1,546 research outputs found

    Digital audio watermarking for broadcast monitoring and content identification

    Get PDF
    Copyright legislation was prompted exactly 300 years ago by a desire to protect authors against exploitation of their work by others. With regard to modern content owners, Digital Rights Management (DRM) issues have become very important since the advent of the Internet. Piracy, or illegal copying, costs content owners billions of dollars every year. DRM is just one tool that can assist content owners in exercising their rights. Two categories of DRM technologies have evolved in digital signal processing recently, namely digital fingerprinting and digital watermarking. One area of Copyright that is consistently overlooked in DRM developments is 'Public Performance'. The research described in this thesis analysed the administration of public performance rights within the music industry in general, with specific focus on the collective rights and broadcasting sectors in Ireland. Limitations in the administration of artists' rights were identified. The impact of these limitations on the careers of developing artists was evaluated. A digital audio watermarking scheme is proposed that would meet the requirements of both the broadcast and collective rights sectors. The goal of the scheme is to embed a standard identifier within an audio signal via modification of its spectral properties in such a way that it would be robust and perceptually transparent. Modification of the audio signal spectrum was attempted in a variety of ways. A method based on a super-resolution frequency identification technique was found to be most effective. The watermarking scheme was evaluated for robustness and found to be extremely effective in recovering embedded watermarks in music signals using a semi-blind decoding process. The final digital audio watermarking algorithm proposed facilitates the development of other applications in the domain of broadcast monitoring for the purposes of equitable royalty distribution along with additional applications and extension to other domains

    Efficient video identification based on locality sensitive hashing and triangle inequality

    Get PDF
    Master'sMASTER OF SCIENC

    Multimedia Protection using Content and Embedded Fingerprints

    Get PDF
    Improved digital connectivity has made the Internet an important medium for multimedia distribution and consumption in recent years. At the same time, this increased proliferation of multimedia has raised significant challenges in secure multimedia distribution and intellectual property protection. This dissertation examines two complementary aspects of the multimedia protection problem that utilize content fingerprints and embedded collusion-resistant fingerprints. The first aspect considered is the automated identification of multimedia using content fingerprints, which is emerging as an important tool for detecting copyright violations on user generated content websites. A content fingerprint is a compact identifier that captures robust and distinctive properties of multimedia content, which can be used for uniquely identifying the multimedia object. In this dissertation, we describe a modular framework for theoretical modeling and analysis of content fingerprinting techniques. Based on this framework, we analyze the impact of distortions in the features on the corresponding fingerprints and also consider the problem of designing a suitable quantizer for encoding the features in order to improve the identification accuracy. The interaction between the fingerprint designer and a malicious adversary seeking to evade detection is studied under a game-theoretic framework and optimal strategies for both parties are derived. We then focus on analyzing and understanding the matching process at the fingerprint level. Models for fingerprints with different types of correlations are developed and the identification accuracy under each model is examined. Through this analysis we obtain useful guidelines for designing practical systems and also uncover connections to other areas of research. A complementary problem considered in this dissertation concerns tracing the users responsible for unauthorized redistribution of multimedia. Collusion-resistant fingerprints, which are signals that uniquely identify the recipient, are proactively embedded in the multimedia before redistribution and can be used for identifying the malicious users. We study the problem of designing collusion resistant fingerprints for embedding in compressed multimedia. Our study indicates that directly adapting traditional fingerprinting techniques to this new setting of compressed multimedia results in low collusion resistance. To withstand attacks, we propose an anti-collusion dithering technique for embedding fingerprints that significantly improves the collusion resistance compared to traditional fingerprints

    Anti- Forensics: The Tampering of Media

    Get PDF
    In the context of forensic investigations, the traditional understanding of evidence is changing where nowadays most prosecutors, lawyers and judges heavily rely on multimedia signs. This modern shift has allowed the law enforcement to better reconstruct the crime scenes or reveal the truth of any critical event.In this paper we shed the light on the role of video, audio and photos as forensic evidences presenting the possibility of their tampering by various easy-to-use, available anti-forensics softwares. We proved that along with the forensic analysis, digital processing, enhancement and authentication via forgery detection algorithms to testify the integrity of the content and the respective source of each, differentiating between an original and altered evidence is now feasible. These operations assist the court to attain higher degree of intelligibility of the multimedia data handled and assert the information retrieved from each that support the success of the investigation process

    Ontology of music performance variation

    Get PDF
    Performance variation in rhythm determines the extent that humans perceive and feel the effect of rhythmic pulsation and music in general. In many cases, these rhythmic variations can be linked to percussive performance. Such percussive performance variations are often absent in current percussive rhythmic models. The purpose of this thesis is to present an interactive computer model, called the PD-103, that simulates the micro-variations in human percussive performance. This thesis makes three main contributions to existing knowledge: firstly, by formalising a new method for modelling percussive performance; secondly, by developing a new compositional software tool called the PD-103 that models human percussive performance, and finally, by creating a portfolio of different musical styles to demonstrate the capabilities of the software. A large database of recorded samples are classified into zones based upon the vibrational characteristics of the instruments, to model timbral variation in human percussive performance. The degree of timbral variation is governed by principles of biomechanics and human percussive performance. A fuzzy logic algorithm is applied to analyse current and first-order sample selection in order to formulate an ontological description of music performance variation. Asynchrony values were extracted from recorded performances of three different performance skill levels to create \timing fingerprints" which characterise unique features to each percussionist. The PD-103 uses real performance timing data to determine asynchrony values for each synthesised note. The spectral content of the sample database forms a three-dimensional loudness/timbre space, intersecting instrumental behaviour with music composition. The reparameterisation of the sample database, following the analysis of loudness, spectral flatness, and spectral centroid, provides an opportunity to explore the timbral variations inherent in percussion instruments, to creatively explore dimensions of timbre. The PD-103 was used to create a music portfolio exploring different rhythmic possibilities with a focus on meso-periodic rhythms common to parts of West Africa, jazz drumming, and electroacoustic music. The portfolio also includes new timbral percussive works based on spectral features and demonstrates the central aim of this thesis, which is the creation of a new compositional software tool that integrates human percussive performance and subsequently extends this model to different genres of music

    Multimedia Forensics

    Get PDF
    This book is open access. Media forensics has never been more relevant to societal life. Not only media content represents an ever-increasing share of the data traveling on the net and the preferred communications means for most users, it has also become integral part of most innovative applications in the digital information ecosystem that serves various sectors of society, from the entertainment, to journalism, to politics. Undoubtedly, the advances in deep learning and computational imaging contributed significantly to this outcome. The underlying technologies that drive this trend, however, also pose a profound challenge in establishing trust in what we see, hear, and read, and make media content the preferred target of malicious attacks. In this new threat landscape powered by innovative imaging technologies and sophisticated tools, based on autoencoders and generative adversarial networks, this book fills an important gap. It presents a comprehensive review of state-of-the-art forensics capabilities that relate to media attribution, integrity and authenticity verification, and counter forensics. Its content is developed to provide practitioners, researchers, photo and video enthusiasts, and students a holistic view of the field

    MediaSync: Handbook on Multimedia Synchronization

    Get PDF
    This book provides an approachable overview of the most recent advances in the fascinating field of media synchronization (mediasync), gathering contributions from the most representative and influential experts. Understanding the challenges of this field in the current multi-sensory, multi-device, and multi-protocol world is not an easy task. The book revisits the foundations of mediasync, including theoretical frameworks and models, highlights ongoing research efforts, like hybrid broadband broadcast (HBB) delivery and users' perception modeling (i.e., Quality of Experience or QoE), and paves the way for the future (e.g., towards the deployment of multi-sensory and ultra-realistic experiences). Although many advances around mediasync have been devised and deployed, this area of research is getting renewed attention to overcome remaining challenges in the next-generation (heterogeneous and ubiquitous) media ecosystem. Given the significant advances in this research area, its current relevance and the multiple disciplines it involves, the availability of a reference book on mediasync becomes necessary. This book fills the gap in this context. In particular, it addresses key aspects and reviews the most relevant contributions within the mediasync research space, from different perspectives. Mediasync: Handbook on Multimedia Synchronization is the perfect companion for scholars and practitioners that want to acquire strong knowledge about this research area, and also approach the challenges behind ensuring the best mediated experiences, by providing the adequate synchronization between the media elements that constitute these experiences

    Automatic mashup generation of multiple-camera videos

    Get PDF
    The amount of user generated video content is growing enormously with the increase in availability and affordability of technologies for video capturing (e.g. camcorders, mobile-phones), storing (e.g. magnetic and optical devices, online storage services), and sharing (e.g. broadband internet, social networks). It has become a common sight at social occasions like parties, concerts, weddings, vacations that many people are shooting videos at approximately the same time. Such concurrent recordings provide multiple views of the same event. In professional video production, the use of multiple cameras is very common. In order to compose an interesting video to watch, audio and video segments from different recordings are mixed into a single video stream. However, in case of non-professional recordings, mixing different camera recordings is not common as the process is considered very time consuming and requires expertise to do. In this thesis, we research on how to automatically combine multiple-camera recordings in a single video stream, called as a mashup. Since non-professional recordings, in general, are characterized by low signal quality and lack of artistic appeal, our objective is to use mashups to enrich the viewing experience of such recordings. In order to define a target application and collect requirements for a mashup, we conducted a study by involving experts on video editing and general camera users by means of interviews and focus groups. Based on the study results, we decided to work on the domain of concert video. We listed the requirements for concert video mashups such as image quality, diversity, and synchronization. According to the requirements, we proposed a solution approach for mashup generation and introduced a formal model consisting of pre-processing, mashupcomposition and post-processing steps. This thesis describes the pre-processing and mashup-composition steps, which result in the automatic generation of a mashup satisfying a set of the elicited requirements. At the pre-processing step, we synchronized multiple-camera recordings to be represented in a common time-line. We proposed and developed synchronization methods based on detecting and matching audio and video features extracted from the recorded content. We developed three realizations of the approach using different features: still-camera flashes in video, audio-fingerprints and audio-onsets. The realizations are independent of the frame rate of the recordings, the number of cameras and provide the synchronization offset accuracy at frame level. Based on their performance in a common data-set, audio-fingerprint and audio-onset were found as the most suitable to apply in generating mashups of concert videos. In the mashup-composition step, we proposed an optimization based solution to compose a mashup from the synchronized recordings. The solution is based on maximizing an objective function containing a number of parameters, which represent the requirements that influence the mashup quality. The function is subjected to a number of constraints, which represent the requirements that must be fulfilled in a mashup. Different audio-visual feature extraction and analysis techniques were employed to measure the degree of fulfillment of the requirements represented in the objective function. We developed an algorithm, first-fit, to compose a mashup satisfying the constraints and maximizing the objective function. Finally, to validate our solution approach, we evaluated the mashups generated by the first-fit algorithm with the ones generated by two other methods. In the first method, naive, a mashup was generated by satisfying only the requirements given as constraints and in the second method, manual, a mashup was created by a professional. In the objective evaluation, first-fit mashups scored higher than both the manual and naive mashups. To assess the end-user satisfaction, we also conducted a user study where we measured user preferences on the mashups generated by the three methods on different aspects of mashup quality. In all the aspects, the naive mashup scored significantly low, while the manual and first-fit mashups scored similarly. We can conclude that the perceived quality of a mashup generated by the naive method is lower than first-fit and manual while the perceived quality of the mashups generated by first-fit and manual methods are similar

    Characterizing Popularity Dynamics of User-generated Videos: A Category-based Study of YouTube

    Get PDF
    Understanding the growth pattern of content popularity has become a subject of immense interest to Internet service providers, content makers and on-line advertisers. This understanding is also important for the sustainable development of content distribution systems. As an approach to comprehend the characteristics of this growth pattern, a significant amount of research has been done in analyzing the popularity growth patterns of YouTube videos. Unfortunately, no work has been done that intensively investigates the popularity patterns of YouTube videos based on video object category. In this thesis, an in-depth analysis of the popularity pattern of YouTube videos is performed, considering the categories of videos. Metadata and request patterns were collected by employing category-specific YouTube crawlers. The request patterns were observed for a period of five months. Results confirm that the time varying popularity of di fferent YouTube categories are conspicuously diff erent, in spite of having sets of categories with very similar viewing patterns. In particular, News and Sports exhibit similar growth curves, as do Music and Film. While for some categories views at early ages can be used to predict future popularity, for some others predicting future popularity is a challenging task and require more sophisticated techniques, e.g., time-series clustering. The outcomes of these analyses are instrumental towards designing a reliable workload generator, which can be further used to evaluate diff erent caching policies for YouTube and similar sites. In this thesis, workload generators for four of the YouTube categories are developed. Performance of these workload generators suggest that a complete category-specific workload generator can be developed using time-series clustering. Patterns of users' interaction with YouTube videos are also analyzed from a dataset collected in a local network. This shows the possible ways of improving the performance of Peer-to-Peer video distribution technique along with a new video recommendation method
    corecore