.5,

cf. (4.2) in [Mon05].

In [EZvdLD15] we illustrate the use of h variable (that is, variable with N , but not
in time). The numerical investigations presented there show that convergence of solu-
tions as N →∞ may be expected also if h ∼ 1/ d

√
N . Moreover, the difference between

the schemes for θ = 0 and θ = 1 is shown to be smaller. A suggestion for further research
is to investigate theoretically the convergence of solutions as N → ∞ for N -dependent
h.

This chapter connects to the rest of this thesis in the following way:

• This chapter proposes a particle-based numerical scheme for a measure-valued evo-
lution equation and proves convergence of the scheme. The same principle is ap-
plicable to more general problems. Both second-order and first-order (see below)
equations of motion can be dealt with. In Section 4.5 of Chapter 4 we use a similar
particle-based method.

• The pressure-related term does not appear in the rest of the thesis. Moreover, we
mostly deal with a first-order equation of motion. If we assume the pressure-related
force to be absent, the first-order equation can be obtained, at least formally, by
taking η ≡ 1/ε, and replacing V and K by V/ε and K/ε, respectively. If now
ε→ 0, an equation of the form

Φ̇t(x) = −∇V (Φt(x)) + (K ∗ µt)(Φt(x)),

is obtained. The convolution term appears throughout this thesis. The term in-
volving ∇V is relevant in the sense that it can be used to incorporate µ-independent
parts in the velocity. The limit ε → 0 is like the overdamped limit introduced in
Section 1.3. In this case this limit corresponds to the arrow leading from ‘hydro-
dynamic’ to ‘Fokker-Planck’ in Figure 1.2.

• The crucial estimates in this chapter are given in Lemmas 3.4.1 and 3.4.3. Similar
expression can be obtained analogously for the first-order equation of motion (see
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previous point); in fact the calculations are much simpler. The final estimates are:

|Φt(x)| 6|x|+ t (‖∇V ‖∞ + ‖K‖∞), and

|Φν
1

t (x)− Φν
2

t (y)| 6|x− y|+ (|∇V |L + |K|L)
t∫

0

|Φν
1

s (x)− Φν
2

s (y)| ds

+ |K|L
t∫

0

∫
|z − w| dπ̃(z, w) ds,

where π̃s ∈ Π(ν1
s , ν

2
s ) for each s ∈ [0, t]. The latter estimate uses (3.59) – without

the factor (t − s) in the integral – and (3.67). Mutatis mutandis, the rest of the
convergence proof in this chapter still holds for a first-order equation of motion.





Chapter 4

Flux boundary conditions:
prescribed velocity

As was formulated Section 1.7.3, our guiding mathematical question in this chapter is:

What is the correct way to define zero-flux or
general flux boundary conditions in terms of measures?

We investigate the well-posedness and approximation of mild solutions to a class of linear
transport equations on the unit interval [0, 1] endowed with a linear discontinuous produc-
tion term, formulated in the spaceM([0, 1]) of finite Borel measures. A particular choice
for this production term describes the process of gating away mass at a certain rate from a
zone close to the boundary. We demonstrate a detailed boundary layer analysis by which
we are able to pass to the singular limit where thickness of the layer vanishes. We obtain
not only a suitable concept of solutions to the chosen measure-valued evolution problem,
but also derive convergence rates for the approximation procedure and get insight in the
structure of flux boundary conditions for the limit problem.

4.1 Introduction
Consider the measure-valued equation

∂

∂t
µt + ∂

∂x
(vµt) = f · µt, on [0, 1], (4.1)

where f : [0, 1]→ R is a piecewise bounded Lipschitz function with finitely many discon-
tinuities. That is, f has finitely many points of discontinuity and the restriction of f to
each of the intervals of continuity is bounded Lipschitz. We assume that the velocity field
v : [0, 1]→ R is bounded Lipschitz and interpret a v that points outwards at either one of
the boundary points x = 0 or x = 1 (i.e. v(0) < 0 or v(1) > 0) as describing the presence

This chapter is based on joint work with Sander Hille and Adrian Muntean, published in Comptes
Rendus Mathématique [EHM14] and in revised form in Journal of Differential Equations [EHM15a].
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of a ‘sticking boundary’ (cf. [Tai04]) at that point. Alternatively, other researchers (e.g.
[GJMC12]) have replaced v by a discontinuous v̂ that equals v on (0, 1), but is set to
zero at boundary points where v points outwards.

If f in (4.1) were bounded Lipschitz, then the proof of well-posedness would follow
standard arguments for semilinear equations (e.g. see [Paz83, Lun95, CH99]), except
for the technical point that M([0, 1]) is not complete for the natural norms used in
measure-valued equations (see also [CCC13]). These are the equivalent Fortet-Mourier
norm ‖·‖∗FM and dual bounded Lipschitz norm ‖·‖∗BL. More details on these norms follow
in Section 4.1.1. In our setting, with piecewise bounded Lipschitz f , the perturbation map

Ff :M([0, 1])→M([0, 1]) : µ 7→ f · µ

is not Lipschitz, but (mildly) discontinuous. Nevertheless, continuous dependence on ini-
tial conditions still holds, which is shown using a different approach.

In Section 1.7.3 we already introduced the particular choice f(x) = −a1{1}(x), with
a > 0, by which (4.1) simplifies to

∂

∂t
µt + ∂

∂x
(vµt) = −aµt({1})δ1. (4.2)

On the right-hand side, δ1 denotes the Dirac measure at 1.

Our approach to equation (4.1) differs from [AI05, GLMC10, CCGU12, GJMC12] that
use appropriate weak solution concepts. The notion of solution to (4.1) introduced here
is that of measure-valued mild solution. We interpret equation (4.1) as expressing formally
that the semigroup (Pt)t>0 of operators onM([0, 1]) associated to mass transport along
characteristics defined by the velocity field v is perturbed by Ff . A mild solution is then a
continuous map t 7→ µt from an interval [0, T ] intoM([0, 1])BL, which is the completion
ofM([0, 1])] equipped with ‖ · ‖∗BL, that satisfies the variation of constants formula

µt = Ptµ0 +
t∫

0

Pt−sFf (µs) ds, 0 6 t 6 T. (4.3)

Although Ff is discontinuous, the map s 7→ Ff (µs) is Bochner measurable if the map
s 7→ µs is Bochner measurable. Thus, integral equation (4.3) is well-defined. In our
solution concept we need to include the technical condition that the total variation func-
tion t 7→ ‖µt‖TV of the solution must be bounded on [0, T ]. The solution concept is
introduced in more detail in Section 4.2.2.

There are several reasons why we consider mild solutions rather than weak solutions.
First of all, the mild formulation in terms of the variation of constants formula (4.3)
follows directly from a probabilistic interpretation, as we will see in Section 4.6. There-
fore the choice for mild solutions is justified by a modelling argument. Secondly, usually
uniqueness of weak solutions cannot be expected to hold, while mild solutions are unique
when the perturbation is Lipschitz. Even in our particular setting, where the perturbation
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has discontinuities, we obtain uniqueness of the mild solution. This is one of the main
results of this chapter. In the works [AI05, GLMC10, CCGU12, GJMC12] a specific weak
solution is constructed that is precisely the mild solution that we obtain by different means.
Finally, there is a technical advantage of using mild solutions. Most of our estimates are
in terms of ‖·‖∗BL. Our calculations are therefore often simpler, because the test functions
do not appear explicitly. Moreover, our estimates are in fact uniform over test functions
in a bounded set.

Some preliminaries on measure theory are introduced in Section 4.1.1. Afterwards, Section
4.2.1 derives fundamental estimates for the movement of single individuals in the domain,
i.e. the individualistic flow, where there is no absorption yet, but sticking boundaries only.
After recalling basic semigroup estimates, we state and prove a technical lemma con-
cerning regularization by averaging over orbits (see Lemma 4.2.3) that will play a crucial
role in obtaining the main results. The concept of mild solution formulated in the space
M([0, 1]) of finite Borel measures is introduced in Section 4.2.2. In Section 4.3, we prove
the well-posedness of our problem and we address the approximation of the mild solution
in Section 4.4. There, the piecewise bounded Lipschitz function f in (4.1) is replaced by
a bounded Lipschitz function fε that differs from f on an ε-thin neighbourhood of each
discontinuity.

Well-posedness together with Lyapunov stability of measure-valued solutions (for suit-
able metrics) imply that particle dynamics and continuum solutions stay close once initial
conditions are sufficiently close. We investigate this resemblance and the order of con-
vergence numerically in Section 4.5. Note that we do not prove Lyapunov stability in this
chapter; the result on continuous dependence on initial data given in Proposition 4.3.8
only holds on compact time intervals [0, T ]. This result does not generalize from [0, T ] to
[0,∞), because the involved proportionality constant grows exponentially in T . A different
technique, not involving Gronwall’s Lemma, would be needed to obtain Lyapunov stability.

The chapter closes with a section that provides a probabilistic underpinning of our solution
concept (Section 4.6) and the proof of the central lemma, Lemma 4.2.3 (Section 4.7).

4.1.1 Preliminaries on measures
If S is a topological space, we denote byM(S) the space of finite Borel measures on S
andM+(S) the convex cone of positive measures included in it. For x ∈ S, δx denotes
the Dirac measure at x. Let

〈µ, φ〉 :=
∫
S

φdµ (4.4)

denote the natural pairing between measures µ ∈ M(S) and bounded measurable func-
tions φ. Recall Definition 3.3.1, that generalizes trivially from P(Rd) to M(S) in the
following way: the push-forward or image measure of µ under Borel measurable Φ : S → S
is the measure Φ#µ defined on Borel sets E ⊂ S by

(Φ#µ)(E) := µ
(
Φ−1(E)

)
. (4.5)
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It is easily verified that 〈Φ#µ, φ〉 = 〈µ, φ ◦ Φ〉; cf. (3.41).

We denote by Cb(S) the Banach space of real-valued bounded continuous functions on
S equipped with the supremum norm ‖ · ‖∞. The total variation norm ‖ · ‖TV onM(S)
is given by

‖µ‖TV := sup
{
〈µ, φ〉

∣∣∣φ ∈ Cb(S), ‖φ‖∞ 6 1
}
.

It follows immediately that for Φ : S → S continuous, ‖Φ#µ‖TV 6 ‖µ‖TV.
The total variation norm is too strong for our application, since ‖δx − δy‖TV = 2 if
x 6= y. The natural topology to consider is the weak topology induced by Cb(S) through
the pairing (4.4). In this topology x 7→ δx : S →M+(S) is continuous.

In our setting, S is a Polish space (separable, completely metrizable topological space;
cf. [Dud04], p. 344). It is well-established (cf. [Dud66, Dud74]) that in this case the weak
topology on the positive coneM+(S) is metrizable by a metric derived from a norm, e.g.
the Fortet-Mourier norm or the Dudley norm. The latter is also called the dual bounded
Lipschitz norm, that we shall introduce now. To that end, let d be a metric on S that
metrizes the topology, such that (S, d) is separable and complete. Let BL(S, d) = BL(S)
be the vector space of real-valued bounded Lipschitz functions on (S, d). For φ ∈ BL(S),
let

|φ|L := sup
{
|φ(x)− φ(y)|

d(x, y)

∣∣∣ x, y ∈ S, x 6= y

}
be its Lipschitz constant. This is a generalization of the Euclidean case defined in (3.43).
Now

‖φ‖BL := ‖φ‖∞ + |φ|L (4.6)

defines a norm on BL(S) for which it is a Banach space [FM53, Dud66]. In fact it makes
BL(S) a Banach algebra for pointwise product of functions:

‖φ · ψ‖BL ≤ ‖φ‖BL ‖ψ‖BL. (4.7)

Alternatively, one may define on BL(S) the equivalent norm1

‖φ‖FM := max
(
‖φ‖∞ , |φ|L

)
.

Let ‖·‖∗BL be the dual norm of ‖·‖BL on the dual space BL(S)∗, i.e. for any x∗ ∈ BL(S)∗:

‖x∗‖∗BL := sup {| 〈x∗, φ〉 | | φ ∈ BL(S), ‖φ‖BL 6 1} .

The map µ 7→ Iµ with Iµ(φ) := 〈µ, φ〉 defines a linear embedding ofM(S) into BL(S)∗
([Dud66], Lemma 6). Thus ‖ · ‖∗BL induces a norm on M(S), which is denoted by the
same symbols. It is called the dual bounded Lipschitz norm or Dudley norm. Generally,
‖µ‖∗BL 6 ‖µ‖TV. For positive measures the norms coincide:

‖µ‖∗BL = µ(S) = ‖µ‖TV for all µ ∈M+(S). (4.8)
1See Lemma C.1 in Appendix C.
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One may also consider the restriction to M(S) of the dual norm ‖ · ‖∗FM of ‖ · ‖FM on
BL(S)∗. This yields an equivalent norm2 onM(S) that is called the Fortet-Mourier norm
(see e.g. [LMS02, Zah00]):

‖µ‖∗BL 6 ‖µ‖∗FM 6 2‖µ‖∗BL. (4.9)

It also satisfies ‖µ‖∗FM 6 ‖µ‖TV, so (4.8) holds for ‖ · ‖∗FM too. Moreover (cf. [HW09a],
Lemma 3.5), for any x, y ∈ S,

‖δx − δy‖∗BL = 2d(x, y)
2 + d(x, y) 6 min(2, d(x, y)) = ‖δx − δy‖∗FM. (4.10)

The space M(S) is not complete for ‖ · ‖∗BL generally. We denote by M(S)BL its
completion, viewed as closure ofM(S) within BL(S)∗. The following lemma shows that
M+(S) is closed.

Lemma 4.1.1. If S is a Polish space, thenM+(S) is closed for ‖ · ‖∗BL.

Proof. Since S is complete, Theorem 3.8 of [HW09b] implies that M+
s (S) is closed in

‖ · ‖∗BL. This is the space of positive, finite and separable Borel measures. Because S is
separable,M+

s (S) =M+(S) holds trivially (see p. 23 in [Wor10]).

As a consequence (see Lemma A.2 in Appendix A),M+(S) is complete for ‖ · ‖∗BL.

The ‖ · ‖∗BL-norm topology on M+(S) coincides with the restriction of the weak topo-
logy σ(M(S), Cb(S)); see [Dud66], Theorem 12. In Section 4.2 and further, we choose
for S the unit interval [0, 1]. In this case M(S) = C∗b (S) by the Riesz Representa-
tion Theorem; cf. [Tay06], Theorem 13.7, where it should be noted that on any Polish
space finite Borel measures are Radon measures, due to [Bog07b], Theorem 7.1.7. Hence,
the restriction of the ‖·‖∗BL-norm topology toM+(S) coincides with the weak-∗ topology.

Note that BL(S, d) varies with the metric d, hence ‖ · ‖∗BL onM(S) also depends on d
and so doesM(S)BL.

The ‖ · ‖∗BL-norm is convenient also for integration. In Appendix B some technical
results that are used in this chapter have been collected. The continuity of the map
x 7→ δx : S →M+(S)BL together with (B.2) yields the identity

µ =
∫
S

δx dµ(x) (4.11)

as Bochner integral in M(S)BL. This observation will essentially link ‘continuum’ (‘µ’)
and particle description (‘δx’) for our linear equation on [0, 1]; cf. also (4.24) and Propos-
ition 4.3.6.

2See Lemma C.2 in Appendix C.
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4.2 Model formulation and solution concept
Throughout the remainder of the chapter, we take S = [0, 1] and f : [0, 1] → R is
a piecewise bounded Lipschitz function as defined in Section 4.1. The velocity field
v : [0, 1]→ R is bounded Lipschitz.

4.2.1 Mass transport and averaging along characteristics
We assume that a single particle (‘individual’) is moving in the domain [0, 1] determinist-
ically, described by the differential equation for its position x(t) at time t:{

ẋ(t) = v(x(t)),
x(0) = x0.

(4.12)

A solution to (4.12) is unique, it exists for time up to reaching the boundary 0 or 1 and
depends continuously on initial conditions. Let x( · ;x0) be this solution and Ix0 be its
maximal interval of existence. Define

τ∂(x0) := sup Ix0 ∈ [0,∞],

i.e. τ∂(x0) is the time at which the solution starting at x0 reaches the boundary (if it
happens) when x0 is an interior point. Note that τ∂(x0) = 0 when x0 is a boundary point
where v points outwards, while τ∂(x0) > 0 when x0 is a boundary point where v vanishes
or points inwards.

The individualistic stopped flow on [0, 1] associated to v is the family of maps Φt : [0, 1]→
[0, 1], t > 0, defined by

Φt(x0) :=
{
x(t;x0), if t ∈ Ix0 ,

x(τ∂(x0);x0), otherwise.
(4.13)

Below we collect important properties of the family of maps (Φt)t>0 in a series of lemmas.

Lemma 4.2.1. (Φt)t≥0 is a semigroup of Lipschitz transformations of [0, 1]. Moreover,

(i) |Φt|L 6 e|v|Lt for t > 0.

(ii) For any t, s ∈ R+
0 ,

sup
x∈[0,1]

|Φt(x)− Φs(x)| 6 ‖v‖∞ |t− s|. (4.14)

Proof. (i): A quick approach to the stated result is the following: extend v : [0, 1] → R
to v̄ : R → R by putting v̄(x) := v(0) if x 6 0 and v̄(x) := v(1) if x > 1. Then
v̄ is a bounded Lipschitz extension of v such that ‖v̄‖∞ = ‖v‖∞ and |v̄|L = |v|L. Let
x̄(t;x0) be the unique (global) solution to (4.12) with v replaced by v̄ with initial condition
x0 ∈ R and Φ̄t : R→ R the associated solution semigroup. That is, Φ̄t(x0) := x̄(t;x0).
A classical argument involving Gronwall’s Lemma yields (i) for Φ̄t instead of Φt. Now,
for x0 ∈ [0, 1],

Φt(x0) = min
(
max(Φ̄t, 0), 1

)
.



4.2. Model formulation and solution concept 107

Thus |Φt|L 6 |Φ̄t|L, using e.g. [Dud66], Lemma 4.
(ii): Let t, s ∈ Ix0 . Without loss of generality, assume that t > s.

|x(t)− x(s)| = |
t∫

0

v(x(σ)) dσ −
s∫

0

v(x(σ)) dσ| 6
t∫
s

|v(x(σ))| dσ

6 ‖v‖∞ (t− s). (4.15)

If both t, s ∈ R+
0 are not in Ix0 , then inequality (4.15) is trivially satisfied. Suppose now

that s ∈ Ix0 , while t is not. Then t > τ∂(x0), τ∂(x0) ∈ Ix0 and

|x(t)− x(s)| = |x(τ∂(x0))− x(s)| 6 ‖v‖∞ (τ∂(x0)− s),

according to (4.15). Clearly τ∂(x0) − s 6 t − s. The estimates are independent of
x0 ∈ [0, 1]. Thus we obtain (4.14).

We define Pt : M([0, 1]) → M([0, 1]) by means of the push-forward under Φt: for all
µ ∈M([0, 1]),

Ptµ := Φt#µ = µ ◦ Φ−1
t ; (4.16)

cf. (4.5) and (1.5). Clearly, Pt maps positive measures to positive measures and Pt is
mass preserving on positive measures. Since the maps Φt, t > 0, form a semigroup, so do
the maps Pt in the spaceM([0, 1]). That is, (Pt)t>0 is a Markov semigroup onM[0, 1]
(cf. [LMS02]). One has

‖Ptµ‖TV 6 ‖µ‖TV (4.17)

for general µ ∈M([0, 1]).

Lemma 4.2.2. Let µ ∈M([0, 1]) and t, s ∈ R+. Then

(i) ‖Ptµ− Psµ‖∗BL 6 ‖v‖∞ ‖µ‖TV |t− s|.

(ii) ‖Ptµ‖∗BL 6 max(1, |Φt|L) ‖µ‖∗BL 6 e|v|Lt‖µ‖∗BL.

Proof. For all φ ∈ BL([0, 1]),

| 〈Ptµ− Psµ, φ〉 | = | 〈µ, φ ◦ Φt − φ ◦ Φs〉 | 6 ‖µ‖TV ‖φ ◦ Φt − φ ◦ Φs‖∞
6 ‖µ‖TV |φ|L sup

x∈[0,1]
|Φt(x)− Φs(x)| 6 ‖µ‖TV |φ|L ‖v‖∞ |t− s|,

where we used Lemma 4.2.1(ii) in the last inequality. For the operator norm of Pt on
M([0, 1])BL, use that for any φ ∈ BL([0, 1]),

|〈Ptµ, φ〉| = |〈µ, φ ◦ Φt〉| 6 ‖µ‖∗BL ‖φ ◦ Φt‖BL 6 ‖µ‖∗BL
(
‖φ‖∞ + |φ|L|Φt|L

)
.

The statement of the lemma follows, due to Lemma 4.2.1(i).
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For any bounded measurable function g on [0, 1] and t > 0, define the average over partial
orbits under the flow Φt as the function gΦ

t : [0, 1]→ R given by

gΦ
t (x) :=

t∫
0

g(Φs(x)) ds. (4.18)

Clearly,
|gΦ
t (x)− gΦ

t′ (x)| 6 ‖g‖∞ · |t− t′|, (4.19)

so t 7→ gΦ
t (x) is Lipschitz for any x ∈ [0, 1].

The following lemma is crucial for establishing the continuous dependence on initial con-
ditions as stated in Proposition 4.3.8.

Lemma 4.2.3 (Regularization by averaging over orbits). Let (Φt)t>0 be the individualistic
stopped flow associated to the velocity field v. Let g be a piecewise bounded Lipschitz
function on [0, 1] such that v(x) 6= 0 at any point of discontinuity of g. Then gΦ

t is a
bounded Lipschitz function on [0, 1] for any t > 0. Moreover,

sup
06s6t

|gΦ
s |L <∞. (4.20)

The proof is given in a separate section, Section 4.7, towards the end of this chapter.

Recall that we assume that v is bounded Lipschitz, hence continuous, on the entire
interval [0, 1]. We do not replace v by a function that is zero at boundary points where
v points outwards. So, the conditions of Lemma 4.2.3 allow for the situation that g has
a discontinuity at the boundary. This is a case of particular interest in view of a ‘flux’
boundary condition in a measure-valued formulation. See Section 4.4, Example 4.4.3, for
further discussion of this point.

4.2.2 Mild solutions
Measure-valued equations on R+ or Rd of the form (4.1), among others, have been stud-
ied in e.g. [CCC13, GLMC10], where a concept of weak solution to the associated Cauchy
problem was introduced and subsequently existence of such weak solution and continuous
dependence on initial data was proven. [GJMC12] considers (in Section 3.1) a situation
that is similar to ours by considering a measure-valued transport equation on a finite
interval [0, x∗] as in (4.1) with f = 0 in which the velocity field v is piecewise bounded
Lipschitz, continuous at 0 with v(0) > 0 and v(x) = 0 at any point of discontinuity, in-
cluding the other boundary point x∗. There, again the weak solution concept is employed
(cf. [GJMC12], Definition 3.4, and references provided).

In this chapter and the next (Chapter 5), we use the concept of measure-valued mild
solution to the Cauchy problem associated to equation (4.1) in the spirit of the semigroup
approach to semilinear evolution equations (e.g. [Paz83, Lun95, CH99]). That is, we
interpret the operator µ 7→ − ∂

∂x (vµ) as generator of a strongly continuous semigroup in
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M([0, 1])BL: the semigroup (Pt)t>0 of mass transport along characteristics associated
to the velocity field v that we defined in Section 4.2.1. Equation (4.1) is then viewed
as perturbation of this semigroup by means of Ff : µ 7→ f · µ, which is defined on the
dense subspace M([0, 1]) of M([0, 1])BL only. Generally, Ff is not ‖ · ‖∗BL-continuous,
unless f ∈ BL([0, 1]). It is unclear whether Ff is a densely-defined closed linear map. So
‘standard’ perturbation results cannot be readily applied.

Moreover, we have to adapt slightly the classical concept of mild solution, since we are
interested in measure-valued solutions while the Banach spaceM([0, 1])BL also contains
points that are not measures, as closure ofM([0, 1]) in BL([0, 1])∗.

Definition 4.2.4. A measure-valued mild solution to the Cauchy-problem associated
to (4.1) on [0, T ] with initial value ν ∈ M([0, 1]) is a continuous map µ : [0, T ] →
M([0, 1])BL that is ‖ · ‖TV-bounded and that satisfies the variation of constants formula

µt = Pt ν +
t∫

0

Pt−sFf (µs) ds for all t ∈ [0, T ]. (4.21)

Remark 4.2.5. The map s 7→ Ff (µs) is typically not continuous. It is Bochner measur-
able though: there exist fn ∈ BL([0, 1]) such that fn → f pointwise while supn ‖fn‖∞ <
∞. Each map s 7→ Ffn(µs) is continuous, hence Bochner measurable, and s 7→ Ff (µs)
is the pointwise limit of s 7→ Ffn(µs). Consequently, s 7→ Pt−sFf (µs) is Bochner meas-
urable and the integral in (4.21) is well-defined as Bochner integral inM([0, 1])BL.

Remark 4.2.6. The condition of ‖ · ‖TV-boundedness also appears in [CCC13]. It cannot
be deduced generally from the assumed continuity of µ. Although C := {µt | t ∈ [0, T ]} ⊂
M([0, 1])BL is compact, this does not imply that sup06t6T ‖µt‖TV < ∞, unless C ⊂
M+([0, 1]). One can prove (for a Polish state space S), that if for every K ⊂ M(S)BL
compact, supµ∈K ‖µ‖TV <∞, then (M(S), ‖ · ‖TV) is linearly isomorphic toM(S)BL,
using [Hil05], Proposition 3.2. This is ‘rarely’ the case, see [HW09b], Theorem 3.11.

Remark 4.2.7. As was already mentioned in Section 4.1, integral equation (4.21) arises
naturally from a probabilistic description of the system; see Section 4.6.

4.3 Well-posedness for a discontinuous perturbation
In this section we consider the problem of existence, uniqueness and continuous depend-
ence on initial conditions for measure-valued mild solutions to (4.1). Due to failure of
(Lipschitz) continuity of Ff the standard arguments using Picard iterations and Gronwall’s
Lemma cannot be used. In Chapter 5 we will revert to these standard arguments, though;
cf. the results in Section 5.2.2 and Remark 5.4.4.

Lemma 4.3.1. For each ν ∈ M([0, 1]) and piecewise bounded Lipschitz f : [0, 1] → R
the following estimate holds:

‖Ff (ν)‖TV 6 ‖f‖∞ ‖ν‖TV.
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Proof. Define a sequence (fn)n∈N ⊂ Cb([0, 1]) such that fn converges pointwise to f
and ‖fn‖∞ → ‖f‖∞ as n→∞. For any φ ∈ Cb([0, 1]) we have that

| 〈Ffn(ν), φ〉 | = | 〈ν, fn · φ〉 | 6 ‖fn‖∞ ‖φ‖∞ ‖ν‖TV,

hence
‖Ffn(ν)‖TV 6 ‖fn‖∞ ‖ν‖TV

holds for all n ∈ N. A uniform bound on ‖fn‖∞ exists, since ‖fn‖∞ → ‖f‖∞. Moreover,
fn converges to f pointwise, so we can apply Lebesgue’s Dominated Convergence The-
orem (see [Bog07a], Theorem 2.8.1 and Remark 3.1.5 about signed measures) to obtain

〈Ff (ν), φ〉 = lim
n→∞

〈Ffn(ν), φ〉

for all φ ∈ Cb([0, 1]). Therefore

| 〈Ff (ν), φ〉 | = lim
n→∞

| 〈Ffn(ν), φ〉 | 6 lim
n→∞

‖fn‖∞ ‖φ‖∞ ‖ν‖TV = ‖f‖∞ ‖φ‖∞ ‖ν‖TV,

from which the statement of the lemma follows.

Proposition 4.3.2 (Uniqueness). Equation (4.1) has at most one measure-valued mild
solution.
Proof. Let µ and µ̂ ∈ C([0, T ],M([0, 1])BL) be measure-valued mild solutions to (4.1).
Then ‖µt‖TV and ‖µ̂t‖TV are bounded on [0, T ]. According to Proposition B.2, the
function s 7→ ‖µs−µ̂s‖TV is measurable. Moreover, it is bounded on [0, T ] by assumption,
hence L1. Then again by Proposition B.2,

‖µt− µ̂t‖TV 6

t∫
0

∥∥Pt−s[Ff (µs)−Ff (µ̂s)]
∥∥

TV ds 6

t∫
0

∥∥Ff (µs)−Ff (µ̂s)
∥∥

TV ds, (4.22)

where the second inequality follows from (4.17). We substitute the result of Lemma 4.3.1
with ν = µs − µ̂s in the integrand of (4.22) and obtain

‖µt − µ̂t‖TV 6 ‖f‖∞ ·
t∫

0

‖µs − µ̂s‖TV ds. (4.23)

Grownwall’s Lemma yields ‖µt − µ̂t‖TV = 0 for all 0 6 t 6 T .

Corollary 4.3.3. There exists at most one measure-valued mild solution to (4.1) in
C([0, T ],M+([0, 1])BL).
Remark 4.3.4. In many applications (e.g. crowd or population dynamics) only positive
solutions are interpretable, hence of major interest.
Remark 4.3.5. Technically, for the application of Proposition B.2 in the proof of Pro-
position 4.3.2 it is only required that t 7→ ‖µt‖TV is an L1-function. However, if this
seemingly weaker condition than ‖ · ‖TV-boundedness holds, then an argument similar
to (4.22)–(4.23) and application of Gronwall’s Lemma yields that t 7→ ‖µt‖TV must be
bounded on [0, T ].
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Since we deal with a transport problem without diffusion, there is no ‘smoothing effect’
in the dynamics in the interior of the interval [0, 1]. Therefore we expect Dirac masses to
stay Dirac masses. These move according to Pt. The latter acts simply on Dirac masses:
Ptδx = δΦt(x). Therefore one may try as particular solution to (4.21) with µ0 = εx(0)δx:

µt = εx(t)δΦt(x). (4.24)

Substitution of (4.24) into (4.21) yields, after evaluation of the measures on the Borel
set {Φt(x)} and by use of (B.2):

εx(t) = εx(0) +
t∫

0

εx(s)f(Φs(x)) ds. (4.25)

Equation (4.25) is solved by the continuous (Lipschitz) function

εx(t) = εx(0) exp
( t∫

0

f(Φs(x)) ds
)

= εx(0) exp(fΦ
t (x)).

See Lemma 4.2.3 for the notation used.
Any initial measure µ0 is a superposition of Dirac masses, according to (4.11). Therefore
we obtain the following existence result and integral representation for the unique globally
existing mild solution to (4.1):

Proposition 4.3.6 (Existence). Let f : [0, 1] → R be a piecewise bounded Lipschitz
function such that v(x) 6= 0 at any point x of discontinuity of f . Then for each µ0 ∈
M([0, 1]) there exists a continuous and locally ‖ · ‖TV-bounded solution µ : R+ →
M([0, 1])BL to (4.21) defined by

µt :=
∫

[0,1]

exp
( t∫

0

f(Φs(x)) ds
)
· δΦt(x) dµ0(x) =

∫
[0,1]

exp(fΦ
t (x)) · δΦt(x) dµ0(x) (4.26)

as Bochner integral inM([0, 1])BL. It satisfies ‖µt‖TV 6 e‖f‖∞t‖µ0‖TV. Moreover, µ is
locally Lipschitz:

‖µt − µt′‖∗BL 6 ‖µ0‖TV ·
(
‖f‖∞ + ‖v‖∞

)
· e‖f‖∞max(t,t′) · |t− t′|. (4.27)

Proof. Due to Lemma 4.2.3, the integrand in (4.26) is a bounded continuous function
from [0, 1] into M+([0, 1])BL. Thus for µ0 ∈ M+([0, 1]) the Bochner integral exists,
with value in M+([0, 1]), because this cone is closed (cf. Corollary 8 in [DU77]). For
µ0 ∈ M([0, 1]) the integral yields a measure in M([0, 1]) ⊂ M([0, 1])BL, by using
the Jordan decomposition µ0 = µ+

0 − µ
−
0 (see [Hal59], p. 123 for more details on this

decomposition). So µt ∈M([0, 1]) for all t.
Next we prove that µt defined by (4.26) satisfies (4.27). So let t, t′ ∈ R+. We may
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assume t > t′. Then

‖µt − µt′‖∗BL 6
∫

[0,1]

∥∥exp(fΦ
t (x)) · δΦt(x) − exp(fΦ

t′ (x)) · δΦt′ (x)
∥∥∗

BL d|µ0|(x)

6
∫

[0,1]

exp(fΦ
t (x))

∥∥δΦt(x) − δΦt′ (x)
∥∥∗

BL d|µ0|(x)

+
∫

[0,1]

∣∣exp(fΦ
t (x))− exp(fΦ

t′ (x))
∣∣ d|µ0|(x).

According to (4.19),∣∣exp(fΦ
t (x))− exp(fΦ

t′ (x))
∣∣ 6 ‖f‖∞e‖f‖∞max(t,t′) · |t− t′|.

Using (4.10) and Lemma 4.2.1(ii), we obtain∥∥δΦt(x) − δΦt′ (x)
∥∥∗

BL 6 |Φt(x)− Φt′(x)| 6 ‖v‖∞ · |t− t′|.

Now (4.27) simply follows.

Corollary 4.3.7. For every µ0 ∈ M+([0, 1]) there exists a unique mild solution to (4.1)
that is inM+([0, 1]) for all time.
Proof. The statement of this corollary follows from the observation (cf. the proof of Pro-
position 4.3.6) that if µ0 ∈M+([0, 1]) then the right-hand side of (4.26) is inM+([0, 1])
for all t > 0.

The classical argument with Gronwall’s Inequality to obtain continuous dependence on
initial conditions (cf. Corollary 5.2.5) fails in this setting, because the perturbation is not
Lipschitz continuous. Instead we use the crucial observation made in Lemma 4.2.3.
Proposition 4.3.8 (Continuous dependence on initial conditions). Assume that f :
[0, 1] → R is a piecewise bounded Lipschitz function such that v(x) 6= 0 at any point x
of discontinuity of f . Then for each T > 0, there exists CT > 0 such that for all initial
values µ0, µ

′
0 ∈ M([0, 1]) the corresponding ‖ · ‖TV-bounded mild solutions µ and µ′ to

(4.21) satisfy
‖µt − µ′t‖∗BL 6 CT ‖µ0 − µ′0‖∗BL (4.28)

for all t ∈ [0, T ].
Proof. Let φ ∈ BL([0, 1]) and t > 0. According to Lemma 4.2.3, fΦ

t is a bounded
Lipschitz function on [0, 1]. Hence so is x 7→ exp(fΦ

t (x)). According to the representation
(4.26), we have

| 〈µt − µ′t, φ〉 | = |
〈
µ0 − µ′0, (φ ◦ Φt) · (exp ◦fΦ

t )
〉
|.

Because (BL([0, 1]), ‖ ·‖BL) is a Banach algebra for pointwise multiplication of functions,
cf. (4.7),

| 〈µt − µ′t, φ〉 | 6 ‖µ0 − µ′0‖∗BL · ‖φ ◦ Φt‖BL‖ exp ◦fΦ
t ‖BL

6 ‖µ0 − µ′0‖∗BL ·max(1, |Φt|L)‖φ‖BL · e‖f‖∞t(1 + |fΦ
t |L).
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We take the supremum over φ in the unit bal of BL([0, 1]) and use Lemma 4.2.1(i) and
(4.20) to conclude that there exists CT <∞ such that (4.28) holds for all 0 6 t 6 T .

4.4 Approximation by regularization
Equation (4.21) involving the piecewise bounded Lipschitz function f can be considered
(formally) as a limit of a sequence of equations with f replaced by fn ∈ BL([0, 1]), a
‘regularization’ of f , such that fn → f as n→∞ in suitable sense, e.g. pointwise. Here,
we investigate how mild solutions µ(n) to (4.1) for fn relate to the solution µ associated
to the limiting piecewise bounded Lipschitz f discussed in the previous section.

Throughout this section, fix the bounded Lipschitz velocity field v on [0, 1] and let f
be a piecewise bounded Lipschitz function on [0, 1] such that the set of discontinuities of
f is disjoint from the set of zeros of v. Let fn ∈ BL([0, 1]) such that fn → f pointwise on
[0, 1]. Let µ0 ∈M([0, 1]) and let µ(n) be the unique mild solution to (4.1) associated to
fn and µ the solution associated to f , both with initial value µ0. These unique solutions
exist due to the results presented in Section 4.3.

Lemma 4.4.1. Suppose there exists an M > 0 such that ‖fn‖∞ 6M for all n. Then

‖µ(n)
t − µt‖∗BL 6 eMt

∫
[0,1]

t∫
0

∣∣fn(Φs(x))− f(Φs(x))
∣∣ ds d|µ0|(x). (4.29)

In particular, µ(n)
t converges to µt inM([0, 1])BL as n→∞ for every t > 0.

Proof. First observe that ‖f‖∞ 6 M . Let φ ∈ BL([0, 1]). Using the representation
(4.26) for the mild solutions µ(n) and µ, we obtain∣∣∣〈µ(n)

t − µt, φ
〉∣∣∣ 6 ∫

[0,1]

∣∣exp
(
(fn)Φ

t (x)
)
− exp

(
fΦ
t (x)

)∣∣ · |φ(Φt(x))| d|µ0|(x)

6 ‖φ‖∞eMt

∫
[0,1]

∣∣(fn)Φ
t (x)− fΦ

t (x)
∣∣d|µ0|(x).

We obtain (4.29) by taking the supremum over φ in the unit ball. Lebesgue’s Domin-
ated Convergence Theorem then yields the latter statement, because of the pointwise
convergence of fn to f and the assumed uniform upper bound on all fn.

Lemma 4.4.1 and inspection of the double integral in equation (4.26) in particular, in-
dicate that further properties of the convergence of µ(n) to µ depend in a delicate way
on the interplay between the way the approximating sequence (fn) relates to f , the ini-
tial condition and properties of the flow (Φt)t>0, such as uniformity of convergence on
compact time intervals or the rate of convergence. We show now that a particular type
of regularization of f provides approximating sequences (fn) ⊂ BL([0, 1]) that yield uni-
form convergence on compact intervals together with an upper bound for the rate of
convergence that holds for any initial condition inM([0, 1]).
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Observe that there exist fn ∈ BL([0, 1]) such that fn → f pointwise and the sets

∆n := {x ∈ [0, 1] : fn(x) 6= f(x)}

are such that |∆n| → 0 as n → ∞, where | · | denotes Lebesgue measure of the set.
Because the set of discontinuities of f is disjoint from the set of zeros for v, there exists
such approximating sequences such that each difference set ∆n is a union of finitely many
open intervals where each interval contains precisely one point of discontinuity of f and
the velocity field v is bounded away from zero on this interval, uniformly in n. Moreover, if
supn ‖fn‖∞ <∞, then we call such a sequence (fn) a regularly approximating sequence.

Proposition 4.4.2. Let (fn) be a regularly approximating sequence for f , with difference
sets ∆n and uniform upper boundM := supn ‖fn‖∞. Then there exists C > 0 such that

‖µ(n)
t − µt‖∗BL 6 2CMeMt · |∆n|.

In particular, µ(n)
t converges to µt uniformly on compact time intervals, at the same rate

as |∆n| → 0 when n→∞.

Proof. Starting from (4.29) we obtain

‖µ(n)
t − µt‖∗BL 6 eMt

∫
[0,1]

t∫
0

∣∣fn(Φs(x))− f(Φs(x))
∣∣ · 1∆n

(Φs(x)) ds d|µ0|(x)

6 eMt · 2M
∫

[0,1]

t∫
0

1∆n
(Φs(x)) ds d|µ0|(x). (4.30)

The inner integral in (4.30) is the time that the orbit under the flow (Φt)t>0 starting at
x spends in ∆n. It is bounded from above by (infx∈∆n

|v(x)|)−1|∆n|. Since (fn) is a
regularly approximating sequence, there exists C > 0 such that

sup
n

(
inf
x∈∆n

|v(x)|
)−1

6 C.

Thus,
‖µ(n)

t − µt‖∗BL 6 2MeMt · ‖µ0‖TV · C|∆n|.

The statement on uniform convergence and rate of convergence immediately follows.

Example 4.4.3. Consider the situation where the velocity field v ∈ BL([0, 1]) satisfies
v(1) > 0 and f(x) = −a1{1}, with a > 0. That is, in the interior of the unit interval no
mass is removed or added, while mass that has accumulated at the boundary point 1 is
removed at a rate a. The function f is discontinuous, but piecewise bounded Lipschitz,
clearly. A sequence of regularizers for f may be defined by the sequence (fn) ⊂ BL([0, 1])
given by fn(x) := −a[n(x − (1 − 1

n ))]+, where [ · ]+ denotes the positive part of the
argument. That is,

fn(x) :=
{

0, for x ∈ [0, 1− 1
n );

−an(x− (1− 1
n )), for x ∈ [1− 1

n , 1]. (4.31)
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It is easy to see that −a 6 fn(x) 6 0, so ‖fn‖∞ 6 a and

‖fn‖BL = ‖fn‖∞ + |fn|L = a(1 + n). (4.32)

Moreover, ∆n = (1 − 1/n, 1] and |∆n| = 1/n. Note that (1 − 1/n, 1] is open in [0, 1].
When n is taken sufficiently large, v is bounded away from zero on ∆n, so (fn) as defined
above is a regularly approximating sequence for f . In effect, it realizes a family of systems
in which there is a small boundary layer near 1, of thickness 1/n, in which already mass
is removed at rate a.
Proposition 4.4.2 predicts that the solutions µ(n) corresponding to the regularized per-
turbation fn ∈ BL([0, 1]) converge to the solution µ corresponding to the discontinuous
perturbation f at rate O(1/n) for the norm ‖ · ‖∗BL.
In the next section we provide numerical support for the convergence rate given in Example
4.4.3.

4.5 Numerical approximations
We consider absolutely continuous and discrete initial data, leading grosso modo to an
evolution in terms of a PDE and a system of ODEs, respectively. For the absorption of
mass we consider both the regularization (boundary layer) and the limit process. We use
the corresponding solutions to verify the order of convergence stated in Proposition 4.4.2
(in general) and Example 4.4.3 (specifically for the setting of this example).
Absorption is prescribed by fn as defined in (4.31). For brevity and convenience, in the
sequel we assume the limit case to be incorporated in this notation, i.e. we allow for
n = ∞ and define then f∞ := f = −a1{1}. As before v is bounded Lipschitz and for
simplicity we let it satisfy v(0) > 0 and v(1) > 0. In fact, we take v > 0 everywhere in
this section.

4.5.1 Two models
Let ρ0 : [0, 1]→ R+ be such that

∫ 1
0 ρ0(x) dx = 1 and define the associated measure µ̄0

by dµ̄0 := ρ0dλ. Note that µ̄0 is a probability measure on [0, 1], by definition of ρ0.

Model 1 We consider our model equation (4.21) completed with initial data µ0 = µ̄0.
Because of the choice of ρ0, the model simplifies to a linear transport equation for the
density ρ. Due to the definition of the individualistic flow (4.13), mass accumulates at
x = 1, as v points outward there. We keep track of the mass at x = 1, a quantity called
ν = ν(t), the time-derivative of which is related to the flux of ρ at x = 1. For some
n ∈ N+ ∪ {∞} we solve

∂ρ

∂t
+ ∂

∂x
(ρv) = fnρ, on (0, 1),

ρ(0, ·) = ρ0,
dν

dt
= ρ(t, 1) v(1)− aν(t).

(4.33)
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Since v > 0 on [0, 1], we use an upwind scheme – cf. e.g. Chapter 13 of [MRtT05]. At
x = 0, we need to provide a boundary condition. The definition (4.16) of (Pt)t>0 by
means of a push-forward mapping suggests that there should be no influx of mass at
x = 0, because initially there is no mass located outside [0, 1]. The boundary condition
is therefore ρ(t, 0)v(0) 6 0 which simplifies, for strictly positive v, to ρ(t, 0) = 0 for all
times t > 0.

Model 2 We consider a particle system that is the discrete counterpart of (4.33). Note
that both models are instances of the general measure-valued model (4.21) in their own
right. Given a discrete initial measure, we know that the solution is a discrete measure
for all time (see Section 4.3, Proposition 4.3.6 in particular). Once we have provided
an initial measure µ0 =

∑N
i=1 αi(0)δxi(0) (for some fixed N), we search for solutions

µ =
∑N
i=1 αi(t)δxi(t). Particularly, we take αi(0) = 1/N for all i = 1, . . . , N , while

{xi(0)}Ni=1 consists of N independent random positions, distributed according to µ̄0.
The evolution of the positions {xi(t)}Ni=1 is deterministic, dictated by Φt in (4.13). The
masses αi satisfy

dαi
dt

= fn(xi)αi, (4.34)

for all i ∈ {1, . . . , N}, where n ∈ N+ ∪ {∞}.

The particles move without interactions, which implies that the numerics are relatively
‘cheap’. To trace the evolution of the particles, we use a forward Euler scheme.

4.5.2 Evolution of mass within [0, 1) and at 1
We specify

ρ0(x) :=

 4x, 0 6 x 6
1
2 ,

4− 4x, 1
2 < x 6 1,

and
v(x) := 3

4 + 2(x− 1
2)2 for all x ∈ [0, 1].

Moreover, we take a = 1/2, and N = 25000 particles.

We first compare the solutions for the absolutely continuous and discrete initial meas-
ures described in Section 4.5.1. For the discrete measure, we derive an approximate
density by splitting [0, 1) (excluding 1) in 100 intervals, and dividing the total mass in
any interval by its length. In our graphs this associated density is indicated by ‘av.’, since
mass is averaged over space.

See Figure 4.1 for the time evolution of the limit case (in which the boundary layer
has vanished, “n = ∞”). Some features must be noted. First of all, we observe a de-
formation of the initial density profile as time proceeds, due to the fact that v is not
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Figure 4.1: The limit case (“n =∞”): Comparison of absolutely continuous (‘PDE’) and
discrete (‘ODEs, av.’) solutions in the interior of the domain.

constant. Stretching and compression is a direct consequence of the change in monoton-
icity of v. The two solutions depict approximately the same behaviour. Oscillations are
inherent to the nature of a particle system. As time proceeds, the discrete model deviates
more from the PDE. The reason is that particles have accumulated in 1, leaving fewer
particles in the interior, and thus leading to a coarser approximation.

In Figure 4.2 we show the results corresponding to the regularized system for n = 2. We
observe the same behaviour as in Figure 4.1. Note that the densities in Figure 4.2 are
slightly smaller than in Figure 4.1; in the regularized system mass already decays in the
interior of the domain. The differences between the regularized and limit systems being
small, reflect the fact that, apparently, the magnitude of v is large compared to the rate
at which mass decays. Mass arrives at 1 due to v relatively fast, without having too much
chance to decay.

In Figure 4.3 we compare the evolution of mass accumulation and decay at x = 1. Both
for the limit case and the case n = 2 the solutions for absolutely continuous and discrete
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Figure 4.2: The regularized case (n = 2): Comparison of absolutely continuous (‘PDE’)
and discrete (‘ODEs, av.’) solutions in the interior of the domain.
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Figure 4.3: Comparison of the mass at x = 1 for the absolutely continuous (‘PDE’) and
discrete (‘ODEs, av.’) solutions.

initial data are nearly indistinguishable. It is worth noting that in the regularized case the
peak value is smaller than in the limit case. This is in agreement with our observations
above about mass distribution in the interior of the domain. Some mass is taken away in
the boundary layer before arriving at x = 1.

For n larger than 2, we observe similar behaviour as in the case n = 2, be it that
the solution of the limit problem is approximated even better. We omit to show the
corresponding graphs.

4.5.3 Order of convergence

Proposition 4.4.2 (and Example 4.4.3) state that ‖µ(n)
t − µt‖∗BL = O(1/n), uniformly on

compact time intervals. In this section, we confirm this statement numerically. We follow
the idea of [JMC13] for calculating the flat metric. They choose to use the Fortet-Mourier
norm ‖ · ‖FM := max{‖·‖∞ , | · |L} on the space of bounded Lipschitz functions, rather
than the BL norm, or Dudley norm ‖ · ‖BL := ‖ · ‖∞ + | · |L used in this chapter. Con-
sequently, the corresponding dual norm is different; ‖ · ‖∗FM instead of ‖ · ‖∗BL. However,
these norms are equivalent (see (4.9) and Lemma C.2 in Appendix C). So either one of
them can be used for estimating the order of convergence.

The algorithm in [JMC13] can only be applied to (signed) discrete measures. In the sequel
we thus focus on discrete measures only and fix the number of particles at N = 25000 like
in Section 4.5.2. We have seen before that any discrete measure stays discrete as time
evolves, which allows for the use of the algorithm in [JMC13]. For a comparison between
the solutions for absolutely continuous and discrete initial data, we refer the reader back
to Section 4.5.2. The algorithm is explained in detail in Appendix E.
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k log2(Ak/Ak+1)
1 1.0531
2 1.0717
3 1.0446
4 1.0238
5 1.0123
6 1.0065
7 1.0024
8 1.0000

Table 4.1: Estimation of the order of convergence q, as used in (4.36), for n = 2k,
k ∈ N+. The numerical order of convergence is O(1/n), confirming the theoretical result
from Proposition 4.4.2.

We take n = 2k for k = 1, 2, . . . and define

Ak := sup
t∈[0,T ]

‖µ(2k)
t − µt‖∗FM. (4.35)

In (4.35), T denotes the final time of the computation. We estimate the order of conver-
gence q, that is the value of q such that

Ak = O
((

1
2k

)q)
, (4.36)

as k → ∞. As mentioned before, q = 1 should hold. We approximate the value of q by
log2(Ak/Ak+1). The results are in Table 4.1 and support our theoretical claim.

4.6 A probabilistic interpretation of the integral equa-
tion

The measure-valued variation of constants formula (4.3) follows naturally from a probab-
ilistic view on the system, as we shall now describe.

Take N individuals in a confined space, with position Xi
t ∈ [0, 1] at time t say (i =

1, . . . , N). We assume that the boundary at 1 is sticking. By this we mean that at the
absorbing boundary we have a ‘gate’ that absorbs an individual present there a time Ti
after arrival, which is an exponentially distributed random variable with (constant) rate
a. We assume that the individuals are indistinguishable and the absorption of individuals
(gating) occurs independently. We denote by π(i)

t the law of Xi
t when Xi

0 is distributed
according to the probability measure π0.

Since individuals are independent, the expected number of individuals in a Borel set
E ⊂ [0, 1] is given by the measure µt(E) , where µt satisfies

µt(E) = E

[
N∑
i=1

1Xit (E)
]

=
N∑
i=1

π
(i)
t (E). (4.37)
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The measures π(i)
t satisfy

πt(E) = Ptπ0(E)− δ1(E)
t∫

0

aπs ({1}) ds, (4.38)

such that (4.37) together with (4.38) yields (4.3) with the particular choice f = −a1{1}
as in Section 4.4, Example 4.4.3. To see that (4.38) holds, let us introduce the conditional
probability

p(t,∆t) := Prob
(
Individual is gated in [t, t+ ∆t] | Xt = 1

)
= 1− e−a∆t.

Discretize the time interval [0, t] into κ steps of length ∆s and let sj be the left point
of the jth subinterval. Then the probability that the individual has been gated in [0, t] is
approximately

κ∑
j=1

p(sj ,∆s)πsj ({1}) =
κ∑
j=1

p(sj ,∆s)
∆s πsj ({1}) ∆s

→
t∫

0

aπs ({1}) ds

as κ→∞. Formulating now (4.38) in terms of measures inM+([0, 1])BL, we obtain

πt = Ptπ0 −
t∫

0

aπs ({1}) ds δ1.

To conclude this section, we compare the numerics of Section 4.5 to a numerical approx-
imation of its probabilistic counterpart presented in this section. We only consider those
results of Section 4.5 corresponding to the limit problem; cf. the dashed curves in Figure
4.1 and Figure 4.3a. For the deterministic and stochastic models, the same discrete initial
measure is used with positions drawn randomly from the distribution µ̄0. Recall that we
use N = 25000 Diracs of initial mass 1/N .

Differences between the solutions with random and continuous decay, respectively, can
only occur at x = 1. In the interior there is no absorption of mass, while we use the same
initial data and the evolution of positions is dictated by the same velocity field. Therefore
we only show the mass at x = 1 as a function of time; see Figure 4.4. In the graph hardly
any difference is observed between the two systems.

4.7 Proof of central Lemma 4.2.3 – Averaging over or-
bits

In this section we prove Lemma 4.2.3, which in turn builds on a number of other lem-
mas. Let g : [0, 1] → R be a piecewise bounded Lipschitz function, with finite set of
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Figure 4.4: Mass at x = 1 for the system with discrete initial measure in the limit of
vanishing boundary layer. Comparison between taking away all mass of a particle at a
random time after arrival, and continuous decay at rate a.

discontinuities Sg. Number the points of Sg ∪ {0, 1} in increasing order:

x0 := 0 < x1 < x2 < · · · < xn−1 < 1 =: xn.

For ease of exposition of the technical arguments, if n = 1 we include an ‘artificial’ point
of discontinuity for g in (0, 1) at position x where v(x) 6= 0, such that we can assume
n > 2. The resulting partitioning of [0, 1] has mesh size mg := min16i6n(xi − xi−1).
The restriction of g to the subinterval (xi−1, xi) has a unique Lipschitz extension to
[xi−1, xi] that we denote by gi. Note that in general gi(xi) 6= g(xi) 6= gi+1(xi) may
hold. By assumption v is a bounded Lipschitz velocity field on [0, 1] such that v(x) 6= 0
for x ∈ Sg. Let (Φs) be the individualistic stopped flow associated to v (see Section 4.2.1).

The Lipschitz property of gΦ
t is less straightforward to establish than it might seem at

first sight, whence the technical proof that is presented in this section is required. One
might think of starting from the observation that

gΦ
t (x) =

t∫
0

g(Φs(x)) ds =
t∫

0

g(Φs(x))
v(Φs(x))

dΦs(x)
ds

ds =
Φt(x)∫
x

g(x′)
v(x′) dx

′. (4.39)

However, (4.39) holds for only for x that are not a sticking boundary point nor an interior
steady state, and holds for t 6 τ∂(x) only. Moreover, when there is an internal steady
state, then (4.39) does not give an easy Lipschitz estimate for |gΦ

t (x) − gΦ
t (y)| when x

and y lie on different sides of this steady state. This strongly limits the applicability of
(4.39).

In our approach consider the product flow (Φ×s ) on [0, 1]× [0, 1] given by

Φ×s (x, y) := (Φs(x),Φs(y)) for s > 0
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and define for 1 6 i, j 6 n and t > 0:

Bi,j :=
{

(x, y) ∈ [0, 1]× [0, 1] | xi−1 6 x 6 xi, xj−1 6 y 6 xj},
Iti,j(x, y) :=

{
s ∈ [0, t] | Φ×s (x, y) ∈ Bi,j

}
,

It,∂i,j (x, y) :=
{
s ∈ [0, t] | Φ×s (x, y) ∈ ∂Bi,j \∆[0,1]

}
.

Here, ∂Bi,j denotes the boundary of Bi,j and ∆[0,1] := {(x, y) ∈ [0, 1]× [0, 1] | x = y}
is the diagonal in [0, 1]× [0, 1]. Then one has for any x, y ∈ [0, 1],∣∣gΦ

t (x)− gΦ
t (y)

∣∣ 6 ∑
16i,j6n

∫
It
i,j

(x,y)

∣∣g(Φs(x))− g(Φs(y))
∣∣ ds. (4.40)

The terms in (4.40) with |i − j| > 2, |i − j| = 1, and i = j are estimated separately,
since each requires a different approach. The last two cases are the most delicate. The
estimates are as follows:

Case |i− j| > 2

For s ∈ Iti,j(x, y), Φs(x) and Φs(y) are in intervals of the partitioning of [0, 1] that are
not neighbours. So |Φs(x)− Φs(y)| > mg. This implies that in this case∫

It
i,j

(x,y)

|g(Φs(x))− g(Φs(y))| ds 6 2
mg
‖g‖∞

∫
It
i,j

(x,y)

|Φs(x)− Φs(y)| ds

6
2
mg
‖g‖∞ e|v|Lt · |Iti,j(x, y)| · |x− y|,

according to Lemma 4.2.1. Here, |A| denotes the Lebesgue measure of the (measurable)
set A.

Case |i− j| = 1

The following lemma provides the crucial observation for this case:

Lemma 4.7.1. Assume n > 2. Then for all t > 0 and 1 6 i, j 6 n such that |i− j| = 1,
there exist Lti,j > 0 such that

|Iti,j(x, y)| 6 Lti,j |x− y| (4.41)

for all x, y ∈ [0, 1]. The functions t 7→ Lti,j are non-decreasing and locally bounded.

The terms in (4.40) with |i− j| = 1 can then be estimated as follows, where we limit our
exposition to the case j = i− 1:∫
It
i,i−1(x,y)

|g(Φs(x))− g(Φs(y))| ds 6 2‖g‖∞ · |Iti,i−1(x, y)| 6 2‖g‖∞Lti,i−1 · |x− y|.
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Case i = j

Since g is possibly discontinuous at the points xi−1 and xi we have, using Lemma 4.2.1,∫
It
i,i

(x,y)

∣∣g(Φs(x))− g(Φs(y))
∣∣ ds 6 ∫

It
i,i

(x,y)

|gi(Φs(x))− gi(Φs(y))| ds

+
∫

It,∂
i,i

(x,y)

|g(Φs(x))− g(Φs(y))| ds (4.42)

6|gi|Le|v|Lt · |Iti,i(x, y)| · |x− y|+ 2‖g‖∞ |It,∂i,i (x, y)|.
(4.43)

Note that It,∂i,i (x, y) does not contain times s ∈ [0, t] at which Φ×s (x, y) ∈ ∆[0,1]. For
these times the integrand is zero, however. The following lemma provides the Lipschitz
estimate for the second term in (4.43), similar to Lemma 4.7.1:

Lemma 4.7.2. If 2 6 i 6 n − 1, then |It,∂i,i (x, y)| = 0 for all x, y ∈ [0, 1]. If i = 1 and
v(0) 6= 0, or i = n and v(1) 6= 0, then for all t > 0 there exist Lti > 0 such that for all
x, y ∈ [0, 1]

|It,∂i,i (x, y)| 6 Lti |x− y|. (4.44)

The function t 7→ Lti is non-decreasing and locally bounded.

The estimates for the various cases can now be put together when v(x) 6= 0 for x ∈ {0, 1},
yielding

∣∣gΦ
t (x)− gΦ

t (y)
∣∣ 6 2

mg
‖g‖∞ · e|v|Lt

 ∑
|i−j|>2

|Iti,j(x, y)|

 · |x− y|
+ 2‖g‖∞

 ∑
|i−j|=1

Lti,j

 · |x− y|
+ max

16i6n
|gi|L · e|v|Lt

(
n∑
i=1
|Iti,i(x, y)|

)
· |x− y|

+ 2‖g‖∞(Lt1 + Ltn) · |x− y|

6 |x− y| ·G ·

2n2

mg
· te|v|Lt + 2

∑
|i−j|=1

Lti,j + 2(Lt1 + Ltn)

 ,

with G := max(‖g‖∞ , |g1|L , . . . , |gn|L). Here we used that
∑
i,j |Iti,j(x, y)| 6 n2t. The

functions t 7→ Lti,j are non-decreasing and locally bounded when |i − j| = 1, according
to Lemma 4.7.1, while t 7→ Lt1 and t 7→ Ltn are non-decreasing and locally bounded, due
to Lemma 4.7.2. So for every t > 0, sup06s6t |gΦ

s |L <∞.
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If v(0) = 0 or v(1) = 0, then g is continuous at the boundary points where v van-
ishes, by the assumptions imposed on v. Consider the case v(0) = 0. Then the domain
of integration in the integral in (4.42) for i = 1 can be replaced by

Ĩt,∂1,1(x, y) := It,∂1,1(x, y) \ {(x, y) ∈ [0, 1]× [0, 1] | x = 0 or y = 0},

because of the continuity of g at 0. Since v(x1) 6= 0, we obtain |Ĩt,∂1,1(x, y)| = 0 and the
last term in (4.43) can be omitted in this case. A similar argument applies to the case
v(1) = 0 and i = n. Again, for every t > 0, sup06s6t |gΦ

s |L < ∞. The proof of Lemma
4.2.3 is now complete.

Proofs of Lemma 4.7.1 and Lemma 4.7.2

First define for any x, y ∈ [0, 1]:

τy(x) := inf{s > 0 : y = Φs(x)},

with the convention that inf ∅ = ∞. If it is finite, then τy(x) is the arrival time at y of
the solution starting at x. In that case,

τy(x) =
τy(x)∫
0

1
v(Φs(x)) ·

dΦs(x)
ds

ds =
y∫
x

1
v(x′) dx

′, (4.45)

because v(Φs(x)) 6= 0 for any 0 6 s 6 τy(x), otherwise y is not reachable (note that v
Lipschitz implies that a steady state cannot be reached in finite time). For t > 0 define
the truncation

t ∧ τy(x) := min(t, τy(x)) (4.46)

Lemma 4.7.3. Let n > 2 and t > 0.

(a) If 1 6 i 6 n − 1, then x 7→ t ∧ τxi(x) is continuous on [xi−1, xi+1] except at xi.
Moreover,

(i) If v(xi) > 0, then t ∧ τxi is Lipschitz continuous on [xi−1, xi].
(ii) If v(xi) < 0, then t ∧ τxi is Lipschitz continuous on [xi, xi+1].

In either of the cases, t ∧ τxi(x) = t on the remaining part of [xi−1, xi+1].

(b) If v(0) < 0, then x 7→ t ∧ τx0(x) is Lipschitz continuous on [x0, x1].

(c) If v(1) > 0, then x 7→ t ∧ τxn(x) is Lipschitz continuous on [xn−1, xn].

In all cases the corresponding Lipschitz constant of t ∧ τxi on the stated interval is a
non-decreasing function of t.

Proof. (a): First assume that v(xi) > 0. Then τxi is finite on the connected component
of the set Si := {x ∈ [xi−i, xi] | v(x) > 0} that contains xi. According to (4.45),
x 7→ τxi(x) is strictly decreasing and continuously differentiable function on Si \ {xi}.
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Hence, t∧ τxi is a Lipschitz function on [xi−i, xi], with Lipschitz constant on this interval
given by

|t ∧ τxi |
(i)
L = sup

{
1

v(x′)
∣∣ x′ ∈ [xi−1, xi], τxi(x′) 6 t

}
,

because of (4.45). So t 7→ |t∧ τxi |
(i)
L is a non-decreasing (and locally bounded) function.

Note that t ∧ τxi(xi) = 0, while t ∧ τxi(x) = t for x ∈ (xi, xi+1].

A similar argument applies to the case v(xi) < 0. Now x 7→ τxi(x) is strictly increasing
on the connected component of S′i := {x ∈ [xi, xi+1] | v(x) < 0} that contains xi.
Further details are left to the reader.

(b) and (c): The arguments are similar to the Lipschitz part of (a).

Remark 4.7.4. If v(xi) were 0, then t ∧ τxi is constant t on [xi−1, xi+1] \ {xi}, but
discontinuous for t > 0 at x = xi, since t ∧ τxi(xi) = 0. Hence, it is neither Lipschitz on
[xi−1, xi], nor on [xi, xi+1].

Proof of Lemma 4.7.1

Proof. (Lemma 4.7.1). Because Iti,j(x, y) = Itj,i(y, x), it suffices to consider the case
j = i− 1, i > 2. Fix x, y ∈ [0, 1]. We can assume that Iti,j(x, y) 6= ∅. First suppose that
(x, y) 6∈ Bi,i−1. Then t0 := inf(Iti,j(x, y)) is the time of arrival of the product flow at
∂Bi,i−1 before time t, when the flow starts at (x, y). Consequently,

|Iti,i−1(x, y)| = |It−t0i,i−1(Φ×t0(x, y))|. (4.47)

Since
|Φt0(x)− Φt0(y)| 6 e|v|Lt0 · |x− y| 6 e|v|Lt · |x− y|, (4.48)

(cf. Lemma 4.2.1) it suffices to prove (4.41) for (x, y) ∈ Bi,i−1.

We now estimate |Iti,i−1(x, y)| for (x, y) ∈ Bi,i−1 under the assumption that v(xi−1) > 0,
by distinguishing three cases:

Case xi−1 6 x < xi and xi−2 < y < xi−1. Using the continuity of v and v(xi−1) > 0
and taking into account that the individualistic stopped flow will stay at the boundary
points x0 = 0 and xn = 1 of [0, 1] once the solution arrives at these points (when v(0) < 0
and v(1) > 0), one gets by careful consideration that

|Iti,i−1(x, y)| =


min

(
t ∧ τxi(x), t ∧ τxi−1(y)

)
, i = 2, n > 2;

min
(
t ∧ τxi−2(y), t ∧ τxi−1(y)

)
, i = n, n > 2;

t ∧ τxi−1(y), i = n = 2;
min

(
t ∧ τxi(x), t ∧ τxi−2(y), t ∧ τxi−1(y)

)
, otherwise.

(4.49)
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Here we used that v(xi−1) > 0. Hence,

|Iti,i−1(x, y)| 6 t ∧ τxi−1(y) = t ∧ τxi−1(y)− t ∧ τxi−1(xi−1)︸ ︷︷ ︸
=0

(4.50)

6 |t ∧ τxi−1 |
(i−1)
L |xi−1 − y| (4.51)

6 |t ∧ τxi−1 |
(i−1)
L |x− y|. (4.52)

Note that in (4.50) – (4.52) the assumption j = i − 1 is essential. To get (4.51) we
applied Lemma 4.7.3(i).

Case xi−1 6 x 6 xi and y = xi−1. In this case |Iti,i−1(x, y)| = 0 due to the sign of v
at xi−1.

Case x = xi or y = xi−2 (or both). Note that |x− y| > mg. Hence,

|Iti,i−1(x, y)| =
|Iti,i−1(x, y)|
|x− y|

· |x− y| 6 t

mg
|x− y|.

From the above cases we deduce that if v(xi−1) > 0, then

|Iti,i−1(x, y)| 6 max
( t

mg
, |t ∧ τxi−1 |

(i−1)
L

)
· |x− y|, (4.53)

holds for all (x, y) ∈ Bi,i−1. The prefactor on the right-hand side in (4.53) is non-
decreasing and locally bounded in t.

If v(xi−1) < 0, then t ∧ τxi−1 is not Lipschitz on [xi−2, xi−1], but on [xi−1, xi] instead
(Lemma 4.7.3). We denote its Lipschitz constant on the latter interval by |t ∧ τxi−1 |

(i)
L ,

which is a non-decreasing function of t. The estimates for |Iti,i−1(x, y)| follow from
distinguishing between similar cases as for v(xi−1) > 0. We obtain

|Iti,i−1(x, y)| 6 max
( t

mg
, |t ∧ τxi−1 |

(i)
L

)
|x− y|, (4.54)

for all (x, y) ∈ Bi,i−1, where max
( t

mg
, |t ∧ τxi−1 |

(i)
L
)
is non-decreasing and locally

bounded in t.

Since v(xi−1) 6= 0 by assumption on the velocity field, the combination of (4.53) and
(4.54) yields the result stated in the lemma.

Proof of Lemma 4.7.2

Proof. (Lemma 4.7.2). Fix x, y ∈ [0, 1] such that x 6= y. Since It,∂i,i (x, y) = It,∂i,i (y, x) we
can assume x < y. Moreover, we can assume It,∂i,i (x, y) 6= ∅. Furthermore, it suffices to
prove Lemma 4.7.2 for (x, y) ∈ Bi,i due to similar arguments as in (4.47)–(4.48).
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If n > 3 and 2 6 i 6 n − 1, then v(x′) 6= 0 and v(y′) 6= 0 for any (x′, y′) ∈ ∂Bi,i
by assumption. Consequently, |It,∂i,i (x, y)| = 0 in this case.

Consider now i = 1. Recall that we have n > 2, x1 ∈ (0, 1) and v(x1) 6= 0. If
v(0) > 0, i.e. 0 is non-sticking, then |It,∂1,1(x, y)| = 0 for all x, y ∈ [0, 1] with x < y. If
v(0) < 0, then for x, y ∈ [0, 1] with x < y,

It,∂1,1(x, y) =


{t ∧ τx1(y)}, if τx1(y) 6 t ∧ τx0(x),[
t ∧ τx0(x),min(t ∧ τx0(y), t ∧ τx1(y))

]
, if τx0(x) 6 t ∧ τx1(y),

∅, otherwise.
(4.55)

Here we used that the flow does not stop at x1 6= 1. Moreover, in the second case in
(4.55) we use that ∆[0,1] is excluded in the definition of It,∂1,1(x, y). Thus

|It,∂1,1(x, y)| =
{

min(t ∧ τx0(y), t ∧ τx1(y))− t ∧ τx0(x), if τx0(x) 6 t ∧ τx1(y),
0, otherwise.

Hence, if v(0) < 0, then

|It,∂1,1(x, y)| 6 |t ∧ τx0(y)− t ∧ τx0(x)| 6 |t ∧ τx0 |
(1)
L · |x− y|.

As argued in the proof of Lemma 4.7.1, t 7→ |t∧τx0 |
(1)
L is non-decreasing, locally bounded.

Consider i = n. If v(1) < 0, then |It,∂n,n(x, y)| = 0 for all x, y ∈ [0, 1] with x < y.
If v(1) > 0, then

It,∂n,n(x, y) =


{t ∧ τxn−1(x)}, if τxn−1(x) 6 t ∧ τxn(y),[
t ∧ τxn(y),min(t ∧ τxn−1(x), t ∧ τxn(x))

]
, if τxn(y) 6 t ∧ τxn−1(x),

∅, otherwise.
(4.56)

Consequently, with similar argument as above, if v(1) > 0, then

|It,∂n,n(x, y)| 6 |t ∧ τxn(y)− t ∧ τxn(x)| 6 |t ∧ τxn |
(n)
L · |x− y|.

As argued before, each Lipschitz constant is non-decreasing and locally bounded in time.
This completes the proof.

4.8 Discussion
In this chapter, we have dealt with a one-dimensional evolution problem for a measure on
the unit interval under a prescribed velocity field. A combination of the stopped flow and
a source-sink right-hand side are used to model flux boundary conditions. We introduced
an approximation procedure involving an absorptive boundary layer from which, in the
limit of vanishing layer, a sink localized on the boundary is obtained. In the limit mass is
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gated away from the system via the boundary at a certain rate. To a certain extent, this
can be interpreted as a ‘door’ with finite capacity. Compare the question that we posed
in Section 1.7.3 on how to incorporate exits and entrances. We note that the results of
this chapter are not restricted to absorptive zones near the boundary; internal sources and
sinks are also incorporated.

An important generalization is the extension to velocity fields that depend on the measure-
valued solution itself. Those velocity fields are particularly interesting in view of mutual
interactions. This step is taken in Chapter 5.

The current problem is posed on the unit interval. To be done is the (highly nontrivial)
generalization to two or higher dimensions. As we have seen in this chapter (see Section
4.6), our model can be interpreted as a particle system with particles being gated away
randomly at a certain rate from an absorption zone. We derived the limit as the width of
this absorption zone goes to zero. In two (or more) dimensions, designing such limit pro-
cedure is more involved. The shape and regularity of the boundary influence the amount
of mathematical difficulties that we will encounter. In the higher-dimensional variant of
our model, we expect an additional contribution to the solution measure to be present,
which accounts for the mass accumulated on the curves that bound the domain. Such
parts of a measure, concentrating on a lower-dimensional manifold, are called singular
continuous; see e.g. [KS07], p. 45.

The continuous dependence of solutions on the initial data was proved in Proposition
4.3.8. In Section 4.5 we demonstrated this property by means of a continuum and particle
version of the model. Discrete initial measures yield a discrete solution measure for all
time, since the positions of the Dirac masses are simply transported. A absolutely con-
tinuous initial measure yields in the interior an absolutely continuous solution. The latter
is true, because v is Lipschitz continuous, and hence mass cannot accumulate into a point
in finite time.
As is illustrated by Section 4.5, Proposition 4.3.8 contains a discrete-to-continuum limit
as a special case. This is a side result while this chapter treats the problem at a more
general level. However, the discrete-to-continuum limit of this chapter is indicated in
Figure 1.2.

In Chapter 6 of [Ren13] a similar problem is treated. The dynamics in the interior domain
are driven by diffusion there, which instantaneously regularizes the solution. This justifies
the description of the solution in terms of a density on the open interval (0, 1) and two
Dirac masses at the boundaries 0 and 1 that account for the mass that has left the interior;
see p. 91 of [Ren13]. The explicit splitting of the solution in these parts requires extra
bookkeeping to match the interior dynamics with the time-evolution of the Dirac masses.
Compare what we did in (4.33).
The mass at 0 and 1 is kept track of, because as a result the total mass is constant
(density + Diracs). This is important, because [Ren13] uses the Wasserstein distance,
that is defined on probability measures. Note that no distinction can be made between
mass that accumulates at the boundary, and mass that has actually been gated away. We
do not have these problems, because we use a distance on general finite Borel measures
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that does not require conservation of total mass. In our setting, the interior and boundary
measures are combined into one solution measure. Moreover, mass that is concentrated
on the boundary is interpreted as being physically present in the problem, while mass that
was gated away is no longer visible. Also, our setting allows for net influx of mass.



Chapter 5

Flux boundary conditions:
measure-dependent velocity

In the previous chapter, Chapter 4, we derived boundary conditions for a measure-valued
evolution equation with prescribed velocity field. We now propose and investigate a pro-
cedure to generalize the results of Chapter 4 to velocity fields that depend on the solution
itself. Such generalization makes it possible to model the dynamics on a bounded domain
governed by interactions between the ‘particles’. In Chapters 2 and 3 interaction terms of
convolution type have already been used.

We are motivated in this chapter by the same mathematical question as in Chapter 4:

What is the correct way to define zero-flux or
general flux boundary conditions in terms of measures?

The results in this chapter only hold for a source-sink right-hand side that is based on a
function f ∈ BL([0, 1]). In view of Chapter 4, we are hence able to describe absorption in
a boundary layer, but not yet absorption on the boundary alone. In the discussion section
of this chapter we comment on the possibilities to extend our results to f that is piecewise
bounded Lipschitz.

5.1 Introduction
As said before, in this chapter we consider (4.1) for velocity fields that are no longer
fixed elements of BL([0, 1). Instead of v, we write v[µ] for the velocity field that depends
functionally on the solution. The transport equation on [0, 1] – cf. (1.43) – becomes

∂

∂t
µt + ∂

∂x
(µtv[µt]) = f · µt. (5.1)

This chapter is based on work in progress with Sander Hille and Adrian Muntean. It builds both on
Chapter 4 of this thesis and on Ron Hoogwater’s master’s thesis [Hoo13].

131
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Due to the measure-dependency of the velocity, Equation (5.1) is nonlinear. To establish
well-posedness despite the nonlinearity, we use a forward-Euler-like approach that builds
on the fundamentals constructed in Chapter 4. We partition the time interval [0, T ]
and fix, on each subinterval, the velocity. That is, restricted to a subinterval, the velo-
city depends only on the spatial variable and not on the solution measure. Within each
subinterval the measure-valued solution evolves according to this fixed velocity and the
evolution satisfies the requirements of Chapter 4. A more detailed description is given in
Section 5.3. We refine the partitioning of [0, T ] and estimate the difference between the
subsequent Euler approximations. The main result of this chapter is our proof of the fact
that this procedure converges.

A forward-Euler scheme similar to ours is also used in [PR13] for absolutely continu-
ous measures. Their results are extended to general measures in Chapter 7 of [CPT14].
The difference between their and our work is that they use the Wasserstein distance and
that their domain is Rd.
As mentioned in Section 1.7.3 of Chapter 1, the references that directly inspired us are
[CG09, Hoo13, GLMC10]. The approach presented in this chapter deviates from [Hoo13],
since we restrict ourselves to evolution on the interval [0, 1], while [Hoo13] considers
[0,∞). Furthermore, our regularity conditions on the velocity – given in Assumption
5.3.1 – are weaker than in [Hoo13]; cf. Remark 5.3.3. Moreover, [Hoo13] restricts to
velocity fields that point inwards at 0. In this way, no mass is allowed to flow out of
the domain [0,∞). In our approach, the fact that the flow is stopped at the boundary is
encoded in the semigroup (Pt)t>0, irrespective of the sign of the velocity there; cf. Section
4.2.1. Bearing in mind that the velocity v[µ] depends on the solution (see e.g. Example
5.3.2), we think it is too restrictive to have a condition on the sign of the velocity at 0 or 1.

This chapter is organized as follows. In Section 5.2 we collect a number of proper-
ties of the semigroup (Pt)t>0 and of the solution operator, called (Qt)t>0, associated to
Chapter 4. The forward-Euler-like approach to construct solutions is introduced in Sec-
tion 5.3, in which we also state the main results of this chapter: existence and uniqueness
of mild solutions to the nonlinear problem, and their continuous dependence on initial
conditions. We prove these results in Section 5.4 using estimates between subsequent
Euler approximations. In Section 5.5 we reflect on the achievements and open issues of
this chapter and provide directions for further research.

5.2 Summary of technical preliminaries

5.2.1 Properties of the stopped flow
In this section we summarize results on the properties of (Pt)t>0: the semigroup cor-
responding to the stopped flow associated to v ∈ BL([0, 1]). We first recall Lemma
4.2.2:

Lemma 4.2.2. Let µ ∈M([0, 1]) and t, s ∈ R+. Then

(i) ‖Ptµ− Psµ‖∗BL 6 ‖v‖∞ ‖µ‖TV |t− s|.
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(ii) ‖Ptµ‖∗BL 6 max(1, |Φt|L) ‖µ‖∗BL 6 e|v|Lt‖µ‖∗BL.

To distinguish between the semigroups on M([0, 1]) associated to v, v′ ∈ BL([0, 1]),
we write P v and P v′ , respectively. Likewise notations we introduce for the semigroups
(Φvt )t>0 and (Φv′t )t>0 on [0, 1] and for the intervals of existence Ivx0

and Iv′x0
associated

to (4.12).

Lemma 5.2.1. For all µ ∈M([0, 1]), v, v′ ∈ BL([0, 1]) and t ∈ R+
0

‖P vt µ− P v
′

t µ‖∗BL 6 ‖v − v′‖∞ t ‖µ‖TV e
L t,

where L := min(|v|L , |v′|L).

Proof. For any φ ∈ BL([0, 1])

|
〈
φ, P vt µ− P v

′

t µ
〉
| = |

〈
φ ◦ Φvt − φ ◦ Φv

′

t , µ
〉
| 6 |φ|L ‖Φvt − Φv

′

t ‖∞ ‖µ‖TV, (5.2)

hence
‖P vt µ− P v

′

t µ‖∗BL 6 ‖Φvt − Φv
′

t ‖∞ ‖µ‖TV. (5.3)

Case 1: t ∈ Ivx and t ∈ Iv′x . For each x ∈ [0, 1]

|Φvt (x)− Φv
′

t (x)| =

∣∣∣∣∣∣
t∫

0

v(Φvs(x))− v′(Φv
′

s (x)) ds

∣∣∣∣∣∣
6 |v|L

t∫
0

|Φvs(x)− Φv
′

s (x)| ds+ ‖v − v′‖∞ t.

Gronwall’s Lemma yields

|Φvt (x)− Φv
′

t (x)| 6 ‖v − v′‖∞ t e|v|L t, (5.4)

for all x ∈ [0, 1]. Due to the symmetry of (5.4) in v and v′, the same estimate can
be obtained with |v′|L instead of |v|L, and hence, we can write min(|v|L , |v′|L) in the
exponent. This observation yields, together with (5.3), the statement of the lemma.

Case 2: t 6∈ Ivx . Extend v : [0, 1] → R to v̄ : R → R by defining v̄(x) := v(0) if
x < 0 and v̄(x) := v(1) if x > 1. Then v̄ is a bounded Lipschitz extension of v such that
‖v̄‖∞ = ‖v‖∞ and |v̄|L = |v|L. Let Φv̄t : R→ R be the solution semigroup associated to
the unique (global) solution to (4.12) with v replaced by v̄ and with initial condition to
be taken from the whole of R. Extend v′ analogously to v̄′.
Irrespective of whether t ∈ Iv′x or t 6∈ Iv′x , and whether in the latter case Φvt (x) = Φv′t (x)
or Φvt (x) 6= Φv′t (x), the following estimate holds

|Φvt (x)− Φv
′

t (x)| 6 |Φv̄t (x)− Φv̄
′

t (x)| (5.5)
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for all x ∈ [0, 1]. estimate |Φv̄t (x) − Φv̄′t (x)| using the same ideas as in (5.3) and (5.4)
and obtain

‖P v̄t µ− P v̄
′

t µ‖∗BL 6 ‖v̄ − v̄′‖∞ t ‖µ‖TV exp(min(|v̄|L , |v̄′|L) t).

The statement of the lemma follows from the equalities |v̄|L = |v|L, |v̄′|L = |v′|L,
‖v̄ − v̄′‖∞ = ‖v − v′‖∞ and Equation (5.5). The case t 6∈ Iv′x is analogous.

5.2.2 Properties of the solution for prescribed velocity

In this section we give an overview of the properties of the solution treated in Chapter 4.
We restrict ourselves to f that is bounded Lipschitz on [0, 1]; cf. Section 5.5 for further
discussion on this restriction. Let v ∈ BL([0, 1]) and f ∈ BL([0, 1]) be arbitrary. For all
t > 0, we define Qt : M([0, 1]) → M([0, 1]) to be the operator that maps the initial
condition to the solution – in the sense of Definition 4.2.4 – at time t. It follows from
Propositions 4.3.2 and 4.3.6 that this operator is well-defined. Moreover, Q preserves
positivity, due to Corollary 4.3.7.

Lemma 5.2.2 (Semigroup property). The set of operators (Qt)t>0 satisfies the semigroup
property. That is,

QtQs µ = Qt+s µ

for all s, t > 0 and for all µ ∈M([0, 1]).

Proof. The proof follows the lines of argument of [Š94], p. 283. We consider

Qt+sµ−QtQs µ =Pt+sµ+
t+s∫
0

Pt+s−σ Ff (Qσ µ) dσ

− PtQs µ−
t∫

0

Pt−σ Ff (Qσ Qs µ) dσ, (5.6)

and observe that

PtQs µ =Pt Ps µ+ Pt

s∫
0

Ps−σ Ff (Qσ µ) dσ

=Pt+s µ+
s∫

0

Pt+s−σ Ff (Qσ µ) dσ. (5.7)

Because f ∈ BL([0, 1]), the map σ 7→ Ps−σ Ff (Qσ µ) is continuous and hence it is
measurable. Therefore, the second equality in (5.7) holds due to (B.3). Together, (5.6)
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and (5.7) yield that

Qt+sµ−QtQs µ =
t+s∫
s

Pt+s−σ Ff (Qσ µ) dσ −
t∫

0

Pt−σ Ff (Qσ Qs µ) dσ

=
t∫

0

Pt−σ (Ff (Qσ+s µ)− Ff (Qσ Qs µ)) dσ. (5.8)

To obtain the last step, we used the coordinate transformation τ = σ−s in the first integral
and subsequently renamed the new variable τ as σ. We estimate the total variation norm
of (5.8) in the following way:

‖Qt+sµ−QtQs µ‖TV 6

t∫
0

‖Pt−σ (Ff (Qσ+s µ)− Ff (Qσ Qs µ)) ‖TV dσ

6

t∫
0

‖Ff (Qσ+s µ)− Ff (Qσ Qs µ)‖TV dσ

6 ‖f‖∞

t∫
0

‖Qσ+s µ−Qσ Qs µ‖TV dσ.

Here, we used Part (iii) of Proposition B.2 (noting that the integrands are continuous in
σ) in the first line, (4.17) in the second line and the fact that f ∈ BL([0, 1]) ⊂ Cb([0, 1])
in the last line. Gronwall’s Lemma now implies that ‖Qt+sµ − QtQs µ‖TV = 0 for all
s, t > 0.

Lemma 5.2.3. For all µ ∈M([0, 1]) and s, t > 0, we have that

‖Qtµ−Qsµ‖∗BL 6 ‖µ‖TV ·
(
‖f‖∞ + ‖v‖∞

)
· e‖f‖∞max(t,s) · |t− s|.

Proof. The statement of this lemma is part of the result of Proposition 4.3.6.

Lemma 5.2.4. For all µ ∈M([0, 1]) and t > 0, we have that

(i) ‖Qtµ‖TV 6 ‖µ‖TV exp(‖f‖∞ t), and

(ii) ‖Qtµ‖∗BL 6 ‖µ‖∗BL exp(|v|L t+ ‖f‖BL t e
|v|L t).

Proof. (i): This estimate is given in Proposition 4.3.6.
(ii): By applying (B.1) and Lemma 4.2.2(ii) we obtain from (4.21) the estimate

‖Qt µ‖∗BL 6 exp(|v|L t) ‖µ‖∗BL +
t∫

0

exp(|v|L (t− s))‖f‖BL ‖Qsµ‖∗BL ds.

Gronwall’s Lemma now yields the statement of Part (ii) of the lemma.
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Corollary 5.2.5. For all µ, ν ∈M([0, 1]) and t > 0, we have that

‖Qt µ−Qt ν‖∗BL 6 ‖µ− ν‖∗BL exp(|v|L t+ ‖f‖BL t e
|v|L t).

Proof. Apply Part (ii) of Lemma 5.2.4 to the measure µ− ν ∈M([0, 1]).

We write Qv and Qv′ to distinguish between the semigroups Q onM([0, 1]) associated
to v ∈ BL([0, 1]) and v′ ∈ BL([0, 1]), respectively.

Lemma 5.2.6. For all v, v′ ∈ BL([0, 1]), µ ∈M([0, 1]) and t > 0, the following estimate
holds:

‖Qvtµ−Qv
′

t µ‖∗BL 6 ‖v − v′‖∞ ‖µ‖TV exp(L t+ ‖f‖BL t e
L t) · [t+ t2‖f‖∞ e‖f‖∞ t],

where L := min(|v|L , |v′|L).

Proof. We have

‖Qvtµ−Qv
′

t µ‖∗BL 6 ‖P vt µ−P v
′

t µ‖∗BL +
t∫

0

‖P vt−sFf (Qvsµ)−P v
′

t−sFf (Qv
′

s µ)‖∗BL ds. (5.9)

Lemma 5.2.1 provides an appropriate estimate of the first term on the right-hand side.
For the integrand in the second term, we have

‖P vt−sFf (Qvsµ)− P v
′

t−sFf (Qv
′

s µ)‖∗BL 6 ‖P vt−sFf (Qvsµ)− P v
′

t−sFf (Qvsµ)‖∗BL

+ ‖P v
′

t−sFf (Qvsµ)− P v
′

t−sFf (Qv
′

s µ)‖∗BL

6 ‖v − v′‖∞ (t− s) ‖Ff (Qvsµ)‖TV e
L(t−s)

+ e|v
′|L (t−s) ‖Ff (Qvsµ)− Ff (Qv

′

s µ)‖∗BL, (5.10)

due to Lemma 5.2.1 and Lemma 4.2.2(ii). We proceed by estimating the right-hand side
of (5.10) and obtain

‖P vt−sFf (Qvsµ)− P v
′

t−sFf (Qv
′

s µ)‖∗BL 6 ‖v − v′‖∞ (t− s) ‖f‖∞ ‖µ‖TV e
‖f‖∞ s eL(t−s)

+ e|v
′|L (t−s) ‖f‖BL ‖Qvsµ−Qv

′

s µ‖∗BL, (5.11)

where we use Part (i) of Lemma 5.2.4 in the first term on the right-hand side. Since the
estimate in (5.11) is symmetric in v and v′, we can replace |v′|L by L.
Substitution of the result of Lemma 5.2.1 and (5.11) in (5.9) yields

‖Qvtµ−Qv
′

t µ‖∗BL 6 ‖v − v′‖∞ t ‖µ‖TV e
Lt (1 + t ‖f‖∞ e‖f‖∞ t)

+ eLt ‖f‖BL

t∫
0

‖Qvsµ−Qv
′

s µ‖∗BL ds.

The statement of the lemma follows from Gronwall’s Lemma.
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5.3 Measure-dependent velocity fields: main results
In this section, we generalize the assumptions on v from Chapter 4 in the following way
to measure-dependent velocity fields:

Assumption 5.3.1 (Assumptions on the measure-dependent velocity field). Assume that
v :M([0, 1])× [0, 1]→ R is a mapping such that:

(i) v[µ] ∈ BL([0, 1]), for each µ ∈M([0, 1]).

Furthermore, assume that for any R > 0 there are constants KR, LR, MR such that for
all µ, ν ∈M([0, 1]) satisfying ‖µ‖TV 6 R and ‖ν‖TV 6 R, the following estimates hold:

(ii) ‖v[µ]‖∞ 6 KR,

(iii) | v[µ] |L 6 LR, and

(iv) ‖v[µ]− v[ν]‖∞ 6MR ‖µ− ν‖∗BL.

Example 5.3.2. An example of a function v satisfying Assumption 5.3.1 is:

v[µ](x) :=
∫

[0,1]

K(x− y) dµ(y) = (K ∗ µ)(x), (5.12)

for each µ ∈ M([0, 1]) and x ∈ [0, 1], with K ∈ BL([−1, 1]). This is a relevant choice,
because it models interactions; see Section 1.2. In Chapters 2 and 3 interaction terms of
the same type were used.

Remark 5.3.3. Parts (ii) and (iii) of Assumption 5.3.1 are an improvement compared to
[Hoo13]. There, the infinity norm and Lipschitz constant are assumed to hold uniformly
for all µ ∈ M([0, 1]); cf. Assumption (F1) on p. 40 of [Hoo13]. We note that the
convolution in Example 5.3.2 satisfies Assumption 5.3.1, but does not satisfy Assumption
(F1) in [Hoo13]. They require a uniform Lipschitz constant because their Lemma 4.3
is an estimate in the ‖ · ‖∗BL-norm for which Part (ii) of our Lemma 4.2.2 is used. Our
counterpart of Lemma 4.3 in [Hoo13] is Lemma 5.3.4. We give an estimate in terms of
the ‖ · ‖TV-norm using (4.17) which does not involve the Lipschitz constant.

Our aim is to prove well-posedness (in some sense yet to be defined) of the following
equation

∂

∂t
µt + ∂

∂x
(v[µt]µt) = f · µt. (5.13)

As said in Section 5.2.2, we restrict ourselves to f that is bounded Lipschitz on [0, 1].

We now introduce the aforementioned forward-Euler-like approach to construct approxim-
ate solutions. Let T > 0 be given. For each k ∈ N, define tkj := jT/2k, j ∈ {0, . . . , 2k}.
Note in particular that tkj = tk+1

2j for each j ∈ {0, . . . , 2k}.

Let µ0 ∈M([0, 1]) be given. Define a sequence (µk)k∈N ⊂ C([0, T ];M([0, 1])) by

µ0
t = µ0, for all t ∈ [0, T ], (5.14)
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and 
µkt := Q

vkj
t−tk

j

µk
tk
j

, if t ∈ (tkj , tkj+1];

vkj := v[µk
tk
j

];
µk0 = µ0,

(5.15)

for k ∈ N+, where (Qvt )t>0 denotes the semigroup introduced in Section 5.2.2 associated
to an arbitrary v ∈ BL([0, 1]).

We call this a forward-Euler-like approach, because it is the analogon of the forward
Euler method for ODEs (cf. e.g. Chapter 2 in [But03]). Consider the ODE dx/dt = v(x)
on R for some (Lipschitz continuous) v : R→ R. The forward Euler method approximates
the solution on some interval (tj , tj+1] by evolving the approximate solution at time tj ,
named xj , due to a constant velocity v(xj). That is, x(t) ≈ xj + (t− tj) · v(xj) for all
t ∈ (tj , tj+1].
In (5.15), we introduce the approximation µkt , where µkt results from µk

tk
j

by the evolution
due to the constant velocity field v[µk

tk
j

]. The word constant here does not refer to v
being the same for all x ∈ [0, 1], but to the fact that v corresponding to the same µk

tk
j

is
used throughout (tkj , tkj+1].

The conditions in Parts (ii)–(iv) of Assumption 5.3.1 are only required to hold for measures
in a TV-norm bounded set, in view of the following lemma:
Lemma 5.3.4. Let µ0 ∈ M([0, 1]) be given and let v : M([0, 1]) × [0, 1] → R satisfy
Assumption 5.3.1(i). Then

A := {µkt : k ∈ N, t ∈ [0, T ]},

i.e. the set of all timeslices corresponding to (5.15), is bounded in both ‖·‖TV and ‖·‖∗BL.
Proof. Fix k ∈ N+ and j ∈ {0, . . . , 2k − 1} and let t ∈ (tkj , tkj+1]. By Part (i) of Lemma
5.2.4, we have that

‖µkt ‖TV = ‖Qv
k
j

t−tk
j

µktk
j
‖TV 6 ‖µktk

j
‖TV exp(‖f‖∞ (t− tkj ))

6 ‖µktk
j
‖TV exp(‖f‖∞ T/2k)

for all t ∈ (tkj , tkj+1]. Iteration of the right-hand side with respect to j yields

‖µkt ‖TV 6 ‖µ0‖TV
(
exp(‖f‖∞ T/2k)

)j+1
.

Hence, for all t ∈ [0, T ]

‖µkt ‖TV 6 ‖µ0‖TV
(
exp(‖f‖∞ T/2k)

)2k
= ‖µ0‖TV exp(‖f‖∞ T )

This bound is in particular independent of t and k. The bound in ‖ · ‖∗BL follows from the
inequality ‖µ‖∗BL 6 ‖µ‖TV that holds for all µ ∈M([0, 1]).
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We define a mild solution in this context as follows:

Definition 5.3.5 (Mild solution of (5.13)). For each k ∈ N, let µk ∈ C([0, T ];M([0, 1]))
be defined by (5.15). Let M([0, 1]) be endowed with the topology induced by ‖ · ‖∗BL.
Then, any limit of a subsequence of (µk)k∈N is called a (measure-valued) mild solution
of (5.13).

The name mild solutions is appropriate, because they are constructed from piecewise mild
solutions in the sense of Definition 4.2.4.

Remark 5.3.6. Consider the solution of (5.15) for any k ∈ N. Mass that has accumulated
on the boundary can move back into the interior of the domain whenever the velocity
changes direction from one time interval to the next. This is due to the definition of the
maximal interval of existence Ix0 and the hitting time τ∂(x0) in Section 4.2.1.

We focus on positive measure-valued solutions, because these are physically relevant
(cf. Remark 4.3.4). The main results of this chapter are the following two theorems.

Theorem 5.3.7. For each µ0 ∈ M+([0, 1]) and v : M([0, 1]) × [0, 1] → R satisfying
Assumption 5.3.1, there is a unique element of C([0, T ];M+([0, 1])) with initial condition
µ0, that is a mild solution in the sense of Definition 5.3.5.

Theorem 5.3.8 (Continuous dependence on initial data). For all R̃ > 0 there is a constant
CR̃ such that for all µ0, ν0 ∈ M+([0, 1]) satisfying ‖µ0‖TV 6 R̃ and ‖ν0‖TV 6 R̃, the
corresponding mild solutions µ, ν ∈ C([0, T ];M+([0, 1])) satisfy

sup
t∈[0,T ]

‖µt − νt‖∗BL 6 CR̃ ‖µ0 − ν0‖∗BL.

The proofs of these two theorems are given in the next section, Section 5.4. The key idea
of the proof of Theorem 5.3.7 is to show that the sequence (µk)k∈N is a Cauchy sequence
in a complete metric space, hence converges. We use estimates between subsequent
approximations µk and µk+1. Similar estimates are employed to obtain the result of
Theorem 5.3.8.

5.4 Proofs of Theorem 5.3.7 and Theorem 5.3.8
In this section we prove the main results of this chapter: Theorem 5.3.7 and Theorem
5.3.8. The essential part of the proof of Theorem 5.3.7 is provided by the following lemma:

Lemma 5.4.1. For fixed µ0 ∈ M+([0, 1]), the sequence (µk)k∈N defined by (5.14)–
(5.15) is a Cauchy sequence in C([0, T ];M+([0, 1])). In particular, there is a constant c
such that

sup
τ∈[0,T ]

‖µkτ − µk+1
τ ‖∗BL 6

c

2k ,

for all k ∈ N.

Proof. Fix k ∈ N and let τ and j be given such that τ ∈ (tkj , tkj+1]. We recall that
tkj = tk+1

2j .
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Step 1: The case τ ∈ (tkj , tk+1
2j+1]. To simplify notation, we introduce v := vkj = v[µk

tk
j

]

and v′ := vk+1
2j = v[µk+1

tk+1
2j

]. Note that

µkτ = Qvτ−tk
j
µktk
j
, and µk+1

τ = Qv
′

τ−tk+1
2j

µk+1
tk+1

2j
.

We estimate

‖µkτ − µk+1
τ ‖∗BL 6 ‖Qvτ−tk

j
(µktk

j
− µk+1

tk
j

)‖∗BL + ‖
(
Qvτ−tk

j
−Qv

′

τ−tk
j

)
µk+1
tk
j

‖∗BL

6 ‖µktk
j
− µk+1

tk
j

‖∗BL exp
(
|v|L (τ − tkj ) + ‖f‖BL (τ − tkj ) e|v|L (τ−tkj )

)
+ ‖v − v′‖∞ ‖µk+1

tk
j

‖TV exp
(
L (τ − tkj ) + ‖f‖BL (τ − tkj ) eL (τ−tkj )

)
·

·
[
(τ − tkj ) + (τ − tkj )2‖f‖∞ e‖f‖∞ (τ−tkj )

]
,

(5.16)

using Corollary 5.2.5 and Lemma 5.2.6. Here, L denotes min(|v|L , |v′|L). In view of
Lemma 5.3.4, we define R := ‖µ0‖TV · exp(‖f‖∞ T ). From Parts (iii) and (iv) of
Assumption 5.3.1 and the fact that τ − tkj 6 T/2k+1 < T it follows that

‖µkτ − µk+1
τ ‖∗BL 6 ‖µktk

j
− µk+1

tk
j

‖∗BL exp
(
LR

T

2k+1 + ‖f‖BL
T

2k+1 e
LR T

)
·

·
[
1 +MRR

T

2k+1 +MRR

(
T

2k+1

)2
‖f‖∞ e‖f‖∞ T

]
.

Hence, there are positive constants A1,1 and A1,2, independent of j and k, such that the
following estimate holds for all τ ∈ (tkj , tk+1

2j+1]:

‖µkτ − µk+1
τ ‖∗BL 6 exp

(
A1,1

T

2k+1

)
·
(

1 +A1,2
T

2k+1

)
‖µktk

j
− µk+1

tk
j

‖∗BL. (5.17)

Here, we have estimated (T/2k+1)2 6 T (T/2k+1) and incorporated the corresponding
term in the term with prefactor A1,2.

Step 2: The case τ ∈ (tk+1
2j+1, t

k
j+1]. We note that

µkτ =Qv
τ−tk+1

2j+1
µk
tk+1

2j+1

holds, because of the semigroup property proved in Lemma 5.2.2. We define v′′ :=
vk+1

2j+1 = v[µk+1
tk+1

2j+1
] and hence we have

µk+1
τ = Qv

′′

τ−tk+1
2j+1

µk+1
tk+1

2j+1
.
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We estimate the difference between the approximations at time τ like in (5.16). Applying
the results of Corollary 5.2.5 and Lemma 5.2.6, we obtain
‖µkτ − µk+1

τ ‖∗BL 6 ‖Qv
τ−tk+1

2j+1
(µk
tk+1

2j+1
− µk+1

tk+1
2j+1

)‖∗BL + ‖
(
Qv
τ−tk+1

2j+1
−Qv

′′

τ−tk+1
2j+1

)
µk+1
tk+1

2j+1
‖∗BL

6 ‖µk
tk+1

2j+1
− µk+1

tk+1
2j+1
‖∗BL exp

(
LR

T

2k+1 + ‖f‖BL
T

2k+1 e
LR T

)
+ ‖v − v′′‖∞ R exp

(
LR

T

2k+1 + ‖f‖BL
T

2k+1 e
LR T

)
·

·
[
T

2k+1 +
(

T

2k+1

)2
‖f‖∞ e‖f‖∞ T

]
, (5.18)

with R := ‖µ0‖TV · exp(‖f‖∞ T ) as before; cf. Lemma 5.3.4. We also used Part (iii)
of Assumption 5.3.1 and the fact that τ − tk+1

2j+1 6 T/2k+1 < T . Using Part (iv) of
Assumption 5.3.1, we treat the difference of velocities ‖v − v′′‖∞ = ‖vkj − vk+1

2j+1‖∞ as
follows:

‖v − v′′‖∞ 6 ‖ v[µktk
j
]− v[µk+1

tk
j

] ‖∞ + ‖ v[µk+1
tk
j

]− v[µk+1
tk+1

2j+1
] ‖∞

6MR ‖µktk
j
− µk+1

tk
j

‖∗BL +MR ‖µk+1
tk
j

− µk+1
tk+1

2j+1
‖∗BL, (5.19)

in which we estimate the last term as
‖µk+1

tk
j

− µk+1
tk+1

2j+1
‖∗BL = ‖µk+1

tk
j

−Qv
′

tk+1
2j+1−t

k
j

µk+1
tk
j

‖∗BL

6 ‖µk+1
tk
j

‖TV
(
‖f‖∞ + ‖v′‖∞

)
e‖f‖∞(tk+1

2j+1−t
k
j ) · (tk+1

2j+1 − t
k
j ).

This inequality is due to Lemma 5.2.3 and the observation that µk+1
tk
j

= Qv
′

0 µk+1
tk
j

. Using
the bound (tk+1

2j+1 − tkj ) 6 T/2k+1 < T and Assumption 5.3.1(ii), we obtain

‖µk+1
tk
j

− µk+1
tk+1

2j+1
‖∗BL 6 R (‖f‖∞ +KR) e‖f‖∞ T · T

2k+1 . (5.20)

We substitute (5.19) and (5.20) in (5.18) and note that (5.17) provides an upper bound
on

‖µk
tk+1

2j+1
− µk+1

tk+1
2j+1
‖∗BL.

Hence, finally we obtain that for all τ ∈ (tk+1
2j+1, t

k
j+1] the estimate

‖µkτ − µk+1
τ ‖∗BL 6 exp

(
A2,1

T

2k+1

)
·
(

1 +A2,2
T

2k+1

)
‖µktk

j
− µk+1

tk
j

‖∗BL

+A2,3

(
T

2k+1

)2
, (5.21)

holds for some positive constants A2,1, A2,2 and A2,3 independent of j and k. Like we
did with A1,2, we have incorporated higher-order terms in A2,2 and A2,3.
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Step 3: The entire interval (tk+1
2j+1, t

k
j+1]. A suitable combination of (5.17) and (5.21)

yields that there are positive constants A1, A2 and A3, independent of j and k, such that

sup
τ∈(tk

j
,tk
j+1]
‖µkτ − µk+1

τ ‖∗BL 6 exp
(
A1

T

2k+1

)
·
(

1 +A2
T

2k+1

)
‖µktk

j
− µk+1

tk
j

‖∗BL

+A3

(
T

2k+1

)2
(5.22)

holds. Note that ‖µk
tk
j

− µk+1
tk
j

‖∗BL = 0 if j = 0. Applying (5.22) iteratively, we derive for
each j ∈ {0, . . . , 2k − 1} the inequality:

sup
τ∈(tk

j
,tk
j+1]
‖µkτ − µk+1

τ ‖∗BL 6
j∑
`=0

exp
(
A1

` T

2k+1

)
·
(

1 +A2
T

2k+1

)`
A3

(
T

2k+1

)2
.

(5.23)
We take the supremum over j on both sides of the inequality and obtain

sup
τ∈[0,T ]

‖µkτ − µk+1
τ ‖∗BL 6

2k−1∑
`=0

exp
(
A1

` T

2k+1

)
·
(

1 +A2
T

2k+1

)`
A3

(
T

2k+1

)2

6A3

(
T

2k+1

)2
exp (A1 T/2)

2k−1∑
`=0

(
1 +A2

T

2k+1

)`
. (5.24)

Including τ = 0 in the supremum does not change the upper bound. Note that(
1 +A2

T

2k+1

)`
=
∑̀
i=0

(
`

i

)(
A2

T

2k+1

)i
,

while (
`

i

)
= `!
i! (`− i)! = 1

i!

i∏
q=1

(`− i+ q) 6 (2k)i

i! ,

because ` 6 2k − 1. Hence,(
1 +A2

T

2k+1

)`
6
∑̀
i=0

(A2 T )i

i! 6 eA2 T . (5.25)

A combination of (5.24) and (5.25) yields

sup
τ∈[0,T ]

‖µkτ − µk+1
τ ‖∗BL 6A3

(
T

2k+1

)2
exp (A1 T/2) 2k eA2 T

6A3
T 2

2k+1 exp (A1 T/2 +A2 T ) , (5.26)
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which implies the statement of the lemma. Indeed, (µk)k∈N is a Cauchy sequence, since
(5.26) provides a constant c such that for all n ∈ N+ and m > n

sup
τ∈[0,T ]

‖µmτ − µnτ ‖∗BL 6
m−1∑
k=n

sup
τ∈[0,T ]

‖µkτ − µk+1
τ ‖∗BL 6

m−1∑
k=n

c

2k

= c

(
1

2n−1 −
1

2m−1

)
6

c

2n−1 .

Hence for all ε > 0, supτ∈[0,T ] ‖µmτ − µnτ ‖∗BL < ε for all m > n > N̄ := log2( c
ε

).

Remark 5.4.2. It is crucial that we use ‖ · ‖∗BL and not ‖ · ‖TV in Lemma 5.4.1. The
factor ‖v − v′‖∞ appears in (5.16) due to Lemma 5.2.6. Due to Assumption 5.3.1(iv)
we subsequently obtain an estimate in which ‖µk

tk
j

− µk+1
tk
j

‖∗BL appears as a factor. This
is essential for the result of the lemma. Note that Lemma 5.2.6 builds on Lemma 5.2.1.
In (5.2) the Lipschitz property of the test functions is explicitly used and hence, there is
no direct way to formulate the result of Lemma 5.2.1 in terms of ‖ · ‖TV. Consequently,
we do not have an estimate of ‖µkτ − µk+1

τ ‖TV against ‖v − v′‖∞ comparable to (5.16).

We recall and prove Theorem 5.3.7.

Theorem 5.3.7. For each µ0 ∈ M+([0, 1]) and v : M([0, 1]) × [0, 1] → R satisfying
Assumption 5.3.1, there is a unique element of C([0, T ];M+([0, 1])) with initial condition
µ0, that is a mild solution in the sense of Definition 5.3.5.

Proof. By definition,M([0, 1]) is complete in the metric induced by the norm ‖ · ‖∗BL. In
Lemma 4.1.1,M+([0, 1]) is proved to be a closed subspace ofM([0, 1]), soM+([0, 1])
is complete; cf. Lemma A.2 in Appendix A. Hence, due to Theorem A.3, the space

{ν ∈ C([0, T ];M+([0, 1])) : ν(0) = µ0}

is complete for the metric defined for all µ, ν ∈ C([0, T ];M+([0, 1])) by

sup
t∈[0,T ]

‖µt − νt‖∗BL.

For each initial measure µ0 ∈ M+([0, 1]) and for each k ∈ N, the Euler approxim-
ation defined by (5.15) is an element of C([0, T ];M+([0, 1])), because the semigroup
(Qvt )t>0 preserves positivity for all v ∈ BL([0, 1]). In Lemma 5.4.1, we showed that
(µk)k∈N is a Cauchy sequence in {ν ∈ C([0, T ];M+([0, 1])) : ν(0) = µ0}, which is
a complete space, as was argued above. Hence, the sequence (µk)k∈N converges in
{ν ∈ C([0, T ];M+([0, 1])) : ν(0) = µ0} and we have existence of a mild solution.
Each subsequence as mentioned in Definition 5.3.5 converges to that same limit, thus
uniqueness of the mild solution holds.

Moreover, we recall Theorem 5.3.8:
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Theorem 5.3.8 (Continuous dependence on initial data). For all R̃ > 0 there is a constant
CR̃ such that for all µ0, ν0 ∈ M+([0, 1]) satisfying ‖µ0‖TV 6 R̃ and ‖ν0‖TV 6 R̃, the
corresponding mild solutions µ, ν ∈ C([0, T ];M+([0, 1])) satisfy

sup
t∈[0,T ]

‖µt − νt‖∗BL 6 CR̃ ‖µ0 − ν0‖∗BL.

Proof. Each mild solution is the limit of a sequence defined by (5.15). Let (µk)k∈N
and (νk)k∈N denote such sequences converging to µ and ν, respectively. It follows from
Lemma 5.3.4 that all elements of

{µkt : k ∈ N, t ∈ [0, T ]} ∪ {νkt : k ∈ N, t ∈ [0, T ]}

are bounded by R := R̃ exp(‖f‖∞ T ) in both ‖ · ‖TV and ‖ · ‖∗BL. Fix k ∈ N, let
τ ∈ (tkj , tkj+1] and consider the distance ‖µkτ − νkτ ‖∗BL. By an estimate in the spirit of
(5.16)–(5.17), we obtain

‖µkτ − νkτ ‖∗BL 6 eB1 T/2k
(

1 +B2
RT

2k

)
‖µktk

j
− νktk

j
‖∗BL, (5.27)

for some positive constants B1 and B2 independent of j and k. This estimate holds for
all τ ∈ (tkj , tkj+1]. We used that τ− tkj 6 T/2k for all such τ . It follows from the recursive
relation (5.27) that

sup
τ∈[0,T ]

‖µkτ − νkτ ‖∗BL 6

(
exp(B1 T/2k) ·

(
1 +B2

RT

2k

))2k

‖µk0 − νk0 ‖∗BL

6 exp(B1 T +B2RT ) · ‖µ0 − ν0‖∗BL, (5.28)

for all k ∈ N, where the last step is based on the same arguments as the ones leading to
(5.25). The triangle inequality yields

sup
τ∈[0,T ]

‖µτ − ντ‖∗BL 6 sup
τ∈[0,T ]

‖µkτ − νkτ ‖∗BL + sup
τ∈[0,T ]

‖µkτ − µτ‖∗BL︸ ︷︷ ︸
→0

+ sup
τ∈[0,T ]

‖νkτ − ντ‖∗BL︸ ︷︷ ︸
→0

,

whence the same estimate as in (5.28) holds for supτ∈[0,T ] ‖µτ − ντ‖∗BL.

Remark 5.4.3. We would have been inclined to use directly the result of Proposition
4.3.8, instead of deriving (5.27). We need, however, the exact dependence on T/2k of
the prefactor, to make sure that the prefactor in (5.28) is bounded. This dependence is
not (directly) provided by Proposition 4.3.8.

Remark 5.4.4. The result of Theorem 5.3.8 relies – via Corollary 5.2.5 and Lemma 5.2.6
– on Gronwall’s Inequality. This is possible here because we restrict ourselves to Lipschitz
perturbations. In Chapter 4 we considered the more general class of piecewise bounded
Lipschitz perturbations. Hence, in the paragraph before Proposition 4.3.8 it was stated
that the standard approach there does not work.
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5.5 Discussion
In this chapter we have generalized the results of Chapter 4 to measure-dependent velocity
fields via a forward-Euler-like approach. Our motivation was to derive flux boundary
conditions for systems whose dynamics are driven by interactions. Such dynamics are
in general more interesting than the dynamics that follow from prescribed velocity fields
as in Chapter 4. We managed to obtain a converging procedure, but only for bounded
Lipschitz continuous right-hand sides. Hence, our results hold for boundary layers in
which mass decays, but not for the limit case of vanishing boundary layer. We start off
this discussion section by commenting on the possibility to extend to piecewise bounded
Lipschitz right-hand sides and to obtain the limit of vanishing boundary layer.

5.5.1 Piecewise bounded Lipschitz perturbations

To obtain the technical results in Section 5.2.2, we explicitly used the assumption that
the perturbation f is bounded Lipschitz on [0, 1]. Theorem 5.3.7 and Theorem 5.3.8 rely
on the results in Section 5.2.2. We would have liked to obtain these results for piecewise
bounded Lipschitz f , in particular to model decay of mass at one of the boundaries only.
In Chapter 4 we circumvent the arising problems by providing the solution explicitly in
(4.26). In the setting of Chapter 5, this explicit form would be given for each interval
(tkj , tkj+1], k ∈ N, in (5.15) by

µkt :=
∫

[0,1]

exp

 t−tkj∫
0

f(Φv
k
j
s (x)) ds

 · δ
Φ
vk
j

t−tk
j

(x)
dµktk

j
(x). (5.29)

In Chapter 4 we showed that it is possible to obtain the estimates needed to establish
continuous dependence on initial data, because this explicit form has a regularizing effect
on f and its discontinuities due to the integration in time. The key ingredient there, which
is absent in the approach of this chapter, is the fact that the velocity field is the same
for all time. If one wants to prove Theorem 5.3.8 using (5.29) instead of the properties
of the semigroup Q, one encounters that at some point for any ∆t > 0 fixed a Lipschitz
estimate of the form

‖
∆t∫
0

f(Φvs(·)) ds−
∆t∫
0

f(Φus (·)) ds‖∞ 6 C ‖u− v‖∞ (5.30)

is required, for all u and v taken from a class of admissible velocity fields. One would then
proceed to estimate ‖u − v‖∞ against the BL-distance of the corresponding measures,
using Part (iv) of Assumption 5.3.1.

In view of Chapter 4, the restriction that the velocity should not be zero at discon-
tinuities of f is reasonable. Even if we are willing to obey that condition, an estimate like
(5.30) cannot be expected to hold. Let f(x) = 0 if x ∈ [0, 1) and f(1) = 1. Take ε > 0
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and take v ≡ ε, u ≡ −ε. Then (for ε < 1/∆t)

‖
∆t∫
0

f(Φvs(·)) ds−
∆t∫
0

f(Φus (·)) ds‖∞ > |
∆t∫
0

f(Φvs(1)) ds−
∆t∫
0

f(Φus (1)) ds|

= |
∆t∫
0

f(1) ds−
∆t∫
0

f(1− ε s) ds| = ∆t.

Since ∆t > 0 is fixed and ‖u − v‖∞ = 2ε can be made arbitrarily small, (5.30) cannot
be satisfied.
An additional difficulty is that it remains to be seen how we can assure that a condition
like v(1) 6= 0 is satisfied by a velocity field that depends on the solution itself.

5.5.2 Future directions
The extension of the results stated in Theorem 5.3.7 and Theorem 5.3.8 to functions
f with discontinuities would clear the way for an approximation procedure like the one
treated in Chapter 4. Apart from establishing the well-posedness of the problem for dis-
continuous f , there is an additional point to investigate: the question whether the Euler
approximation limit and the boundary layer limit commute.

Let us focus on the vanishing boundary layer like in Chapter 4. Assume there are re-
gions around 0 and 1 in which mass decays, and that these regions shrink to zero width.
That is, there is a sequence (fn)n∈N ⊂ BL([0, 1]) and there is an f satisfying f(x) = 0 if
x ∈ (0, 1) and f(0) = f(1) = 1, such that fn → f pointwise, and the Lebesgue measure
of the set {x ∈ [0, 1] : fn(x) 6= f(x)} tends to zero as n→∞. If we assume that we can
extend the result of this chapter to piecewise bounded Lipschitz f , then well-posedness
for the limit case is guaranteed. It remains to be proven however that the solution for
finite boundary layer actually converges to the solution of the limit problem.
This is the same question as asking whether the two limits that we take, actually com-
mute. The first limit is in the forward-Euler-like approach to obtain a mild solution. We
assigned an index k to the elements in the approximating sequence and proved in Theorem
5.3.7 that the limit “limk→∞” exists (for f ∈ BL([0, 1])). The second limit “limn→∞”
is the one introduced here involving the sequence (fn)n∈N ⊂ BL([0, 1]). Proving the
well-posedness for f piecewise bounded Lipschitz, is the same as proving that the limit
“limk→∞ limn→∞” exists. Proving that the sequence of solutions corresponding to each
fn actually converges to some limit in C([0, T ];M+([0, 1])) is equivalent to proving that
“limn→∞ limk→∞” exists. To conclude that the two limits commute, an additional argu-
ment is needed. It requires a characterization of “limn→∞ limk→∞” that can be compared
to “limk→∞ limn→∞”. Both proving that “limn→∞ limk→∞” exists and characterizing
the limit can be a difficult task, however, since our current results do not provide an
explicit expression for “limk→∞”.

There are two reasons why we obtained uniqueness of mild solutions in this chapter.
On the one hand, this is because the constructed approximating sequence converges, thus
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inevitably each subsequence (cf. Definition 5.3.5) converges to the same limit. On the
other hand, uniqueness holds because we constructed only one approximating sequence,
namely by partitioning the interval [0, T ] into 2k subintervals. We conjecture however
that the same convergence result holds for a partitioning into qk equal subintervals with
arbitrary q ∈ N+. This claim remains to be proved, and if we manage to do so, then the
question needs to be answered whether all limits obtained in this way are the same. We
note that if [0, T ] is subdivided in intervals of unequal length, then most likely a uniformity
condition on the interval length is needed. This can be understood if we consider (5.24),
and replace the factors T/2k+1 in the sum over ` by quantities d` representing the interval
lengths. If we want the right-hand side to tend to zero as k →∞, then we have to make
sure that all subintervals become small sufficiently fast as k →∞.
To apply the iterative argument that we used to obtain (5.23), one needs the partitioning
for index k+1 to be a refinement of the partitioning for index k. The required calculations
are substantially more complicated if subsequent partitionings are not refinements.

One step beyond the measure-dependent velocity fields proposed in this chapter, is to
add anisotropy due to a field of vision. This would link the approach of Chapters 4 and
5 to Chapter 2.

An additional result to be derived concerns the stability with respect to parameters, in
particular with respect to f and the specific form of v. This remark also applies to Chapter
4. In fact, Lemma 5.2.6 provides stability in v for the solution of Chapter 4, provided that
f ∈ BL([0, 1]). Stability statements are essential in view of parameter identification. It is
important to know how measurement errors in the parameters affect the solution of our
model.





Chapter 6

Approximation of a
mass-emitting object by a point
source

We consider a linear diffusion equation for the mass density u on Ω := R2 \ ΩO, where
ΩO is a bounded domain. The time-dependent flux across the boundary Γ := ∂ΩO
is prescribed. The aim of this chapter is to approximate the dynamics by the diffusion
equation on the whole of R2 with a measure-valued point source in the origin. We denote
by û the solution of the latter equation with a point source. The main question is:

Can we quantify the difference between the solutions u and û
and their fluxes on Γ in a suitable Sobolev norm?

We use an L2([0, t];L2(Γ))-bound to estimate the difference in flux on the boundary. This
estimate holds for all t > 0. Regarding the difference of the solutions to the two models
an L2(Ω)-bound (for all time) and an L2([0, t];H1(Ω))-bound are given. The chapter is
closed by a conjecture that these bounds actually tend to zero.

6.1 Introduction
Our ultimate goal is to model a large number of small objects emitting or absorbing mass
while moving in a bounded domain. We have in mind for instance the transport of chem-
ical compounds by small vesicles within cells; cf. e.g. [LE97, BŠM03]. In this chapter we
focus on a reduced scenario involving a single stationary vesicle.

Let ΩO ∈ R2 be an open and bounded domain, such that its boundary Γ := ∂ΩO is
C2 and has finite length. This set denotes the interior of an object O with mass exchange

The work presented in this chapter is joint work with Sander Hille and Adrian Muntean, which started
after fruitful discussions during the workshop “Modelling with Measures: from Structured Populations to
Crowd Dynamics”, organized at the Lorentz Center in Leiden, The Netherlands. It has been published in
Mathematical Biosciences and Engineering [EHM15b].
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through its boundary. We assume 0 ∈ ΩO. Let Ω denote the exterior of O. That is,
Ω := R2 \ ΩO. See Figure 6.1a for a sketch of the geometry.

The quantity u is the concentration of mass in Ω. For given initial condition u0 : Ω→ R+

and given flux φ : Γ× [0, T ]→ R, we consider the problem
∂u

∂t
= D∆u, on Ω× R+;

u(0) = u0, on Ω;
D∇u · n = φ, on Γ× R+.

(6.1)

Here, D > 0 denotes the diffusion coefficient, which is fixed throughout this chapter.
The vector n denotes the unit normal pointing outwards on Γ (so into ΩO), and φ is the
influx of u with respect to Ω. Positive φ corresponds to flux in the direction of −n.

Use v0 : ΩO → R+ to define û0 : R2 → R+, given by

û0 :=
{
u0, on Ω;
v0, on ΩO,

(6.2)

which is an extension of u0 to the whole of R2. Our target is to quantify the quality of
approximation of the solution of (6.1) (with an appropriate solution concept, see Section
6.4 below) with the restriction to Ω of the mild solution of the problem{

∂û

∂t
= D∆û+ φ̄δ0, on R2 × R+;

û(0) = û0, on R2,
(6.3)

(see also Section 6.4).
Remark 6.1.1. Typically, the object O is small, but even if that is not the case, the
approach of this chapter gives information about how much the solutions of the two
problems deviate on Ω. In this chapter, it is not our objective to investigate the behaviour
of (6.1) in the limit as O shrinks to the origin, so here O keeps physical proportions.
Remark 6.1.2. In (6.3), we have introduced a mapping φ̄ : R+ → R which represents
the magnitude of the mass source. A measure-valued source was treated, for instance, in
[SGTK12] (in the context of numerical approximation schemes) or in [BDGO97]; see also
[LM72] for more background on the solvability of such evolution equations.
Remark 6.1.3. Problem (6.3) is posed on R2. The boundary Γ has no physical meaning
in this problem; see Figure 6.1b. However, the flux on this imaginary curve will be used
in later estimates.
In Section 6.2 we summarize the main results of this chapter, followed by some prelimin-
aries in Section 6.3. In Section 6.5 we show the boundedness of the difference in the flux
of the full problem (including the finite-size object) and the flux of the reduced problem
(including the point source). This result is used in Section 6.6, where we estimate the
difference between the two problems’ solutions on the exterior domain. In the discus-
sion section, Section 6.7, we state a conjecture about when we expect the differences in
solutions and in flux to be small.
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ΩO

u0

Ω n
φ

Γ

(a) Original domain

φ̄δ0

u0
v0

(b) Extended domain

Figure 6.1: (a): Typical example of the original domain Ω outside the object O, on which
u evolves according to (6.1) starting from initial condition u0. Also, φ and n, related
to the boundary condition on Γ, are indicated. (b): Domain for the reduced problem
associated to (a). Γ is now an imaginary curve within the domain (to be used later). The
initial conditions u0 and v0 hold outside and inside Γ, respectively. The point source of
magnitude φ̄ is indicated in the origin.

6.2 Summary of the main results
In Section 6.4 we use available results on maximal regularity that establish the exist-
ence of a unique solution u to Problem (6.1) in the sense of L2(Ω)-valued distributions,
provided the initial condition u0 ∈ H1(Ω) and the prescribed flux φ ∈ H1([0, T ], L2(Γ))∩
L2([0, T ], H1(Γ)). Mild solutions to Problem (6.3) exist in a suitable Banach space con-
taining the finite Borel measures for any initial measure, provided φ̄ ∈ L1

loc(R+) (see
Section 6.4). We show that, for more regular initial condition û0 ∈ H1(R2) and flux from
the source φ̄ ∈ H1([0, T ]), the restriction of the mild solution û to Ω is as regular as u
on Ω (Theorem 6.4.2), namely

u, û ∈ H1([0, T ], L2(Ω)) ∩ L2([0, T ], H2(Ω)).

Consequently, the time-integrated difference between the prescribed flux φ on Γ in Problem
(6.1) and the flux on Γ generated by the solution to Problem (6.3) with flux φ̄ at 0, i.e.

c∗(t) :=
t∫

0

‖φ(τ)−D∇û(τ) · n‖2L2(Γ) dτ (6.4)

is finite for all t > 0. In Section 6.5 we derive an upper bound on c∗(t), see Theorem
6.5.5 in terms of the data for Problems (6.1) and (6.3).

Our main result is the following:
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Theorem 6.2.1. Let T > 0 and let the data for Problems (6.1) and (6.3) satisfy u0 ∈
H1(Ω), φ ∈ H1([0, T ], L2(Γ)) ∩ L2([0, T ], H1(Γ)), φ̄ ∈ H1([0, T ]) and û0 ∈ H1(R2) is
such that ∇û0 ∈ Lp(R2) for some 2 < p < ∞. Then the unique solutions u and û to
(6.1) and (6.3) are such, that for all ε ∈ (0, 2D) there are c1, c2 > 0 such that

‖u(·, t)− û(·, t)‖2L2(Ω) ≤ c1 c
∗(t) eεt, and (6.5)

t∫
0

‖u− û‖2H1(Ω) ≤ c2 c
∗(t) eεt. (6.6)

for all 0 < t ≤ T . The constants depend on Ω, D and ε.

Remark 6.2.2. Note that the initial condition û0 needs to be more regular than ‘just’
H1(R2) as needed in the regularity result for û. The flux estimates in Section 6.5 require
∇û0 ∈ Lp(R2) with 2 < p < ∞. The Sobolev Embedding Theorem (cf. [AF03], Thrm.
4.12, p. 85) yields that û0 ∈ H2(R2) is a sufficient condition to have the stronger result
that û0 ∈ H1(R2) ∩W 1,p(R2) for any 2 < p <∞. In that case necessarily u0 ∈ H2(Ω)
too.

An important characteristic of estimates (6.5) and (6.6) is that the upper bounds are
linear in c∗(t). This implies that, if we manage to enforce c∗(t) to be small, then also
the solutions u and û are close (in the sense described above) on Ω. At this point, we
manage only to get a rough bound on c∗(t), cf. Theorem 6.5.5, but we conjecture that a
more sophisticated estimate is possible; see Section 6.7.

6.3 Preliminaries
Before we can discuss the properties of solutions (Section 6.4) and the details of our
results (Section 6.5 and further), we need a few fundamental results. We summarize
these preliminaries in this section.

Lemma 6.3.1 (Properties of the convolution, cf. [Fol99] Propositions 8.8 and 8.9, p. 241).
Let p, q ≥ 1 be such that 1/p+ 1/q = 1. If f ∈ Lp(Rd) and g ∈ Lq(Rd), then

(i) (f ∗ g)(x) exists for all x ∈ Rd;

(ii) f ∗ g is bounded and uniformly continuous;

(iii) ‖f ∗ g‖L∞(Rd) ≤ ‖f‖Lp(Rd) ‖g‖Lq(Rd).

If moreover p, q ∈ (1,∞), then

(iv) f ∗ g ∈ C0(Rd).

Let p, q, r ∈ [1,∞] satisfy 1/p+ 1/q = 1 + 1/r. If f ∈ Lp(Rd) and g ∈ Lq(Rd), then

(v) f ∗ g ∈ Lr(Rd);

(vi) ‖f ∗ g‖Lr(Rd) ≤ ‖f‖Lp(Rd) ‖g‖Lq(Rd).
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Proof. The proof can be found in [Fol99], p. 241.

Statement (vi) of Lemma 6.3.1 is called Young’s Inequality. It also holds for the con-
volution in time with upper bound t, which will appear in (6.13). This is shown in the
following corollary:

Corollary 6.3.2. Let T be fixed and let p, q, r ∈ [1,∞] satisfy 1/p + 1/q = 1 + 1/r. If
f ∈ Lp([0, T ]) and g ∈ Lq([0, T ]), then

(i) f ∗t g := t 7→
∫ t

0 f(t− s)g(s) ds ∈ Lr([0, T ]);

(ii) ‖f ∗t g‖Lr([0,T ]) ≤ ‖f‖Lp([0,T ]) ‖g‖Lq([0,T ]).

Proof. The statement of this corollary follows from extension to R of f and g by zero
outside [0, T ] and applying Lemma 6.3.1, Parts (v) and (vi) (for d = 1).

The Green’s function of the diffusion operator on Rd is (for general dimension d) given
by

Gt(x) := (4πDt)−d/2e−|x|
2/4Dt, (6.7)

for all t ∈ (0,∞) and x ∈ Rd.

Lemma 6.3.3 (Properties of the Green’s function). Consider the Green’s function (6.7)
for dimension d = 2.

(i) The gradient of the Green’s function satisfies

‖∇G·(x)‖L∞(0,∞) := sup
τ∈(0,∞)

‖∇Gτ (x)‖ =

 0, x = 0;
8e−2

π
|x|−3, x ∈ R2 \ {0}.

(6.8)

(ii) For all 1 ≤ p ≤ ∞ there is a constant c such that for all t ∈ R+

‖Gt(·)‖Lp(R2) ≤ c t
1
p−1. (6.9)

The constant depends on p and D.

Proof. (i) For all x ∈ R2 and all τ ∈ R+

‖∇Gτ (x)‖ = |x|
8πD2τ2 e−|x|

2/4Dτ , (6.10)

where ‖·‖ denotes the Euclidean norm on R2. For x = 0 we have that ‖∇Gτ (0)‖ =
0 for all τ ∈ (0,∞), thus the corresponding part of (6.8) follows.
Next, we consider x 6= 0. Note that for all such x

lim
τ→0
‖∇Gτ (x)‖ = 0,

lim
τ→∞

‖∇Gτ (x)‖ = 0.
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Since the right-hand side in (6.10) is nonnegative and differentiable for all τ ∈ R+,
its maximum on R+ is attained where

∂

∂τ
‖∇Gτ (x)‖ = |x|

4πD2τ3

(
|x|2

8Dτ − 1
)

e−|x|
2/4Dτ = 0,

i.e. at τ = |x|2/8D. Now the statement of the lemma follows:

‖∇G·(x)‖L∞(0,∞) = ‖∇Gτ (x)‖
∣∣∣
τ=|x|2/8D

= 8e−2

π
|x|−3.

(ii) The proof is a direct consequence of the statement in [Hil08] at the bottom of
p. 432.

6.4 Solution concepts and their regularity
For problem (6.1) we follow [DHP03, DHP07] by considering solutions in the sense of
L2(Ω)-valued distributions on [0, T ]. Our setting is a special case of the setting in
[DHP07]. However, [DHP07] is one of the few works that we are aware of that con-
sider maximal regularity issues for problems in unbounded domains. The seminal works
by Solonnikov [Sol65] and Lasiecka [Las80] cover bounded domains Ω only.

We reformulate Theorem 2.1 in [DHP07] to obtain:

Theorem 6.4.1. If

• φ ∈ H1([0, T ];L2(Γ)) ∩ L2([0, T ];H1(Γ)), and

• u0 ∈ H1(Ω),

then Problem (6.1) has a unique solution

u ∈ H1([0, T ];L2(Ω)) ∩ L2([0, T ];H2(Ω)).

Proof. The statement of this theorem is fully covered by Theorem 2.1 in [DHP07]. We
now point out why we satisfy the assumptions of their result. Note that we use p = 2
and m = 1 in their setting. First, R is a so-called HT -space, meaning that the Hilbert
transform defines a bounded operator on Lp(R) for 1 < p < ∞ (cf. [Rie28], VII). The
conditions (E), (LS), (SD) and (SB) from [DHP07] are easily verified for Au := −D∆u
and Bu := ∇u · n. Regarding Condition (D) in [DHP07], we note that in our case
f ≡ 0 and moreover, no compatibility condition (iv) is needed. In (iii), we use that
B1

2,2(Ω) = H1(Ω); see [AF03] p. 231. A sufficient condition for (ii) to hold, is the one
on φ given in the hypotheses of this theorem. We avoid the use of fractional Sobolev
spaces.

Problem (6.3) has a measure-valued right-hand side. [BDGO97] provide regularity results
for weak solutions of non-linear parabolic problems with such measure-valued right-hand
side. These apply to bounded domains with Dirichlet boundary condition and zero initial



6.4. Solution concepts and their regularity 155

value.

We consider mild solutions to (6.3) in the Banach space of finite Borel measures on R2,
completed for the dual bounded Lipschitz norm ‖·‖∗BL or Fortet-Mourier norm: M(R2)BL
(cf. Chapter 4 of this thesis, or [HW09b] and references found there). First, the diffusion
semigroup (St)t>0 onM(R2)BL is defined for measures µ ∈M(R2) by convolution with
the Green’s function Gt defined by (6.7), i.e.

〈Stµ, ϕ〉 := 〈Gt ∗ µ, ϕ〉 =
∫
R2

∫
R2

Gt(x− y)ϕ(x) dµ(y) dx (6.11)

for ϕ ∈ Cb(R2). Thus, for a positive µ, Stµ defines a positive linear functional on Cc(R2),
which is represented by a unique Radon measure according to the Riesz Representation
Theorem ([Fol99], Theorem 7.2). This measure Stµ is a finite measure because of

(Stµ)(R2) = 〈Stµ,1〉 = µ(R2) <∞.

Using the Jordan decomposition (see e.g. [Hal59], p. 123), we see that Stµ ∈M(R2) for
any µ ∈ M(R2). One can check using (6.11) that St is a bounded operator onM(R2)
for ‖ · ‖∗BL. By continuity it extends to the completionM(R2)BL. Moreover, there exists
C > 0 such that

‖Stν‖∗BL ≤ C‖ν‖∗BL

for all t > 0 and ν ∈ M(R2)BL. Strong continuity of (St)t>0 onM(R2)BL can then be
obtained from strong continuity on the dense subspaceM(R2) that follows from (6.11)
and [EN00], Proposition I.5.3.

The mild solution to (6.3) is now defined by

µ̂(t) := S(t)µ0 +
t∫

0

S(t− s)[φ̄(s)δ0] ds, (6.12)

for given initial measure µ0 ∈ M(R2) ([Paz83], Ch.4, Def. 2.3, p.106). One can show
that µ̂ ∈ C(R+,M(R2)BL) whenever φ̄ ∈ L1

loc(R+).

If µ0 has density û0 with respect to Lebesgue measure dx on R2, then according to
(6.11) solution µ̂(t) can be identified with û(x, t)dx where the density function û is given
by

û(x, t) =
∫
R2

Gt(x− y)û0(y) dy +
t∫

0

Gt−s(x)φ̄(s) ds

=: (Gt ∗x û0)(x) + (G·(x) ∗t φ̄)(t). (6.13)

for all (x, t) ∈ R2 × R+. Here the notation ∗x and ∗t emphasizes that one takes convo-
lution with respect to the space or time variable. Both have a regularizing effect on the
solution, that yields the following result for the restriction of û(t) to Ω, the domain on
which we compare with solution u(t) to Problem (6.1):
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Theorem 6.4.2. If û0 ∈ H1(R2) and φ̄ ∈ H1([0, T ]), then û (restricted to Ω) satisfies

û ∈ H1([0, T ];L2(Ω)) ∩ L2([0, T ];H2(Ω)).

Moreover, ∂tû(t) = D∆û(t) in L2(Ω) for almost every t in [0, T ].

Proof. Note that for û0 ∈ H1(R2), the function û1 := G ∗x û0 is a solution of{
∂u

∂t
= D∆u, on R2 × R+;

u(0) = û0, on R2,

which is unique and satisfies

û1 ∈ H1([0, T ];L2(R2)) ∩ L2([0, T ];H2(R2))

due to [DHP07], Theorem 2.1, where the domain is taken to be R2.

Define û2 := G ∗t φ̄. Then û2 satisfies

‖û2‖L2(Ω) =

∫
Ω

∣∣∣∣∣∣
t∫

0

Gt−s(x) φ̄(s) ds

∣∣∣∣∣∣
2

dx


1/2

≤
t∫

0

∫
Ω

∣∣Gt−s(x) φ̄(s)
∣∣2 dx

1/2

ds

≤
t∫

0

‖Gt−s‖L2(R2)|φ̄(s)| ds

≤
t∫

0

c (t− s)−1/2|φ̄(s)| ds. (6.14)

In the second step we used Minkowski’s Inequality for integrals (see [Ste70], p. 271),
whereas the last inequality follows from Part (ii) of Lemma 6.3.3. Since t 7→ c t−1/2 ∈
L1([0, T ]) and by assumption φ̄ ∈ L2([0, T ]), Corollary 6.3.2 applied to (6.14) yields

‖û2‖L2(Ω) ∈ L2([0, T ]). (6.15)

Because G·(x) and ∂tG·(x) are in L1
loc(R+) for x 6= 0 and ∂tφ̄ ∈ L2(R+), one has in the

sense of distributions

∂t
(
G·(x) ∗ φ̄

)
=
(
∂tG·(x)

)
∗ φ̄ = G·(x) ∗

(
∂tφ̄
)
. (6.16)

Thus we can repeat the argument leading to (6.15), replacing φ̄ by ∂tφ̄, and obtain

‖∂tû2‖L2(Ω) ∈ L2([0, T ]). (6.17)
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We conclude from (6.15) and (6.17) that

û2 ∈ H1([0, T ];L2(Ω)). (6.18)

It follows from (6.7) with d = 2 that

∂xiGt(x) = xi
8πD2t2

e−|x|
2/4Dt, and

∂xi∂xjGt(x) = 1
8πD2t2

e−|x|
2/4Dt

[
δij −

xixj
2Dt

]
,

where δij denotes the Kronecker delta for i, j ∈ {1, 2}. The gradient of the Green’s
function is bounded in the following way:

|∇Gt(x)|2 ≤ sup
t>0
|∇Gt(x)|2

= sup
t>0

|x|2

64π2D4t4
e−|x|

2/2Dt

= 1
|x|6

sup
u>0

u4

4π2 e−u,

for all t > 0 and for all x ∈ Ω, where we substituted u := |x|2/2Dt to obtain the constant

c1 := supu>0
u4

4π2 e−u, which is independent of |x|, t, D. Thus

|∇Gt(x)|2 ≤ c1
|x|6

. (6.19)

We use the Frobenius norm denoted by ‖ · ‖F and defined by

‖M‖F :=
√∑

i,j

|Mij |2,

for any matrix M ∈ Rd×d. In a similar way as for ∇G, we estimate from above the
Frobenius norm of the Hessian matrix

‖HessGt(x)‖2F ≤ sup
t>0

 2∑
i=1

2∑
j=1

1
64π2D4t4

e−|x|
2/2Dt

[
δij −

xixj
2Dt

]2
= sup

t>0

1
64π2D4t4

e−|x|
2/2Dt

(
2− |x|

2

Dt
+ |x|4

4D2t2

)
= 1
|x|8

sup
u>0

u4

4π2 e−u
(
2− 2u+ u2)

= c2
|x|8

, (6.20)
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for all t > 0 and for all x ∈ Ω. Now we show that ∂xiGt and ∂xi∂xjGt are in L2(Ω),
both with uniform upper bound in t:

‖∂xiGt‖2L2(Ω) =
∫
Ω

|∂xiGt(x)|2 dx

≤
∫
Ω

|∇Gt(x)|2 dx

(6.19)
≤

∫
Ω

c1
|x|6

dx =: C1 <∞, (6.21)

where we use that 0 is an interior point of ΩO = R2 \ Ω. Also

‖∂xi∂xjGt‖2L2(Ω) =
∫
Ω

|∂xi∂xjGt(x)|2 dx

≤
∫
Ω

‖HessGt(x)‖2F dx

(6.20)
≤

∫
Ω

c2
|x|8

dx =: C2 <∞. (6.22)

For brevity, we now use the index notation for derivatives and, for |α| ∈ {1, 2}. Like in
(6.14), using Minkowski’s integral inequality, we obtain that

‖∂αx û2‖L2(Ω) ≤
t∫

0

‖∂αxGt−s‖L2(Ω)|φ̄(s)| ds. (6.23)

Due to (6.21)–(6.22), for each |α| ∈ {1, 2} and for each τ > 0

‖∂αxGτ‖L2(Ω) ∈ L∞([0, T ]) ⊂ L1([0, T ]).

Hence, the fact that φ̄ ∈ L2([0, T ]) yields via Part (ii) of Corollary 6.3.2 that
t∫

0

‖∂αxGt−s‖L2(Ω)|φ̄(s)| ds ∈ L2([0, T ]), (6.24)

for each |α| ∈ {1, 2}. It follows from (6.15), (6.23) and (6.24) that

û2 ∈ L2([0, T ];H2(Ω)). (6.25)

Together with (6.18), (6.25) finishes the proof of the first part.

The second statement of the theorem follows from (6.16) and a similar result that holds
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for the spatial derivatives. For all ψ ∈ C∞c (Ω) and h ∈ C∞c (R+), ψ⊗h(x, t) := ψ(x)h(t)
is in C∞c (Ω× R+) and one has

〈∂tû, ψ ⊗ h〉 =
〈(
∂tG·) ∗x û0, ψ ⊗ h

〉
+
∫
Ω

〈
∂t
[
G·(x)

]
∗t φ̄, h

〉
ψ(x) dx

= 〈D(∆G·) ∗x û0, ψ ⊗ h〉+
∫
Ω

〈
D[∆G·(x)] ∗t φ̄, h

〉
ψ(x) dx

= 〈D∆(G· ∗x û0), ψ ⊗ h〉+
〈
D∆(G· ∗t φ̄), ψ ⊗ h

〉
= 〈D∆û, ψ ⊗ h〉 .

By density of C∞c (Ω) ⊗ C∞c (R+) in the space of test functions D(Ω × R+), we obtain
∂tû = D∆û in the sense of distributions on Ω × R+. Since both are given by (locally
integrable) functions according to the first part of the proof, ∂tû(t) = D∆û(t) for almost
every t.

Remark 6.4.3. The estimates (6.21)–(6.22) hinge on the fact that Ω is bounded away
from 0, where the integrand is singular.

6.5 Flux estimates
In this section we present in Theorem 6.5.5 a bound on the difference between the fluxes
on Γ in (6.1) and (6.3). According to Theorem 6.4.1 and Theorem 6.4.2, under the
conditions for which these results hold, c∗(t) defined by (6.4) is finite for every t ∈ [0, T ].
The difference between the solutions u and û on Ω will be expressed in terms of c∗(t),
among others, in Section 6.6.

Throughout this section, we assume the conditions of Theorems 6.4.1 and 6.4.2 on the
data. Note that φ̄ ∈ H1([0, T ]) implies that

t∫
0

‖φ̄‖2L1(0,τ) dτ ≤ 1
2 t

2‖φ̄‖2L2([0,T ]) <∞

for all 0 ≤ t ≤ T .

Before arriving at the main estimate for c∗(t), we derive auxiliary results in Lemma 6.5.1
and Lemma 6.5.2.
Lemma 6.5.1. Assume that û0 ≡ 0. Then, for all t > 0 we have

t∫
0

‖D∇û · n‖2L2(Γ) ≤ D
2CΓ

t∫
0

‖φ̄‖2L1(0,τ) dτ <∞,

where
CΓ :=

∫
Γ

‖∇G·(x)‖2L∞(0,∞) dσ > 0
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is independent of t.
Proof. For û0 ≡ 0, the solution (6.13) of (6.3) is given by

û(x, t) =
t∫

0

Gt−s(x)φ̄(s) ds.

Note that for x ∈ Γ we have

|D∇û(x, τ) · n(x)| =

∣∣∣∣∣∣D
τ∫

0

∇Gτ−s(x)φ̄(s) ds · n(x)

∣∣∣∣∣∣
≤

∥∥∥∥∥∥D
τ∫

0

∇Gτ−s(x)φ̄(s) ds

∥∥∥∥∥∥
≤ D ‖∇G·(x)‖L∞(0,∞)

τ∫
0

∣∣φ̄(s)
∣∣ ds

= D ‖∇G·(x)‖L∞(0,∞) ‖φ̄‖L1(0,τ). (6.26)

We emphasize here that the infinity norm ‖∇G·(x)‖L∞(0,∞) denotes the supremum in
the time domain for fixed x, cf. (6.8). This observation leads to the following estimate

t∫
0

‖D∇û(x, τ) · n(x)‖2L2(Γ) dτ =
t∫

0

∫
Γ

|D∇û(x, τ) · n(x)|2 dσ dτ

≤ D2
t∫

0

∫
Γ

‖∇G·(x)‖2L∞(0,∞) ‖φ̄‖
2
L1(0,τ) dσ dτ,

where (6.26) is used in the second step. Thus, we have
t∫

0

‖D∇û(x, τ) · n(x)‖2L2(Γ) dτ ≤ D
2

t∫
0

‖φ̄‖2L1(0,τ)dτ

∫
Γ

‖∇G·(x)‖2L∞(0,∞) dσ. (6.27)

Since Γ has finite length and it is the boundary of a set of which 0 is an interior point,
it follows from (6.8) in Lemma 6.3.3 that the second integral on the right-hand side of
(6.27) is finite. This argument completes the proof.

In the next lemma, we generalize this result to nonzero initial conditions.
Lemma 6.5.2. If û0 is such that ∇û0 ∈ Lp(R2) for some 2 < p ≤ ∞, then

t∫
0

‖D∇û · n‖2L2(Γ) ≤ D
2|Γ|Ct

2
q−1‖∇û0‖2Lp(R2) + 2D2CΓ

t∫
0

‖φ̄‖2L1(0,τ) dτ <∞,

for all t > 0, where q := p/(p− 1), C depends on D and q and CΓ is the constant from
Lemma 6.5.1.
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Proof. The solution of (6.3) is given by (6.13). We start off with the following estimate

t∫
0

‖D∇û(x, τ) · n(x)‖2L2(Γ) dτ ≤ 2
t∫

0

∫
Γ

∣∣∣∣∣∣D∇
∫
R2

Gτ (x− y)û0(y) dy · n(x)

∣∣∣∣∣∣
2

dσ dτ

+ 2
t∫

0

∫
Γ

∣∣∣∣∣∣D∇
τ∫

0

Gτ−s(x)φ̄(s) ds · n(x)

∣∣∣∣∣∣
2

dσ dτ. (6.28)

The second term on the right-hand side is covered by Lemma 6.5.1. Regarding the first
term, we remark that, due to properties of the convolution,

∣∣∣∣∣∣D∇
∫
R2

Gτ (x− y)û0(y) dy · n(x)

∣∣∣∣∣∣ =

∣∣∣∣∣∣D
∫
R2

Gτ (y)∇û0(x− y) dy · n(x)

∣∣∣∣∣∣ . (6.29)

We use Part (iii) of Lemma 6.3.1 to estimate the right-hand side

∣∣∣∣∣∣D
∫
R2

Gτ (y)∇û0(x− y) dy · n(x)

∣∣∣∣∣∣ ≤ D
∥∥∥∥∥∥
∫
R2

Gτ (y)∇û0(· − y) dy

∥∥∥∥∥∥
L∞(R2)

≤ D ‖∇û0‖Lp(R2) ‖Gτ‖Lq(R2) , (6.30)

with q := p/(p− 1).

It follows from (6.29)–(6.30) and Part (ii) of Lemma 6.3.3 that

t∫
0

∫
Γ

∣∣∣∣∣∣D∇
∫
R2

Gτ (x− y)û0(y) dy · n(x)

∣∣∣∣∣∣
2

dσ dτ

≤ D2 ‖∇û0‖2Lp(R2)

t∫
0

∫
Γ

‖Gτ‖2Lq(R2) dσ dτ

≤ c2D2 |Γ| ‖∇û0‖2Lp(R2)

t∫
0

τ
2
q−2 dτ

= q c2D2 |Γ|
2− q t

2
q−1 ‖∇û0‖2Lp(R2) , (6.31)

where c depends on q and D. We can perform the integration in time in the last step of
(6.31) since the hypothesis p > 2 implies q < 2. The desired result follows by (6.28) and
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the calculations in the proof of Lemma 6.5.1:
t∫

0

‖D∇û(x, τ) · n(x)‖2L2(Γ) dτ ≤
2q c2D2 |Γ|

2− q t
2
q−1 ‖∇û0‖2Lp(R2)

+ 2D2
t∫

0

‖φ̄‖2L1(0,τ)dτ

∫
Γ

‖∇G·(x)‖2L∞(0,∞) dσ,

of which the right-hand side is finite for all finite t.

Remark 6.5.3. A sufficient condition for ∇û0 ∈ Lp(R2) to hold, is û0 ∈ W 1,p(R2).
To this aim, one may start from u0 ∈ W 1,p(Ω) to hold for the given initial data. The
remaining question is whether it is possible to find an extension v0 on ΩO as in (6.2) such
that û0 ∈W 1,p(R2). This, however is guaranteed by Theorem 5.22 on p. 151 of [AF03].

Remark 6.5.4. It is crucial that the gradient is applied to the initial condition in the
computations starting at (6.29) and further. Instead of (6.29)–(6.30), we could have
estimated ∣∣∣∣∣∣D∇

∫
R2

Gτ (x− y)û0(y) dy · n(x)

∣∣∣∣∣∣ ≤ D ‖û0‖Lp(R2) ‖∇Gτ‖Lq(R2) ,

which requires only a condition on û0, not on its gradient, for the lemma. It follows from
[Hil08] (p. 432, bottom) that for some constant C

‖∇Gτ‖Lq(R2) ≤ C τ
1
q−

3
2 .

This is a problem however, since similar arguments as in (6.31) would lead to
t∫

0

‖∇Gτ‖2Lq(R2) dτ ≤ C
t∫

0

τ
2
q−3 dτ,

of which the right-hand side is not integrable for any 1 ≤ q ≤ ∞.

We can now give the main result of this section.

Theorem 6.5.5. Assume that the hypotheses of Theorems 6.4.1 and 6.4.2 and Lemma
6.5.2 hold. Then, for all t > 0 the function c∗ defined by (6.4) satisfies

c∗(t) ≤ 2
t∫

0

‖φ‖2L2(Γ) + 2D2|Γ|Ct
2
q−1‖∇û0‖2Lp(R2) + 2CΓ

t∫
0

‖φ̄‖2L1(0,τ) dτ. (6.32)

Proof. The statement of this theorem is a direct consequence of the observation
t∫

0

‖φ−D∇û · n‖2L2(Γ) ≤ 2
t∫

0

‖φ‖2L2(Γ) + 2
t∫

0

‖D∇û · n‖2L2(Γ) . (6.33)
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The assumptions of Theorem 6.4.1 imply that φ ∈ L2([0, T ];L2(Γ)) for all T ∈ R+.
Hence, the first term in (6.33) is finite. The second term was estimated in Lemma
6.5.2.

Remark 6.5.6. Estimate (6.32) is unsatisfactory for t close to zero. However, it shows
for large t that on the long run the difference between the fluxes on Γ is dominated by the
prescribed fluxes φ at Γ and φ̄ at the point source at 0, rather than the initial condition,
which is clear intuitively. In Section 6.7 we provide a further discussion of the behaviour
of c∗(t).

6.6 Estimates in the exterior – Proof of Theorem 6.2.1
We can now prove our main result, an estimate for the difference between the solutions
u of (6.1) and û of (6.3) (using the solution concept explained in Section 6.4):

Proof. (Theorem 6.2.1). Let ψ ∈ C∞c (Ω) and h ∈ C∞c ([0, T ]) be test functions. Define
(ψ⊗h)(x, t) := ψ(x)h(t). Then according to Theorem 6.4.1 and Theorem 6.4.2 one has

〈∂tu− ∂tû, ψ ⊗ h〉 = D 〈∆u−∆û, ψ ⊗ h〉

=
T∫

0


∫
Γ

(φ(t)−D∇û(t) · n)ψ

h(t)dt (6.34)

−D
T∫

0


∫
Ω

(∇u−∇û) · ∇ψ

h(t)dt.

Because of the regularity of the solutions u and û identity (6.34) extends to functions
f ∈ L1([0, T ], H1(Ω)) by continuity:

〈∂tu− ∂tû, f〉 =
T∫

0

∫
Γ

(φ(t)−D∇û(t) · n) f(x, t) dσ(x) dt

−D
T∫

0

∫
Ω

(∇u−∇û) · ∇f(x, t) dx dt. (6.35)

Now take f(x, t) := (u(x, t) − û(x, t))h(t) with h ∈ C∞c ([0, T ]) arbitrary. Then the
regularity of u and û and (6.35) imply that

1
2
d

dt
‖u− û‖2L2(Ω) +D‖∇u−∇û‖2L2(Ω) =

∫
Γ

(u− û)(φ−D∇û · n) .

Add D‖u− û‖2L2(Ω) to both sides and integrate in time from 0 to an arbitrary t:

1
2‖u− û‖

2
L2(Ω) +D

t∫
0

‖u− û‖2H1(Ω) =
t∫

0

∫
Γ

(u− û)(φ−D∇û · n) +D

t∫
0

‖u− û‖2L2(Ω) ,

(6.36)



164 Chapter 6. Approximation of a mass-emitting object by a point source

where we have used that u and û are initially equal on Ω. Applying the Cauchy-Schwarz
Inequality and using the result of Theorem 6.5.5, we obtain

t∫
0

∫
Γ

(u− û)(φ−D∇û · n) ≤

 t∫
0

‖u− û‖2L2(Γ)

1/2  t∫
0

‖φ−D∇û · n‖2L2(Γ)

1/2

=
√
c∗(t)

 t∫
0

‖u− û‖2L2(Γ)

1/2

. (6.37)

SinceH1(Ω) ↪→ L2(Γ), according to the Boundary Trace Imbedding Theorem (cf. [AF03],
Theorem 5.36, p. 164) there is a constant c̄ = c̄(Ω) > 0 such that

‖u− û‖L2(Γ) ≤ c̄ ‖u− û‖H1(Ω),

which can be used to further estimate (6.37):

t∫
0

∫
Γ

(u− û)(φ−D∇û · n) ≤
√
c∗(t) c̄

 t∫
0

‖u− û‖2H1(Ω)

1/2

.

For arbitrary ε > 0, Young’s inequality yields the following estimate on the right-hand
side:

√
c∗(t) c̄

 t∫
0

‖u− û‖2H1(Ω)

1/2

≤ 1
2εc
∗(t)c̄2 + ε

2

t∫
0

‖u− û‖2H1(Ω) . (6.38)

Take ε ∈ (0, 2D). Then (6.36)–(6.38) together yield

‖u− û‖2L2(Ω) + (2D − ε)
t∫

0

‖u− û‖2H1(Ω) ≤
1
ε
c∗(t)c̄2 + 2D

t∫
0

‖u− û‖2L2(Ω) , (6.39)

or

‖u− û‖2L2(Ω) + (2D − ε)
t∫

0

‖∇u−∇û‖2L2(Ω)︸ ︷︷ ︸
>0

≤ 1
ε
c∗(t)c̄2 + ε

t∫
0

‖u− û‖2L2(Ω) . (6.40)

It follows that

‖u− û‖2L2(Ω) ≤
1
ε
c∗(t)c̄2 + ε

t∫
0

‖u− û‖2L2(Ω) ,

and due to a version of Gronwall’s Lemma:

‖u− û‖2L2(Ω) ≤
1
ε
c∗(t)c̄2 eεt, (6.41)
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where we use that c∗(·) is (by definition) non-decreasing. Note that ε > 0 is arbitrary but
fixed, thus 1/ε <∞. We obtain (6.5) by defining c1 := c̄2/ε.

From (6.39) it also follows that

t∫
0

‖u− û‖2H1(Ω) ≤
1

ε(2D − ε)c
∗(t)c̄2 + 2D

2D − ε

t∫
0

‖u− û‖2L2(Ω) .

The upper bound (6.41) now implies

t∫
0

‖u− û‖2H1(Ω) ≤
1

ε(2D − ε)c
∗(t)c̄2 + 2D

ε2(2D − ε)c
∗(t)c̄2 (eεt − 1)

≤ 2D
ε2(2D − ε)c

∗(t)c̄2 eεt, (6.42)

where we use that ε < 2D in the second step. The second statement of the theorem
follows by taking c2 := 2Dc̄2/(ε2(2D − ε)).

Remark 6.6.1. In principle, (6.42) can be optimized in ε for every t separately, to get
an optimal ε = ε(t). After substitution of this ε(t), (6.6) becomes independent of ε.
However, its t-dependence obviously becomes more complicated. Further details on this
aspect are omitted here.

Remark 6.6.2. The fact that the estimates in Theorem 6.2.1 are linear in c∗ relates nicely
to our conjecture formulated in Section 6.7 below. If indeed c∗ is small or even goes to
zero, then the same holds for ‖u(·, t)− û(·, t)‖2L2(Ω) and

∫ t
0‖u− û‖

2
H1(Ω) .

6.7 Discussion
In this chapter we considered two problems involving the diffusion equation on R2. In the
first problem a finite-size object was included with prescribed flux on its boundary. In the
second problem this object was replaced by a mass-emitting point source. Our aim was to
quantify the difference between the solutions and their fluxes on Γ in a suitable Sobolev
norm. We managed to provide for all t > 0 an L2([0, t];L2(Γ))-bound on the difference
in flux on the boundary. For the difference in solutions we provided an L2(Ω)-bound (for
all time) and an L2([0, t];H1(Ω))-bound.

The estimate (6.33) is a very crude way to find an upper bound on c∗(t). In the following
(deliberately vague) conjecture, we express under which conditions we expect c∗(t) to be
smaller than the upper bound of Theorem 6.5.5 suggests.

Conjecture. The upper bound c∗ can be much smaller than Theorem 6.5.5 suggests. In
fact, it goes to zero.

The following considerations support this conjecture:
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• Once the geometry and φ on Γ are given, there still is a lot of freedom in dealing
with the reduced problem (6.3). Choose φ̄ and v0. Our conjecture is that a smart
choice of φ̄ and v0 can produce a flux on Γ that mimics well φ and gives more than
merely a bounded difference.

• Initially, during a small time interval, the initial condition should induce a sufficiently
close flux. To this aim an appropriate v0 has to be provided.

• At a certain moment, mass originating from the source starts reaching the boundary.
From then onwards, the mimicking flux should be – with some delay – mainly due
to φ̄.

• Let |ΩO| denote a typical length scale of the object O (e.g. its diameter). The
quantity |ΩO|2/D is a typical timescale for points to travel the distance from source
to boundary. This is also the timescale at which the transition between the above
two bullet points takes place.

• The shape of object O is important. An intuitive guess is that a small object O
can be better approximated. As the point source emits mass at the same rate in
all directions, we expect a better approximation also to be possible if Γ is radi-
ally symmetric with respect to the origin, and φ is constant on Γ (in space, not
necessarily in time). A generalization of the latter condition would be to have φ
defined on a more general Γ, but to have an extension to a ball B(0, R) such that
Γ ⊂ B(0, R) ⊂ R2, and this extension is radially symmetric around the origin on
B(0, R).

The above statement was written under the assumption that in general the (normal com-
ponent of the) flux is directed outward on Γ. For a mass sink, mutatis mutandis the same
considerations hold.

One approach to prove that c∗ → 0 is to employ the limit “|O| → 0”. This is one
step further than the work presented in this chapter; cf. Remark 6.1.1. We point out at
least one problem that is to be expected. In (6.27) we used explicitly that Γ is bounded
away from the origin. If Γ shrinks towards the origin, then (6.8) no longer provides a
useful upper bound. A formal asymptotic expansion with the object’s size as a small
parameter might provide an alternative approach here.



Chapter 7

Looking back and ahead

This chapter is an overview of the main achievements of this thesis and an outlook to
possible future research based on the open ends that we identified.

7.1 Looking back
In Chapters 2 to 6 we obtain the following results:

• In Chapter 2 we introduce a field of vision in a first-order model for interacting
individuals. Our objective is to guarantee the existence and uniqueness of solutions
to this model with included field of vision. In our model the velocity is defined
implicitly. Difficulties arise when a solution v has no continuous extension in time.
We refer to this situation as root loss in the implicit equation. To extend the
evolution of our system beyond root loss we provide a selection criterion for the
velocity to jump to a different root. This criterion is based on an associated second-
order system with a vanishing inertia term: the overdamped limit. Automatically,
our approach selects a stable root. Details about the exact type of stability are given
in Definition 2.3.2 and Theorem 2.3.4. In Chapter 2 we demonstrate our procedure
by a combination of theoretical and numerical results.

• Chapter 3 is based on two questions. First, we answer the question how to derive
particle schemes in a systematic way. We propose the following three-step proce-
dure: (1) rewrite the equations in terms of measures and regularizing the density;
(2) substitute a weighted sum of Dirac masses; (3) apply the principle of least
action. The exact form of the resulting equation for the particle system depends
on the order in which regularization and the principle of least action are applied.
We also generalize this procedure to systems in which nonconservative forces are
present.

The second question concerns the many-particle limit N → ∞ of the particle
schemes. We give a convergence proof for general measure-valued equations (in
the 1-Wasserstein distance) which is not restricted to particle approximations. Our
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theorem provides convergence of solutions given a general sequence of correspond-
ing initial measures approximating the initial condition of the limit problem. This
result implies as a special case the convergence of particle solutions to the solution
of the regularized continuum equation.

• We address the question how to define flux boundary conditions for measure-valued
evolutions in Chapter 4. The model considered is an evolution problem for a measure
with prescribed velocity field where the flow is restricted to the unit interval. The
combination of the stopped flow and an absorption term in the right-hand side of
the equation results in flux boundary conditions. Alternatively, we can model influx
by including a production term. We also obtain these boundary conditions as the
limit of an approximation by a vanishing absorptive boundary layer. While in each
of the approximations mass is taken from the system in a zone of finite width, the
limit corresponds to gating mass away only on the boundary.

• In Chapter 5 we generalize the results of Chapter 4 to measure-dependent velocity
fields. This generalization makes interaction terms via convolution admissible. We
introduce a forward-Euler-like approach. The time interval is partitioned into a
number of subintervals. In each of these the velocity is prescribed based on the
solution in the previous interval. Hence, the setting of Chapter 4 is applicable to
each subinterval. We are driven by the same question about flux boundary conditions
as in Chapter 4. In Chapter 5 we are able to answer this question for systems in
which interactions govern the dynamics. The forward-Euler-like approach converges,
but we manage to obtain this result only for bounded Lipschitz continuous right-
hand sides. This means that we can deal with boundary layers in which mass is
absorbed, but not (yet) with the limit of vanishing boundary layer.

• Chapter 6 is about two scenarios involving the diffusion equation in two-dimensional
space. First, we consider an object with prescribed flux on its boundary, while on
its exterior a mass density evolves due to diffusion. The exterior domain is called Ω.
Secondly, we consider a point source that emits mass. We ask the question whether
we can quantify the difference between the solutions of these two problems and their
fluxes on Γ in a suitable Sobolev norm. We provide an L2([0, t];L2(Γ))-bound on
the difference in flux on the boundary for all t > 0, and moreover an L2(Ω)-bound
(for all time) and an L2([0, t];H1(Ω))-bound on the difference in solutions. We
conjecture certain conditions under which these bounds go to zero.

We posed at the beginning of Chapter 1 the general mathematical guiding question:
Can ideas from mathematical physics provide inspiration when modelling and analyzing
systems of socially interacting individuals? The general spirit of this thesis is that it is
possible to model living individuals as if they were non-living matter.

Chapter 1 provides the framework of modelling perspectives and equations in which the
rest of the thesis fits. Many of the concepts that we describe are closely related to math-
ematical physics. For instance, the transition from the microscopic level to the meso-
and macroscopic levels (the limit N →∞) are used to justify continuum descriptions of
systems containing a large number of particles, molecules or atoms. Chapters 2 to 5 fit
in the framework of Chapter 1. Moreover, interactions and anisotropy play a prominent
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role. These chapters provide the answer to our guiding question. Chapter 3 in particular
is physically oriented. There, social interactions are one of multiple ingredients.
Chapter 6 justifies in some sense some of the ad hoc approximation arguments used in
physics. It is common practice in physics to describe small objects by points if their length
scale is much smaller than other length scales in the system. Examples are point masses,
point charges or point sources. Interactions are absent in Chapter 6. We regard this
chapter as a first step towards modelling systems of interacting point sources. We note
however that in view of the application we have in mind (vesicles transporting chemical
compounds in cells), these interactions are not of a social nature.

7.2 Looking ahead
Let us summarize our main open issues.

• In Chapter 2 we derive a jump criterion for the velocity that is to be used when
no continuous extension of the evolution is possible. This criterion makes use of
the configuration x∗+ which denotes an infinitesimal extrapolation beyond root loss.
We approximate this post-jump configuration by x∗ + δ · ṽ, where x∗ is the pre-
jump configuration, ṽ is the pre-jump velocity and δ > 0 is fixed. For each δ
there is a corresponding post-jump velocity v∗δ . The rigorous investigation of the
limit limδ↓0 v∗δ is a direction for future research. If this limit is well-defined, the
corresponding jump should be compared to the jump that follows from the limit
ε→ 0 in the second-order equation.

• Formally, the continuum limit of the anisotropic model used in Chapter 2 consists of
the continuity equation completed with Equation (2.43) for the velocity; cf. Section
2.6. We would like to justify this continuum model in a rigorous way, possibly via
a measure-valued formulation. The next step is to perform the overdamped limit
ε→ 0 at the PDE level.

• We would like to support the claim that anisotropy is present, by evidence from
experiments. A possible strategy is to analyze the data used in [CBMT14, CMV15].
This data consists of trajectories of people walking in a narrow passage between
two staircases. One can extract from the data set all frames in which exactly two
individuals are present, while the corresponding velocities are also recorded. Assume
that the velocity of individual i in the presence of individual j is given by

vi = vd,i + vs

(
|xi − xj |,

xi − xj
|xi − xj |

· vi
|vi|

)
.

Here, vd denotes a desired velocity (cf. Section 2.6), which incorporates the target
of an individual and restrictions due to the geometry. The first task is to estimate
the desired velocity, which might be done using the collection of single pedestrian
trajectories. Call this estimate v̄d. We use this estimate to eliminate the effect of
vd from the data.
The part vs is the social part of the velocity. We assume it to have the same form
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as the right-hand side of (2.4b). Define

R := |xi − xj | and ω := xi − xj
|xi − xj |

· vi
|vi|

.

Then in particular, vs is of the form

vs(R,ω) := f(R) g(ω). (7.1)

We wish to investigate (i) whether vs indeed has this product structure; (ii) whether
the data supports the claim that g encodes a field of vision.
We propose to deduce from the data an estimate of

E
[
|vs|
∣∣ (R,ω)

]
(7.2)

as a function of R and ω. In view of the available data, we approximate (7.2) by

v̄s(R,ω) := E
[
|v − v̄d|

∣∣ (R,ω)
]
.

If the product structure (7.1) is present, then for each R, the cross-section

v̄s(R, · )/|f(R)|

should be approximately the same. If the cross-sections exhibit similarities, then the
general shape indicates whether this g can be interpreted as a field of vision.
The described strategy is for the moment an idea and it has not been verified so
far.

• In Section 3.7 of Chapter 3 we propose to investigate the many-particle limit N →
∞ simultaneously with vanishing regularization γ ⇀ δ0. It is common practice
in the SPH community to obtain this simultaneous limit by introducing a typical
length scale h called smoothing length in the smoothing kernel γ and subsequently
taking h ∼ 1/ d

√
N . In [EZvdLD15] we support numerically the claim that solutions

for N -dependent h converge as N → ∞. We would like to investigate this limit
theoretically.

• Chapters 4 and 5 deal with a problem on the unit interval. In Section 4.6 of Chapter
4 an interpretation in terms of a particle system is given with particles being gated
away randomly from an absorption zone of finite width. We derive the limit as
the width of this absorption zone goes to zero in Chapter 4. The generalization of
this procedure to two or more spatial dimensions remains to be investigated. We
note that in more than one dimension the shape and regularity of the boundary are
factors that need to be taken into account.

• Our well-posedness proof involving measure-dependent velocities (see Chapter 5)
only holds for right-hand sides with bounded Lipschitz continuous f . If we want to
model the limit case of vanishing boundary layer, we need to extend this result to
piecewise bounded Lipschitz f . Subsequently, we need to prove that the solution
for finite boundary layer actually converges to the solution of the limit problem.
As explained in Section 5.5, it is not clear whether two limits commute: the limit of
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taking a finer and finer partitioning of [0, T ] in the forward-Euler-like approach, and
the limit of vanishing zone of absorption. One of the key difficulties we currently
face, is the fact that we do not have an explicit expression for the limit of the
forward-Euler-like approach. Such expression would facilitate the comparison of the
solutions obtained from taking the two aforementioned limits in either order. Note
that we do have an explicit expression for the solution in Chapter 4.

• We constructed only one approximating sequence in Chapter 5, namely by partition-
ing the interval [0, T ] into 2k subintervals. We expect that it is possible to obtain
similar estimates as in Chapter 5 if we choose any q ∈ N+ and take a partitioning of
[0, T ] in qk subintervals. We expect moreover that these estimates can be used to
prove that in this case the limit k →∞ is well-defined. These conjectures remain to
be verified. Afterwards we need to answer the question whether all limits obtained
in this way are the same; first for uniform partitionings with arbitrary q and later
for general non-uniform partitionings.

• A possible extension to the model in Chapters 4 and 5 is to add anisotropy due to a
field of vision. Such extension can also be viewed upon as placing the approach of
Chapter 2 in a measure-valued framework and restricting the evolution to a bounded
domain.

• Imagine that we want to determine (experimentally) the ingredients of our model,
in particular f and v. In view of the inevitable errors that are made, it is important
to know how these errors eventually affect the solution of our model. Therefore we
need to derive stability estimates with respect to model ingredients and parameters.
This is a first step in the direction of validating the model of Chapters 4 and 5
against real-life data.

• In Chapter 6 we compare the solutions of two problems, one involving flux through
the boundary of an object and another involving mass emission from a point source.
We provide bounds on the difference in fluxes and on the difference between the
solutions. We conjecture that these bounds can become arbitrarily small. A seem-
ingly straightforward strategy to achieve such vanishing upper bounds is simply to
provide correctly both the magnitude of the source term and the initial condition
inside Γ. These two model components need to be provided in such a way that they
together produce the appropriate flux over the boundary Γ of the finite-size object.
This is a nontrivial inverse problem. A possible second approach is to consider the
limit “|O| → 0”. We point out that if Γ shrinks towards the origin, then the upper
bound provided by the combination of (6.8) and (6.27) tends to infinity. Instead of
this estimate we can perhaps use a formal asymptotic expansion with the object’s
size as a small parameter.

• Chapter 6 treats a simple scenario related to a more complicated problem in which
multiple point sources move around in a (bounded) domain and interact with each
other. These point masses represent vesicles that transport material and exchange
this material with their environment. Our ultimate goal is to model such systems
with a discrete measure representing the point masses. In Chapter 6 the function
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describing the emission of mass is prescribed. In a more realistic model, this function
is one of the unknowns. A lot of progress is still to be made in this direction.



Appendix A

Completeness of spaces of
continuous functions

This appendix provides completeness results for spaces of continuous functions from [0, T ]
to a given complete metric space.

Lemma A.1. Let (X,distX) be a complete metric space. For each T > 0, the space

C([0, T ];X),

endowed with the metric defined as

sup
τ∈[0,T ]

distX(µ1(τ), µ2(τ)),

for all µ1, µ2 ∈ C([0, T ];X), is complete.

Proof. The proof mainly follows the lines of the proof of Theorem 1.5-5 in [Kre78] (which
treats real-valued continuous functions).
Let (µn)n∈N denote a Cauchy sequence in C([0, T ];X). Fix ε > 0. There is a K such
that for all m,n > K

sup
τ∈[0,T ]

distX(µm(τ), µn(τ)) < ε.

For any fixed t ∈ [0, T ],

distX(µm(t), µn(t)) 6 sup
τ∈[0,T ]

distX(µm(τ), µn(τ)) < ε

holds, so (µn(t))n∈N is a Cauchy sequence in X. Since X is complete, (µn(t))n∈N
converges to some µ̃t ∈ X. This pointwise limit exists for every t ∈ [0, T ], and we
construct a mapping µ from [0, T ] to X by defining

µ(t) := µ̃t
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for all t ∈ [0, T ].
There is an N such that

sup
τ∈[0,T ]

distX(µm(τ), µn(τ)) < ε/2 (A.1)

for all m,n > N (with the same ε as before!). In particular, for fixed t ∈ [0, T ],

distX(µm(t), µn(t)) < ε/2 (A.2)

holds for all m,n > N . Thus, for each fixed t ∈ [0, T ] and for each m > N ,

distX(µm(t), µ(t)) 6 distX(µm(t), µn(t))︸ ︷︷ ︸
<ε/2

+ distX(µn(t), µ(t))︸ ︷︷ ︸
<ε/2

< ε, (A.3)

for sufficiently large n. Here we use (A.2) to estimate the first term on the right-hand side.
Due to the fact that µ(t) is defined as the pointwise limit of µn(t), the second term can be
made arbitrarily small by increasing n. We conclude from (A.3) that distX(µm(t), µ(t)) <
ε for allm > N . Due to (A.1), this estimate holds with the same ε and N for all t ∈ [0, T ],
whence

sup
t∈[0,T ]

distX(µm(t), µ(t)) 6 ε

for all m > N , which proves the convergence of (µm) to µ.
The limit µ : [0, T ]→ X is continuous since it is the uniform limit of continuous mappings
(cf. [Kos04] Thm. 8.3.1 for a proof for real-valued functions that can be extended trivially
to our situation), hence (µn) converges in C([0, T ];X).

Lemma A.2 (cf. [Kre78] Thm. 1.4-7). If Y is a closed subset of a complete metric space
(Z,distZ), then Y is complete.

Proof. Let (ξn) ⊂ Y be a Cauchy sequence. Since Y ⊂ Z and Z is complete, there is a
ξ ∈ Z such that

lim
n→∞

distZ(ξn, ξ) = 0.

Because (ξn) is a sequence in Y and Y is closed, ξ must be an element of Y . Thus, Y
is complete.

Theorem A.3. Let (X,distX) be a complete metric space. Fix ν0 ∈ X and T > 0, and
define

C := {ν ∈ C([0, T ];X) : ν(0) = ν0}.

Endowed with the metric
sup

τ∈[0,T ]
distX(µ1(τ), µ2(τ)), (A.4)

the space C is a complete metric space.
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Proof. Due to Lemma A.1, C([0, T ];X) is complete with respect to the metric (A.4).
Clearly, C ⊂ C([0, T ];X). We now show that C is closed. Let (µn) ⊂ C be a sequence
that converges to µ ∈ C([0, T ];X). That is,

lim
n→∞

sup
t∈[0,T ]

distX(µ(t), µn(t)) = 0.

We note that for every n ∈ N

distX(µ(0), ν0) = distX(µ(0), µn(0)) 6 sup
t∈[0,T ]

distX(µ(t), µn(t)).

Since the left-hand side is independent of n, while the right-hand side tends to 0 as
n→∞, it holds that

distX(µ(0), ν0) = 0,

so µ(0) = ν0. We conclude that µ ∈ C and thus C is closed. It follows from Lemma A.2
that C is complete.

Corollary A.4. For each R > 0, define

PR(Rd) :=
{
µ ∈ P(Rd) : suppµ ⊂ B(R)

}
,

with B(R) := {x ∈ Rd : |x| 6 R}. Fix ν0 ∈ PR(Rd)) and T > 0. The space

{ν ∈ C([0, T ];PR(Rd)) : ν(0) = ν0},

endowed with the metric
sup

τ∈[0,T ]
W1(µ1(τ), µ2(τ)),

is a complete metric space. Here, W1 denotes the 1-Wasserstein distance.

Proof. The ball B(R) is complete. Hence, it follows from [AGS08], Proposition 7.1.5,
that

(
P1(B(R)

)
,W1

)
is complete. Here, P1(B(R)

)
is the space of probability measures

with bounded first moment. Observe that

P1(B(R)
)

= P
(
B(R)

)
.

The inclusion P1(B(R)
)
⊂ P

(
B(R)

)
is trivial. The other inclusion follows from the fact

that the first moment of each µ ∈ P
(
B(R)

)
is bounded by R. Thus,

(
P
(
B(R)

)
,W1

)
is

a complete metric space.

There is a one-to-one correspondence between elements of P
(
B(R)

)
and elements of

PR(Rd). Convergence in one of these spaces implies convergence in the other, and there-
fore PR(Rd) is complete too. Theorem A.3 now implies the statement of the corollary.





Appendix B

Integration of measure-valued
maps

Let (X,Σ) be a measurable space and S a Polish space. We refer to [DU77] for the basic
results on Bochner integration. The following result shows that ‖ · ‖∗BL is a good norm
from the point of view of integration.

Proposition B.1. For any map p : X →M(S) the following statements are equivalent:

(i) p is Bochner measurable as map intoM(S)BL;

(ii) For each bounded measurable function ϕ on S, the map x 7→ 〈p(x), ϕ〉 is measur-
able;

(iii) For each Borel measurable E ⊂ S, x 7→ p(x)(E) is measurable.

Proof. A detailed proof is given in [Wor10]. A version for positive measures is proven in
[HW09a], Proposition 2.5.

If µ is a σ-finite positive measure on (X,Σ), x 7→ p(x) is Bochner measurable and
x 7→ ‖p(x)‖∗BL is integrable with respect to µ, then p is Bochner integrable and

∥∥∫
X

p(x) dµ(x)
∥∥∗

BL 6
∫
X

‖p(x)‖∗BL dµ(x) (B.1)

(see e.g. [DU77]). Because S is separable,M(S)BL is separable. Therefore there exists
a countable subset N ⊂M(S)∗BL that is norming:

‖ϕ‖∗BL = sup
{
| 〈ϕ, f〉 | : f ∈ N

}
for all ϕ ∈M(S)BL. SinceM(S)∗BL ' BL(S) ([HW09a], Theorem 3.7, p. 360), we may
consider N as subset of BL(S). In particular, if p : X →M(S) satisfies the conditions
of Proposition B.1, then x 7→ ‖p(x)‖∗BL is measurable.
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Proposition B.2. Let µ be a σ-finite positive measure on (X,Σ) and let p : X →M(S)
satisfy any of the equivalent conditions in Proposition B.1. Then x 7→ ‖p(x)‖TV is Borel
measurable. Moreover, if the latter function is in L1(X,µ), then:
(i) For each Borel set E ⊂ S, the set-wise integral ν(E) :=

∫
X
p(x)(E) dµ(x) is

defined and yields a finite Borel measure ν.

(ii) The map x 7→ p(x) is Bochner integrable and the Bochner integral given by ν′ :=∫
X
p(x) dµ(x) inM(S)BL equals ν. In particular, for any Borel set E in S,∫

X

p(x) dµ(x)

 (E) =
∫
X

p(x)(E) dµ(x). (B.2)

(iii) ∥∥ ∫
X

p(x) dµ(x)
∥∥

TV 6
∫
X

‖p(x)‖TV dµ(x).

Proof. Because S is Polish, there exists a countable algebra A of Borel sets that generates
the Borel σ-algebra B(S) (cf. [Bog07b], Example 6.5.2). Then for any Borel measure µ,
every ε > 0 and Borel set E there exists A ∈ A such that |µ(E)− µ(A)| < ε. Therefore
(cf. [Bog07a], p.176),

‖p(x)‖TV = sup
E∈B(S)

p(x)(E)− inf
E∈B(S)

p(x)(E) = sup
A∈A

p(x)(A)− inf
A∈A

p(x)(A).

The functions pA : x 7→ supA∈A p(x)(A) and pA : x 7→ infA∈A p(x)(A) are measurable
as pointwise supremum of a countable collection of measurable functions (see Proposition
B.1). So x 7→ ‖p(x)‖TV is measurable.
(i): The integral defining ν converges, because |p(x)(E)| 6 ‖p(x)‖TV. σ-Additivity of ν
is obtained through Lebesgue’s Dominated Convergence Theorem.
(ii): x 7→ ‖p(x)‖∗BL is measurable and dominated by the µ-integrable function ‖p(x)‖TV,
so p is indeed Bochner integrable. For any f ∈ BL(S),

〈ν′, f〉 =
∫
X

〈p(x), f〉 dµ(x) = 〈ν, f〉 .

The first step holds because f defines a continuous functional on M(S)BL, the second
because f is the pointwise limit of a sequence of step functions. Two finite Borel measures
that coincide on BL(S) are identical (e.g. [Dud66], Lemma 6). For ν, clearly∫

S

f dν =
∫
X

〈p(x), f〉 dµ(x)

for any bounded measurable function f . Equation (B.2) follows by taking f = 1E .
(iii): From part (ii) it follows that for any A ∈ A (introduced above),∫

X

pA(x) dµ(x) 6 ν(A) 6
∫
X

pA(x) dµ(x).
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Therefore,

‖ν‖TV = sup
A∈A

ν(A)− inf
A∈A

ν(A) 6
∫
X

pA(x)− pA(x) dµ(x) =
∫
X

‖p(x)‖TV dµ(x).

Moreover, for any continuous map P : M+(S)BL → M+(S)BL that is additive and
positively homogeneous, i.e. P (aµ) = aP (µ) for a > 0, one has

P
(∫
X

p(x) dµ(x)
)

=
∫
X

P [p(x)] dµ(x). (B.3)





Appendix C

Equivalence of dual norms on
bounded Lipschitz functions

Let S be a Polish space. Recall from Section 4.1.1 the bounded Lipschitz or Dudley norm,
defined by

‖φ‖BL := ‖φ‖∞ + |φ|L, (C.1)
and the Fortet-Mourier norm, defined by

‖φ‖FM := max{‖φ‖∞ , |φ|L},

for all φ ∈ BL(S). We show now that both norms are equivalent.

Lemma C.1 (Equivalence of norms). The norms ‖ · ‖BL and ‖ · ‖FM are equivalent. In
particular, we have

‖φ‖FM 6 ‖φ‖BL 6 2 ‖φ‖FM (C.2)
for all φ ∈ BL(S). Moreover, the given bounds are sharp.

Proof. The first inequality follows from the fact that

‖φ‖FM = max{‖φ‖∞ , |φ|L}
6 min{‖φ‖∞ , |φ|L}+ max{‖φ‖∞ , |φ|L}
= ‖φ‖∞ + |φ|L
= ‖φ‖BL.

The second inequality follows from

‖φ‖BL = ‖φ‖∞ + |φ|L
6 2 max{‖φ‖∞ , |φ|L}
= 2‖φ‖FM.

If we choose φ ∈ BL(S) to be a constant, then |φ|L = 0. Hence, ‖φ‖BL = ‖φ‖∞ =
‖φ‖FM and thus there is an element of BL(S) for which the first inequality in (C.2) is
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really an equality. If we choose φ ∈ BL(S) such that ‖φ‖∞ = |φ|L then ‖φ‖∞ = |φ|L =
max{‖φ‖∞ , |φ|L}. Consequently, ‖φ‖BL = 2 max{‖φ‖∞ , |φ|L} = 2‖φ‖FM, and we have
a φ for which equality holds in the second half of (C.2).

Let BL(S)∗ be the dual of BL(S), with duality pairing 〈φ∗, φ〉 for all φ∗ ∈ BL(S)∗ and
φ ∈ BL(S). We define dual norms on BL(S)∗, which – completely in line with the above
– we do in two ways. First, for any φ∗ ∈ BL(S)∗ we define the bounded Lipschitz or
Dudley dual norm as

‖φ∗‖∗BL := sup {| 〈φ∗, φ〉 | : φ ∈ BL(S), ‖φ‖BL 6 1} . (C.3)

The Fortet-Mourier dual norm is given by

‖φ∗‖∗FM := sup {| 〈φ∗, φ〉 | : φ ∈ BL(S), ‖φ‖FM 6 1} . (C.4)

Lemma C.2 (Equivalence of dual norms). The norms ‖ · ‖∗BL and ‖ · ‖∗FM are equivalent.
In particular, we have

‖φ∗‖∗BL 6 ‖φ∗‖∗FM 6 2 ‖φ∗‖∗BL (C.5)
for all φ∗ ∈ BL(S)∗. The given lower bound is sharp. If there are x, y ∈ S such that
d(x, y) = 2, then also the given upper bound is sharp.

Proof. To prove the estimates, let φ∗ ∈ BL(S)∗ be given. Define the following subsets
of R:

ABL := {| 〈φ∗, φ〉 | : φ ∈ BL(S), ‖φ‖BL 6 1} ,
AFM := {| 〈φ∗, φ〉 | : φ ∈ BL(S), ‖φ‖FM 6 1} ,

AFM, 1
2

:=
{
|12 〈φ

∗, φ〉 | : φ ∈ BL(S), ‖φ‖FM 6 1
}
.

Note that these sets depend on φ∗. By definition of the dual norms (C.3) and (C.4),
‖φ∗‖∗BL = supABL and ‖φ∗‖∗FM = supAFM hold.

1. Assume that α ∈ ABL, then there is a φ ∈ BL(S) satisfying ‖φ‖BL 6 1 such that
| 〈φ∗, φ〉 | = α. Since ‖φ‖FM 6 ‖φ‖BL (Lemma C.1), we know that ‖φ‖FM 6 1
and thus α ∈ AFM. Hence, ABL ⊂ AFM and consequently supABL 6 supAFM.
The latter statement can be written as

‖φ∗‖∗BL 6 ‖φ∗‖∗FM.

2. Assume that α ∈ AFM, 1
2
, then there is a φ ∈ BL(S) satisfying ‖φ‖FM 6 1 such

that 1
2 | 〈φ

∗, φ〉 | = α. Define φ̃ := 1
2φ. Since ‖φ‖BL 6 2‖φ‖FM (Lemma C.1),

we know that ‖φ̃‖BL 6 2‖ 1
2φ‖FM = ‖φ‖FM 6 1. This implies that φ̃ satisfies the

conditions in ABL and thus |
〈
φ∗, φ̃

〉
| ∈ ABL. Because |

〈
φ∗, φ̃

〉
| = α, it follows

that AFM, 1
2
⊂ ABL and consequently supAFM, 1

2
6 supABL. The observation

supAFM, 1
2

= 1
2 supAFM finally leads to

‖φ∗‖∗FM 6 2‖φ∗‖∗BL.
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To prove sharpness of the bounds, consider the following:

1. Fix x ∈ S and take φ∗ such that 〈φ∗, φ〉 = φ(x). This φ∗ is a bounded linear
functional. For each φ ∈ BL(S) we have that | 〈φ∗, φ〉 | = |φ(x)| 6 ‖φ‖∞.

(i) The inequality ‖φ‖∞ 6 ‖φ‖FM is trivially satisfied. For each φ ∈ BL(S) with
‖φ‖FM 6 1 we therefore have that | 〈φ∗, φ〉 | 6 1. The upper bound is attained
by φ ≡ 1, thus ‖φ∗‖∗FM = 1.

(ii) Because ‖φ‖∞ 6 ‖φ‖BL holds, | 〈φ∗, φ〉 | 6 1 for all φ ∈ BL(S) satisfying
‖φ‖BL 6 1. This upper bound is attained by φ ≡ 1. Consequently, ‖φ∗‖∗BL =
1.

We thus have that
‖φ∗‖∗FM = 1 = ‖φ∗‖∗BL,

which proves the sharpness of the first inequality.

2. Take x, y ∈ S such that d(x, y) = 2 and let φ∗ be the bounded linear functional
given by 〈φ∗, φ〉 = φ(x)− φ(y).

(i) For each φ ∈ BL(S) with ‖φ‖FM 6 1 we have that | 〈φ∗, φ〉 | = |φ(x) −
φ(y)| 6 |φ|L d(x, y) = 2|φ|L 6 2. The upper bound is attained by some
φ ∈ BL(S) satisfying ‖φ‖FM 6 1, namely by φ : z 7→ (d(x, z) − d(y, z))/2,
thus ‖φ∗‖∗FM = 2.

(ii) If for φ ∈ BL(S) we have ‖φ‖BL 6 1, then | 〈φ∗, φ〉 | 6 2|φ|L and moreover
| 〈φ∗, φ〉 | = |φ(x)− φ(y)| 6 2‖φ‖∞. Adding these conditions and dividing by
2, we obtain | 〈φ∗, φ〉 | 6 ‖φ‖BL. For any φ ∈ BL(S) satisfying ‖φ‖BL 6 1 we
thus have the upper bound | 〈φ∗, φ〉 | 6 1. This upper bound is attained by
φ : z 7→ (d(x, z) − d(y, z))/4, which also satisfies ‖φ‖BL 6 1. Consequently,
‖φ∗‖∗BL = 1.

In this case
‖φ∗‖∗FM = 2 = 2‖φ∗‖∗BL.

We conclude from Lemma C.2 that the dual space consists of the same elements, inde-
pendently of our choice for ‖ · ‖BL or ‖ · ‖FM as the norm on BL(S). A linear functional
that is bounded with respect to one of the two associated dual norms, is also bounded in
the other, due to their equivalence.





Appendix D

Flat metric for signed discrete
measures

Let S be a Polish space and M(S) be the space of finite Borel measures on S. The
natural pairing between measures µ ∈M(S) and bounded measurable functions φ is

〈µ, φ〉 :=
∫
S

φdµ.

Using the Fortet-Mourier dual norm, we define a distance between two measures µ and
ν (also called flat metric)

F (µ, ν) := ‖µ− ν‖∗FM = sup


∫
S

φd(µ− ν) : φ ∈ BL(S), ‖φ‖FM 6 1

 .

Note that the absolute value within the supremum is omitted. This does not change the
value of the supremum, since if φ ∈ BL(S) satisfies ‖φ‖FM 6 1, then also −φ ∈ BL(S)
and ‖−φ‖FM 6 1. The value |

∫
S
φd(µ− ν)| is then attained by

∫
S
ψ d(µ− ν) for either

ψ = φ or ψ = −φ.

In the sequel we restrict ourselves to S = R (where all our results can also be obtained
easily for an interval S ⊂ R). Moreover, we only consider µ− ν of the form

µ− ν =
N∑
k=1

akδxk ,

where N ∈ N is fixed, {ak}Nk=1 ⊂ R and {xk}Nk=1 ⊂ R. Without loss of generality, we
can assume that ak 6= 0 for all k and that x1 < . . . < xN .

It is clear that for this particular type of measures µ− ν∫
R

φd(µ− ν) =
N∑
k=1

ak φk,
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where φk := φ(xk). The condition φ ∈ BL(R), with ‖φ‖FM 6 1, translates to |φk| 6 1
for all k ∈ {1, 2, . . . , N} and |φk − φj | 6 |xk − xj | for all pairs j, k ∈ {1, 2, . . . , N}. We
formalize this statement in the following lemma, showing also that it is sufficient to have
the condition |φk − φj | 6 |xk − xj | only for j = k − 1.

Lemma D.1. For any measure on R of the form µ − ν =
∑N
k=1 akδxk , satisfying x1 <

. . . < xN , the following equality holds

sup


∫
R

φd(µ− ν) : φ ∈ BL(R), ‖φ‖FM 6 1


= sup

{
N∑
k=1

ak φk : |φk| 6 1, |φk − φk−1| 6 |xk − xk−1| ∀k

}
.

Proof. The proof requires a two-step approach.
1. We show that:

sup

=:B1︷ ︸︸ ︷
∫
R

φd(µ− ν) : φ ∈ BL(R), ‖φ‖FM 6 1


= sup

{
N∑
k=1

ak φk : (φ1, . . . , φN )T ∈ RN , |φk| 6 1, |φk − φj | 6 |xk − xj | ∀j, k
}

︸ ︷︷ ︸
=:B2

.

(i) Let β ∈ B1, with φ ∈ BL(R), satisfying ‖φ‖FM 6 1, such that
∫
R φd(µ−ν) =

β. Define φk := φ(xk) for all k. Then
∑N
k=1 ak φk =

∫
R φd(µ − ν) = β,

|φk| = |φ(xk)| 6 1 for all k and |φk − φj | = |φ(xk)− φ(xj)| 6 |xk − xj | for
all j, k. Thus β ∈ B2, which implies B1 ⊂ B2.

(ii) Let β ∈ B2, with (φ1, . . . , φN )T ∈ RN , |φk| 6 1 and |φk − φj | 6 |xk − xj |
for all j, k, such that

∑N
k=1 ak φk = β. Define a function φ : R→ R as:

φ(x) :=


φ1, x < x1;
φk−1 + x− xk−1

xk − xk−1
(φk − φk−1), xk−1 6 x < xk, k ∈ {2, . . . , N};

φN , x > xN .

Then φ(xk) = φk for all k and thus
∫
R φd(µ − ν) =

∑N
k=1 ak φk = β. For

xk−1 6 x < xk, we have that |φ(x)| 6 max{|φk−1|, |φk|}, thus ‖φ‖∞ 6
maxk{|φk|} 6 1. Note that φ is differentiable almost everywhere, and its
weak derivative is bounded: ‖φ′‖∞ 6 max26k6N (φk − φk−1)/(xk − xk−1).
Hence, φ is Lipschitz continuous and |φ|L 6 ‖φ′‖∞, due to [Eva10], Theorem
4, p. 294. By assumption on {φk}, for each k: (φk−φk−1)/(xk−xk−1) 6 1,
hence |φ|L 6 1. We conclude that φ ∈ BL(R) and ‖φ‖FM 6 1, which implies
that B2 ⊂ B1.
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The inclusions B1 ⊂ B2 and B2 ⊂ B1 yield that supB1 = supB2.

2. We show that:

sup
{

N∑
k=1

ak φk : |φk| 6 1, |φk − φj | 6 |xk − xj | ∀j, k
}

= sup
{

N∑
k=1

ak φk : |φk| 6 1, |φk − φk−1| 6 |xk − xk−1| ∀k

}
︸ ︷︷ ︸

=:B3

.

It is clear that B2 ⊂ B3.
Assume that (φ1, . . . , φN )T ∈ RN satisfies |φk − φk−1| 6 |xk − xk−1| for all
2 6 k 6 N . As the elements of {xk} are ordered, |xk − xk−1| = xk − xk−1 for
each k. Let j, ` ∈ {1, . . . , N} be arbitrary, and assume without loss of generality
j 6 `. Due to the triangle inequality

|φ` − φj | 6
∑̀
k=j+1

|φk − φk−1| 6
∑̀
k=j+1

(xk − xk−1) = x` − xj = |x` − xj |.

Hence B3 ⊂ B2.
It follows that B2 = B3 and thus supB2 = supB3.





Appendix E

Algorithm for computing the
flat metric for signed discrete
measures

In this appendix we describe an algorithm for computing the flat metric, based on its
characterization given in Lemma D.1. We present here the results of [JMC13] and use
the same notation as in Appendix D. The algorithm works for discrete measures on R as
well as on intervals S ⊂ R.

Define

Fm(ψ) := sup
{

m∑
k=1

ak φk : φm = ψ, |φk| 6 1, |φk − φk−1| 6 |xk − xk−1| ∀k 6 m

}
for any m 6 N and ψ ∈ [−1, 1]. By definition F (µ, ν) = supψ∈[−1,1] F

N (ψ). Define
∆k := |xk − xk−1| for all k ∈ {2, . . . , N}. Note that

F 1(ψ) = a1 ψ, and (E.1)
Fm(ψ) = am ψ + sup

φm−1∈[ψ−∆m,ψ+∆m]∩[−1,1]
Fm−1(φm−1). (E.2)

Our aim is to exploit this recursive relation for Fm to construct FN . As we will see in
Lemmas E.1 and E.2, the functions Fm are all concave and piecewise linear, and the
supremum (in fact: maximum) of FN is hence easily found. The algorithm that we
present in Section E.1, follows the same philosophy.
Lemma E.1. For each m ∈ {1, . . . , N}, the function Fm is concave.
Proof. We use a mathematical induction argument with respect to m. Since F 1(ψ) =
a1 ψ, the statement is true for m = 1. Now, assume that Fm−1 is concave for some
1 < m 6 N . Define, for any ψ ∈ [−1, 1],

F̄m−1(ψ) := sup
z∈[ψ−∆m,ψ+∆m]∩[−1,1]

Fm−1(z). (E.3)
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Choose ψ1, ψ2 ∈ [−1, 1]. By definition of the supremum, (E.3) implies that for each
i ∈ {1, 2} there is a sequence (ψij)j∈N ⊂ [ψi −∆m, ψ

i + ∆m] ∩ [−1, 1] such that

F̄m−1(ψi) = lim
j→∞

Fm−1(ψij).

For each j ∈ N and each θ ∈ [0, 1],

θ ψ1
j + (1− θ)ψ2

j ∈ B
(
θ ψ1 + (1− θ)ψ2 , ∆m

)
∩ [−1, 1] (E.4)

is satisfied. Hence, for θ ∈ [0, 1], we have

θ F̄m−1(ψ1) + (1− θ) F̄m−1(ψ2) = lim
j→∞

θ Fm−1(ψ1
j ) + (1− θ)Fm−1(ψ2

j )

6 lim
j→∞

Fm−1(θ ψ1
j + (1− θ)ψ2

j )

6 F̄m−1(θ ψ1 + (1− θ)ψ2), (E.5)

where we use in the second step that Fm−1 is concave and that ψ1
j , ψ

2
j ∈ [−1, 1] for each

j ∈ N. The third step is due to a combination of (E.3) and (E.4). It follows from (E.5)
that F̄m−1 is concave. Since Fm(ψ) := am ψ+ F̄m−1(ψ) is the sum of a linear function
and a concave function, Fm itself is concave.

Lemma E.2. For all m ∈ {1, . . . , N} the function Fm is continuous and piecewise linear,
and it is determined by its function values in at most m + 1 points. If m ∈ {2, . . . , N},
then the function Fm satisfies

Fm(ψ) = am ψ +


Fm−1(ψ + ∆m), ψ ∈ [−1, ψ̃m −∆m] ∩ [−1, 1];
Fm−1(ψ̃m), ψ ∈ [ψ̃m −∆m, ψ̃m + ∆m] ∩ [−1, 1];
Fm−1(ψ −∆m), ψ ∈ [ψ̃m + ∆m, 1] ∩ [−1, 1];

(E.6)

where ψ̃m := max{ψ̃ ∈ [−1, 1] : Fm−1(ψ) 6 Fm−1(ψ̃) for all ψ ∈ [−1, 1]}.

Proof. Again we use mathematical induction. F 1 is a linear function, and hence de-
termined by its values in −1 and 1. Now assume that Fm−1 satisfies the statement of
the lemma (with m > 2). Since Fm−1 is continuous and concave (Lemma E.1) on a
compact interval, ψ̃m exists. Since Fm−1 is piecewise linear, its maximum is attained
at the endpoint of an interval. In case the maximum is attained at an internal point,
Fm−1 is constant on the corresponding interval, and hence we can choose ψ̃m to be the
right endpoint (it is important to make a choice, although it is arbitrary which choice we
make). Hence, if [ψ1, ψ2] is an interval on which Fm−1 is linear, then

• if ψ2 6 ψ̃m: Fm−1 is nondecreasing on the interval and takes its maximum in ψ2;

• if ψ1 > ψ̃m: Fm−1 is decreasing on the interval and takes its maximum in ψ1.

Fix ψ ∈ [−1, 1]. If ψ ∈ [ψ̃m −∆m, ψ̃m + ∆m], then ψ̃m ∈ [ψ −∆m, ψ + ∆m] and

sup
φ∈[ψ−∆m,ψ+∆m]∩[−1,1]

Fm−1(φ) = Fm−1(ψ̃m);
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the left-hand side occurs in (E.2). If ψ < ψ̃m −∆m then

sup
φ∈[ψ−∆m,ψ+∆m]∩[−1,1]

Fm−1(φ) = Fm−1(ψ + ∆m),

since Fm−1 is nondecreasing on [−1, ψ̃m]. Analogously, we have

sup
φ∈[ψ−∆m,ψ+∆m]∩[−1,1]

Fm−1(φ) = Fm−1(ψ −∆m),

if ψ > ψ̃m −∆m. Summarizing, we obtain

sup
φ
Fm−1(φ) =


Fm−1(ψ + ∆m), ψ ∈ [−1, ψ̃m −∆m] ∩ [−1, 1];
Fm−1(ψ̃m), ψ ∈ [ψ̃m −∆m, ψ̃m + ∆m] ∩ [−1, 1];
Fm−1(ψ −∆m), ψ ∈ [ψ̃m + ∆m, 1] ∩ [−1, 1],

(E.7)

where the supremum is taken over all φ ∈ [ψ −∆m, ψ + ∆m] ∩ [−1, 1]. Via (E.2), the
expression in (E.7) implies the desired result for Fm as stated in (E.6). Note that one or
more of the three intervals in (E.7) may be empty.
It is easily checked in (E.6) that Fm is continuous if Fm−1 is continuous. In particular,
continuity holds at ψ = ψ̃m±∆m. By assumption, Fm−1 is piecewise linear and determ-
ined by its function values in at mostm points. By construction ψ̃m is one of these points.
Fm is constructed by translating the graph of Fm−1 on the left-hand (right-hand) side
of ψ̃m to the left (right) over a distance ∆m, and interpolating linearly on the interval
[ψ̃m − ∆m, ψ̃m + ∆m]. The addition of the linear term am ψ preserves the piecewise
linearity. This construction adds a degree of freedom, making a total of at most m + 1,
because Fm−1 had at most m degrees of freedom. Note that the number of degrees
of freedom might decrease by points determining Fm−1 that end up outside the interval
[−1, 1] after translation over ±∆m.

Note that ψ is comparable to an element from the range of the test function φ ∈ BL(R).
The fact that ψ always comes from the interval [−1, 1] is compatible with the demand
‖φ‖FM 6 1. Although ψ is the argument of Fm and it occurs on the horizontal axis in
the above, it should not be confused with the positions of the Dirac masses, which can
be anywhere in R.

We have derived in Lemma E.2 the relation between the subsequent Fms. From now
on, we can ‘forget’ why (E.6) is true, and simply apply it recursively as basis for our
algorithm, ultimately to obtain FN . See also Figure E.1 for a schematic illustration of
one of the recursive steps. The fact that we deal with piecewise linear functions (of which
the lemma gives the maximum number of degrees of freedom) makes that we can store
and build the whole function efficiently: per recursion step we only need to trace the
positions and function values of the endpoints of the linear subintervals. In fact, what
we store (see Section E.1) are the value at −1, the endpoints of the intervals – and even
only those in the interior: (−1, 1) – and the slopes on the linear subintervals.
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ψ̃m ψ

Fm−1

−1 1

(a)

Fm−1(ψ̃m)

ψ̃m
ψ̃m −∆m

ψ̃m + ∆m

ψ−1 1

(b)

F̄m−1(ψ)

am ψ

ψ−1 1

(c)

ψ̃m+1 ψ

Fm

−1 1

(d)

Figure E.1: (a): Previous piecewise linear, concave function Fm−1. (b): Split at the
maximum and translate over distance ∆m to the left/right at either side of the maximum.
(c): Interpolate by a constant on the interval [ψ̃m − ∆m, ψ̃m + ∆m] and restrict the
function to [−1, 1]; introduce the linear function ψ 7→ am ψ. (d): Addition of F̄m−1 and
the linear function yields Fm; its maximum is attained at ψ̃m+1 which is used in the next
step.
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E.1 The actual algorithm
The way the algorithm is described in this section is influenced by MATLAB syntax.

Initialization

Assume that the arrays x and a are given. If x(i) = x(j) (i 6= j), then replace a(i)
by a(i) + a(j) and remove element j from x and a. Remove element i from x and a
if a(i) = 0. Sort x in increasing order, and sort a accordingly. Start the algorithm thus
with N-dimensional arrays a and sorted x.

Since F 1(ψ) = a1 ψ we initialize leftVal = −a1, the variable for Fm(−1), and

funcDes =
(
−1 a1
1 −∞

)
,

where the first column denotes the endpoints of the subintervals, and the second column
the slope of F 1 in the interval to the right of the corresponding value in the first column.
The variable leftVal and the array funcDes will be updated every step, where the
number of columns in funcDes increases by at most 1. The value −∞ in the bottom
right entry is added for technical reasons: the entry needs to be filled, and in such a way
that concavity is preserved (i.e. slopes decrease).

For each m from 2 to N repeat the following:

Define d = x(m) − x(m-1). Identify nondecreasing segments, store them in the array
funcLeft after translating the corresponding endpoints over a distance d to the left:

idxBool = funcDes(:,2)>=0

funcLeft = [funcDes(idxBool,1)-d, funcDes(idxBool,2)]

Analogously, for the decreasing intervals:

idxBool = funcDes(:,2)<0

funcRight = [funcDes(idxBool,1)+d, funcDes(idxBool,2)]

Store ψ̃m + ∆m:
yTop = min(funcRight(:,1))

Intermediate step: store the information about F̄m−1 (before adding the linear function):

funcDes = [funcLeft; [yTop-2*d, 0]; funcRight]

Note that yTop-2*d = ψ̃m−∆m. Determine the indices of those points that were shifted
out of the interval [−1, 1] on the left-hand side (at least one, as d > 0 by construction of
x):

idxBool = funcDes(:,1)<-1

idx = 1:size(funcDes,1)

idx = idx(idxBool)
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Calculate the new leftVal after translation of the graph to the left and addition of am ψ.
This depends on the endpoints that were shifted beyond −1.

for j=idx

leftVal = leftVal +...

(min(funcDes(j+1,1),-1)-funcDes(j,1))*funcDes(j,2)

end

leftVal = leftVal - a(m)

Find the new subinterval with left endpoint −1:

idxBool = funcDes(:,1)<=-1

idx = 1:size(funcDes,1)

idx = idx(idxBool)

maxIdx = max(idx)

yMin = funcDes(maxIdx,1)

pMin = funcDes(maxIdx,2)

Create Fm by deleting the points outside the interval [−1, 1), and adding am to the slope
of each subinterval:

idxBool = (funcDes(:,1)>=-1).*(funcDes(:,1)<1)

idx = 1:size(funcDes,1)

idx = idx(idxBool)

if yMin<-1

funcDes = [[-1, pMin+a(m)];...

[funcDes(idx,1),funcDes(idx,2)+a(m)]; [1,-Inf]]

else

funcDes = [[funcDes(idx,1),funcDes(idx,2)+a(m)]; [1,-Inf]]

end

After the above loop over m

Determine on which subintervals FN is increasing:

idxBool = funcDes(:,2)>0

idx = 1:size(funcDes,1)

idx = idx(idxBool)
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Calculate the maximum (i.e. the final answer) using the slopes on those intervals where
FN is increasing:

distance = leftVal

for j=idx

distance = distance + (funcDes(j+1,1)-funcDes(j,1))*funcDes(j,2)

end

Return the value of distance. This completes the algorithm.

Remark E.1. The algorithm does not generalize to higher dimensions, because it uses
the ordering of the positions, e.g. in the proof of Lemma D.1, to obtain

∑̀
k=j+1

|xk − xk−1| =
∑̀
k=j+1

(xk − xk−1) = x` − xj = |x` − xj |.

The natural ordering is lost in dimension higher than 1.





Summary

Evolution Equations for Systems Governed by Social In-
teractions
In this thesis, ideas from mathematical physics are used to model systems of socially
interacting individuals, e.g. crowds of pedestrians, flocks of birds or schools of fish. The
work presented includes modelling, analysis and numerical computations. Our main tech-
niques are taken from partial differential equations, measure theory, semigroup theory,
continuum mechanics, functional analysis and singular perturbation theory. Chapter 1
provides the framework of modelling perspectives and equations in which the rest of the
thesis fits.
In Chapter 2 we introduce a field of vision in a first-order model for interacting individuals.
Our objective is to guarantee existence and uniqueness of solutions to this model with
included field of vision. In our model the velocity is defined implicitly. Problems arise
when a solution v has no continuous extension in time. We refer to this situation as root
loss in the implicit equation. To extend the evolution of our system beyond root loss we
provide a selection criterion for the velocity to jump to a different root. This criterion is
based on an associated singularly-perturbed second-order system. We demonstrate our
procedure by a combination of theoretical and numerical results.
In Chapter 3 we derive particle schemes for continuum equations in a systematic way via
a three-step approach. The exact form of the resulting equation for the particle system
depends on the order in which these steps are executed.
The derivation of these schemes involves a transition to measure-valued equations. To
prove convergence of solutions in the many-particle limit we use the Wasserstein distance
on the space of probability measures. Solutions converge at the same rate as the one at
which the initial condition is approximated. This result is not restricted to particle ap-
proximations, but holds for a general sequence of approximations to the initial condition
of the limit problem.
We define flux boundary conditions in terms of measures in Chapter 4. The model con-
sidered is an evolution problem for a measure with prescribed velocity field where the flow
is restricted to the unit interval. The combination of this stopped flow and an absorp-
tion term in the right-hand side of the equation results in flux boundary conditions. We
also obtain these boundary conditions as the limit of an approximation by a vanishing
absorptive boundary layer. While in each of the approximations mass is taken from the
system in a zone of finite width, the limit corresponds to gating mass away only on the
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boundary. We give the convergence rate for this approximation procedure. The analysis
takes place in a framework of semigroups on measures and uses the distance induced by
the dual bounded Lipschitz norm.
In Chapter 5 we generalize the results of Chapter 4 to measure-dependent velocity fields.
This generalization makes interaction terms via convolution admissible. We introduce a
forward-Euler-like approach. The time interval is partitioned into a number of subinter-
vals. In each of these the velocity is prescribed based on the solution in the previous
interval. Hence, the setting of Chapter 4 is applicable to each subinterval. We obtain
a convergence result for the forward-Euler-like approach when the sink right-hand side is
a bounded Lipschitz continuous function. This means that we can deal with boundary
layers in which mass is absorbed, but not (yet) with the limit of vanishing boundary layer.
Chapter 6 is about two scenarios involving the diffusion equation in two-dimensional space.
First, we consider diffusion outside of an object with prescribed flux on its boundary Γ.
The exterior domain is called Ω. Secondly, we consider a point source that emits mass.
We obtain mild solutions that are in principle measures, but have a density due to the
regularizing effect of diffusion. To quantify the difference between the solutions of these
two scenarios and their fluxes on Γ, we provide an L2([0, t];L2(Γ))-bound on the differ-
ence in flux on the boundary for all t > 0, and moreover an L2(Ω)-bound (for all time)
and an L2([0, t];H1(Ω))-bound on the difference in solutions. We conjecture at the end
of Chapter 6 certain conditions under which these bounds go to zero.



Samenvatting

Evolutievergelijkingen voor systemen die worden gedre-
ven door sociale interacties
In dit proefschrift worden ideeën uit de mathematische physica gebruikt om systemen te
modelleren waarin deeltjes interacties met elkaar aangaan, bijvoorbeeld mensenmassa’s,
zwermen vogels of scholen vissen. Het hier gepresenteerde werk omvat modellering, ana-
lyse en numerieke berekeningen. De belangrijkste technieken zijn afkomstig uit de deel-
gebieden partiële differentiaalvergelijkingen, maattheorie, halfgroepentheorie, continuüm-
mechanica, functionaalanalyse en singuliere storingsrekening. Hoofdstuk 1 geeft het alge-
mene raamwerk van modelleerperspectieven en vergelijkingen waarin de rest van dit proef-
schrift past.
In Hoofdstuk 2 introduceren wij een gezichtsveld in een eerste-ordemodel voor individuën
met interacties. Ons doel is om existentie en eenduidigheid te garanderen van oplossin-
gen van het model waarin dit gezichtsveld is meegenomen. In ons model is de snelheid
impliciet gedefinieerd. Er ontstaan problemen wanneer de oplossing v niet continu kan
worden voortgezet in de tijd. We noemen deze situatie het verlies van een wortel in de
impliciete vergelijking. Om de evolutie van ons systeem voort te zetten voorbij het punt
waar we een wortel kwijtraken, geven we een selectiecriterium voor de sprong die de snel-
heid moet maken naar een andere wortel. Dit criterium is gebaseerd op een gerelateerd
singulier verstoord tweede-ordesysteem. We zetten onze werkwijze uiteen met behulp van
theoretische en numerieke resultaten.
In Hoofdstuk 3 leiden we in drie stappen systematisch deeltjesschema’s af voor continuüm-
vergelijkingen. De exacte vorm van de uiteindelijke vergelijking voor het deeltjessysteem
hangt af van de volgorde waarin deze stappen worden uitgevoerd.
Om deze schema’s af te leiden, is een overgang naar maatwaardige vergelijkingen nodig.
We gebruiken de Wassersteinafstand op de ruimte van kansmaten om aan te tonen dat
de oplossingen convergeren als het aantal deeltjes naar oneindig gaat. Oplossingen con-
vergeren met een snelheid van gelijke orde als waarmee de beginvoorwaarde benaderd
wordt. Dit resultaat beperkt zich niet tot deeltjessystemen, maar geldt voor een alge-
mene rij benaderingen van de beginvoorwaarde van het limietprobleem.
We leiden fluxrandvoorwaarden in termen van maten af in Hoofdstuk 4. Het beschouwde
model is een evolutieprobleem voor een maat met voorgeschreven snelheidsveld, waarbij
de stroom is beperkt tot het eenheidsinterval. Deze gestopte stroom resulteert samen
met een absorptieterm aan de rechterkant van de vergelijking in fluxrandvoorwaarden.
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200 Samenvatting

Dezelfde randvoorwaarden kunnen we ook verkrijgen als de limiet van een rij benaderin-
gen waarbij de dikte van een absorberende laag naar nul gaat. Terwijl in elk van deze
benaderingen massa het systeem verlaat via een gebied van eindige dikte rond de rand,
wordt in de limiet alleen massa van de rand weggehaald. We geven de convergentiesnel-
heid voor deze approximatie. Voor de analyse gebruiken we halfgroepen op de ruimte van
maten en de afstand die voortkomt uit de duale begrensde-Lipschitznorm.
In Hoofdstuk 5 veralgemeniseren we de resultaten van Hoofdstuk 4 naar maatafhankelijke
snelheidsvelden. Deze veralgemenisering staat interactietermen in de vorm van een con-
volutie toe. We introduceren een aanpak die lijkt op de voorwaartse methode van Euler.
Het tijdsinterval wordt onderverdeeld in een aantal deelintervallen. In elk van deze deelin-
tervallen is de snelheid voorgeschreven, afhankelijk van de oplossing in het vorige interval.
Derhalve zijn de resultaten uit Hoofdstuk 4 van toepassing binnen elk deelinterval. We
tonen de convergentie van deze Euler-voorwaarts-geïnspireerde methode aan in het geval
dat de rechterkant van de vergelijking een begrensde, Lipschitz-continue functie is. Dit
betekent dat we wel absorberende gebieden van eindige dikte rond de rand kunnen be-
schrijven, maar (nog) niet de limiet waarin de dikte van deze laag naar nul is gegaan.
Hoofdstuk 6 gaat over twee scenario’s waarin de diffusievergelijking op een twee-dimensio-
naal domein een rol speelt. Eerst beschouwen we diffusie aan de buitenkant van een object
met voorgeschreven flux door de rand Γ. Het buitengebied heet Ω. Als tweede beschouwen
we een puntbron van waaruit massa het domein binnenstroomt. We vinden milde oplossin-
gen, die in principe maten zijn, maar die een dichtheid hebben door het regulariserende
effect van de diffusie. Om het verschil tussen de oplossingen van deze twee scenario’s en
de bijbehorende flux door Γ te kwantificeren, geven we een L2([0, t];L2(Γ))-bovengrens
voor alle t > 0 voor dit verschil in flux over de rand, en een L2(Ω)-grens (voor alle tijd)
en een L2([0, t];H1(Ω))-grens voor het verschil tussen de oplossingen. Aan het einde
van Hoofdstuk 6 formuleren we een vermoeden dat zegt onder welke voorwaarden deze
bovengrenzen naar nul gaan.



Notation

R+ (0,∞)
R+

0 [0,∞)
B(x,R) Open ball of radius R > 0 around x (in an arbitrary metric space)
B(R) Short form of B(0, R) (in a normed vector space)
1E Indicator of the set E
| · | Absolute value of a number, Euclidean norm on Rd, Lebesgue measure of

a set, determinant of a matrix or total variation of a measure
[ · ]+ Positive part of its argument
ft Time-slice of f at time t (not: time-derivative of f)
JF Jacobian matrix of F : Rd → Rd
Hess f Hessian matrix of f : Rd → R
Ckb (X;Y ) Space of bounded and continuous functions from X to Y with bounded

and continuous derivatives up to order k, where X can be Rd, R+
0 or

[0, T ]× Rd
Ckb (X) Ckb (X;Y ) with Y = R
S General Polish space (separable, completely metrizable topological space)
Cb(S) Space of continuous and bounded functions on S, i.e. Ckb (S) with k = 0
BL(S) Space of bounded Lipschitz functions on S
M(S) Space of finite Borel measures on S
M(S) Completion ofM(S) in ‖ · ‖∗BL (see below), short form ofM(S)BL
M+(S) Cone of positive finite Borel measures on S
P(S) Space of probability measures on S
Pr(Rd) Space of probability measures on Rd with support in B(r)
〈· , ·〉 Duality pairing
| · |L Lipschitz constant
‖ · ‖BL Bounded Lipschitz norm (Dudley norm): ‖ · ‖∞ + | · |L
‖ · ‖FM Fortet-Mourier norm: max{‖ · ‖∞ , | · |L}
‖ · ‖∗BL Dual bounded Lipschitz norm
‖ · ‖∗FM Dual Fortet-Mourier norm, induces the flat metric
Φ#µ Push-forward of µ by Φ
Π(µ, ν) Space of joint representations of µ, ν ∈ P(Rd)
Wp(µ, ν) p-Wasserstein distance between measures µ and ν
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absolute continuity (of measures), 8,
28, 155

action, 61–70
anisotropy, 20, 21, 31, 147

blind zone, 7, 34
Boundary Trace Imbedding Theorem,

164
bounded Lipschitz function, 25, 103,

119, 181
piecewise, 25, 101, 103, 106, 108,

111–113
bounded Lipschitz norm, 119, 181

dual, 102, 104, 155, 182

Cauchy-Lipschitz Theorem, see Picard-
Lindelöf Theorem

centre of mass, preservation of, 16, 57
closure relation, 13
colloids, 20
continuity equation, 3, 12, 59
convex function, 16
convolution, 7, 10, 14, 66, 98, 131,

137, 152, 155, 168
counterflow, 19, 20
coupling, see joint representation
crowd dynamics, 19, 25, 169

desired velocity, 58, 169
diffusion semigroup, 6, 28, 155
Dirac measure, 5, 8, 10
discrete measure, 5, 10, 28, 65
discrete-to-continuum limit, 2, 13
dislocation, 21
dissipation, 15

Dominated Convergence Theorem, Le-
besgue’s, 88, 110, 113

Dudley norm (dual), see bounded
Lipschitz norm (dual)

Duhamel’s principle, 5

empirical measure, 10, 12, 13, 17, 91
Euler equation, 23
Euler-Lagrange equations, 67
Eulerian

coordinates, 64
formulation, 8, 61

field of vision, 7, 17, 20, 21, 58, 147
first-order

equation, 5, 9
model, 7–8, 14, 59

Fixed Point Theorem
Banach’s, 86, 88, 97
Brouwer’s, 39

flat metric, 119, 185
Fokker-Planck equation, 9
Fortet-Mourier norm, 119, 181

dual, 102, 104, 105, 155, 182, 185
forward-Euler

approach, 26, 137
method, 6

Frobenius norm (of a matrix), 157
fundamental diagram, 20

Γ-convergence, 21
gradient flow, 15, 21

Wasserstein, 17
Green’s function (diffusion), 153
Gronwall’s Lemma, 87, 89, 109, 135,

144
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Hessian matrix, 84, 157
hydrodynamic equations, 12

implicit definition (of velocity), 22, 31
Implicit Function Theorem, 40
initial value problem, 3
interaction potential, 6, 16
isotropic, 21, 45, 49

joint representation, 63, 77, 87, 90
Jordan decomposition, 111, 155

kinetic equation, 9

Lagrangian
coordinates, 23, 64
formulation, 8, 23, 61

Lagrangian
density, 64
function, 63

lane formation, 19, 20
Langevin equation, 9
law of large numbers, 11, 91
least action, principle of, 61–63, 68
linear programming, 93
Lyapunov functional, 16
Lyapunov stability, 103

asymptotic, 45

macroscopic, 10, 12–14, 28, 168
marginal, 77, 88
maximum likelihood estimator, 20
mean-field limit, 11, 12
mesh-free method, 23
mesoscopic, 12, 14, 168
microscopic, 10, 14, 168
mild solution, 4, 26, 28, 101–103, 108–

113, 139–144, 150, 151, 155
monokinetic assumption, 13
Morse potential, 6, 34, 37, 46, 96
motion mapping, 3, 8, 64, 97
multiscale measure, 28

nonlocal, 23, 24, 74, 75, 92–97

optimal transport, 78, 93
order of convergence, 24, 94–96, 115,

119, 120
overdamped limit, 9

particle system, 5, 10, 18, 24, 62–70,
96, 116

pedestrian flows, 19, 25, 169
Picard iteration, 109
Picard-Lindelöf Theorem, 3, 8, 41, 81
point mass, 5, 8
probability measure, 10, 76
push-forward, 4, 10, 24, 26, 66, 77,

103, 107, 116

Radon-Nikodym derivative, 8
rate of convergence, 26, 113
regularization, 23–26, 39, 47, 61, 62,

66–72, 113, 167
regularly approximating sequence, 114
Riesz Representation Theorem, 105,

155

second-order
equation, 5, 8, 9, 24
model, 8

semigroup, 3, 5, 6, 25, 102, 106, 107,
132, 138

semigroup property, 4, 134, 140
singular continuous measure, 129
Smoluchowski SDE, 9, 20
social force model, 19
SPH (smoothed particle hydrodynam-

ics), 24, 62
steepest descent, 15
stochastic differential equation (SDE),

9
stopped flow, 25, 106, 108, 126, 132

Tikhonov, A.N., 10, 23, 32

variation, 68, 70
variation of constants formula, 5, 26,

102, 109, 120
variational derivative, 17

Wasserstein distance, 24, 63
of order 1, 12, 13, 97
of order 2, 17
of order p, 77

weak solution, 3, 28

Young’s Inequality, 153
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