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1
Introduction

The popularity of non-professional videos has grown along with the technical de-
velopments in video recording and sharing. Until 1980s, video recording was a
complex technique used by television studios and advanced amateurs. Then a
portable consumer device, the camcorder, was introduced into the mass market,
with an embedded audio and video storing facility on a tape. Starting from the
early 2000, the tapes in the camcorders are being replaced by devices like optical
disks, hard disks and flash memories. Similarly, the embedded video processing
techniques such as automatic color adjustment, shakiness correction have made it
possible to improve the signal quality of a video recording. Camcorders have be-
come cheaper in price, smaller in size, richer in functionality and more accessible
to wider population. In addition to camcorders, video cameras are now widely
available in compact digital still cameras and mobile phones.

Along with the development in recording technologies, video sharing has be-
come fast and easy. The most common medium for sharing a video used to be
via a physical storage device because of the large size of the video data and the
limited bandwidth provided by the Internet and mobile networks. Presently, with
the development of video compression technologies, increase in broadband inter-
net connections and popularity of video sharing websites such as YouTube, started
in 2005, it is possible not only to share but also to publish the videos.

At present, video recording and sharing has become more accessible and pop-
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ular among general users than ever before. It has become a common sight at social
occasions like parties, concerts, weddings, vacations that many people are shooting
videos around the same time. Furthermore, many places like lecture halls, meet-
ing rooms, playgrounds, theaters, amusement parks are equipped with cameras. If
we search in YouTube for a musical performance by a popular artist, multiple hits
are returned containing different non-professional videos captured at the same per-
formance. For example, the search phrase “nothing else matters london metallica
2009” submitted to YouTube on date 08-08-2009 returned 18 user-captured clips
from the same performance ranging from 35 sec to 8 min.

The availability of multiple-camera recordings captured simultaneously pro-
vide coverage of the same time and event from different viewing angles, however,
it does not provide in itself a richer user experience. Watching all these recordings
individually takes a long time and likely to become boring due to the limited view-
ing angle of a camera and similarity in the content. Furthermore, non-professional
recordings are likely to contain ill-lit, unstable and ill-framed images as the record-
ings are captured spontaneously, generally by hand-held cameras, with insufficient
light and unpredictable subjects. Such recordings with poor signal quality becomes
unappealing to a general audience [Lienhart, 1999].

In professional video productions, recordings are made using multiple cameras
and the most appropriate segments from the different recordings are selected and
combined during editing to enhance the visual experience. A well established set
of rules for video aesthetics, also called film grammar, is widely used to create
the desired effect in the final video. However, in the case of non-professional
recordings, the multiple-camera recordings are rarely edited. The popular software
tools for editing multiple camera videos are Adobe Premiere, Ulead, iMovie, etc.
These editing tools are considered too time-consuming and too complex and are
thus rarely used by an average user. Figure 1.1 shows a screen shot of an interface
of Adobe Premier with five audio and video streams during editing. A complex
time-line representation of the recordings, too many buttons and very technical
terminologies used in the interface limit these tools only to experts and advanced
amateurs.

This thesis presents an approach to automatically select and combine segments
from concurrent multiple-camera recordings resulting in a single video stream,
called mashup. Unlike a summary, which represents a temporally condensed form
of a recordings, a mashup represents different camera views interleaved in a single
stream. The presence of multiple views adds visual dynamics in a mashup, which
reduces monotony of viewing angle. Similarly, the signal quality of a mashup can
be raised by selecting higher quality segments from the available recordings.
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Figure 1.1. Screen shot of an interface of Adobe Premiere Pro, an editing tool for
multiple-camera recordings, while editing audio-visual streams from five cameras.
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Figure 1.2. Illustration of a mashup generation system using concurrent record-
ings from different capturing devices.

1.1 Objectives
The objective of this thesis is to design an automatic system that creates a mashup
video from concurrent multiple-camera recordings captured by non-professional
users for enriching the video experience. Figure 1.2 illustrates the composition
of a mashup video from three recordings from different cameras having differ-
ent durations. The resulting mashup generated by our system contains interleaved
segments from the given recordings. The system can be used by amateur videogra-
phers to enhance their personal recording or general video audience to experience
multiple-camera recordings. In this thesis, user is meant for non-professionals who
have access to multiple-camera recordings and like to combine the contents from
the different recordings.

1.2 Research questions
The thesis focuses on designing a system that generates mashups from multiple-
camera recordings captured by non-professionals. The research questions involved
in designing such a system are:

1. What are the requirements for generating a mashup?
Multiple cameras are used at different occasions like wedding, parties and
sports. A mashup is applicable in the recordings from such occasions, how-
ever, the requirements may be different for different applications. There-
fore, the first research question is what are the requirements for generating a
mashup.

2. How can the requirements be addressed by a mashup generating system?
Given a list of requirements, a system for generating mashup should address
the requirements. So the question is how to formalize each of the require-
ments and model a mashup generation system.
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3. How can a mashup that satisfies the requirements be generated?
A mashup generation system should be able to generate mashups while sat-
isfying the requirements as defined by the formal model. The appropriate
video segments from the multiple-camera recordings should be selected that
best fulfills the requirements. The research question is how to utilize the
quantitative measure of the degree of fulfillment of a requirement.

4. How can the generated mashups be evaluated?
The automatically generated mashup should be evaluated to measure if the
original requirements are fulfilled both subjectively and objectively. An ob-
jective evaluation shows the mashup quality according to the formal model
and the subjective evaluation shows the perceived quality of the mashups.
The research question is how to evaluate the mashup quality both subjec-
tively and objectively.

1.3 Related work
In this section, we describe work on mixing videos from multiple-camera record-
ings based on our literature research. Since the use of multiple-cameras is grow-
ing for different applications, the recordings are used for different purposes. We
broadly classified the works into four categories based on their purpose: video sum-
marization, object reconstruction, event recording, and collaborative production.

1.3.1 Video summarization
A video summary is a temporally condensed video, which presents the most im-
portant information from concurrent multiple-camera recordings. The applications
include surveillance, monitoring, broadcasting and home videos.

A summarization method for multiple-camera videos is presented in [Hata,
Hirose & Tanaka, 2000] for surveillance system covering a wide area, such as a
university building, containing a number of cameras. The different cameras capture
sparse recordings, which is difficult to understand. In order to summarize the entire
state of an event, the video scenes are first evaluated and assigned an importance
score according to the presence of the objects of importance, such as humans,
buildings and cars in space, time and the relationships among the objects. Then the
high scoring scenes from the recordings are displayed with a map and objects by
three dimensional graphics.

[Hirano, Shintani, Nakao, Ohta, Kaneda & Haga, 2007] describe a multiple-
camera recording and editing system, called COSS-MC, designed for nursery
schools and kindergarten. The system controls simultaneous capturing from fixed
cameras, provides an interface for manually editing and mixing videos for each
child and distributes the edited video by a streaming server. While editing, the
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school teachers can choose video fragments (up to 5 min long), which are dis-
played as thumbnails in multiple columns, representing multiple cameras. The
teachers select the fragments from different cameras along the time and the sys-
tem generates a single video by interleaving the selected fragments. A distribution
server streams the video to authorized people, typically to the parents, and accepts
comments.

1.3.2 Object reconstruction
Multiple perspectives available from different concurrent recordings provide infor-
mation to re-create a scene with more details than a single camera recording. The
applications include panorama creation, wide screen movies and 3D reconstruc-
tion.

[Sawhney, Hsu & Kumar, 1998] present a method to create seamless mosaics,
planar and spherical, using inexpensive cameras and relatively free hand motions.
The frames from different cameras are aligned using consistent estimation of align-
ment parameters that map each frame to a consistent mosaic coordinate system.
As a similar application, [Greene, 2009] reports a near-real time technology, de-
veloped at Microsoft, which seamlessly stitches together videos taken at a certain
location, from different mobile phone cameras. The technology uses location infor-
mation from mobile phones and image recognition algorithms resulting in a higher
resolution video stream.

An approach for 3D reconstruction of a dynamic event using multiple-camera
recordings is presented in [Sinha & Pollefeys, 2004]. The motion of the silhouettes
of an object is used for extracting the geometrical properties of the object and the
cameras. This results in the calibration and synchronization of the cameras and 3D
reconstruction of the moving object.

1.3.3 Event recording
It is now getting common that lecture halls, meeting rooms and theaters are
equipped with video cameras. The recordings are used for archiving, analysis
and publication. The multiple camera recordings are also being used for differ-
ent research purposes, for example, to study human interactions during meetings
[Carletta, 2007] and to introduce computers into the human interaction loop in a
non-obtrusive way [Waibel & Et. al., 2004]. While the individual cameras provide
a monotonous view, mixing recordings from different cameras provide a wider
coverage and a more informative record of the event.

[Lampi, Kopf, Benz & Effelsberg, 2008] describe a Virtual camera system,
which uses multiple-cameras for recording and broadcasting classroom lectures.
The classroom is equipped with cameras and Wi-Fi access points, and both the
lecturer and students communicate to the system using PDAs and PCs. During a
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lecture, an active camera is pointed at the lecturer’s face. A student wishing to
ask a question informs the system via PDA or notebook PC. The system identifies
the location of the student using Wi-Fi information and forwards the request to
the lecturer via a pop-up window. When the lecturer accepts the request, another
camera at the student’s side also becomes active. Only one camera is chosen for
recording at a time, based on the audio-level and motion detection. The recording
cameras also follow some cinematic rules such as appropriate shot duration and
overview shot after two or three close up shots.

[Stanislav, 2004] proposes an algorithm for automatic video editing of meet-
ings recorded by multiple-cameras. An importance score is calculated for all the
recordings based on participant’s activity (speaking, motion of head and hands),
participant’s visibility (position of head, image brightness). To avoid quick camera
changes, a minimum duration for a camera is imposed once it is selected.

1.3.4 Collaborative production
The concurrent multiple-camera recordings captured by individual users can be
viewed as a collaborative effort. The following works facilitate the use of such
recordings to produce a video.

Collaborative video capturing by mobile phones for live video jockeying
(VJing) is presented in [Engström, Esbjörnsson & Juhlin, 2008]. The authors pro-
posed the SwarmCam system which allows club visitors to transmit videos to a
central database simultaneously during capture by mobile phones. A VJ can pre-
view all the incoming videos in the SwarmCam mixer display. As long as the
user keeps capturing, the VJ can apply effects on the videos using real time im-
age processing tools. The processed videos are then combined with each other or
with other materials, the same way a DJ mixes between two discs, using a hard-
ware mixer. The research is aimed at mobile users to become content creators and
isolated VJs to communicate with the audience for an appealing club atmosphere.

[Cremer & Cook, 2009] present an interface for mixing multiple recordings
captured by different users in a musical performance. The work is intended to
provide an alternative source of income for artists by providing a channel to lever-
age user generated content. First, an audio-fingerprinting technology, proposed in
[Haitsma & Kalker, 2002], is applied to align different recordings. Then the aligned
recordings are presented in a user interface, where the users can select video seg-
ments from different recordings. A separate audio stream, an official recording or
a high quality user recording, is added to the final video.

1.3.5 Discussion
The research on mixing audio-visual content from concurrent multiple-camera
recordings is growing with the increase in the use of multiple cameras. In the
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application area of meeting rooms, a corpus of annotated audio-visual data has
been created for research purposes as described in [Carletta, 2007] and [Stanford,
Garofolo, Galibert, Michel & Laprun, 2003]. Similarly, the MPEG-4 community
on multi-view coding for 3D displays and free-view TV is standardizing the use of
multiple-camera recordings [MPEG, 2008]. The different systems and applications
described in this section utilize the availability of content to re-create an event or
enrich an experience. However, a common theme missing from all these works is
the evaluation of their approach. The authors claim that their system, prototype or
method is working, however, its performance in a real world setting or from the
point of view of the user is missing.

In the described related work, the multiple-camera recordings are analyzed and
applied differently for different applications. No prior work is found on automatic
mashup generation from multiple cameras captured by non-professional users,
where the environment is uncontrolled and there are no constraints on the number
and movement of cameras. Therefore, the related works provide an overview of the
possible applications involving multiple-cameras and solution approaches, how-
ever, they cannot be used for a comparative evaluation of our research on mashup
generation.

1.4 Research approach
Since our research is aimed at enriching the video experience of the users, we fol-
lowed a user centric approach to design the automatic mashup generation system.
First, we conducted a study to find the target application and to elicit the require-
ments involving general camera users, video-editing experts, design students and
multimedia researchers. We selected musical concerts as the application for our
automatic mashup generation system. An additional advantage of using concert
recordings is that they are available in huge numbers in online web archives like
YouTube and Google Video. Then based on the elicited requirements , we designed
a formal model to generate a mashup by maximizing the degree of fulfillment of
some requirements. The degree of fulfillment of a requirement is derived from the
analysis of different audio-video features. Next an algorithm was designed to effi-
ciently compose the mashup by selecting the clips which best satisfy the require-
ments. Finally, the resulting mashup was evaluated in terms of mashup quality,
objectively and subjectively, with respect to the mashups generated by naive and
manual approaches.

1.5 Thesis organization
The remainder of the thesis is structured as follows. In Chapter 2, we describe the
methodologies followed to define the target application and to elicit requirements
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for a mashup generation system. In Chapter 3, we present a formal model to gener-
ate a mashup based on the requirements. We define the concepts and requirements
and present our solution for generating automatic mashups based on an optimiza-
tion approach. In Chapter 4, we propose an automated approach to synchronize
multiple-camera recordings based on detecting and matching audio and video fea-
tures extracted from the recorded content. We describe three realizations of the
approach and assess them experimentally on a common data set. In Chapter 5, we
present the audio-visual feature analysis techniques used to measure the degree of
fulfillment of the requirements. In Chapter 6, we propose an algorithm to compose
a mashup from a given synchronized multiple-camera recording by selecting clips
that best satisfy the requirements. We measure the performance of the proposed
algorithm in terms of mashup quality and compare it with the mashups generated
by two other methods. In Chapter 7, we describe the subjective evaluation of the
mashup quality by means of a user study. Finally, in Chapter 8, we present our
conclusions and suggestions for future work.

1.6 Thesis contributions
The thesis addresses the research questions described in Section 1.2. The main
contributions of the research described in this thesis are:

• Techniques for automatic synchronization of multiple-camera recordings us-
ing audio-visual features.

• A formal model for mashup generation and an algorithm to automatically
create mashups of multiple-camera recordings.

• A methodology to validate mashup generating algorithms by means of a user
study.





2
Mashup target application and

requirements

Capturing videos with multiple cameras is popular in different social occasions like
wedding, parties and travels. The content and the purpose of recordings from such
occasions are different. Consequently, the requirements for generating mashups
are also different. Therefore, we conducted a study to understand the usage of
multiple-camera recordings, to find the target application for further research and
to elicit requirements. The study involved professional video-editors, amateur cam-
era users, and researchers at Philips Research working in the area of multimedia
applications. In this chapter, we describe the method followed to select the target
application and present the requirements for mashup generation.

This chapter is organized as follows. Section 2.1 describes the interviews con-
ducted with the professional video-editors with the tips and techniques followed
in capturing and editing multiple-camera recordings. Section 2.2 describes the fo-
cus group study using three different application scenarios and the selection of the
target application. Finally, in Section 2.3, we present a list of requirements to be
addressed while generating mashup for the selected application.

11
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2.1 Interviews with experts
As a first step in our explorative study, we interviewed three professional video-
editors on the usage of multiple-camera recordings. The goal of the interviews was
to learn the practical aspects of multiple-camera recording and editing, which can
be useful for eliciting the requirements for generating the mashup.

All three of the interviewed experts were associated with Philips Research,
Eindhoven, The Netherlands. They had been working since more than 10 years
on video shooting and editing, especially documentaries, home or personal videos,
and wedding videos. They generally worked with single camera recordings but and
they were experienced also with the multiple-camera recordings.

The interviews were conducted individually in a semi-structured way to explore
the topic. We prepared a set of points such as shooting techniques with multiple
cameras, editing process, the most time consuming and the most difficult task in
editing, which we would like to know about. Then during the interview, the experts
explained the process of editing and the rules they apply for video editing in general
and in the case of multiple-cameras in particular. Meanwhile the questions were
asked to cover the prepared set of points.

The interview gave us insights in the available commercial tools and shoot-
ing and editing tips regarding multiple-camera videos. The three experts agreed
that shooting and editing multiple-camera recordings is very time consuming and
costly compared to single-camera recordings. Shooting with more than one cam-
era requires planning and communication among cameramen. Before editing, the
recordings should be synchronized very precisely. Then segments from the dif-
ferent recordings are chosen according to the personal or artistic preference of the
editor.

The editors were positive about the availability of different functionalities in
the software tools, such as color filters and special effects, however, they were not
in favor of automatic video editing systems. They considered video editing as a
medium of expression of their creativity and they would prefer to have tools to
accomplish it. In present home video editing tools, they find that the most time-
consuming and uncreative task is the synchronization of multiple-recordings in a
common time-line before editing. A remark representative to all the participants
was ‘I want to have a tool for automatic synchronization of the multiple-camera
recordings and the rest I will do the rest of the editing by myself.’

The experts were aware of the film grammar, a set of aesthetic rules such as ap-
propriate length of a shot and smooth transition between scenes, generally followed
while making videos. However, all of them said that they do not follow the rules
consciously while editing. They were in favor of spontaneity and following their
‘mood’ and ‘gut feeling’. Our impression was that there is a general consensus on
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some basic editing rules, which may not require conscious decisions. The knowl-
edge on shooting and editing videos acquired during the interview corresponds to
the established film grammar rules, which are available in the literature. However,
the interviews with the experts helped us to identify the rules used most widely in
practice and how the rules are supported by the existing editing tools. Below are the
tips from the experts on multiple camera recordings organized in four categories
based on their usage.

2.1.1 Synchronization
• During shooting, once the multiple-cameras are turned on, they are kept on

as long as the shooting continues or as allowed by the camera battery or
memory. A recording needs to be synchronized with other recordings from
multiple-cameras every time it is turned on and off.

• The recordings are synchronized in a common time-line before editing.

2.1.2 Content uniformity
• The cameras involved in the shooting are calibrated to set a uniform white-

balance. The different color settings in the cameras may produce visibly
different colors so that seamless mixing of recordings becomes difficult.

• Audio is recorded from a fixed location near the source, and not by the mov-
ing cameras. Otherwise, the audio around the different cameras may be dif-
ferent and a uniform audio quality throughout the edited video cannot be
maintained.

2.1.3 Editing
• The recordings are watched repeatedly to prepare a mental map of the final

edited video.

• During editing, segments are selected from the recordings based on their
signal quality (stability, sharpness, brightness, motion) and their artistic or
emotional value.

• The selected segments are trimmed and combined. The position of the seg-
ments are set after testing their suitability in different locations.

• The videos from different cameras are sometimes displayed as picture-in-
picture or in split screens to provide more information in limited time and
space.

• While segmenting the videos, frames are carefully chosen as cut points to
avoid abrupt cuts. Generally, the cut points are selected when an action
seems to be complete.
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• The duration of the segments are chosen based on the content, for example
if the audio to be associated with the video is fast, the segments durations
are kept short to match with the audio. If a segment is too short, it is dif-
ficult to understand and it becomes visually annoying to watch a sequence
of such short segments. On the other hand, if a segment is too long it be-
comes monotonous and boring. In the case of non-professional recordings,
the minimum and maximum length of the clips are generally set in between
3 sec and 12 sec respectively, depending on the content.

• If the edited video is going to contain music, a music track is generally cho-
sen that matches the video content, for example romantic songs in wedding
videos. Then the video cuts are aligned with changes in audio character-
istics like tempo. If the segments retain their original audio, the audio is
normalized to have the same volume throughout the video.

2.1.4 Post-processing
• Segments are glued together usually with a hard-cut and sometimes with

special effects like dissolve and fade.

• Semantically meaningful or matching music, or voice-over is added to the
video.

2.2 Focus group study
Since there are several possible applications involving non-professional multiple-
camera recordings, we wanted to determine a target application, which addresses
an existing user need. The application should also be scientifically challenging
and should be feasible to build within the available time and resources. To interact
with users we followed a group interview approach, called focus group, used in
qualitative research to test new ideas, acquire information about user needs and
opinions. The focus groups allows interaction among different users and builds
opinions on one another’s responses, which is considered more productive method
for idea generation than a one-on-one interview. The discussions were guided by a
moderator to maintain focus on the topic and involve all the participants.

To initiate discussions in the focus group, we used scenarios, short stories writ-
ten on envisioned real life situations concerning people and their activities. The
participants expressed their personal opinions on the scenarios, discussed its rel-
evance in their lives, suggested modifications and proposed alternative scenarios.
The study was conducted in three groups involving 18 subjects in total. The first
group consisted of seven researchers on video processing systems from Philips Re-
search, the second group consisted of seven industrial-design students from Eind-
hoven Technical University, and the third group consisted of four amateur video-
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editors. All the participants had captured video at least once but none had formal
education on video capturing or editing. Only one participant in the third group
had experience with multiple-camera recordings. The three groups were selected
to receive ideas and views from potential users on the usage of multiple-camera
recordings captured by non-professionals.

The focus group meetings were held at the High Tech Campus in January,
2007. In the focus group meeting, the participants were introduced with the con-
cept of the mashup generation using multiple-camera recordings. Next, a scenario,
printed on paper, was given to the participants to read and write their first thoughts
about it. Then the participants discussed their opinions on the scenario and sug-
gested improvements or alternative scenarios. The discussions were guided by a
facilitator.

There were three scenarios presented in the meeting, that were used to discuss
about the applications of non-professional video mashups. In the presented scenar-
ios, the term ‘summary’ is used instead of ‘mashup’ because mashup is sometimes
used to refer to mixing different media items such as overlaying images on a online
map, or in a photo pasting a face of a person to somebody else’s body.

Figures 2.1, 2.2 and 2.3 present the Wedding editor, Recollection and Fam-
ily album scenarios, respectively, used in the focus group. The Wedding editor
scenario was received well by the participants as they had experienced problems
similar to the one described in the scenario. They see a big market for such an
application, and suggested additional features such as segmenting the videos ac-
cording to events such as dance, church and dinner and according to faces for
people to choose what they would like to have in a video. However, some ama-
teurs video-editors were against the idea of using an automatic system on personal
content. A typical remark was ‘I can not trust a program to create my video’. The
Recollection scenario was considered as an interesting application but the partici-
pants had doubts about maintaining the privacy of the people who would not like
to be recorded. In all the groups the participants said they would like to keep their
videos irrespective of low image quality, as long as the persons are recognizable.
The Family album scenario was found to be useful by the group of researchers and
video-editors who considered themselves as potential users of such a system. They
suggested to include functions like easy browsing of the videos and modifying the
automatic mashup. However, the group of students were against the idea of sharing
their content with parents. They prefer to have their own videos and mashups in-
dependent of the parent’s content. They suggested alternative scenarios on mixing
and sharing mashups of concerts and party videos with friends. The different appli-
cation scenarios and analysis of the focus group results are published in [Shrestha,
Weda & Barbieri, 2007a].

During the focus group discussions, the ‘concert music videos’ was suggested
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Wedding editor

Frank got married in a church. It was a standard one-hour long ceremony consisting of
speeches, songs, and wedding vows. After the church they went for a reception followed
by a party in a community hall. Three of his friends are recording videos of the daylong
event independently from different angles and locations. Many other friends and relatives
were taking photos and recording short videos on mobile phones.

Representative image for the Wedding editor scenario.

Most of the attendees would like to have a combined and summarized video of the
events of the day. So at the end of the party, the three cameramen friends and attendees
who shot videos during the day leave a copy of their content to the Wedding Editor
system, available as a service from the party hall. The system synchronizes the available
recordings and the time overlapping content is identified. The order of the events is
preserved and still pictures or other relevant pictures from public domain like maps, and
pictures of party hall are added to the summary.

Most of the attendees accept the standard half hour summary, containing high signal
quality segments covering most of the event. However, some have different requirements.
For example, Frank would like to have the video with wide coverage without any time
restriction. His friends would like to have even shorter version containing only the best
quality pictures. The Wedding editor generates different versions of summaries based on
the given criteria. The summaries can be copied to physical memory devices like DVD,
CD, USB drive or accessed via internet.

Figure 2.1. The Wedding editor scenario presented to the focus group.
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Recollection

The family of Sally went to Disneyland with two other friends and their children. Each
family had a video camera and they captured a couple of hours of video during the day.
Additionally, there were some video and still picture cameras from the park like on the
roller coaster, and tour to Neverland.

Representative image for the Recollection scenario.

At the end of the day each of the families would like to have combined summary
videos from all the available recordings. They prefer to keep all the material captured by
their individual camera plus the interesting ones from their friends and from the park.

The Recollection service at the park accepts the recordings made by Sally and her
friends. It also obtains videos and pictures from the park camera recordings that contains
them and their children. The quality of the personal videos is enhanced and the interesting
parts of the friends’ videos and park videos are included in the summary. Sally copies the
summary video on her cameras memory, while her friends decide to download it online.

Figure 2.2. The Recollection scenario presented to the focus group.
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Family album

John goes on a holiday in Turkey with his wife. Their children went to a summer camp
in Spain. Together the family has about 8 hours of video recording after summer. John
would like to show their summer trips to his parents, but the recording is just too long to
view.

Representative image for the Family album scenario.

John has a subscription for a Family album web service. It provides storage and
sharing of videos for authorized people like a common family space. The service also
provides a facility to generate summaries from the videos. John logs into the service and
creates a 15 minute video summary containing his trip and that of his children. Then he
saves the summary video to his family web space, which can be accessed by his parents.

Figure 2.3. The Family album scenario presented to the focus group.
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by the three groups as an interesting scenario. All the participants were aware of
the availability of a large number of multiple-camera concert videos by amateurs
in YouTube. They could identify themselves as a user of such a system, which
generates a mashup from concurrent concert recordings. The group of researchers
considered the concert videos as a relatively novel application domain. The group
of students were enthusiastic about using concert video mashups to publish in their
blogs and enhancing their personal concert video collections. The group of video
amateurs considered it as a useful application considering a very large number of
recordings involved where manual editing is extremely time consuming. There-
fore, as a promising application area, we selected the application domain of per-
sonal/home videos captured during concerts.

2.3 Requirements for concert video mashups
After the interviews with experts and focus group meetings, we decided to focus
our research on recordings from musical concerts. The recordings are captured
concurrently by multiple cameras typically in the audience, generally using hand-
held cameras. The length of the recordings varies from a couple of seconds to a
couple of minutes, usually containing a song or a segment of it. In a typical concert
recording, the main audio content is music and the video content are views of the
audience and the stage.

A concert video mashup is aimed to enrich the video experience. The require-
ments for a concert videos mashup were compiled based on the user opinions that
came up during the focus group meetings and interviews with the professional
video-editors reported in Section 2.1. Furthermore, we also consulted literatures
like [Zettl, 2004] on film grammar rules and [Reeves & Nass, 1996] on user per-
ception of media. The literatures helped on understanding the techniques used in
videos and their effect on audience. The following paragraphs present a list of
requirements for a concert video mashup.

Requirement 2.1 (Synchronization). The audio and visual streams used in a
mashup should be time continuous. The time delay between audio and video causes
lip sync problems and a delay between two consecutive videos causes either rep-
etition or gaps. Therefore, for a complete and smooth coverage of the concert, it
is required to align the multiple-camera recordings in a common time-line. The
requirement corresponds to the experts’ opinion in Section 2.1.1.

Requirement 2.2 (Image quality). A good signal quality video is desirable for
clarity and pleasure of watching. Since the non-professional concert videos are
generally shot by hand-held cameras, under insufficient lighting, it is difficult to
continuously capture a high quality recording. A desired a high quality mashup can
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be achieved by selecting good quality segments from the multiple-camera record-
ings. The requirement corresponds to the experts’ opinion in Section 2.1.3.

Requirement 2.3 (Diversity). A mashup should offer variety in terms of its vi-
sual content for providing a wide coverage of the concert and a dynamic video
experience. If the visual content in two consecutive mashup segments is similar, a
mashup can not produce the diversity effect. For example, where two cameras are
close to each other and have the same field of view. Therefore, consecutive video
segments in a mashup should come from different cameras containing different
content. The requirement originates from the focus group meeting with the design
students.

Requirement 2.4 (User preference). A user may have different personal prefer-
ences over different recordings. For example, when a user wants to enhance his
own recording by using segments from other recordings, he may prefer to have
more of his own recording in the mashup. Therefore, a mashup should contain
more segments from the preferred recordings. This requirement stems from the
participants’ wish expressed during focus group meetings to have more control on
the mashup generation.

Requirement 2.5 (Suitable cut point). In video editing, cuts are made at some
particular instants so that the video is perceived as seamless and aesthetically pleas-
ing. Similarly, in mashups, camera switches should be made at appropriate points
to avoid disturbing changes. The requirement corresponds to the experts’ opinion
in Section 2.1.3.

Requirement 2.6 (Suitable clip duration). If a video segment is very short it is
difficult to understand and it becomes visually annoying to watch a sequence of
such short segments. On the other hand, if it is too long it passes over the attention
span of the viewer. Therefore the video segments in a mashup video should be lim-
ited within a minimum and maximum time duration. This requirement originates
from the experts’ opinion in Section 2.1.3.

Requirement 2.7 (Completeness). In general, a concert can be better covered by
a larger number of cameras because they provide multiple perspectives and capture
more information. Since a user chooses the recordings to generate a mashup, it is
natural to expect them to appear in the mashup. Therefore, it is required that all
recordings should be represented in a mashup. The requirement originates from
the focus group meeting with the design students and video amateurs.

Requirement 2.8 (Special Effects). Different effects such as transitions and
picture-in-picture display are used to enhance the aesthetics and to make optimal
use of the available time and space. For example, fade in/out to represent the
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long time difference between two segments to be combined, close up of a face as
picture-in-picture if the background video is not crowded. Therefore, a mashup
should be composed with matching special effects. The requirement corresponds
to the experts’ opinion in Section 2.1.3.

Requirement 2.9 (Audio). Audio is an essential part of a video, especially in mu-
sical concerts. The video and audio in a mashup should always be synchronized
to maintain lip sync. To achieve a good and consistent quality, audio from a single
source with high quality should be used as the main audio source. The audio as-
sociated with the selected video can be added to give a background or ambiance,
like cheering of a crowd. The requirement corresponds to the experts’ opinion in
Section 2.1.2.

Requirement 2.10 (Semantics). A concert video is considered more desirable if
the audio and the video content matches the context, such as close-up view of an
artist while singing, faces of audience while cheering. These features add infor-
mation and meaning to the content. Therefore a mashup video should contain seg-
ments based on semantic information. The requirement corresponds to the experts’
opinion of Section 2.1.3.

Requirement 2.11 (Color balance). The recordings from different cameras may
look different in color, even if they contain the same object at the same time, due
to camera quality and settings. A mashup from such recordings may look patchy
and distracting. Therefore, color synchronization is required to normalize the color
appearance of the mashup. The requirement corresponds to the experts’ opinion in
Section 2.1.2.

Requirement 2.12 (Editing interface). Since perception of a video is subjective,
is it very unlikely that a mashup can meet all the needs of a user. Therefore an intu-
itive user interface is required for simple modifications and application of personal
touches to an automatically generated mashup. The interface should allow users
to perform simple editing tasks such as visualizing the recordings, changing the
segments selected in the automatic mashup with segments from other recordings,
adding and deleting segments and adding text or other effects. The requirement was
elicited during the focus group meeting with the design students and researchers.

2.4 Conclusions
This chapter describes our explorative study to gain insights into the expert’s view
on multiple-camera recordings, to select the target application and to elicit re-
quirements. The study included interviews with the experts, focus group meetings
with potential mashup users such as students, video amateurs and multimedia re-
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searchers. Based on the studies we selected musical concert as a target application
and compiled 12 requirements for generating the mashup.

During focus group discussions, different requirements were suggested for
generating mashups for different scenarios. Here we present some examples where
the requirements were different from the musical concerts. In the case of home-
videos, involving friends and families, users were less concerned about the image
quality and their general opinion was that if a person’s face is recognizable the
video is acceptable. However, in the case of concert videos, which may come from
unknown sources, users demanded high quality of the recordings. In all the three
scenarios presented, two main user requirements were summarization and user con-
trol. Since the recordings may last for hours, users would like to have a summary
of the recordings and have more control over the process. The synchronization was
not recognized as a requirement in these scenarios. However, in concert recordings
users wanted to see the mashup as happened in the live event.

In the following chapters we will focus our work on generating mashups from
multiple camera concert recordings captured by non-professional users based on
the requirements compiled in this chapter. In the next chapter, a solution approach
will be proposed to satisfy the requirements. Based on the proposed approach the
requirements will be formally defined and applied on the algorithm for generating
mashups. Finally, the generated mashups will be evaluated by users to measure
how the requirements are satisfied.



3
Formal model

In the previous chapter we elicited requirements for generating mashups from con-
cert recordings captured by non-professional users. The requirements were com-
piled regardless of whether they can be incorporated in an automatic system. In
this chapter, we present a system that addresses all the requirements and we further
define our focus with respect of the automatic generation of mashups. We translate
the requirements into computable elements and present a formal model for mashup
generation.

The rest of the chapter is organized as follows. We introduce an overview
of the proposed approach for mashup generation in Section 3.1. We define the
concepts and elements to be used in the formal model in Section 3.2. Section 3.3
and 3.4 describe the components of the proposed system for generating automatic
mashups. We present a formal definition of the mashup generation problem in
Section 3.5 and finally present the solution approach of the problem in Section 3.6.

3.1 Overview
The requirements compiled in Section 2.3 provide insights for generating a
mashup, such that if a system can generate a mashup that addresses the require-
ments then the mashup will be perceived by the users as of high quality. We pro-
pose an approach for generating such a mashup from concert recordings, captured

23
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Figure 3.1. Overview of the proposed system for mashup generation and post-
processing.

by non-professional users, which aims to fulfill the compiled requirements. The
proposed approach consists of three processing steps, where each step addresses
certain requirements that help in addressing other requirements in successive steps.
The three steps are: pre-processing, mashup composition and post-processing. Fig-
ure 3.1 shows the schematic representation of the proposed approach.

At the first step, pre-processing, we compute the temporal relationship among
the given multiple-camera recordings. The step is aimed to satisfy Requirement 2.1
(synchronization).

In the next step, mashup composition, a mashup video is generated from the
synchronized recordings which addresses the Requirements 2.2 (image quality),
2.3 (diversity), 2.4 (user preferences), 2.5 (cut-point suitability), 2.6 (suitable clip
duration), 2.7 (completeness) and 2.10 (suitable semantics). The resulting mashup
video is a single video stream containing segments from the given recordings. The
pre-processing and mashup composition steps are referred together as mashup gen-
eration in the thesis.

At the third step, post-processing, the generated mashup is further processed
to address the Requirements 2.8 (special effect), 2.9 (audio), 2.11 (color balance)
and 2.12 (editing interface). At this stage, a mashup video is refined to give a
seamless effect such that the audio-visual discrepancies caused by the clips from
different recordings are removed. The mashup can also be customized according
to the personal taste of a user by allowing user interaction with the mashup. The
post-processing step is not covered in this thesis and some of its requirements will
be discussed as future work in Chapter 8.

In the following sections we provide formal definitions of the concepts used in
the thesis and model the proposed mashup generation approach.

3.2 Definitions
In this section we formally define the concepts, such as video stream, recording,
camera-take, which are used frequently in the thesis. Since these concepts are
used informally in different contexts, sometimes even interchangeably, the formal
definitions are given to avoid ambiguity in their use in the rest of the chapters. For
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ease of reference, Table 3.1 at page 38 provides a complete list of the symbols used
in the formal mashup generation approach.

Definition 3.1 (Video stream). A video stream is a sequence of video frames cap-
tured continuously by a capturing device from the moment the device starts captur-
ing to the moment it stops. A video stream v containing n number of video frames
f v is represented as:

v = ( f v
1 , . . . , f v

n ) . 2

Definition 3.2 (Audio stream). An audio stream is a sequence of audio frames
captured continuously by an audio capturing device from the moment the device
starts capturing to the moment it stops. An audio stream a containing n number of
audio frames f a is represented as:

a = ( f a
1 , . . . , f a

n ) . 2

Definition 3.3 (Camera-take). A camera-take τ is a couple (v,a), where v is a
video stream and a is an audio stream captured concurrently at the same occasion.

2

The audio and video streams may be captured by a single device like a camcorder
or any device with video and/or audio capture capabilities. If a device captures only
an audio stream or a video stream, then the missing element in the camera-take is
substituted by an empty stream.

Definition 3.4 (Recording). A recording R is a non-empty sequence of camera-
takes captured by a single device during an event.

R = (τ1, . . . ,τm), m≥ 1 . 2

The camera-takes in a recording are non-overlapping in time.

Definition 3.5 (Multiple-camera recording). A multiple-camera recording R is a
set of recordings made during an event using different capturing devices. Each ele-
ment of the set represents a recording. A multiple-camera recording is represented
as:

R =




R1
R2
.
.
.
RN




, N ≥ 2 . 2
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Definition 3.6 (Video segment). A video segment sv consists of a sequence of
frames from a video stream v. A video segment is defined as:

sv = ( f v
x , . . . , f v

y ), 1≤ x≤ y≤ |v| . 2

Definition 3.7 (Audio segment). An audio segment sa consists of a sequence of
frames from an audio stream a. An audio segment is defined as:

sa = ( f a
x , . . . , f a

y ), 1≤ x≤ y≤ |a| . 2

Since recordings in a multiple-camera recording are captured at the same oc-
casion, the video and audio segments from different recordings may have been
captured at the same time. These segments are called overlapping segments. The
overlapping audio and video segments may contain similar or sometimes the same
audio and video content, respectively.

Definition 3.8 (Video frame rate). The video frame rate rv of a video stream is
the number of frames captured per time unit. A typical frame rate for a standard
digital video camera in Europe is 25 frames per second. 2

Definition 3.9 (Duration). The duration of a video or an audio segment is ob-
tained by dividing the total number of video or audio frames by the video or audio
frame rate, respectively. For example, the duration d(sv) of a video segment sv

containing a first frame x and a last frame y is given by:

d(sv) =
y− x+1

rv . 2

Definition 3.10 (Clip). A clip S is a couple (sv,sa), where sv and sa are segments
from a video stream and an audio stream, respectively, captured concurrently at the
same occasion and with the same duration. 2

The audio and video segments of a clip may be captured by a single device like
a camcorder or by separate devices like audio with an external microphone and
video with a camera. If only a video or an audio segment is available, then the
missing segment in the clip is substituted by an empty stream. In a multiple-camera
recording, clips having overlapping video or audio segments are called overlapping
clips.

Since both audio and video segments in a clip have the same duration, the clip
duration is given by the duration of its audio or the video segment:

d(S) = d(sv) .

Definition 3.11 (Universal time). The universal time of a frame is an instant re-
ferring to the continuous physical time. Frames captured at the same instant by
multiple cameras should refer to the same universal time. The universal time of a
video or an audio frame is given by the functions tu( f v) and tu( f a), respectively. 2
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Definition 3.12 (Recording time). The recording time of a frame is a time instant
referring to the first frame in the recording. The recording time of a video or an
audio frame is given by the functions tr( f v) and tr( f a), respectively. For example,
assuming one camera-take in a recording the recording time of a video frame f x

v is
given by:

tr( f v
x ) =

x
rv . 2

The recording time starts when the first frame of a recording is captured. The
total duration of a recording is equal to the recording time of the last frame of the
recording. Figure 3.2 illustrates a recording according to its recording time.

Recording time (hour:min:sec:msec)

R

0:0:0:0 0:1:0:0 0:2:0:0 0:3:0:0

Figure 3.2. Recording time of a recording R containing two camera-takes.

Definition 3.13 (Camera time). The camera time of a frame is the capture time
of an audio or a video frame according to the internal clock of the capturing device.
The camera time of a video or an audio frame is given by the functions tc( f v) and
tc( f a), respectively. 2

The camera time may be embedded in the video frames. Generally, the internal
clock of a capturing device is set manually according to the universal time. In
highly professional settings ‘jam-sync’ devices are used for precise clock setting
of multiple capturing devices. The camera time provides information about the
duration of a camera-take and also the time-interval between two camera-takes.
Figure 3.3 illustrates an example recording according to its camera time.

R

Camera time (hour:min:sec)

0:13:31 0:14:31 0:15:31 0:16:31

Figure 3.3. Representation of the recording R of Figure 3.2 according to its cam-
era time.

Definition 3.14 (Common time). The common time of a frame is a time instant
referring to an audio or a video frame with respect to the first frame captured in
a multiple-camera recording. The common time of a video or an audio frame is
given by the functions ts( f v) and ts( f a), respectively. 2

The common time starts when a recording starts capturing the first frame of a
multiple-camera recording and continues until the last frame of the multiple camera
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R1

M

R2

S1 S2 S3 S4

Figure 3.4. Representation of a mashup M from two partially overlapping record-
ings R1 and R2. The mashup clips, S1−S4, selected from R1 and R2 are represented
by gray areas.

recording. Therefore, the reprentation of a multiple-camera recording according to
the common time allows the visualization of overlapping clips. Figure 3.5 shows
a multiple-camera recording containing two recordings according to the recording
time and Figure 3.6 shows the same multiple-camera recording according to the
common time. The corresponding frames of two overlapping clips have the same
common time.

Definition 3.15 (Mashup). A mashup M is a sequence of non-overlapping clips
from a multiple-camera recording.

M = (S1, . . . ,Sl) , (3.1)

where l is the total number of clips and

∃R j,R j+1,∀S ∈M : Si ∈ R j,Si+1 6∈ R j . 2

Two consecutive clips in a mashup are selected from different recordings in a
multiple-camera recording. An example mashup created by two recordings in a
common time-line is visualized in Figure 3.4.

The duration of a mashup is determined by the sum of the durations of the
individual clips:

d(M) =
l

∑
i=1

d(Si) .

3.3 Pre-processing (Synchronization)
In order to satisfy Requirement 2.1(synchronization), the recordings in a multiple-
camera recording should be represented in a common time-line. However, the
available time information in the recordings, camera time and recording time, are
based on the individual capturing devices and are most likely to be different for
every device. Therefore, synchronization involves finding the time displacement
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R2

R1

Figure 3.5. A multiple-camera recording, according to the recording time, before
synchronization. No time-gap between the camera takes τ1

1 and τ1
2 is considered.

The synchronization time-offset between the recordings R1 and R2 is unknown.

R1

R2 tSync

0:0:0:0
Common time (hour:min:sec:msec)

0:1:0:0 0:2:0:0 0:3:0:0
Figure 3.6. Multiple-camera recording of Figure 3.5 after synchronization. The
recordings including the time gap between the camera takes and the synchroniza-
tion time-offset ∆tsync are represented in a common time.

among the recordings. The time-offset between two recordings is given by the
synchronization offset-time ∆tSync. Figures 3.5 and 3.6 show a multiple-camera
recording containing two recordings before and after synchronization, respectively.

The following paragraphs present a formal description of the synchronization
problem. The descriptions are based on two video streams, however, they are ap-
plicable to more than two video or audio streams.

If we consider two recordings R1 and R2, the video streams are given by:

v = ( f v
1 , . . . , f v

n ),v ∈ R1 ,
v′ = ( f v′

1 , . . . , f v′
n′ ),v

′ ∈ R2 .

If the camera times of the frames, given by tc( f v
i ) and tc( f v′

j ), refer to the same
instance in the universal time, then the video streams v and v′ are called perfectly
synchronized. The synchronization time-offset ∆tSync between the video frames is
given by:

∆tsync = tc( f v
i )− tc( f v′

j ) : tu( f v
i ) = tu( f v′

j ) . (3.2)
The synchronization time-offset between the two recordings can also be calculated
using the recording times of the frames in Equation 3.2, instead of the camera
times, if each of the recordings contains only one camera-take. However, if there
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are multiple camera-takes the time interval between two camera-takes cannot be
determined from the recording time. Therefore, the ∆tSync calculated for a pair of
camera-takes is not directly applicable to other camera-takes in the recordings. In
this case, the synchronization offset time ∆tSync should be calculated separately for
each pair of camera-takes in the recordings.

The universal time is continuous and both the recording time and camera time
represent a sampled time referring to the instant when a frame is captured. There-
fore, it is highly unlikely that frames from two different recordings are perfectly
synchronized. In practice, we compute the synchronization time such that the dif-
ference in the universal times between two synchronized frames is minimized, i.e.
|tu( f v

i )− tu( f v′
j )| is minimal for the synchronized frames f v′

j and f v
i .

In this thesis we propose an approach to automatically synchronize the
multiple-camera recordings by detecting and matching audio and video features
extracted from the recorded content. The synchronization between two recordings
is verified by carefully listening and watching the synchronized recordings played
simultaneously. Even a slight inaccuracy in the synchronization offset, for example
by 4 video frames, causes echo in audio and motion delay in video. The synchro-
nization methods and their performance in a common data-set are presented in
Chapter 4.

3.4 Mashup composition
The mashup composition problem consists of selecting clips from a synchronized
multiple-camera recording, while satisfying the set of requirements as described
in the mashup generation approach in Section 3.1. Since the requirements repre-
sent user preferences, the perceived quality of a mashup depends on how well the
requirements are satisfied.

The mashup composition problem can be solved by using different approaches.
The main approaches are: rule-based and optimization. In the first approach, de-
scribed in [Russell & Norvig, 2002], rule bases are developed, which imitate the
mashup composition procedure followed by an expert. This approach is used in
artificial intelligence applications, for example, in an expert system to help doc-
tors choosing the correct diagnosis based on a number of symptoms. In the case of
mashup composition, this approach can be applied by writing rules for determining
if a requirement is satisfied or not and defining the order in which the requirements
should be satisfied. For example, if a candidate clip satisfies the requirement di-
versity, then check if the requirement image quality is satisfied else discard the
candidate clip.

In the optimization based approach, the degree of fulfillment of the require-
ments are represented by numeric values computed by corresponding functions.
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The approach aims to maximize the degree of fulfillment of all the requirements.
This approach is popular in different application areas including video summariza-
tion [Campanella, 2009], [Barbieri, 2007]. In the case of mashup composition,
since there are multiple requirements, an objective function should be defined,
which combines the different functions corresponding to the requirements. The
value of the objective function corresponds to the higher the level of satisfaction
of the requirements or the mashup quality. Therefore, during mashup composition
the objective function should be maximized.

The rule based approach is useful in applications where rules can be established
from the available domain knowledge. However, in the case of mashup composi-
tion, the requirements represent user preferences rather than strict rules and the
degree of fulfillment of the requirements effects the quality of a mashup. There-
fore, we selected the optimization based method to solve the mashup composition
problem. There are some additional benefits of using optimization based approach.
In an objective function, the functions corresponding to different requirements can
be combined with variable weights. So if we want to assign different priority to
different requirements, we can simply assign new weights without changing the
functions. Another advantage of using an objective function is that it provides a
numeric value to a mashup, corresponding to the degree of fulfillment of the re-
quirements, which represents the objective quality of the mashup.

In order to apply the optimization approach, we defined an objective function
that combines the different functions providing the degree of fulfillment of the
requirements: Requirements 2.2 (image quality), 2.3 (diversity), 2.4 (user pref-
erences), 2.5 (suitable cut-point) and 2.10 (suitable semantics). Since Require-
ments 2.6 (suitable clip duration), and 2.7 (completeness) are strict requirements,
they are measured in a binary scale representing if the requirements are met or
not. These requirements are called constraints, and applied as a condition to the
objective function that should be fulfilled in a mashup. There might be cases of
multiple-camera recordings where it is impossible to satisfy the constraints and
an optimal mashup cannot be generated. We will discuss these limitations while
modeling the Requirements 2.6 (suitable clip duration), and 2.7 (completeness) in
Sections 3.4.6 and 3.4.7, respectively.

3.4.1 Objective function
An objective function is designed to estimate the overall quality of a mashup based
on how well the given requirements are fulfilled, such that the mashup quality can
be maximized. The objective function MS(M) of a mashup M, called mashup
score, depends on the following functions: image quality score Q(M), diversity
score δ(M), user preference score U(M), cut-point suitability score C(M), and
semantics suitability score λ(M) corresponding to Requirements 2.2 (image qual-
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ity), 2.3 (diversity), 2.4 (user preference), 2.5 (suitable cut-point) and 2.10 (suitable
semantics), respectively.

MS(M) = F(Q(M),δ(M),U(M),C(M),λ(M)) . (3.3)

The requirements addressed in the objective function influence the quality of the
mashup but their priority order and effectiveness are not known. Therefore, we
used a simple linear approach, also used in earlier cases [Barbieri, 2007], to com-
bine the functions Q(M), δ(M), U(M), C(M) and λ(M) in the objective function.
The objective function can be formalized as:

MS(M) = a1Q(M)+a2δ(M)+a3U(M)+a4C(M)+a5λ(M) . (3.4)

The coefficients a1, a2, a3, a4 and a5 are used to weigh the contributions of the
different requirements. They allow flexible generation of the mashups by changing
the weights of the requirements. The effect of different weights on the mashup
quality will be discussed in Chapter 6. The following paragraphs describe the
mashup composition problem by modeling the requirements that are included as
constraints and included in the objective function.

3.4.2 Modeling Requirement 2.2 (Image quality)
A good image quality is desirable in a video stream for ease of understanding and
pleasure of watching. The image quality of a video segment can be determined by
analyzing different low-level video features in a frame, such as brightness, blur,
and between frames such as motion. The image quality of a frame is given by a
function q( f v)→ [0,1]. For a video segment, the image quality Q(sv) is represented
as the mean quality of the frames present in the segment:

Q(sv) =
1

y− x+1

y

∑
i=x

q( f v
i ) .

The image quality score of a mashup is given by the mean quality value of the clips
as:

Q(M) =
1
l

l

∑
i=1

Q(Si) . (3.5)

The extraction of visual features and quality estimation of a video frame is
presented in Section 5.1.

3.4.3 Modeling Requirement 2.3 (Diversity)
According to Requirement 2.3, a mashup should contain diverse visual information
from the multiple recordings. For example, if a clip contains a close up view of an
artist and the two candidates for a successive clip contain a view towards the same
artist and a view towards the audience, then to add diversity the candidate clip
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with the audience view should be selected. The diversity in a mashup increases the
information content and enriches the visual experience.

The diversity in a mashup is modeled by the visual distance between two con-
secutive clips: δ(Si,Si+1) .The diversity score of a mashup, δ(M) is calculated as:

δ(M) =
1

l−1

l−1

∑
i=1

δ(Si,Si+1) . (3.6)

The visual distance between two clips is measured based on the difference in
features, such as brightness, color, texture. The extraction of features and visual
distance calculation between two video segments is described in Section 5.3.

3.4.4 Modeling Requirement 2.4 (User preference)
If a user has different preferences for the different recordings in a multiple-camera
recording, for example one of the recordings was self-made, the user may like the
mashup to contain more clips from the preferred recording. Therefore, users can
provide their preference score to each of the recordings. The higher the preference
score of a recording, the higher the likelihood that a clip from that recording is cho-
sen in the mashup. However, if no preference is given by a user, all the recordings
in a multiple-camera recording are assigned a uniform score.

If the preference score of a recording in a multiple-camera recording is given
by a function, u(R)→ [0,1], the preference score of a clip U(S) corresponds to the
score of the recording.

∀S ∈ R j, U(S) = u(R j) .

We model the preference score of a mashup by the mean of the preference scores
of its clips:

U(M) =
1
l

l

∑
i=1

U(Si) . (3.7)

3.4.5 Modeling Requirement 2.5 (Suitable cut point)
In professional music video editing, the video streams captured from different cam-
eras are cut into segments according to their visual content and the change in au-
dio tempo. Cuts made at suitable times create an aesthetically pleasing transition
among segments. For example, if a cut is made during a camera motion the viewer
perceives it as an abrupt break. Therefore, in a mashup the clips should be cut in
appropriate instants to give smooth transitions among the different recordings.

The cut-point suitability of a frame is given by a function θ( f v)→ [0,1] based
on the analysis of audio and visual content, where a higher value of θ( f v) indicates
higher degree of suitability as a cut-point. For a video clip, the cut-point suitability
score is calculated by averaging the suitability scores corresponding to its first and
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the last frame. If f v
x and f v

y are the first and last frames of a clip S, the cut-point
suitability score is computed as:

C(S) =
θ( f v

x )+θ( f v
y )

2
.

The cut point suitability score of a mashup by the mean of the scores of its clips:

C(M) =
1
l

l

∑
i=1

C(Si) . (3.8)

The cut-point suitability of a video frame is determined by extracting audio
and visual features from the recordings and analyzing their changes. The feature
extraction method and their analysis are presented in Section 5.2.

3.4.6 Modeling Requirement 2.6 (Suitable clip duration)
A video segment becomes incomprehensible if it is too short and becomes boring
if it is too long, which is a basic rule followed commonly in video editing. In
professional music videos, the duration of a clip depends on the music genre, for
example for fast beat music the clips can be shorter than a second while for slow
music the clips can be about 12 sec. Therefore, according to Requirement 2.6, the
clips in a mashup video should be longer than a minimum value (dmin) and shorter
than a maximum value (dmax). The values of dmin and dmax are adapted to the audio
genre. The requirement is modeled as:

∀Si ∈M : dmin ≤ d(Si)≤ dmax . (3.9)

As described in Section 3.4, the suitable clip duration is applied as a constraint, a
requirement that must be fulfilled for a mashup composition. However, in some
cases the requirement may not be possible to fulfill such as, when there is only one
recording available for longer duration than given by the maximum clip duration
(dmax). Therefore, the requirement is applied in generating mashup only when
there is more than one recordings available.

3.4.7 Modeling Requirement 2.7 (Completeness)
According to Requirement 2.7, a mashup requires to include clips from all the
synchronized recordings of a multiple-camera recording. If there are N recordings
in a multiple-camera recording, the completeness requirement is modeled as:

∀ j ∈ [1, . . . ,N],∃Si ∈M : Si ∈ R j . (3.10)

From the users’ perspective, it is understandable that they want all the record-
ings in a multiple-camera recording be represented in the mashup. However, in
some cases it may not be possible to fulfill this requirement. One case is when
there are two very short recordings of length dmax present at the same time such
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that both are available only for a single clip. Another case is when there are too
many clips to include all in the available time for the mashup. In case this require-
ment is not satisfied the user could be asked for input or the system could continue
without satisfying the requirement.

3.4.8 Modeling Requirement 2.6 (Suitable semantics)
In professional video productions, audio and video segments are presented based
on their semantics. For example, when there is a guitar solo in the audio, the video
is focused on the guitar or the guitarist and cheering in audio is accompanied by
video of the crowd. Semantically matching content together in audio and video
conveys a clear and coherent message to the audience.

We defined concepts in audio domain such as guitar, solo, cheering, silence,
and in video domain such as stage, guitarist, singer, audience. Each concept in the
audio domain is linked to the concepts in the video domain, where the strength of
the link is based on their semantic match. For example, an audio concept guitar is
linked to a video concept guitarist by a higher value of the strength of the link than
to a video concept audience.

If the semantic match in a clip is measured by λ(S), the semantic suitability
score in a mashup is given by:

λ(M) =
1
l

l

∑
i=1

λ(Si) . (3.11)

3.5 Problem definition
In the previous sections, we defined the concepts and the requirements for the auto-
mated mashup generation system and proposed a formal model based on optimiza-
tion approach to satisfy the requirements. In this section, we define the mashup
generation problem that will be addressed in the rest of the thesis.

Definition 3.16 (Mashup generation problem). Given a multiple-camera
recording R, synchronize the recordings and compose a mashup M, that maxi-
mizes the objective function and satisfies the constraints. 2

The mathematical model of the mashup-composition problem can be given as:

maximize MS(M)= a1Q(M)+a2C(M)+a3δ(M)+a4U(M)+a5λ(M) , (3.12)

subject to ∀S ∈M : dmin ≤ d(Si)≤ dmax , (3.13)

∀ j ∈ [1, . . . ,N],∃Si ∈M : Si ∈ R j , (3.14)

where coefficients a1, a2, a3, a4 and a5 are used to weigh the contributions of
the different requirements. Equation 3.12 shows the objective function to be max-
imized and Equations 3.13 and 3.14 represent the constraints suitable-clip dura-
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Synchronization
Synchronized 

recordings
OptimizationR MCut-point suitability

Diversity

Image quality

Feature analysis

Mashup composition

Suitable clip duration

Completeness

User preference

Pre-processing

Figure 3.7. Schematic representation of the proposed solution for the mashup
generation problem. The processes indicated in italics are described in separate
chapters under the same name.

tion and completeness, respectively. The following section proposes a solution
approach to solve the mashup generation problem.

For ease of reference, Table 3.1 at page 38 gives an overview of the symbols
used in this chapter to define the mashup generation problem.

3.6 Proposed solution
In Section 3.1, we presented an overview of the proposed approach for a mashup
generation system consisting of pre-processing and mashup composition steps.
The requirements involved in the steps are modeled in the Sections 3.3 and 3.4.
The mashup generation problem has been modeled as an optimization problem,
where some requirements are treated as constraints and others as maximization pa-
rameters. The model describes the requirements in an abstract and generic way. To
obtain a solution for a mashup generation problem, we further specify and imple-
ment the requirements in the following chapters. The schematic representation of
the solution approach is presented in Figure 3.7.

The first step, synchronization, consists of fulfilling the Requirement 2.1 de-
scribed in Section 3.3. The audio-visual content in the recordings is used to find
the time offset between the recordings. If a recording fails to be synchronized, it is
filtered out from the multiple-camera recording employed for generating a mashup.
The detailed description of the synchronization methods and their performance is
described in Chapter 4.

In the next step, feature-analysis, audio and video features are extracted and
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analyzed, providing numeric values for the functions given in Equation 3.5 (im-
age quality), Equation 3.6 (diversity) and Equation 3.8 (cut-point suitability). The
description of the feature extraction and their analysis is presented in Chapter 5.
As for the requirement on suitable semantics, described in Section 3.4.8 advanced
audio and video content analysis techniques are required. We tested available soft-
ware, explained in [Breebaart & McKinney, 2003], to detect audio concepts such
as noise, music, silence but the results were not reliable enough for being applied
in our solution. The state of the art techniques used for audio-video concept de-
tection in concerts, such as [Snoek, Worring, Smeulders & Freiburg, 2007], [Naci
& Hanjalic, 2007], show the problem is content dependent and they do not cover
all the desirable concepts. Due to the non-availability of a reliable solution and
our time limitation, the semantic suitability requirement is not implemented in our
mashup composition solution.

In the final step, optimization, we develop an objective function based on Equa-
tion 3.4 and an algorithm that evaluates and selects the clips to be included in
a mashup by maximizing the value of the objective function (Equation 3.4) while
satisfying the constraints. Its description and an objective evaluation of the mashup
quality is presented in Chapter 6.



Table 3.1. Symbols used in the formalization of the mashup generation problem.

symbol description page
a audio stream 25
C(M) cut-point suitability score of a mashup 32
C(S) cut-point suitability score of a clip 34
dmax maximum clip duration 34
dmin minimum clip duration 34
d(sv) duration of a video segment 26
d(M) mashup duration 28
f a audio frame 25
f v video frame 25
l number of clips in a mashup 28
M mashup 28
MS(M) objective function to maximize 32
N number of recordings in a multiple-camera recording 25
n number of frames 25
Q(M) image quality score of a mashup 32
Q(S) image quality score of a clip 32
q( f v) image quality of a video frame 32
R recording 25
R multiple-camera recording 25
rv video frame rate 26
S clip 26
sa audio segment 26
sv video segment 26
tc( f v) camera time 27
tr( f v) recording time 27
ts( f v) common time 27
tu( f v) universal time 26
U(M) preference score of a mashup 32
U(S) diversity score of a clip 33
u(R) user preference score of a recording 33
v video stream 25
θ( f v) cut-point suitability score of a frame 34
δ(M) diversity score of a mashup 32
δ(Si,Si+1) diversity score of a clip 33
∆tSync synchronization offset time 28
τ camera-take 25
λ(M) semantic suitability score of a mashup 35
λ(S) semantic suitability score of a clip 35



4
Synchronization

According to the proposed solution approach for the mashup generation problem
in Chapter 3, the multiple-camera recordings need to be synchronized before com-
posing a mashup. Figure 4.1 highlights the synchronization step in the proposed
solution approach. The synchronization requirement is formalized in Section 3.3.
In this chapter, we propose a novel automated approach to synchronize multiple-
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OptimizationR MCut-point suitability

Diversity
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Mashup composition

Suitable clip duration

Completeness

User preference

Pre-processing

Synchronization

Figure 4.1. Schematic representation of the proposed mashup generation prob-
lem, in which the synchronization step is highlighted.
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camera recordings based on detecting and matching audio and video features ex-
tracted from the recorded content. We develop three realizations of the approach
and assess them experimentally on a common data set. The synchronization tech-
niques described in this chapter are applicable not only to mashup generation but
also to other applications that require synchronizing of multiple-camera recordings.

The rest of the chapter is organized as follows. We introduce the synchro-
nization problem in Section 4.1 including possible application areas and related
work. In Section 4.2, we describe the basic principles of our proposed synchro-
nization approach. In Sections 4.3, 4.4 and 4.5 we develop three realizations of
our approach based on still-camera flashes, audio-fingerprints and audio-onsets,
respectively. The sections describe methods of extracting audio and video features
and matching them to compute the synchronization offset between recordings of
a multiple-camera recording. We assess the three realizations experimentally on
a common data set in Section 4.6. Discussions regarding the usability of the pro-
posed realizations in view of practical use cases are provided in Section 4.7. In
Section 4.8, we present our conclusions.

4.1 Introduction
In professional video productions, the use of multiple-cameras is very common.
The synchronization of the recordings is ensured by physically connecting the cam-
eras to a device called “jam-sync” or by the use of a “clap” at each camera-take.
The clap produces and strong impact sound, which introduces a distinct signal in
all the audio recordings, which can be used as a time reference to synchronize the
recordings. The jam-sync sets the internal clock of all the connected cameras ex-
actly to the same time. However, in the case of non-professional user recordings,
control and coordination among different cameras are not feasible. The cameras
are set independently and turned on and off at the will of their users.

Currently, in video-editing involving multiple-camera recordings the synchro-
nization point is searched manually. The search is considered very time consuming
and difficult, as expressed by the video-editing experts in the interview presented
in Section 2.1.1. It involves finding an instant in all the available recordings with
a distinctive object motion or sound, for example, the sound of a clap or a dance
action. Then further careful observation is required to accurately locate the syn-
chronization point, for example when the audio-signal shows a peak due to the clap
or when a dancer just touches the floor.

Synchronization requires high precision because even a slight misalignment
between two videos results in time discontinuity in the mashup. For example, Fig-
ure 4.2 shows two camera recordings, captured at a frame rate of 25 frames per
second, from a dance event out of synchronization by 0.40 sec (10 frames). If they
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A1 A2 A3 A4

B1 B2 B3 B4

Figure 4.2. The two rows of images A1-A4 and B1-B4 represent two different
camera recordings, where camera A is ahead of camera B by 0.40 sec (10 frames).
The images are taken from every fourth frame of each recording. If a video is
created as a combination of frames B1, B2, A3, A4, the same motion is repeated
twice, creating a visual hiccup.

are combined by alternating the videos along the time, upon each camera change,
the dancer’s movement is either repeated or missed by 10 frames. Similarly, the
misalignment between audio and video of different cameras causes lip-sync prob-
lems. According to [BT.1359-1, 1998] editing multiple recordings without los-
ing lip synchronization requires the audio and video to be aligned in the range of
+45 msec to -125 msec, where a positive value indicates that sound is advanced
with respect to vision. The required high precision for synchronization cannot be
obtained by a manual setting of camera times because in devices like amateur cam-
eras and camcorders, the time setting option for the clock is usually given in the
resolution hour:minute:seconds, while the required accuracy is in the level of mil-
liseconds. Therefore, if the frame rate of a recording is 25 frames per second, the
synchronization should be accurate by±1 frame to maintain lip-sync in a mashup.

4.1.1 Other applications
Many other applications involving multiple cameras use synchronization, which
is generally done manually. We present some of the applications that can benefit
from automatic synchronization.

Video editing tools such as Adobe Premiere Pro, Final Cut Pro, Ulead, which
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currently require manual synchronization, could offer automatic solutions in their
existing products. In stereo or multi-view coding standards, where synchronization
is listed as a requirement [JTC1/SC29/WG11-N9163, 2007], automatic synchro-
nization could be applicable to 3D video and free-viewpoint video technologies.
Another useful application of automated synchronization would be for large video
repositories like YouTube, Google, Yahoo! that contain multiple clips of an event
recorded by different people. Presently, the clips are not organized according to
an event and each of the clips can only be accessed individually. Automated syn-
chronization of multiple clips available from an event facilitates easy managing
and simultaneous watching of the clips. Other applications, such as annotating
official-meeting videos [Michel & Stanford, 2006], [Carletta, 2007], improving
audio quality using multiple recordings [O’Shaughnessy, Kabal, Bernardi & Oth-
ers, 1990], which use multiple recordings captured simultaneously in a room and
require synchronizing the recordings, can also benefit from automated synchro-
nization.

4.1.2 Related work
Our work on synchronizing non-professional recordings from multiple cameras is
closely related to the works presented in [Cremer & Cook, 2009] and [Kennedy
& Naaman, 2009], where audio-fingerprinting techniques have been used to syn-
chronize recordings from musical performances captured around the same time. In
[Cremer & Cook, 2009], the authors have applied the same fingerprinting method
as in this chapter, which was originally proposed in [Haitsma & Kalker, 2002].
The synchronization is used for visualizing multiple-camera recordings in an edit-
ing system. Similarly, in [Kennedy & Naaman, 2009] another audio-fingerprinting
method is used to synchronize multiple recordings for organizing a large database
of community-contributed collections of concert videos. In this chapter, we de-
velop three realizations of a synchronization approach using flashes in video,
audio-fingerprinting and audio-onsets and assess them experimentally on a com-
mon data set. We also provide recommendations on the usability of the differ-
ent realizations in practical use cases including video editing and organizing large
databases.

Synchronization of videos captured in controlled setups has been a research
topic for the purpose of object tracking, 3D-scene rendering, multi-view coding
and multi-sensor fusion. The known synchronization methods are based on multi-
view geometry, which uses geometrical properties between the camera and the
object features being captured such as points and lines.

The synchronization work in [Stein, 1998] assumes the cameras are static and
images are related by a homography (i.e. any given point in one figure corresponds
to one and only one point in another figure and vice versa such that there is no paral-
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lax effect). A similar assumption is made in [Caspi, Simakov & Irani, 2004], where
synchronization is achieved by minimizing the sum of squared differences between
the sequences. The method presented in [Lei & Yang, 2005] depends on tracking
a line feature in multiple videos. This method allows limited camera motion, re-
quires at least three cameras and the cameras should have identical frame rates.
In [Whitehead, Laganire & Bose, 2005] moving features are computed from the
recordings that best agree with the pre-computed camera geometries from station-
ary image features. The method is applicable independent of camera frame rates,
however, there should be at least three cameras that remain stationary throughout
the video capture process and, furthermore, moving objects should have sufficient
texture for tracking.

In addition to the above described methods, other state of the art papers on syn-
chronization [Caspi & Irani, 2002], [Yan & Kankanhalli, 2002], [Sinha & Polle-
feys, 2004], [Tuytelaars & Gool, 2004] are intended for a controlled environment
and have limitations on the number of cameras, camera movement, object features,
frame rates, etc. So they are not applicable in case of non-professional videos
where the settings, quality, movement and number of cameras are non-uniform. In
our synchronization approach, we use audio and visual features extracted from the
recordings that provide an abstract and time accurate representation of the content,
and are robust against the noises in the recording. The synchronization offset is
calculated by matching the features at multiple points and not across the frames.
Since our approach does not require analyzing the geometry of the cameras or
tracking an object, there are no limitations on the number of cameras, continuity of
the recordings and co-ordination among the cameras.

4.2 Proposed approach for synchronization: basic principles
The most intuitive and simple approach to synchronize two audio or video record-
ings would be to compare the audio-visual signals. However, a recording cap-
tured at the same time by multiple cameras may look or sound different because of
camera position (next to a light source, noisy surrounding), quality of the camera
components (lens, resolution, microphone), camera settings (white-point, gamma,
audio gain), user handling (shaky hands, jerky movements). Therefore, the raw
audio-video signals are not suitable for matching purposes.

Our approach to find a synchronization offset between two recordings involves
extracting features and searching for an approximate match between the corre-
sponding features. The features should be accurate in representing time in high
resolution, compact in size, easy to extract and match. They should be robust
against different camera characteristics and surrounding noises. Furthermore, the
features should not be case-specific but applicable to various events such as wed-
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dings, concerts and official-meetings. Based on these considerations we selected
three features: still-camera flashes in the video domain and onsets and fingerprints
in the audio domain. In comparing the features, it is very likely that multiple
matches occur, which may result in different synchronization offsets. To deter-
mine the most reliable synchronization offset, a voting scheme is applied among
the possible offsets. In cases where there are more than two recordings, the syn-
chronization offset is calculated by comparing all possible pairs. The calculated
synchronization offsets were checked against the ground truth offsets computed
manually by listening and watching the recordings.

The proposed synchronization approach is applicable to recordings with differ-
ent frame rates. However, depending on the accuracy required by the application,
there is a limitation in the required minimum frame rate of the recordings. Since a
video frame represents a sampled time instant, the synchronization offset accuracy
is determined by the lowest frame rate among the given recordings. According to
Equation 3.2 at page 29, the accuracy of a synchronization offset is given by:

|tu( f v
i )− tu( f v′

j )|< max(
1
rv ,

1
rv′ ) . (4.1)

For example, to meet the synchronization accuracy for lip-sync, defined by
[BT.1359-1, 1998], the frame rate should be at least 22.2 frames per second.

The synchronization offset calculated between a pair of camera-takes from two
recordings is valid only for those camera-takes. If the recordings consist of more
than one camera-take there are several options to calculate the synchronization
offset. One option is to compute individual synchronization offsets for each of the
camera-takes. Another option is to compute the time interval between multiple
camera-takes in a recording, for example from the camera-time embedded in the
video frames. Then calculate the synchronization offset from one of the camera-
takes, which can subsequently be applied to the other camera-takes including the
interval. Yet another option is to fill the time interval between the camera-takes,
for example with dark frames when using flashes, white noise when using audio-
fingerprints and silence when using audio-onsets. The fill-ins are chosen such that
they do not influence while feature comparison. Then the synchronization offset
between the filled recordings can be calculated as in the case of recordings with
single camera-takes.

Since all our test recordings consist of 25 video frames per second and a single
camera-take, the computation of the synchronization offset, given in Equation 3.2,
can be represented in terms of the number of offset frames between the recordings.
If f v

i and f v′
j correspond to synchronized frames of two recordings, the synchro-

nization offset is given by:
∆Sync = i− j. (4.2)
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4.3 Synchronization using flashes
Flash devices in still-photo cameras produce instantaneous flashes of light to help
illuminating a scene. Since the typical duration of a flash is about 1 millisecond, a
flash forms a very sharp time marker. Most video cameras used in Europe record
25 frames per second. Typically these cameras probe the surroundings at a rate
of 50 times per second and interlace the results into 25 frames per second, which
makes the shutter time of the cameras 2 msec. Therefore there is a fair chance
that a video camera captures a flash if it is within the range of the flashing camera
(depending on the power of the flash device, typically around 7 meters).

The effect of flashes on video is a well known problem in shot cut detection.
Most algorithms that detect shot cuts are based on measuring discontinuities of lu-
minance values of video frames. Therefore, flashes cause false detections. Robust
shot cut detectors have been designed to ignore flashes using other image features
such as edges, or luminance independent color spaces described in [Vlachos, 2000]
[Guimaraes, Couprie, Araújo & Leite, 2001]. In [Yeo & Liu, 1995] flashes are de-
tected by using the difference in average intensity of consecutive frames to improve
shot cut detection in motion-JPEG and MPEG compressed video. In [Takimoto,
Satoh & Sakauchi, 2006] similarity in the sequence of flashes among the recordings
are used to identify scenes from the same event from a large TV video archive. The
flashes are detected using average luminosity, optical flow analysis, and validated
assuming the arrival of flashes follows a Poisson distribution.

We propose a method for flash detection, which is independent of video com-
pression standards and assumptions on the flash arrival distributions. The method
is based on the luminosity variance across the frames and a locally adaptive thresh-
old is applied to determine the flashes. As a result the video is represented by a
flash sequence containing 1 and 0 corresponding to the frames with and without
flashes, respectively. The synchronization among multiple videos is computed by
matching the flash sequence using cross-correlation and dynamic programming.
The synchronization based on flashes is published in [Shrestha, Weda, Barbieri &
Sekulovski, 2006]

4.3.1 Flash Detection
The flash appears in video as a sharp increase of brightness in one frame. A lu-
minance histogram of a frame with a flash, shows a concentration of pixels in
the higher side of the histogram. For example, Figure 4.3 illustrates four sequen-
tial video frames, including a flash frame, and the corresponding luminance his-
tograms. It is evident that the second frame is visibly brighter than the rest, and
also the associated histogram shows a peak at the brighter side (right handed part)
of the histogram.
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Figure 4.3. Video frames (above) and their corresponding 256 bin luminance
histograms (below). The frame second from left contains a flash, and a peak in the
corresponding histogram is indicated by a dotted ellipse.

In order to detect a flash we counted the number of pixels contained in the range
171-255 out of 256 luminance bins for each frame and computed the difference
across consecutive frames. If the luminance value Li of a frame i represents the
total number of pixels contained in this predefined range of bins, the luminance
difference ∆Li across the frames is computed by:

∆Li = Li+1−Li.

In the luminance difference curve a typical flash is seen as a positive peak fol-
lowed by a negative peak, where both peaks are similar in height. A locally adap-
tive threshold is applied in the luminance difference for distinguishing flashes from
other peaks, such as when the brightness of a video changes due to an abrupt move-
ment of the camera to another direction with a different lighting condition.

The threshold to detect flash peaks in the luminance difference is calculated
in two phases. In the first phase, the behavior of the luminance difference across
the majority of the frames is estimated by an initial threshold T initial

i based on a
symmetric sliding-window median filter:

T initial
i = K ·median(|∆Li−m|, |∆Li−m+1|, . . . , |∆Li+m|). (4.3)

The median value is calculated on the absolute luminance difference values of a
window containing 2m+1 frames. The values of K and m are chosen heuristically
as 10 and 20, respectively. A high value of K and m may miss flashes represented
by smaller peaks, however, lower values may result in false detections. The lu-
minance difference is then updated to ∆L′i by removing all |∆Li| exceeding the
threshold such as:

∆L′i =
{

∆Li if |∆Li|< T initial
i

0 if |∆Li| ≥ T initial
i .
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Figure 4.4. The luminance difference curve (thin line), initial threshold (dotted
line) and the final threshold (bold line). Detected flashes are represented by ‘∗’.

In the second phase, a final threshold is calculated using the updated luminance
difference data. A sliding window is applied on the data to calculate the maxi-
mum of the absolute value and the standard deviation. The final threshold T final is
calculated as:

T final
i = max(|∆L′i−m|, |∆L′i−m+1|, . . . , |∆L′i+m|)+

η· std(∆L′i−m,∆L′i−m+1, . . . ,∆L′i+m). (4.4)

The value of η and m are chosen heuristically as 3 and 20, respectively. Large
values of m and η misses flashes with small peaks, while small values cause false
detections.

The final threshold is applied to the original luminance difference data to detect
the flashes. Once a positive peak above the final threshold is found, the possible
results are: (i) a shot cut if no following negative peak is found, (ii) a flash if fol-
lowed by a negative peak, or (iii) multiple flashes if the negative peak is found
after a couple of frames. Multiple flashes appear when a sequence of flashes is
used to allow longer illumination time, or when some small flashes are used before
the ‘real’ flash to avoid red-eye effect, or when flashes from different cameras ap-
pear shortly after each other. Therefore, once a positive peak above the threshold
is found, the search for a negative peak is carried out in a couple of consecutive
frames. In this case, we searched for three successive frames, based on our obser-
vation of the test recordings where we found a maximum of three flashes present
in consecutive frames. Figure 4.4 shows the luminance difference curve, the initial
and final thresholds and the detected flashes.
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4.3.2 Performance of the flash detection method
The performance of the described method is applied on multiple-camera recordings
captured at two different occasions. The first set of recordings is from two cameras
inside a church during a wedding ceremony, and the second set is from two cameras
at a dance event inside a hall (see page 70 Table 4.2, events 1 and 2). In total, the
length of the test video streams was about two and a half hours. The still camera
flashes in the recordings were annotated manually by carefully watching the video
frames. The results from the flash detection are given in Table 4.1.

Table 4.1. Results from the flash detection method
Description Number of flashes
manually annotated 238
correctly detected 210 (88.2%)
falsely detected 0 (0%)
not detected 28 (11.8%)

The missed detections were caused by very weak flashes due to too large dis-
tance from the object or low camera sensitivity. In order to determine an optimal
range of luminance for detecting flashes in the histogram, we also tested two other
ranges of bins: 128–255 and 192–255. The results show that the former range is
more sensitive to smaller changes in luminance thus causing more false detections,
while the latter range results in more missed detections. Similarly, we also ana-
lyzed the luminance difference across smaller regions of a frame, such as the cen-
tral region that covers half of the area and four quadrants. The luminance difference
across the corresponding regions of consecutive frames becomes very sensitive to
smaller variations, such as the reflection of a metal watch during hand movement,
resulting in many false detections. Therefore, we used the bin range 171–255 on
the full frame luminance histogram for detecting flashes.

4.3.3 Matching flash sequences
After the flashes are detected, the video is represented by a binary flash vector. The
elements of the vector are given the value 1 for the frames with a detected flash,
and 0 for other frames. In multiple-camera recordings from an event, the corre-
sponding flashes between two videos are related in three possible ways, namely, a
flash match, a flash miss, and a frame mismatch.

In case of a flash match, the two cameras capture the same flashes. In case of
a flash miss a camera misses a flash captured by another camera, which maybe due
to the closing of a shutter or difference in the distance between the cameras and
the flash source. In a frame mismatch, a flash captured in one of the recordings
is displaced by ±1, which maybe due to an error while capturing or to drifting of
the internal camera-clock. Figure 4.5 illustrates the flash frames from two syn-



4.3 Synchronization using flashes 49

0  0.5 1  1.5 2  2.5 * 10000
0

0.5

1

Frame number

F
la

sh

0.2 0.7 1.2  1.7 2 .2 2.7 * 10000
0

0.5

1

Frame number

F
la

sh

Figure 4.5. Flash sequences from two synchronized test videos from event 1 (see
Table 4.2). Video frames are represented by 1 if they contain a flash.

chronized recordings. To synchronize the flashes from different video streams two
alternative methods are applied: cross-correlation and dynamic programming.

Cross-correlation
The cross-correlation method operates as a “sliding dot-product” between two flash
sequences. The value of the correlation coefficient increases with the number of
flash matches and decreases with the flash misses. To model the flash shift, the
value of a flash frame is blurred among its neighboring frames. This operation on
the flash vector X can be represented as; if Xi = 1, then Xi−1,Xi+1 = 1 and Xi = 2,
where the value of i ranges from one to the total number of frames.

The cross-correlation method applied to two vectors results in a vector of corre-
lation coefficients of length 2m+1, where m is the longest size of the two vectors.
The synchronization offset, ∆Sync, is computed as a difference between the indices
where the maximum cross-correlation coefficient occurs and m + 1. Figure 4.6
shows a cross-correlation result between two flash sequences from the recordings
of event 2 (see Table 4.2).

In order to test the reliability of the synchronization offset and the robustness
of the cross-correlation method on flash matching, we computed the synchroniza-
tion offset by randomly adding and deleting flashes in two flash sequences corre-
sponding to the videos of event 1. The sequences contain 37 and 50 flashes. Both
sequences were subjected to the same amount of change, by flash addition and
deletion, and the test was repeated over 2100 iterations for each amount of change.
We run a number of iterations sufficient to observe convergence in the run. Fig-
ure 4.7a shows the average correlation coefficient or scores obtained by the first
and the second highest scoring offsets for different amounts of deleted flashes. The
two scores decrease gradually and become closer with the increasing amount of
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Figure 4.6. The cross-correlation coefficients from two flash sequences from two
recordings from event 2 (see Table 4.2). The prominent peak indicates the possible
synchronization offset between the recordings.
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Figure 4.7. Scores obtained by the first and the second highest scoring offsets in
event 1 (see Table 4.2) represented by a bold line and a thin line, respectively. The
scores represent the average scores obtained over 2100 iterations after randomly
(a) deleting and (b) adding flashes by the amounts given in the horizontal axis.

deleted flashes. It shows that increasing flash misses decreases the reliability of the
synchronization offset. Figure 4.7b shows scores corresponding to the two pos-
sible synchronization offsets when different amounts of flashes were added. The
score corresponding to the synchronization offset is consistently higher than that of
the other offset. The figure shows that the reliability of the synchronization offset
is not influenced by the additional flashes. Figure 4.8 shows the number of cases
where a correct synchronization offset was computed when different amounts of
flashes were randomly added or deleted over 2100 iterations. The cases of success-
ful synchronization for adding flashes remained 100% irrespective of the amount
of flashes added. However, for deleting flashes, the number of synchronized cases
decreased: when 50% of the flashes was deleted, only 79% of the cases were syn-
chronized. This shows that deleting flashes reduces the possibility of successful
synchronization more severely than adding the same amount of flashes.
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Figure 4.8. Number of times the correct synchronization offset is computed on
cross-correlating the videos of event 1 (see Table 4.2) over 2100 iterations when
different amounts of flashes were randomly added (+) or deleted (◦).

Since the complexity of this cross-correlation method depends on the number
of frames, the method is rather computationally demanding. Therefore we also
represented the flashes as a vector of inter-flash distances and used dynamic pro-
gramming [Cormen, Leiserson, Rivest & Stein, 2001] to find the matches. The
complexity of this approach depends on the number of flashes rather than the total
number of frames. For comparison, the complexity of the cross correlation method
using FFT, the most efficient implementation, is O(n logn), for n being the number
of frames while the implementation of the dynamic programming has a complexity
of O(k2), for k being the number of flashes.

Dynamic programming
Dynamic programming is a popular algorithm for string matching applications,
which decreases the time complexity of recursive searches by storing intermediary
results [Cormen, Leiserson, Rivest & Stein, 2001]. In the case of matching two
flash vectors corresponding to videos from different cameras, the problem can be
reduced to finding the longest common subsequence with the smallest matching
cost. The following paragraphs describe the flash sequence representation, dy-
namic programming algorithm and the synchronization offset computation.

To represent flash matching as an approximate longest common subsequence
matching problem, the flash sequences from two videos are first converted into
sequences b1 and b2, where each element corresponds to the number of frames
between two successive flashes. This shortens the length of the sequences to be
matched from being equal to the number of frames to the number of flashes. The
cases of flash match, flash miss and frame mismatch with respect to two hypothet-
ical sequences b1 and b2 are shown in Figure 4.9. In case of two consecutive flash
matches, the number of frames between the flashes should be the same in both se-
quences. This can be expressed as b1(i) = b2( j), where i and j are indices pointing
to the elements of b1 and b2 respectively.
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Figure 4.9. Illustration of different possible flash patterns in two recordings,
where shaded rectangles represent frames containing flashes. The values b1 and
b2 denote the number of frames between two flash frames. The possible cases are
(i) Match: b1(1) = b2(1), (ii) Miss: b1(2) + b1(3) + 1 = b2(2), and (iii) Frame
mismatch: b1(4) = b2(3)−1 and b1(5) = b2(4)+1.

A flash miss in the first video with respect to the second video is given by b1(i−
1)+ b1(i)+ 1 = b2( j). This can be generalized to x misses in the first recording
and y misses in the second recording, which can be expressed as:

x+
i

∑
k=i−x

b1(k) = y+
j

∑
l= j−y

b2(l). (4.5)

A frame mismatch, when a flash is detected in the first recording one frame later
than in the second recording, can be expressed as b1(i) = b2( j)−1 and b1(i+1) =
b2( j +1)+1.

Using dynamic programming, the optimal match is computed for all possible
combinations of subsequences of b1 and b2. The flash match and frame mismatch
are represented by the matching (µ) operation and the flash miss is represented by
the grouping (γ) operation. The cost function for matching between two values
b1(i) and b2( j) is given by:

µ(b1(i),b2( j)) = |b1(i)−b2( j)|m , (4.6)

where m is the cost parameter of a mismatch. A large mismatch means the two
videos do not match while a small mismatch (i.e. one frame in our data) could be
due to an error in the flash capture, perhaps due to the drift of the internal clocks of
the cameras with respect to each other. Therefore the rate of increase of µ is chosen
to be a power function of the size of the mismatch. Depending on the probability
of having a certain mismatch size in a video, m can be assigned to any positive
value. Based on observations on multiple test-runs, we empirically set the value
of m = 2. Larger values of m might falsely treat flash mismatches as flash misses,
while smaller values may falsely treat them as matches.

If x and y represent missed flashes in b1 and b2 respectively, the cost function
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for grouping x+1 elements and y+1 elements is given by:

γ(x+1,y+1) = g · (x+ y), (4.7)

where g is the cost parameter of a grouping operation. The value of g should be a
positive number, which is a penalty for a flash miss. In a multiple-camera record-
ing, the chances are high that the same flash is not captured by all the cameras.
For example, a test recording in event 2 (see Table 4.2) shows 13 consecutive flash
misses. Based on observations on multiple test-runs, we empirically set the value
of g = 0.2. Larger values of g may allow less flash misses in the subsequence,
while smaller values may result in a false synchronization offset.

First we define the cost of matching the sequences b1 and b2, with sizes nb1

and nb2 , for positions i ∈ [1,nb1 ] and j ∈ [1,nb2 ] and for x + 1 and y + 1 number
of grouped elements in the sequences. The cost of matching at i, j with the given
grouping is the sum of the matching costs before the grouping, the costs of the
grouping and the match between the produced groups. This is given by:

Dx,y(i, j) = D(i− x−1, j− y−1)+
γ(x+1,y+1)+λ(i, j,x,y), (4.8)

where λ(i, j,x,y) is defined as:

λ(i, j,x,y) = µ

(
x+

i

∑
k=i−x

b1(k), y+
j

∑
l= j−y

b2(l)

)
. (4.9)

Here D(i− x−1, j− y−1) is the cost of matching the subsequences at i and j
before grouping x+1 and y+1 elements respectively, γ is the cost of the grouping
and λ is the cost of matching the groups, as represented in Equation 4.5. The opti-
mal total cost is computed as the minimum of the costs for all possible groupings
for up to p elements. This can be represented as:

D(i, j) = min
x,y
{Dx,y(i, j)} , (4.10)

where

x ∈ {0,1, ..,min{i−1, p}} ,

y ∈ {0,1, ..,min{ j−1, p}} ,

with boundary conditions

D(0,0) = D(i,0) = D(0, j) = 0 | i ∈ {1,2, ..,nb1},
j ∈ {1,2, ..,nb2}. (4.11)

The value of N gives the allowed number of consecutive flash misses. After multi-
ple test-runs, the value is set empirically to N = 8.

Figure 4.10 depicts the values of D(i, j) for all the possible groups of flashes in
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Figure 4.10. The cost of alignment D(i, j) for all the possible groups of flashes
in one of the test videos of event 1 (see Table 4.2). Costs larger than a certain
threshold are clipped and appear white. The areas above and left of the dotted
lines represent the matching costs between very short flash sequences, which are
ignored while voting for the synchronization offset.

the videos of event 1 (see Table 4.2). The darker rectangles represent lower match-
ing costs for the subsequences, where the corresponding (i, j) refers to a possible
synchronization offset. Costs larger than a certain threshold are clipped and appear
white. The dark rectangles at the top and left side of the figure are caused by the
boundary conditions employed in the dynamic programming, as given in Equa-
tion 4.11. The matches between very short subsequences, for example a detected
match at i = 3 and j = 34 shown in the figure, can be simply due to chance. There-
fore, for a reliable match, we discard the matches of the subsequences up to 1

4 of
the shortest sequence. These discarded (i, j) are shown in the figure by a region
separated by dotted lines.

The pair (i, j), with lower matching cost refers to a possible synchronization
offset represented by ∆i j. The calculation of the possible synchronization offsets is
given by:

∆i j = b1(i)−b2( j). (4.12)

The corresponding match value V∆i j is directly proportional to the number of
matched subsequences and inversely proportional to the matching cost. The op-
eration for computing the match value is given by:

V∆i j =
i · j

D(i, j)
, (4.13)

where,

i ∈
{ r

4
, . . . ,nb1

}
, j ∈

{ r
4
, . . . ,nb2

}
and r = min(nb1 ,nb2) .

To select the most reliable synchronization offset ∆Sync, we apply a voting
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Figure 4.11. Examples of possible synchronization offsets (∆k) and their corre-
sponding scores (Score∆k ) based on the results from the dynamic programming.
(a) event 1, (b) event 2, given in Table 4.2.

scheme on the unique offsets in the list of possible synchronization offsets ∆i j.
The score is calculated by adding all the match values (V∆i j ) that correspond to a
unique synchronization offset ∆k. The scoring operation can be expressed as:

Score∆k = ∑
v∈V∆k

v. (4.14)

The synchronization offset ∆Sync is selected by taking the highest scoring ∆k.
Figure 4.11a and Figure 4.11b show two typical examples of possible synchroniza-
tion offsets and their corresponding total scores in the test recordings of event 1
and 2 (see Table 4.2). The difference between the scores corresponding to the syn-
chronization offset and the second highest scoring offset indicates the reliability of
the synchronization offset.

In order to test the reliability of the synchronization offset and the robustness
of the dynamic programming approach, we computed the synchronization offset
by randomly adding and deleting flashes in the same flash sequences as described
in Section 4.3.3. Figure 4.12a shows the average scores obtained by the first and
the second highest scoring offsets for different amounts of deleted flashes. The
two scores decrease gradually and become closer with the increasing amount of
deleted flashes. This shows that increasing flash misses decreases the reliability
of the synchronization offset. Figure 4.12b shows scores corresponding to the two
possible synchronization offsets when different amounts of flashes were added.
The score corresponding to one of the synchronization offsets is consistently higher
than that of the other offset at least by 2 times. This shows that the reliability of
the synchronization offset is not influenced by the additional flashes.

Figure 4.13 shows the number of cases where a correct synchronization offset
was computed when different amounts of flashes were randomly added or deleted
over 2100 iterations. The cases of successful synchronization for adding flashes re-
mained about 70% irrespective of the amount added. However, for deleting flashes,
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Figure 4.12. Scores obtained in dynamic programming by the first and the second
highest scoring offsets in event 1 (see Table 4.2) represented by a bold line and a
thin line, respectively. The scores represent the average scores obtained over 2100
iterations after randomly (a) deleting and (b) adding flashes by the amounts given
in the horizontal axis.
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Figure 4.13. Number of times the correct synchronization offset is computed
using dynamic programming between the videos of event 1 (see Table 4.2) over
2100 iterations, on randomly deleting (◦) and adding (+) flashes by the amounts
given in the horizontal axis.
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the number of synchronized cases decreased at a fast rate: when 50% of the flashes
was deleted, only 25% of the cases were synchronized. This shows that deleting
flashes reduces the possibility of successful synchronization more severely than
adding the same amount of flashes.

Since flashes are available only in indoor or night recordings, the flash based
realization is applicable only in limited cases. Furthermore, audio is generally
captured along with the video. Therefore, we present the audio based realizations
for synchronizing multiple-camera recordings in the next sections.

4.4 Synchronization using audio-fingerprints
Audio-fingerprints are compact and accurate representations of an audio segment.
They can be used in comparing two audio streams, which are typically larger
in size. This allows simple comparison and precise temporal match between
the streams. The audio-fingerprint based synchronization has been published in
[Shrestha, Weda & Barbieri, 2007b].

4.4.1 Fingerprint extraction
We have used the audio-fingerprinting method developed by Haitsma and Kalker,
presented in [Haitsma & Kalker, 2002], which has been described in numerous
publications and successfully used in applications to identify a music received as
a query from a mobile phone. The method is robust against different noises and
distortions.

The method generates a 32-bit binary number, called sub-fingerprint, for ev-
ery interval of 11.6 msec based on the spectrum-temporal analysis of the audio
in a three second long analysis window. The analysis windows of two succes-
sive sub-fingerprints are temporally overlapped by a factor of 31/32. To find a
match between two audio streams, a fingerprint-block consisting of 256 consecu-
tive sub-fingerprints is used as basic unit. Two fingerprint-blocks are considered to
be matching if the Hamming distance or the number of bit errors (BER) between
them is less than a threshold T . In [Haitsma & Kalker, 2002], it is proven the-
oretically and experimentally that the false positive rate of matching fingerprints
becomes 3.6×10−20 with a threshold T = 35%. In our experiments, therefore, the
value of T is set to be 35%. Figure 4.14 shows two fingerprint-blocks from two
synchronized recordings with a BER of 24%.

4.4.2 Fingerprint matching
In order to find the synchronization offset between two recordings, fingerprint-
blocks from the first recording are compared with those of the second recording.
The consecutive fingerprint-blocks from the first recording are non-overlapping
sub-fingerprints, whereas the fingerprint-blocks from the second recording are
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Figure 4.14. (i) and (ii) Fingerprint-blocks from two synchronized recordings
from different cameras of event 7 (see Table 4.2). (iii) The difference between (i)
and (ii) is given by black color.

overlapping by a factor of 255/256 to achieve maximum synchronization accu-
racy. If there are X1 and X2 sub-fingerprints in two recordings, the total number of
fingerprint-block comparisons K is given by:

K = bX1/256c · (X2−255) . (4.15)

Figure 4.15 shows the BER between fingerprint-blocks between two record-
ings from different cameras, which contain conversations of durations 83 sec and
45 sec (see Table 4.2, event 7). The darker colors show lower BER. The horizontal
line on the colorbar represents the threshold T , such that the blocks darker than the
threshold are considered a match. The periodically appearing dark blocks along
the diagonal line in Figure 4.15 indicate matches between the two recordings. Fig-
ure 4.16 is a zoomed-in view of a seemingly dark block in Figure 4.15, which
shows gradual change in BER along the consecutive fingerprint-blocks. The grad-
ual change is caused mainly by the overlapping sub-fingerprints in the consecutive
fingerprint-blocks used for matching, where there is a little change in the neighbor-
ing fingerprint-blocks. The BER values of multiple neighboring blocks may fall
below the threshold T .

As seen in Figures 4.15 and 4.16, multiple blocks satisfy the matching condi-
tion of BER less than T . Sometimes there are outliers or false matches, for example
due to moments of silence in both recordings. Each of the matching blocks refers
to a possible synchronization offset, represented by ∆ j. The calculation of the pos-
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Figure 4.15. The calculated bit errors from two camera recordings of event 2 (see
Table 4.2). The bold line on the colorbar indicates the 35% threshold value on the
gray colorscale. The fingerprint-blocks having darker colors below the threshold
are considered as matches.
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Figure 4.16. Zoomed-in part of Figure 4.15 showing multiple fingerprint blocks
that represent matches.
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Figure 4.17. Example of a typical distribution of the possible synchronization
offsets (∆k) and corresponding scores (Score∆k ), from event 3 (see Table 4.2),
based on the results of the fingerprint matching. The synchronization offset with
the highest score is selected as the synchronization offset.

sible synchronization offsets and their corresponding BERs (E∆ j ) is given by:

∆ j = x− y : BERx,y ≤ T and (4.16)

E∆ j = BERx,y . (4.17)

Where:

x ∈
{

1, . . . ,
X1

256

}
and y ∈ {1, . . . ,X2−255} .

To select the most reliable synchronization offset ∆Sync, we apply a voting
scheme on the unique offsets ∆k out of all the possible synchronization offsets.
The score of a unique synchronization offset is proportional to the number of times
the offset occurs as a possible synchronization offset and the total sum of the dif-
ference between T and the BERs corresponding to the offset. The score calculation
of a synchronization offset ∆k can be represented as:

Score∆k = |∆k| ∑
e∈E∆k

(T − e). (4.18)

|∆k| is the number of times a synchronization offset ∆k is repeated, which is used
as a weight factor for the score calculation. Since the score gets multiplied by the
number of occurrences of a synchronization offset, the offsets due to outliers get
low scores as the chance of their reoccurrence is very low. The difference between
T and BER represents the degree of a match. Finally, the highest scoring ∆k is
selected as the synchronization offset ∆Sync.

The reliability of audio-fingerprint match is thoroughly described in [Haitsma
& Kalker, 2002]. The method is proven to be robust under significant audio noise
and distortions. Figure 4.17 shows the scores of different possible synchronization
offsets. The difference between the highest score and the second highest score
shows a reliable selection of the synchronization offset in the test data-set.
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Figure 4.18. Visual representation of the first band audio-onsets of two synchro-
nized recordings from event 3 (see Table 4.2). The horizontal axis shows the
frames along time and onset detected in a frame is given by value 1.

4.5 Synchronization using audio-onsets
Onsets are the perceived starting points in an auditory event, with increase in signal
power and changes in spectrum [Bello, Daudet, Abdallah & Others, 2005]. They
are mainly used for analyzing rhythm, such as beat and tempo, in music. Onsets
can be seen as flashes in audio. Since the multiple-camera recordings may contain
similar audio, it is expected that two recordings from an event will contain cor-
related onsets. The onsets represent only positive changes in energy and not the
energy throughout the signal as fingerprints.

4.5.1 Onset extraction
We have used the onset extraction method described in [Schrader, 2003]. In
this method, the audio signal is divided into 24 bands based on the Equivalent-
Rectangular-Bandwidth scale, a psychophysical loudness-frequency scale. Each
of these bands is analyzed in a sample window of three seconds, where an energy
measurement is generated for every 11.6 msec representing an audio frame. Then
the difference in energy is calculated across consecutive frames. If the resulting
difference is larger than a threshold, the audio frame is assigned an onset bit 1, oth-
erwise 0. The threshold is optimized to match with the human annotated data sets
described in [Schrader, 2003] and [Leveau & Daudet, 2004]. The overall error rates
of the method for one-by-one onset detection ranges from 42.8% to 56.6%, which
is proven in [Schrader, 2003] as comparable to existing state of the art onset detec-
tion methods [Klapuri, 2003]. The onsets from the first band of two synchronized
recordings are shown in Figure 4.18.

The present implementation of the onset extraction method described in



62

0 1 2 3 4 5

x 10
4

0

10

20

30

40

50

60

Cross−correlation sequence

C
or

re
la

tio
n−

co
ef

fic
ie

nt

Figure 4.19. The resulting coefficients of cross-correlation between onset se-
quences from the first out of four frequency bands corresponding to two recordings
from event 3 (see Table 4.2). The prominent peak indicates a possible synchro-
nization offset between the recordings.

[Schrader, 2003] allows calculation of onsets in the number of bands that are fac-
tors of 24 due to the downsampling applied in the audio signal. While extracting
onsets in a lower number of bands, the energy computed in the 24 bands is aver-
aged according to the given number of bands. Due to the averaging of the energy
of multiple bands, the energy variation in each band is reduced. Therefore, the
number of onsets per band increases with the increase in the number of frequency
bands. We extracted onsets in different number of frequency bands: 2, 4, 8, 12, 24
and tested their performance on synchronizing multiple-camera recordings.

4.5.2 Onset matching
The onset sequences from multiple frequency bands of a recording were compared
with the sequences from the corresponding bands of another recording using cross-
correlation. The method operates as a “sliding dot-product” between two onset se-
quences resulting in a sequence of correlation coefficients of length 2m+1, where
m is the length of the longest sequence. The possible synchronization offsets are
computed as differences between the indices where the maximum cross-correlation
coefficient occurs and m+1. The value of the correlation coefficient increases with
the number of onset matches and decreases with the misses. Figure 4.19 shows the
cross-correlation coefficients between onset sequences from the first out of four
frequency bands corresponding to two recordings from event 3 (see Table 4.2). A
sharp peak in the coefficients suggests the sequences are correlated, while the coef-
ficients from uncorrelated sequences resemble noise. The correlation between the
onset sequences of corresponding frequency bands from two recordings result in
a set of possible synchronization offsets. To select the most reliable synchroniza-
tion offset, we applied a scoring scheme on all the unique possible synchronization
offsets. The score is directly proportional to the number of times the unique offset
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Figure 4.20. Examples of possible synchronization offsets (∆k) and their scores
(Score∆k ) from the onset sequence correlation between 8 corresponding frequency
bands from the recordings of event 4 (see Table 4.2). Computation of the synchro-
nization offset is accomplished in (a) and (c), but failed in (b).

reoccurs. The score computation for the unique synchronization offset ∆k can be
represented as:

Score∆k = |∆k| . (4.19)

The highest scoring offset is selected as the synchronization offset, provided
the score is equal to at least half of the number of bands used in the onset ex-
traction. This threshold on the score is set after careful observation in the test
runs to avoid false positives. For example, if there are 8 bands, an offset should
score at least 4 to be selected as the synchronization offset. Figure 4.20 shows
three typical examples of possible synchronization offsets and their scores from
the onset sequence correlation between 8 corresponding frequency bands from the
recordings of event 4 (see Table 4.2). Figure 4.20a shows successful computation
of the synchronization offset, where one of the possible offsets scores 5 while the
rest of the offsets score 1. Figure 4.20b shows an unsuccessful synchronization,
where different frequency bands result in different offsets and all of them score 1.
Figure 4.20c shows another successful computation of the synchronization offset,
where all frequency bands result in the same offset with the score 8. The difference
in score between the synchronization offset and the second highest scoring offset
gives a measure of reliability of the computed synchronization offset. For example,
the synchronization offset computed in Figure 4.20c is more reliable than the one
computed in Figure 4.20a.

In order to test the robustness of the onset cross-correlation method on synchro-
nization and the reliability of the computed synchronization offsets, we randomly
added and deleted a predefined number of onsets in two onset sequences corre-
sponding to recordings of event 3. The onsets were extracted in 8 frequency bands,
where one sequence contained 70-584 (average 251) onsets per band and another
sequence contained 195-612 (average 330) onsets per band. The changes, due to
addition and deletion, in the number of onsets were applied equally in both se-
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Figure 4.21. Scores obtained by the first and the second highest scoring offsets in
event 3 (see Table 4.2) represented by a bold line and a thin line, respectively. The
scores represent the average scores obtained over 2100 iterations after randomly
(a) deleting and (b) adding onsets by the amounts, given in the horizontal axis.

quences and the test was repeated over 2100 iterations for each amount of change.
The number of iterations was chosen to allow observing convergence in the scores.

Figure 4.21a shows the average scores obtained by the first and the second high-
est scoring offsets for different amounts of deleted onsets. The score corresponding
the highest score decreases and the second highest score increases gradually with
the amount of the onsets deleted such that they become very close when 80% of
the onsets were deleted. The reliability of the synchronization offset is effected
only when high amounts of onsets are deleted. Figure 4.21b shows the scores cor-
responding to the two highest scoring offsets when different amounts of onsets are
added. The difference in scores between the highest and the second highest scores
remain above 7 times in all the cases. The reliability of the synchronization offset
is not influenced even when the additional onsets are doubled. The reliability of
the synchronization offset started to decrease when adding 300% of the onsets.

Figure 4.22 shows the number of successful synchronization over 2100 itera-
tions when different amounts of onsets are randomly added or deleted in the onset
sequences same as used in Figure 4.21. The synchronization was successful in all
cases until the onsets were added or deleted by 60%. While there was no effect on
synchronization until 100% of the onsets were added, however, the number of syn-
chronized cases dropped sharply when more onsets were deleted, such that only
9% of the cases were synchronized when 90% of the onsets were deleted. The
robustness of the onset matching method is affected more by deleted onsets than
by added onsets, when the rate of acceptable addition or deletion is in the range of
60% to 100%.

When similar tests were performed on different numbers of onset bands, we ob-
served that the robustness of the synchronization offset, both for adding and delet-
ing offsets, increases with the number of bands. Similarly the rate of successful
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Figure 4.22. Number of times the correct synchronization offset is obtained in
event 3 (see Table 4.2) over 2100 iterations, after randomly deleting (◦) and adding
(+) onsets by the amounts given in the horizontal axis.

synchronization of the recordings, both for adding and deleting offsets, increases
with the number of bands. For example, in 2 band onsets, only 20% of the cases
were synchronized when 50% of the onsets were deleted while in 24 band onsets
95% of the cases were synchronized when 80% of the onsets were deleted. The
two scores decrease gradually and become closer with the increasing amount of
deleted flashes.

Both onset and flash sequences are represented by a binary vector and, in prin-
ciple, dynamic programming is applicable to both. Dynamic programming is ben-
eficial in flash matching because the complexity of the method depends on the
number of flashes, which are very sparsely distributed in a video. However, the
distribution of onsets is more dense, for example in a 12 min long recording from
event 2 (given in Table 4.2) the number of flashes is 80 while the number of on-
sets ranges from 1030 to 2292 in four bands. Therefore, dynamic programming
becomes computationally very expensive and less convenient for onset matching.

4.6 Experimental evaluation
The three realizations of automated synchronization using flashes, audio-
fingerprints and audio-onsets were tested on multiple camera recordings made in
different occasions in real life conditions. All the recordings consist of a single
camera-take captured by independent cameras with the frame rate of 25 frames per
second. The flashes and audio in the recordings were not controlled or artificially
introduced after capturing.

The description of the event, number of cameras, duration, number of detected
flashes and the synchronization results using flashes, audio-fingerprints and audio-
onsets are given in Table 4.2. Events 1 (wedding) and 2 (dance) were recorded
by amateurs using DV camcorders and the flashes were generated by digital-still
cameras of other participants to the event. In event 1 the videos were overlapping
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for about 75% of the total time and in event 2 the shorter recording was completely
overlapping with the longer recording. The resolution of the videos was 720×576
and the audio sample rate was 48 KHz.

Events 3 and 4 were concert recordings downloaded from YouTube, with video
resolution of 320×240 and audio sample rate of 22 KHz. Event 3 (Concert1)
was held in an indoor theater with a capacity of 250 people. Event 4 (Concert2)
was held in a big stadium with a capacity of 90 000 people. In both events not
all the recordings were overlapping. Figure 6.9 in Chapter 6 shows the synchro-
nized recordings of events 3 and 4 as Jason1 and Metallica1, respectively. The rest
of the events (outdoor-walk, piano-play and office-talk) were captured using DV
camcorders. Event 5 (outdoor-walk) contains a casual conversation between four
people walking along a lake amid traffic and wind noises. Event 6 (piano-play)
contains a piano recital at a party amid a strong crowd noise. Event 7 (office-talk)
contains a conversation among three colleagues in an office. In all three events the
shorter recordings are completely overlapping with the longer recordings. Except
for two high-definition videos in events 5 and 7, all the other recordings in events
5, 6 and 7 have a video resolution of 720×576 and an audio sample rate of 48 KHz.
All the test recordings are made publicly available in YouTube via the link given in
[YouTube, 2009b], except for event 1 due to its long duration and privacy issues.

The number of cameras used in the test data set varies from 2 to 10. The du-
ration of the recordings ranges from 20 seconds to 55 minutes. The overlap varies
from 20 seconds to 40 minutes. The number and the duration of the recordings are
selected to represent different practical cases.

The flash based realization was successful in synchronizing recordings from
events 1 and 2. Both events contain a large number of detected flashes ranging
from 37 to 80. In the case of event 3, only three out of eight recordings were
synchronized. This is due to the big differences in the number of detected flashes
(from 0 to 60). Some of the recordings of event 3 were shot far from the concert’s
stage using mobile phones that captured too few flashes. In the case of event 4,
the number of detected flashes in the recordings range from 0 to 35 and none of
the recordings could be synchronized. In the recordings from events 5, 6 and 7
no flashes were detected making the flash based realization inapplicable for syn-
chronization. The cross-correlation and dynamic programming approaches used in
matching flashes were both able to synchronize the same recordings.

The audio-fingerprint based realization was successful in synchronizing
recordings in all the events, except in event 4. Out of ten recordings in event 4
only five were synchronized using audio fingerprints. There were no cases of in-
correctly computed synchronization offset. The difficulty in synchronizing event 4
maybe be due to the concert venue: a very large stadium. The cameras were too far
apart to capture the same audio source and the recordings were more dominated by



4.7 Discussion 67

their surrounding noises. Furthermore, the audio was amplified and transmitted by
a number of loudspeakers which caused echo effects in the recorded audio.

The audio-onset based realization using different numbers of frequency bands:
2, 4, 8, 12 and 24, are given in Table 4.2. Events 1, 2, 5 and 7 were synchronized by
onset sequences of all the given number of frequency bands. However, in events 3,
4 and 6, the number of synchronized recordings increased with a higher number
of frequency bands. There were no cases of incorrectly computed synchroniza-
tion offset. The synchronization performance of using 12 and 24 frequency bands
was the same, and in both cases all recordings were synchronized except for one
recording in event 4. The recording was captured far away from the stage and the
audio was dominated by loud voices of singing crowds rather than music. The
audio-fingerprint based realization also failed to synchronize this recording. The
overall performance of the onsets in 12 and 24 frequency bands was better than
audio-fingerprints.

4.7 Discussion
A successful synchronization of multiple-camera recordings depends on the video
and audio quality of the recordings. It is difficult to quantify the quality metrics
for synchronization because all of our test recordings are from non-professional
cameras with diverse quality and without any standard reference. For example, all
the videos downloaded from YouTube contain the same resolution and frame rates,
however, the perceptual quality of the recordings are very different. Therefore, we
discuss here some general observations made during the experiments.

If a recording is shaky, the frames may contain light sources which resemble
flashes causing false detections or capture a flash only in a region of a frame causing
missed detections. In the case of an audio recording, if the main audio source, for
example music in a concert recording, is corrupted with other audio sources and
noises such as voices from audience and echo, the fingerprints and onsets are likely
to be different in different recordings. In these cases it becomes difficult to match
the recordings.

The synchronization results are also affected by the duration and the number
of recordings. A large number of recordings and a long duration create a bigger
search space, which increases the likelihood of finding a match. For example, in
events 3 and 4, when a pair of recordings failed to match, they were synchronized
via a third recording.

The flash based realization is applicable for events where multiple flashes occur
and the distance between the recording cameras is not very large, for example
events 1, 2 and 3 of Table 4.2. All these recordings were made during events
in small areas with no more than 200 people. The chance of capturing the same
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flash by different video cameras is high in small areas. In case of events hosted in
big areas, for example event 4, there is a big difference in the number of flashes
captured by the video cameras and most likely different flashes are captured by
different video cameras.

The performance of both cross-correlation and dynamic programming ap-
proaches were the same on synchronizing the test recordings. The complexity of
the correlation depends on the number of frames, while in dynamic programming
the complexity depends on the number of flashes. Since the number of flashes is
very low in comparison to the number of frames in a video, dynamic programming
is faster in matching flash sequences, especially in case of very long videos like the
ones of event 1 in Table 4.2. However, the cross-correlation was more robust and
reliable when flashes were randomly deleted or added. Therefore, cross-correlation
should be used when complexity is not an issue.

The flash based realization is recommendable in case of events in small area
where flashes can also be generated by other means if still-camera flashes are not
used, for example in meeting room scenarios [Michel & Stanford, 2006] and [Car-
letta, 2007], where different cameras record an official meeting. It is also applicable
when no audio signal is present like in surveillance applications or when noise is
very loud such as in parties.

Flashes are used only in indoor or during night events and are not always cap-
tured in recordings due to shutter closure or different fields of view of video cam-
eras than that of the still camera producing the flash. The use of audio based real-
izations is more practical because audio is very commonly available in recordings.
When multiple cameras are present in an event, there is a fair chance that they will
record the ‘same’ audio even though they might be pointing at different objects.
The realizations based on audio succeeded to find the synchronization offset in
cases where it was very difficult for a human ear to find the synchronization point
because of the presence of noise, especially from the crowd.

The audio-fingerprint and audio-onset based realizations provide the most re-
liable synchronization results. Audio-fingerprints represent the signal energy level
in 32 bands, while onsets represent only the rise of the signal energy in the given
number of bands. Therefore, audio-fingerprints are more vulnerable to echoes and
other additional noises like in event 2 where only five out of ten recordings were
synchronized. Whereas in the case of onsets, if the level of distortions in consec-
utive frames is about the same, the difference in energy may not be large enough
to influence onsets. Additionally, onsets have more advantages. Since in our re-
alizations onsets use at most 24 bands, compared to 32 bands in fingerprints, the
size of the onset sequences are smaller in comparison to the fingerprints. For ex-
ample, the size of a 12 bands onset sequence is 2.6 times smaller than that of the
fingerprints. Furthermore, onset sequences are more compressible because the dis-
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tribution of onsets, bit 1, is more sparse than in fingerprints. Another advantage
is that the onset based realization can be scaled according to the available com-
putational resources, since onset performance on synchronization improves with
the increase in the number of frequency bands. For example, in cases when the
number of videos to synchronize is very large, such as videos from the same event
in YouTube and video management systems as described in [Kennedy & Naaman,
2009], it is highly recommendable that the synchronization offset is first computed
on 4 band onsets and if some videos can not be synchronized then higher bands
can be used.

In terms of reliability of a match, audio-fingerprint is proven as highly reliable
against different kinds of signal degradation and additional noises, as reported in
[Haitsma & Kalker, 2002]. In flash sequence matching, the reliability of a match
has a higher decrease rate for missing flashes, than for additional flashes. A simi-
lar trend is observed in onset sequence matching, however, onsets are found to be
more robust and reliable than flashes. In our experiments, when 50% of flashes
were deleted randomly in two test sequences, synchronization was possible only in
25% of the total 2100 cases, whereas when 50% of the onsets were deleted from the
4 bands onset sequences, 91% of the total 2100 cases were synchronized. The bet-
ter performance of onsets is due to the large number of onsets in multiple bands in
comparison to the small number of flashes in a single stream. The availability of a
larger number of onset bits in onset sequences allows more opportunities for match-
ing. Since increasing the number of bands used in onset extraction also increases
the number of onsets per band, the robustness of the onset sequence matching in-
creases with the number of bands. The audio-fingerprinting method was developed
for comparing original music with unknown or low-quality recordings. Similarly,
onset extraction was developed for tempo detection in music recorded in studio.
Therefore the methods are not meant for analyzing audio from non-professional
video recordings with unknown or most likely low quality. Synchronization results
could be improved if the methods would be optimized for matching low quality
audio.

In the flash, fingerprint and onset based realizations, we extracted features from
the audio and the video stream of a recording and compared them with the corre-
sponding features from another recording. In each of the realizations, the synchro-
nization offset is selected from a set of possible synchronization offsets based on
how many times an offset has been referred and the value indicating a match, e.g.
the matching cost, BER. The multiple realizations, especially an audio and a video
feature, can be combined into one system for a more reliable matching. In such
a system, the feature extraction and comparison are carried out separately such as
in flash, fingerprint, and onset units. Then the possible synchronization offsets re-
sulting from the different units are combined into a single set. The offsets can then



70

Table 4.2. Test data-set and synchronization results using flashes, audio-
fingerprints and onsets. The audio-onset results are given for different frequency
bands: 2, 4, 8, 12 and 24.

Event Num. Duration Num. Num. synchronized recordings
Cameras Flashes Flash Fp Onset

1. wedding 2 44 – 55 min 37-50 2 2 2, 2, 2, 2, 2
2. dance 2 11 – 12 min 43-80 2 2 2, 2, 2, 2, 2
3. concert1 8 20 – 368 sec 0-60 3 8 6, 8, 9, 9, 9
4. concert2 10 59 – 339 sec 0-35 0 5 4, 9, 9, 9, 9
5. outdoor-walk 2 30 – 38 sec 0 0 2 2, 2, 2, 2, 2
6. piano-play 2 71 – 79 sec 0 0 2 0, 0, 0, 2, 2
7. office-talk 3 45 – 83 sec 0 0 3 3, 3, 3, 3, 3

be evaluated depending on the scores from the individual units and the number of
units which refer to the offset. The combined scoring method could increase the
reliability of the synchronization offset even more.

4.8 Conclusions
We proposed an automated synchronization approach for multiple camera record-
ings based on visual and audio features. We developed three different realizations
of the approach. The first realization is based on still-camera flashes. In this real-
ization videos are represented by binary vectors representing frames with or with-
out flashes, according to the results of a flash detection algorithm. The matching
between these two vectors is treated as an inexact string matching problem and
solved using cross-correlation and dynamic programming. The other two realiza-
tions of the synchronization approach are based on audio-fingerprints and audio-
onsets. We used the fingerprint extraction method described in [Haitsma & Kalker,
2002] and computed the synchronization offset based on bit error rate calculation.

In our experimental evaluation, the audio-fingerprint and onset based realiza-
tions were able to synchronize most videos in all test cases, while the flash based
realizations succeeded in synchronizing some cases. The choice between flash,
audio-fingerprint and onset based realization depends on the type of application.
The flash based realization is useful for recordings containing flashes and indoor
events localized within a flash range like weddings, meetings etc. It is independent
of the presence of audio. To compute the synchronization offset, two videos should
capture at least two common flashes. The audio based realizations are applicable in
recordings that contain audio. The audio based realizations can be applied in any
multiple-camera recording that contain at least three seconds of common audio.
We also tested the robustness of the flash and onset based realizations by adding
and removing flashes and onsets, respectively, at random frames and computing
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the synchronization offset. The onsets are found to be more robust and result in
more reliable synchronization offsets than flashes.

The audio-onsets based realization is found to be the most successful for syn-
chronizing multiple camera videos. The performance of audio-onsets increases
with the increase in the number of bands. In our experiments, 12 band onsets were
able to synchronize 29 out of 30 test recordings. Increasing the number of bands
to 24 did not further improve the result. The audio-fingerprint based realization
was successful in synchronizing 25 out of 30 test recordings and failed in cases
where the audio was of low quality due to noises and echo. In addition to bet-
ter performance, the onset sequences are smaller in size and more compressible
than fingerprints. The onset based realization can also be scaled according to the
available computational resources, since performance on synchronization improves
with the increase in the number of frequency bands. Such scalable realization is
useful in synchronizing very large number of videos like in YouTube and Yahoo!
video repositories.

The synchronization precision in the flash based realization is determined by
the lowest video frame rate among the given recordings. Therefore, for combin-
ing multiple camera videos, as required by the standard set in [BT.1359-1, 1998],
the minimum frame rate of a recording should be 22.2 frames per second. In our
test data, which consisted of multiple videos recorded in different events using a
constant frame rate of 25 frames per second, the precision of a synchronization
offset in the flash based realization is±40 msec. The synchronization based on the
audio results in higher synchronization precision, because audio is sampled with a
higher frequency than video. In our audio based methods, an audio frame is gen-
erated every 11.6 msec. Therefore, the method offers a synchronization precision
of ±11.6 msec. It can be concluded that synchronization among multiple camera
recordings can be achieved using audio-visual contents of the recordings.

In the mashup generation problem from multiple-camera concert recordings,
the test recordings are comparable to events 3 and 4. In a concert the main audio
source is the performer, however, it is most likely affected by noises from the audi-
ence and echo. Since the audio-onset and audio-fingerprint based realizations were
found to be successful in synchronizing recordings with similar noise cases, both
methods are applicable in our mashup generation.





5
Feature analysis

In Chapter 2, we elicited requirements for generating a mashup from multiple-
camera recordings captured by non-professional users in a music concert. Then
we proposed a solution approach for the mashup generation problem in Chapter 3.
According to the solution approach, in this chapter we propose methods to estimate
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Figure 5.1. Schematic representation of the proposed mashup generation prob-
lem, in which the feature analysis step is highlighted.
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the degree of fulfillment of the Requirements 2.2 (image quality), 2.3 (diversity)
and 2.5 (suitable cut-point) in the recordings based on the audio-visual features.
Figure 5.1 shows the proposed mashup generation approach with the feature anal-
ysis step highlighted. The degrees of fulfillment of the requirements are measured
in terms of numeric values, called scores. The higher the degree of fulfillment, the
higher the corresponding score. We apply different content analysis techniques to
extract features and compute the scores based on image quality, diversity and cut
point suitability.

The rest of the chapter is organized as follows. Section 5.1 describes the esti-
mation of image quality based on blockiness, blurriness, brightness and shakiness
of the video frames. Section 5.2 describes the estimation of cut-point suitability
for the video frames based on the changes in audio, camera motion and bright-
ness. Section 5.3 describes the estimation of diversity based on the image distance.
Finally, Section 5.4 presents conclusions of the chapter.

5.1 Image quality estimation
According to Requirement 2.2 (image quality), formalized in Section 3.4.2, the
image quality of a mashup and its clips should be as high as possible. As a measure
of the degree of fulfillment of this requirement, we computed the image quality
score of the frames in a video by extracting and analyzing different visual features.
Next, the image quality score of a clip is computed by averaging the scores of the
frames contained in the clip.

The quality estimation of an image is widely used in applications like codec
design and display calibration. In these applications, the image quality is measured
by means of comparing the output or processed image against the input or reference
image in terms of metrics like mean square error or peak signal to noise ratio. In
our recordings, however, there is no information available about the actual scene or
the camera settings that can be used as a reference for estimating the image quality.
Therefore, we used a no-reference, also called blind quality assessment method,
which estimates the image quality based on objective measures of different features
that influence the perception of quality.

Prior works on no-reference image quality estimation were done in different
contexts such as removing artifacts in home videos [Yan & Kankanhalli, 2002],
developing perceptual quality models [Li, 2002], [Wang, Sheikh & Bovik, 2002]
and estimating network performance in a real-time video transmission [Yang, Wan,
Chang & Wu, 2005]. In [Yan & Kankanhalli, 2002] the lighting and shaking ar-
tifacts in home videos are first detected, measured and then removed. The quality
of a JPEG compressed image is estimated in [Wang, Sheikh & Bovik, 2002] ac-
cording to the blockiness and blurriness measured in the image, while in [Li, 2002]
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(a) B = 0.01 (b) B = 0.09 (c) B = 0.17

Figure 5.2. Examples of test frames with (a) low, (b) medium and (c) high block-
iness. The measured blockiness score is given by B.

according to the edge sharpness, random noise level, ringing artifacts and blocki-
ness. In [Yang, Wan, Chang & Wu, 2005], video quality is measured based on the
spatial distortions and temporal activities along the frames.

Since there are no standard features and analysis techniques on image quality
estimation, we looked for methods to measure some of the popular quality factors
in videos: blockiness, blurriness, brightness, noise and shakiness. We applied the
methods on different videos from multiple-camera recordings captured during con-
certs and evaluated the relevance of the quality factors. The evaluation was done
by two experts in video processing at the Philips Research. We showed them 12
test frames from four concert clips and asked for the factors and their level of influ-
ence on the perception of quality. The most prominent quality factors identified by
the experts were blockiness, blurriness, brightness and shakiness. The influence of
noise on the test frames was perceived as minimal because all the test recordings
were captured digitally. In the following sections we describe the methods used for
measuring the blockiness, blurriness, brightness and shakiness factors.

5.1.1 Blockiness
The widely used lossy video codecs, such as MPEG, JPEG2000, H.26x use dis-
crete cosine transform (DCT) based compression. They require segmenting a video
frame into non-overlapping blocks, typically containing 8×8 pixels, and quantiz-
ing the blocks separately. Blocking artifacts, which are a major source of distortion
in such compression techniques, are caused by discontinuities at the block bound-
aries. Figure 5.2 shows some test frames with different amount of blockiness.

Existing methods for blockiness measurement are based on the degree of dis-
continuity or strength of the edges at the block boundaries (typically, every 8th

horizontal and vertical pixel of an image). In [Wang, Sheikh & Bovik, 2002] block-
iness is measured based on the difference in luminance and signal activity across
the block boundaries. If the difference is high in luminance and low in signal ac-
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tivity, then the boundary pixel is considered as blocky. In [Gao, Mermer & Kim,
2002] the discontinuity is measured by the luminance variation in block boundaries
of the DC component of an image. Then two thresholds, Thigh and Tlow are used to
measure the strength of the discontinuity, such that if the discontinuity above Thigh,
the boundary pixel is considered a real edge, called hard edge, of the image and if
the discontinuity is below Thigh but above Tlow the boundary pixel is considered a
soft edge, which is the effect of blockiness

The method proposed in [Gao, Mermer & Kim, 2002] requires computing the
DCT for every video frame. Considering the high computational cost of DCT,
we did not apply the method for our multiple-camera recordings. We tested the
method proposed in [Wang, Sheikh & Bovik, 2002] on the concert video frames
obtained from YouTube. The results did not correspond to the perceived level of
blockiness by our experts. The failure to measure the blockiness in the test frames
maybe due to the low visual quality of the test images such that the signal activity
measure did not provide any reliable information or perhaps many hard edges were
miscalculated as being the effect of blockiness.

We propose an algorithm for blockiness measurement based on detecting edges
in an image and applying thresholds to separate the hard edges from the soft edges,
similar to the approach in [Gao, Mermer & Kim, 2002] but on a luminance frame.
The number of soft edge pixels at the block boundaries represents the blockiness
in the image. The following paragraphs describe the blockiness measurement in
horizonal direction. A similar approach is used in the vertical direction.

1. In order to detect edges, a horizonal Sobel mask (Sh) is applied by con-
volving with the grayscale frame Y , derived from the YCbCr color-space of
the image. The resulting gradient image E ′h indicates discontinuities in the
image. The operation can be represented as:

E ′h = Y ∗Sh, (5.1)

where, Sh =
1
3



−1 −2 −1

0 0 0
1 2 1


 (5.2)

and ‘∗’ represents the convolution operation. The gradient of an image is
given by the summation of the horizonal and vertical gradients:

E ′ = E ′h +E ′v. (5.3)

2. The thresholds Tlow and Thigh are applied on the gradient image. The gradient
values higher than Thigh correspond to hard edges while the gradient values
higher than Tlow and lower than Thigh correspond soft edges. The operation
can be represented as:
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Eh(i, j) =
{

1 : if Tlow < E ′h(i, j) < Thigh
0 : otherwise.

(5.4)

The values of Tlow and Thigh are chosen as 50 and 150, respectively based on
their performance on the test data-set.

3. The soft edges are searched in the horizontal direction in every 8th pixel. In
a blocky image, ideally, all the 8 consecutive pixels in the boundary should
correspond to the soft edge. However, a few pixels might indicate otherwise
due to noise or other artifacts. Therefore, based on the results on our test
data-set we set the threshold to 6 pixels, such that if the number of bound-
ary pixels corresponding to the soft edge of the block are more than 6, we
consider the boundary a soft edge. The average number of boundaries rep-
resenting the soft edges indicate the amount of blockiness, which can be
represented as:

Bh =
1

(bW/8c−1)(bH/8c−1)

bH/8c−1

∑
i=1

bW/8c−1

∑
j=1

βi j, (5.5)

where, βi j =





1 : if
8

∑
k=1

Eh (8i,8( j−1)+ k) > 6

0 : otherwise,
(5.6)

W and H represent the rows and columns of the image, respectively. The blockiness
score B is computed as an average of both horizontal and vertical blockiness:

B =
Bh +Bv

2
. (5.7)

The range of B lies between 0 and 1, where a higher value indicates more
blockiness. Figure 5.2 shows some example test frames to different amount of
blockiness. The blockiness score B on the test frames corresponds with the subjec-
tive evaluation of blockiness by the experts described in Section 5.1.

5.1.2 Blurriness
Blurriness is characterized by reduction of edge sharpness. It can be caused by
coarse quantization during compression, filtering for blockiness or noise during
decoding and the lens out of focus or shakiness of the camera during capturing.
Figure 5.3 shows some test frames with different amount of blurriness. Related
works in blur detection are based on measuring signal activity [Wang, Bovik &
Evans, 2000], contrast and orientation of an edge [Li, 2002], and average spread of
the edge [Ong & Et. al., 2003].

When we implemented methods described in [Ong & Et. al., 2003] and [Wang,
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(a) Z = 3 (b) Z = 3.9 (c) Z = 12

Figure 5.3. Example of test frames with (a) low, (b) medium and (c) high blur.
The measured blurriness score is given by Z.

Bovik & Evans, 2000] and tested them on our concert video frames, the blurriness
measurement by the former method was a better match to our experts’ evaluation,
described in Section 5.1. Therefore we selected the method as described in [Ong
& Et. al., 2003] for our blur measurement, which is based on the measurement
of the spread of the edges. Firstly the edges are detected, then the spread of the
slope of the pixels corresponding to the edge is measured in specific directions.
The following paragraphs describe the steps followed in the method.

1. In order to detect the edges in an image, the horizonal and vertical Sobel
masks are applied in the image Y to obtain the gradients as described in
Equations 5.1 – 5.3. The resulting horizontal and vertical gradient images
are combined to obtain the amplitude (G) and direction (φ) for every pixel:

G =
√

E ′v2 +E ′h2, (5.8)

φ = arctan
(

E ′v
E ′h

)
. (5.9)

A pixel is declared as an edge pixel if its gradient value is higher than a
threshold T . Based on the experimental results on our concert video frames
we set the value T = 100.

2. The gradient’s direction (φ), which ranges from 0 to 360◦, points to the di-
rection of increasing luminosity. The direction of an edge is perpendicular
to the direction of a gradient. Since each pixel has 8 neighboring pixels, to
determine the gradient’s direction towards one of the neighboring pixels, the
range 0 to 360◦ is divided into 8 quadrants. Each quadrant represents the
direction of a neighboring pixel. For example, φ = 170◦ points to a pixel
in the horizontal direction, while φ = 45◦ points to a pixel in the diagonal
direction. Figure 5.4a shows the 8 quadrants representing the direction of
φ and an example gradient from direction ‘-’ to ‘+’ given by a dotted line,
whose corresponding neighboring pixel is shown in Figure 5.4b.
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(a) (b)

Figure 5.4. (a) The eight quadrants of the gradient direction. The direction of
the edge is given by an arrow and the direction of the gradient is given from ‘-”
to “+”. The dotted line shows an example of a gradient direction of 45◦. (b) The
direction of search for the edge spread corresponding to the gradient direction of
45◦. The pixel corresponding to an edge is represented by a gray square with a
dark dot in the middle and the pixels on the diagonal directions, given by the two
gray squares, are searched for measuring blurriness.

3. The spread of an edge is measured in two sides according to the direction
given by φ. For every pixel corresponding to an edge in Y frame, the num-
ber of pixels are counted towards and opposite direction of φ as long as the
luminance value keeps on increasing and decreasing, respectively. The sum
of the counts in both directions gives the measure of the spread of an edge
pixel.

4. The blurriness is estimated by dividing the total number of pixels corre-
sponding to the edge spread by the number of pixels corresponding to the
edge. If there are m pixels representing an edge and se pixels representing
the total edge spread, then the blurriness score (Z) is calculated as:

Z =
{ se

m : if m 6= 0
0 : otherwise.

(5.10)

The lower bound of Z is 0, when no edges are detected in an image or when
no pixel corresponds to the edge spread. The upper bound of Z is limited by the
possible edge spread, which is the number of pixels along the diagonal direction of
the image. Figure 5.3 shows some test frames and their corresponding blurriness
score. The blurriness score Z on the test frames corresponds with the subjective
evaluation of blockiness by the experts described in Section 5.1.
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5.1.3 Brightness
The brightness of an image is attributed to the visual perception of light in an im-
age. In previous works [Yan & Kankanhalli, 2002] and [Campanella, 2009], the
average luminance and contrast are used for brightness estimation. In our observa-
tion of the concert recordings, we found frequent occurrence of frames containing
pixels, which are clipped by the maximum and minimum luminance range 255 and
0, respectively. Such pixels are called burned pixels and frames containing these
burned pixels are called burned images. Burned images are caused by a very bright
light source against a camera or very dark scenes. An image with high bright-
ness and contrast values is desirable for its clarity and sharpness, while burned
pixels are undesirable. To measure the brightness of an image we used the aver-
age luminance, contrast and the amount of burned pixels. The method followed in
computing brightness is described below:

1. The average luminance Il of a frame is given by the mean of the pixel values
corresponding to a gray scale image Y . The calculation is represented as:

Il =
1

W ×H

W

∑
i=1

H

∑
j=1

Y (i, j). (5.11)

The average luminance value ranges from 0 to 255. In a typical concert
setting, except for the outdoor concerts, lights are mainly focused towards
the stage and the rest of the venue is poorly lit. The recordings from the
audience suffer from poor luminance. Therefore, for concert videos higher
luminance is associated with a clearly visible image.

2. The contrast Iε is a measure of difference in brightness between light and
dark areas in an image. It is calculated by the spread of the luminance values
of the pixels, such as:

Iε =

√√√√ 1
W ×H

W

∑
i=1

H

∑
j=1

(Y (i, j)− Il)2. (5.12)

The contrast value ranges from 0 to 255. A low contrast image appears,
generally, flat or dull.

3. The burned pixels lie near the extreme ends (complete white or black) of the
luminance range of 0 to 255. The fraction of burned pixels Ip is calculated
as:

Ip =
1

W ×H

W

∑
i=1

H

∑
j=1

p(i, j),

where, p(i, j) =
{

0 : if 2 > Y (i, j) > 254
1 : otherwise.

(5.13)
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The amount of burned pixels ranges from 0 to 1. The burned pictures are
generally undesirable as they provide little color or texture information and
produce a very disturbing effect.

The three factors Il, Iε and Ip can be combined in multiple ways to derive a
brightness measure. Based on our experimental observation on the concert video
frames, we computed the brightness score by a linear combination of average lu-
minosity and contrast, weighted by the amount of burned pixels, which can be
represented as:

I =
Il + Iε

Ip
, (5.14)

where 0.1≤ Ip ≤ 1.
We observed in our experiments that although the frames contain some burned

pixels, they are not perceived as disturbing. Therefore, we set the minimum value
of burned pixels to 0.1 such that all the frames are considered to contain 10%
burned pixels. The minimum value of Ip also avoids division by very low values.
The lower bound for I is 0, while the upper bound is 5100, when Il = Iε = 255
and Ip = 0.1. Figure 5.5 shows the luminance, contrast, and amount of burned
pixels in example frames from concert videos. Figure 5.5a shows a very dark
frame captured when moving the camera from the audience towards the stage. The
brightness score of the image is only 2.9, with very low luminance and a high
number of burned pixels. Figures 5.5b and 5.5c show typical frames from indoor
concerts with brightness score of around 1400-1500. Figure 5.5d shows a frame
from an outdoor concert with brightness score of 2627, which has a relatively lower
contrast value but a very high luminance.

The still-camera flashes captured in the recordings cause a sharp rise in the
values of luminance and sometimes in the number of burned pixels, which might
result in very high brightness. Therefore, to avoid such situations, the flash detec-
tion technique described in Chapter 4 is applied and the brightness values of the
frames with flashes are substituted by the values of the neighboring frames.

5.1.4 Shakiness
Shakiness in a video is caused by the instability of a camera, such as when a cam-
eraman walks with a handheld camera or when he applies fast zooming or pan-
ning operations. It induces motion in unwanted and repeating directions along
the frames. In order to measure shakiness in a video stream, we used the method
described in [Campanella, Weda & Barbieri, 2007] since this method has been
successfully applied in measuring shakiness in home videos. The steps used in the
method are described below:

1. The sweeping camera motions in horizontal direction, pan, and in vertical
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(a)
Il = 0.16, Iε = 0.55,
Ip = 0.24, I = 2.89.

(b)
Il = 83.72, Iε = 88.51,
Ip = 0.11, I = 1565.

(c)
Il = 84.17, Iε = 56.48,
Ip = 0.10, I = 1406.

(d)
Il = 235.86, Iε = 26.89,
Ip = 0.10, I = 2627.

Figure 5.5. Measured brightness value (I) in example concert video frames along
with luminance (Il), contrast (Iε) and amount of burned pixels (Ip).



5.1 Image quality estimation 83

1800 1900 2000 2100 2200 2300 2400

−15

−10

−5

0

5

10

15

Frame number

P
an

 s
pe

ed
 (

sc
re

en
s/

m
in

)

Figure 5.6. Camera panning speed in a video before filtering (p), represented by
a thin line and after filtering (p f ), represented by a bold line).

direction, tilt, are calculated using a luminance projection method [Uehara,
Amano, Ariti & Kumano, 2004]. In this method, the luminance values of
every row are summed up in a vertical projection and of every column in a
horizontal projection. If the camera is moved vertically or horizontally, the
corresponding projections will also shift in the same direction. For example,
if there is a panning in the right direction, the values of the horizontal projec-
tion will shift towards right. The camera motion, pan and tilt, is calculated
by correlating the projections along the frames. The speed of the camera is
measured in screens per minute, where one screen is equivalent to the hori-
zontal dimension of the frame in case of pan and to the vertical dimension of
the frame in case of tilt. Figure 5.6 shows the panning speed of a sequence
of frames represented by a thin line.

2. A median filter is used on the calculated camera speed to remove outliers
caused by imperfections in the luminance projection correlation. The high
frequency components in the camera speed are considered as the effect of
shakiness, while the low frequency components are considered as the in-
tended camera motion. Therefore a low-pass filter (25 tabs FIR) is applied
to extract the smoothed camera motion. Figure 5.6 shows the panning speed
after low-pass filtering given by a bold line. A positive value corresponds to
panning from left to right while a negative value corresponds to panning in
the opposite direction.

3. The amount of shakiness is given by the difference in the pan and tilt speeds
before and after filtering. If p and t represent pan and tilt speeds calculated
from step 1 and p f and t f are the filtered value from step 2, then for each
frame the shakiness measure J is given by:

J =
√

(p− p f )2 +(t− t f )2 . (5.15)
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The values of pan and tilt speeds range from -187 to 187 screens per minute
[Campanella, 2009]. The limits correspond to the shift of a pixel about three
screens per second, which is perceived as noise. Therefore, the pan and tilt values
outside the range are considered as noise and not a camera motion. The shakiness
score can vary in between 0 and 264.5.

5.1.5 Discussion
The measured scores of the quality factors: blockiness (Equation 5.7), blurriness
(Equation 5.10), brightness (Equation 5.14), and shakiness (Equation 5.15) are
used in computing the image quality score of a video frame. Since the values
corresponding to the different factors have different ranges, we need to normalize
them before combining them to compute the image quality. We normalized them
with respect to their corresponding maximum values, so that the values of the fac-
tors are in between 0 and 1. The maximum values were obtained from the test
recordings captured in the concerts. Therefore, the algorithm is dependent on the
maximum values of the test set.

There are different ways to combine the factors to estimate the image quality,
such as linear addition [Li, 2002], linear multiplication [Wang, Sheikh & Bovik,
2002]. We tested the quality score computed by the two methods on our test frames.
Since the quality score using multiplication has a wider range, it is more suitable
for comparing the scores among the recordings of a multiple-camera recording.
Therefore, we used the product of the quality scores of the different factors to
compute the quality score. Since shakiness, blurriness and blockiness attribute a
negative quality, the factor values are subtracted from one. The image quality score
q of a video frame is given by:

q( f v) = I′ (1−B′) (1−Z′) (1− J′), (5.16)

where I′,B′,Z′ and J′ represent the normalized values of the factors brightness,
blockiness, blur and shakiness, respectively.

Figure 5.7 shows the quality scores of three recordings of a multiple-camera
recording (see Figure 6.9 at page 106: camera 4, 5 and 6 of concert RATM) in a
common time-line represented by frame numbers. Typically, the quality scores of
the recordings vary continuously due to many factors, for example, when a user
moves his camera from the stage view towards the audience view the frames dur-
ing transition become blurred, shaky or dark. The visualization of the frames at
different points in the curve is presented in Figure 5.8. Figures 5.8a, b and c are
synchronized frames, which correspond to the same time during the PinkPop-08
festival in Landgraaf, The Netherlands. Due to the large size of the concert arena,
the different recordings capture very different videos. Figure 5.8a shows the back
of the head of a person in the audience (dark and blurred image) with q = 0.05,
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Figure 5.7. Quality score of recordings from a multiple-camera recording (see
at page 106, camera number 4, 5 and 6 of concert RATM given in subfigure 2
of Figure 6.9) in a common time-line represented by the frame numbers. The
frames indicated by ‘∗’ and their corresponding quality scores are given in the
figure below.

(a)
q = 0.05, I′ = 0.07,

Z′ = 0.18, B′ = 0.13,
J′ = 0.04.

(b)
q = 0.28, I′ = 0.59,

Z′ = 0.26, B′ = 0.28,
J′ = 0.11.

(c)
q = 0.31, I′ = 0.53,

Z′ = 0.22, B′ = 0.24,
J′ = 0.00.

(d)
q = 0.50, I′ = 0.75,

Z′ = 0.17, B′ = 0.16,
J′ = 0.02.

(e)
q = 0.42, I′ = 0.72,

Z′ = 0.26, B′ = 0.20,
J′ = 0.00.

(f)
q = 0.11, I′ = 0.29,

Z′ = 0.47, B′ = 0.24,
J′ = 0.01.

Figure 5.8. The quality score and normalized values of brightness (I′), blurriness
(Z′), blockiness (B′) and shakiness (J′) of the frames selected in Figure 5.7.
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while Figures 5.8b and c show views toward the stage from different angles with
medium quality, where q = 0.28 and q = 0.31, respectively. Figure 5.8d shows a
frame captured after about 1 sec later than the frame shown in Figure 5.8a, where
the brightness and quality has been highly improved with q = 0.50. Figure 5.8e has
slightly higher quality, q = 0.42, than Figure 5.8b mainly due to the appearance of
a bright hand in the frame. Figure 5.8f is more blurred, darker and shakier than
Figure 5.8c which was captured about 2 sec before by the same camera.

5.2 Cut-point suitability estimation
According to Requirement 2.5 (suitable cut-point), formalized in Section 2.5, the
quality of a mashup is dependent on the suitability of the of cut-points of its clips.
As a measure of the degree of fulfillment of this requirement, we analyzed different
audio and visual features of a recording and assigned a cut-point suitability score.
The following sections describe the computation of the cut-point suitability.

5.2.1 Video cut-points
In general, cut-points in a video indicate a beginning or an end of a sequence of
visually similar frames. In the context of a mashup, cut-points indicate switch-
ing points among the clips from a multiple-camera recording. In order to find the
cut-point suitability score based on video, we used the method described in [Cam-
panella, Weda & Barbieri, 2007], which has been successfully applied in segment-
ing home-videos for editing. The method is based on camera speed and change in
brightness. The estimation of camera speed and brightness are described in Sec-
tions 5.1.4 and 5.1.3, respectively. The following sections describe the computation
of the video cut-point suitability score.

Camera motion
The camera motions, pan and tilt, represent visual changes in the horizontal and
vertical directions. Since a cut during a motion is perceived as an abrupt change
[Zettl, 2004], video frames corresponding to fast panning and tilting are considered
less suitable as cut-points. The most suitable instant for a cut is at the beginning or
at the end of the camera motion as a new sequence is going to appear.

In order to compute the cut-point suitability score, two thresholds T + and T−

are applied on the positive and negative values, respectively of the camera-speed.
The thresholds represent shift of a pixel by the speed equivalent to two screens
per minute, where a screen represents the horizontal or vertical dimension a frame
in pan or tilt, respectively. For example, if the camera-speed is between the two
thresholds, it represents a stable camera and the corresponding frames are assigned
a suitability score of 0.5. If the camera-speed is at the thresholds, the correspond-
ing frames are assigned the highest score 1 as they indicate the beginning of a new
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Figure 5.9. (a) A pan-speed from a recording. The dotted lines indicate the
thresholds, such that the frames corresponding above the threshold speeds are
considered not suitable for a cut-point. (b) The derived cut-point suitability score
(pc) corresponding to the panning speed shown in (a).

camera pan. To avoid an abrupt high score, a blur-filter is used such that it takes 5
frames to increase to score 1 from 0 and 5 frames to decrease. As the camera speed
increases above T + or decreases below T−, the cut-point suitability of the corre-
sponding frames become 0. Based on our qualitative analysis on the test videos,
the scores 1 and 0 are spread gradually over 10 frames to allow gradual progres-
sion of the score. Figure 5.9 shows a panning curve and a corresponding cut-point
suitability score. The computation of the cut-point suitability of the frames based
on panning is given by:

pc =





1 : if p = T + or p = T−,
0 : if p > T + or p < T−,
0.5 : otherwise.

(5.17)

The same procedure is applied to compute the cut-point suitability based on the tilt
speed represented by tc. The video cut-point suitability score is computed from the
pan, tilt and change in brightness, described in the next section.
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Change in brightness
Abrupt changes in brightness are commonly used for shot-cut detection in videos.
We computed the change in brightness by subtracting brightness values of consec-
utive frames in a video. The calculation is given by:

∆I =





∣∣∣ Ii+1−Ii
Ii+1

∣∣∣ : if Ii+1 6= 0 ,

0 : otherwise.

(5.18)

We applied two clipping points Th and Tl for the brightness difference, such that
if the brightness difference is less than Tl , it is considered as no change occurred
in the frame and assigned the score 0. If the difference is equivalent of Tl , it is
considered as a slight change and assigned the score 0.5. If the difference is higher
than Th we consider the change is significant in the frame and assign the maximum
score 1. Based on our observation of the test frames, we selected the values of Th
and Tl as 0.05 and 0.2, respectively, corresponding to 5% and 20% difference in
brightness between the frames. In case of frames whose brightness difference is
between the two thresholds, the cut-point suitability scores are calculated to be in
the range from 0.5 to 1. The calculation can be represented as:

Ic = 0.5+
0.5(∆I −Tl)

Th−Tl
,

where Th = 0.2, Tl = 0.05 and 0≤ ∆I ≤ 1.
The factors for computing the video cut-point suitability score: pan-speed, tilt-

speed and change in brightness are measured in the range 0 to 1. Based on our
experimental evaluation of concerts, the video cut-point suitability is calculated as:

cv =
1
3
(pc + tc + Ic). (5.19)

5.2.2 Audio cut-points
In professional music-videos, changes in the visuals are accompanied by changes
in the music, see Section 2.1.3 of Chapter 2. The changes may be caused due to
changes in speed, instruments, or vocals. The basic time unit of music is the beat,
which is an impact sound generally produced by a percussion instrument. The
number of beats in a period of time determines the tempo or the speed of the music
such that a fast piece of music contains more beats per minute than a slower song.

We tested an available algorithm, described in [Schrader, 2003] to detect beats
in our test recordings captured by multiple cameras during concerts. Since the al-
gorithm was designed for studio-recorded high quality audio, it failed to provide
satisfactory beat and tempo detection. An option is to use an official audio record-
ing from the concert, which generally contains a high-quality audio.
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Based on the results of tempo detection, the video frames corresponding to the
tempo changes are assigned the score 1, while other video frames are assigned the
score 0:

ca = {0,1}.
The video cut-point suitability score range from 0 to 1 and the audio cut-point

suitability score is either 0 or 1. Since all the recordings of a multiple-camera
recording contain the same audio as the main source, audio provides a measure of
cut-point suitability valid to all the recordings, where a video cut-point is dependent
on individual cameras. Therefore, to include all the audio cut-points, we computed
cut-point suitability score as a maximum of audio and video cut-point suitability
score as:

θ( f v) = max(ca,cv). (5.20)

5.3 Diversity estimation
According to Requirement 2.3 (diversity), it is desirable to have variety of con-
tent in a mashup. As a measure of the degree of fulfillment of this requirement,
we computed a diversity score between two clips based on their visual difference.
The visual difference is measured in terms of image distance between two frames
corresponding to two clips. We used the method described in [Peters & Fonseca,
2007] as the method had been successfully applied for clustering images and the
code was readily accessible.

The method measures the distance between two images based on the differ-
ences in their corresponding features. The following six image features are used in
calculating the distance:

1. The Luma represents the brightness of an image. It is the weighted sum of
linear RGB components.

2. The Color Hue is given by the H component in the HSV color space, which
represents the global distribution of color in the image.

3. The Dominant color descriptor is defined by MPEG7 in [MPEG, 2002]. The
pixels in an image are clustered in at most 8 colors, representing the domi-
nant colors of the image.

4. The Color structure descriptor is also defined by MPEG7 in [MPEG, 2002].
It expresses the local spatial distribution of colors in an image according to
a structuring element based on several image samples.

5. The Color layout descriptor is also defined by MPEG7. It expresses global
spatial distribution of colors in an image based on most significant values for
each component Y’, Cb and Cr.
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6. The Edges in 4 directions: horizontal (0 degree), vertical (90 degree), di-
agonal (45 degree), and anti-diagonal (135 degree) are computed from an
image.

The image distance between two images is computed as a linear combination of
the distances between the features. If α( f v) represents an image feature of a frame
and ψ(α( f v),α( f v′)) represents the distance between two corresponding features
from two frames, then the image distance is given by:

ψ( f v
x , f v′

y ) =
m

∑
i=1

wi ψ
(

αi( f v
x ),αi( f v′

y )
)

, (5.21)

where,
m

∑
i=1

wi = 1 ,

and m is the total number of features. The weights w of the features are selected
based on the experimental results on a large set of test images, described in [Peters
& Fonseca, 2007].

The diversity between two consecutive clips in a mashup is given by the image
distance between the last frame of the first clip and the first frame of the second
clip. Table 5.1 shows the test frames and the computed image difference between
the images. The 3rd and 4th frames have similar color and brightness resulting in the
image distance 0.09. However, the 6th and 7th frames have different brightness and
different colors, which result in an image distance of 0.40. The figure shows that
the image distances calculated by the method correspond to the visual difference
in the frames.

5.4 Conclusions
In this chapter, we measured the degrees of fulfillment of Requirements 2.2 (im-
age quality), 2.3 (diversity) and 2.5 (suitable cut-point) in the recordings. We ap-
plied different content analysis techniques to evaluate the audio and video features
and assign a numeric score for each requirement, where the higher score indi-
cates higher degree of fulfillment. The performance of different content analysis
techniques in the context of our concert video recordings, have been validated by
subjective evaluation.

The measured scores are used to select the most suitable clip for a mashup com-
position and to evaluate the objective mashup quality. In Chapter 6, we describe
algorithm for mashup composition and objective evaluation of the mashup qual-
ity. Furthermore, in Chapter 7 we evaluate the perceptual quality of the composed
mashups.
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6
Optimization

We proposed a solution approach for the mashup generation problem in Chap-
ter 3. Then based on the proposed approach, we synchronized the recordings as
described in Chapter 4, and analyzed audio and video features as described in
Chapter 5. The analysis provides a quantitative measure, score, of the fulfillment
of the Requirements 2.2 (image quality), 2.3 (diversity) and 2.5 (cut-point suitabil-

Synchronized 

recordings
OptimizationR MCut-point suitability

Diversity

Image quality

Feature analysis

Mashup composition

Suitable clip duration

Completeness

User preference

Pre-processing

Synchronization

Figure 6.1. Schematic representation of the proposed mashup generation system,
in which the optimization step is highlighted.
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Figure 6.2. A synchronized multiple-camera recording containing five recordings
(see Concert 4, Table 6.1 at page 108). The horizontal axis shows a common time-
line represented by the frame numbers. The recordings are shown by gray lines.
The clips selected for the mashup are shown by dark segments on the recordings.

ity). Figure 6.1 highlights the optimization step in the proposed solution approach
for mashup generation. In this chapter, we compose a mashup from a given syn-
chronized multiple-camera recording by selecting clips from different recordings
along a common time-line. Figure 6.2 shows an example of the clips selected for a
mashup in a multiple-camera recording containing five recordings.

As introduced in Section 3.4, we apply an optimization based approach to
select the mashup clips. We developed an objective function according to Sec-
tion 3.4.1, that provides a quality measure of a mashup by using different scores
calculated from the audio-visual feature analysis. Since the scores contain differ-
ent mean and standard deviation values, we normalize the scores before combining
them together in a linear function. The method for normalizing the values obtained
from the different feature analysis method is described in Section 6.1. The rest of
the chapter is organized as follows. In Section 6.2, we develop the objective func-
tion for composing mashups. In Section 6.3, we discuss some known optimization
problems similar to the mashup composition problem. Subsequently, in Section 6.4
we develop an algorithm, called first-fit, that searches for mashup clips such that the
objective function is maximized and the mashup constraints are satisfied. In Sec-
tion 6.5, we measure the performance of the algorithm in terms of mashup quality
given by the mashup score (MS) and compare it with the mashups generated by
two other methods, namely naive and manual. In the final Section 6.6, we discuss
the behavior of the mashup quality when changing the weights of the parameters
of the objective function.
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6.1 Score normalization
The scores computed from the feature analysis in Chapter 5: image quality score,
diversity score and cut-point suitability score provide a quantitative measure of ful-
fillment of the Requirements 2.2 (image quality), 2.3 (diversity) and 2.5 (cut-point
suitability), respectively. The score values range between 0 and 1, where a higher
score represents a higher degree of fulfillment of the corresponding requirement.
However, the mean and standard deviation of the three scores are different. As
a consequence, the contribution of the different scores in the objective function,
which is a linear combination of the scores, is biased by the score type rather than
the degree of fulfillment of the requirement. For example,if the mean value of the
image quality score is always higher than that of the diversity score, while the stan-
dard deviation values of both scores are low, then combining the two scores will
always lead to a bigger contribution of the image quality score. Therefore, we nor-
malized the image quality score, diversity score and cut-point suitability score of a
multiple-camera recording to a common average scale of zero and standard devia-
tion given by Z-score. Figure 6.3 shows the image quality and cut-point suitability
curves of a segment of a recording before and after normalization.

For the Z-score computation, we first calculated the population mean and stan-
dard deviation of the three scores from the recordings of a multiple-camera record-
ing. Then the scores were normalized by subtracting from the corresponding popu-
lation means and dividing by the corresponding standard deviations. For example,
if the population mean and standard deviation of the image quality score for a
multiple-camera recording is given by q and σq, respectively, then the computation
of the Z-score, qz( f v), from the image quality score q( f v) is given by:

qz( f v
i ) =

q( f v
i )−q
σq

, (6.1)

where q =
1
N

N

∑
i=1

1
ni

ni

∑
j=1

q( f vi
j ) , (6.2)

and σq =

√√√√ 1
N

N

∑
i=1

1
ni

ni

∑
j=1

(
q( f vi

j )−q
)2

. (6.3)

The same method is followed to compute the population mean, standard deviation
and the normalized cut-point suitability score by using the scores θ( f v), described
in Section 5.2.

The diversity score is computed based on the image distance between two video
frames corresponding to the clips from two recordings, as described in Chapter 5.
The calculation of the population mean and standard deviation becomes very time
consuming if we compute the image distance between all the possible pairs of video
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Figure 6.3. Illustration of the image quality score (thin line) and cut-point suit-
ability score (thin line) from a video segment. (a) Before and (b) after score nor-
malization.

segments in a multiple-camera recording. Therefore, we sampled the synchronized
frames and estimated the image distance among the pairs. The samples were uni-
formly distributed along the recording time. The population mean and standard
deviation were calculated from the image distances of m pairs of sampled frames.
The value of m was chosen such that the population mean and standard deviation
values converge to the calculated values. Based on our observation in the test set,
we assigned the value of m = 500.

6.2 Objective function
The objective function, as described in Equation 3.4, maximizes the mashup qual-
ity given by: image quality Q(M), diversity δ(M), cut-point suitability C(M), user
preference U(M) and semantics suitability λ(M). In addition, the mashup M is sub-
jected to satisfy a number of constraints given by the Requirements 2.6 (suitable
clip duration), and 2.7 (completeness). In this section, we present our implementa-
tion of the objective function for the mashup composition.
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The scores for image quality, diversity and cut-point suitability are obtained
from the normalized scores as described in Section 6.1. The user preference score,
described in Section 3.4.4, is required to be assigned by a user to each of the record-
ings. Similar to other scores, the preference score ranges between 0 and 1, where
an increase in the score value represents a higher preference for the recording. If
no user input is given, all the recordings are assigned, by default, the score value of
0.5 indicating that the user preferences for all the recordings are equal and neutral.
The semantic suitability requirement is not implemented in our mashup composi-
tion solution due to the reasons described in Section 3.6.

In summary, the mathematical model of our mashup composition problem, in-
cluding the optimization problem and constrains is to:

maximize MS(M) = a1Q(M)+a2C(M)+a3δ(M)+a4U(M) , (6.4)

subject to ∀S ∈M : dmin ≤ d(Si)≤ dmax , (6.5)

∀ j ∈ [1, . . . ,N],∃Si ∈M : Si ∈ R j , (6.6)

where coefficients a1, a2, a3 and a4 are used to weigh the contributions of the
different requirements. Equations 6.5 and 6.6 represent the constraints suitable
clip duration and completeness, respectively. The meanings of the symbols used in
the equations are given in Table 3.1 at page 38.

6.3 Related optimization problems
We investigated some optimization problems, which are similar to our mashup
composition. Since the problems have been solved with optimal results, we were
interested in the used algorithms and if they can be applied to maximize our ob-
jective function. In the following paragraphs we present related optimization prob-
lems and their relevance in mashup composition.

The knapsack problem [Martello & Toth, 1990] is a maximization problem of
the best choice of items that can fit into one bag. Given a set of items, each with
a weight and a value, the problem is to determine which items to put in the bag
so that the total weight is less than a given limit and the total value is as large as
possible. The problem is addressed using optimization approaches, such as dy-
namic programming and greedy [Cormen, Leiserson, Rivest & Stein, 2001]. The
greedy approach obtains a solution by making a sequence of choices, each of which
seems the best at the point where the choice is made. The dynamic programming
approach divides a problem into smaller subproblems and an optimal solution is
computed by combining the solutions of the subproblems. In the case of the frac-
tional knapsack problem, where the items can be taken in a fractional amount,
the greedy approach can be used to select the items by sorting them according to
the cost per a unit of weight. However, in the case of the 0-1 knapsack problem,



98

where each item must be either taken or left behind, the dynamic programming
approach is applied as the greedy approach cannot produce an optimal solution.
In the dynamic programming the values of different combinations of the items are
calculated to find an optimal solution. In the mashup composition problem, finding
the clips from a multiple-camera recording can be viewed as determining items to
fit in the case of a fractional knapsack problem. However, the sequence of mashup
clips should correspond to a continuous synchronized time-line, while there are
no constraints on the order of items in the knapsack problem. Additionally, the
mashup composition problem has more requirements than the knapsack problem
such as suitable clip duration and completeness.

The assembly-line scheduling problem [Cormen, Leiserson, Rivest & Stein,
2001] is about minimizing the total time required to produce an automobile. An
automobile should be processed sequentially at a number of stations available in
different assembly lines before turning to a finished product. Given work delays
at the stations and transportation delays between the stations at different assem-
bly lines, the problem is to find the fastest route that covers all the necessary sta-
tions. The problem is solved optimally using dynamic programming. The assembly
lines containing a number of stations are analogous to the recordings in a multiple-
camera recording containing the clips. The mashup composition problem can be
seen as finding the clips with the highest score similar to the stations with the least
delay. However, to apply the dynamic programming approach, the duration of the
overlapping clips from a multiple-camera recording should be the same. Since dif-
ferent recordings have different suitable cut-points, creating clips of equal duration
in all the recordings does not allow maximizing the cut-point suitability score.

The video summarization problem involves selecting a set of segments from
a given video to represent the video in a temporally condensed form. In [Cam-
panella, 2009] and [Barbieri, 2007] videos are segmented based on criteria like
camera motion and scene change. Each segment is represented by a score ac-
cording to characteristics of the content, such as brightness and presence of faces.
The selection of the suitable segments to be included in the summary is treated
as a maximization problem. The total score of the summary is maximized while
satisfying a number of given constraints like total duration of the segments and
distribution of the segments along the time. The simulated annealing algorithm is
used to search for suitable segments and to maximize an objective function. This
algorithm starts with an initial summary and in successive iterations neighboring
solutions are created and evaluated. A solution is accepted if it is a better solution
than a neighboring solution or depending on the current value of a control parame-
ter. The control parameter is set high at the beginning to accept all the generated so-
lutions. However, at each iteration the control parameter value is decreased, which
reduces the chance of accepting a solution worse than a neighboring solution. The
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iterations are continued for a predefined number of times or until the control pa-
rameter is sufficiently low. The accepted solution is an approximate solution and
there is no guarantee that it is optimal. The mashup composition problem can be
considered as a multi-dimensional summarization, where the segments come not
only from different times but also from multiple recordings. There are additional
constraints involved in the mashup composition such as completeness and diver-
sity. Furthermore, the search space becomes extremely large in a multiple-camera
recording.

Other maximization problems such as the cutting and packing in production
[Dyckhoff & Finke, 1992] and resource allocation in grid networks [Elmroth &
Tordsson, 2008] also have some similar constraints as the mashup composition
problem. However, in order to satisfy all the constraints in the mashup composition
problem the described solutions are not directly applicable.

The mashup composition problem can be solved using different approaches
such as greedy and simulated annealing. We choose a greedy approach as it is
simple to design and implement with many different requirements. We developed
an algorithm called as first-fit, which will be described in the next section.

6.4 First-fit algorithm
The First-fit algorithm is developed to select clips from the recordings of a
multiple-camera recording such that the mashup score (MS) is maximized and the
given constraints are satisfied as described in Section 6.2. The algorithm is based
on a greedy approach, which obtains an optimal solution following a sequence of
steps, with a set of choices at each step. For the selection of a mashup clip only the
segments of the recordings available at that moment are considered. The idea is
that if an optimal choice is made for every clip, the resulting mashup becomes op-
timal. However, the algorithm does not guarantee a globally optimal solution. To
reduce the risk of achieving only a locally optimum mashup, we generated a num-
ber of mashups by repeating the algorithm starting at random frames. Mashup clips
are selected by searching in the forward and backward direction from the starting
frame. A mashup with the highest mashup score is taken as the final mashup.

For reasons of simplicity in explaining, we assume one camera-take per record-
ing. Figure 6.4 shows the search method applied in selecting a mashup clip from
three hypothetical recordings. Firstly, the candidate clips are determined by check-
ing the availability of the recordings for duration dmax from the starting frame of
the mashup clip. Figure 6.5 shows the algorithm for finding available recordings
for a clip in forward direction. If there is more than one available recording for the
candidate clips and the previous mashup clip belongs to one of the available record-
ings, then the recording corresponding to the previous clip does not qualify to be
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Figure 6.4. Illustration of the clip selection process in the first-fit algorithm. The
three recordings R1,R2, R3 and a mashup M to be composed are represented by
rectangles on a common time-line. For a clip that begins with f v

x , the candidate
clips are selected from R2 and R3 as the previous clip belongs to R1. The last
frame of the candidate clips, shown by a solid line on the recordings, is selected
according to the highest cut-point suitability score of the frames located in the
interval shown by two dotted lines, which ensures that the candidate clips are
longer than dmin and shorter than dmax (Equation 6.5). The candidate clips are
evaluated according to the parameters given in the objective function. The highest
scoring candidate clip, belonging to R3, is selected to be included in the mashup.

algorithm FIND AVAILABLE RECORDINGS

Input: start frame f v
x , maximum clip duration dmax, multiple-camera recording R

Output: set of available recordings A
k ← 1
A ← /0
while (k ≤ N) do

if
(
∃τk = (v,a) ∈ Rk

)
AND

(
ts( f v

1 )≤ ts( f v
x )

)
AND

(
(ts( f v

x )+dmax) < ts( f v
n )

)

then A ← A∪Rk
end
k ← 1+ k

end while
return A

Figure 6.5. Algorithm to find available recordings in a given duration to be se-
lected as a clip in forward direction. The function ts( f v) returns the time instant
corresponding to the frame f v in a common time-line, defined in Chapter 3.
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included as a candidate clip. The length of a candidate clip is selected by choosing
a frame with the highest cut-point suitability score, provided the candidate clip is
shorter than dmax and longer than dmin (Equation 6.5).

When there is only one candidate clip, the clip is selected as a mashup clip
without further calculation. If both the current and previous clips belong to the
same recording, then we merge the two clips. In such cases when two clips are
merged, the duration constraint (Equation 6.5) is violated. In practice, when no
other recordings are available, we allow mashups to contain clips longer than dmax.
If there is more than one candidate clip, then each of them is evaluated according
to the parameters given in the objective function given in Equation 6.4. The can-
didate clip corresponding to the highest score is selected as a mashup clip. The
search process can be initiated from any point in the common time-line, which
may require searching for the clips in both forward and backward directions. The
algorithms for the backward search require searching for clips in the duration dmax
before the starting frame f v

x .
In order to satisfy the completeness constraint, given in Equation 6.6, there is

an additional condition employed in the first-fit algorithm. During the initialization
phase of the algorithm, a video frame from each of the recordings, located at least
dmax before the last frame of the recording is set as flagged. It is insured that
no two flags are within the distance given by dmax to avoid two candidate clips
containing the flags. The flag is set first in the shortest recording, followed by the
longer recordings to give priority to the shorter recordings. Figure 6.6 shows the
algorithm for setting flags in the recordings. A flag is reset when the corresponding
recording is included in the mashup. During the mashup clip search, if a candidate
clip is encountered with a set flag, the clip is included in the mashup without any
measurement. In this way, we insure that all the given recordings contribute at least
one clip to the mashup.

There may be instances where it is impossible to fulfill this constraint due to
the input recordings in a multiple-camera recording. For example, when there are
two very short recordings of length dmax present at the same time such that both
are available only for a single clip, or when there are too many clips that it is not
possible to accommodate them all in the available time for the mashup. In practice,
for all the multiple-camera recordings used in our test we were able to satisfy the
completeness criteria. In the present implementation, if a constraint is not satisfied,
the mashup is considered invalid. A better approach would be to involve users
in the mashup generation process such that if the constraint is not met, the users
are notified. Depending on the user response, the mashup is created ignoring the
criteria or recalculated. The approach can be implemented in the post-processing
step of mashup generation as described in Chapter 3. The first-fit algorithm for
searching a mashup clip in the forward direction is explained in Figure 6.7.
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algorithm SET FLAGS, assuming one camera-take per recording
Input: maximum clip duration dmax, multiple-camera recording R̄
Output: F = ( f v1

x1
, . . . , f vN

xN
)

F ← /0, A← R̄
while |A|> 0 do

find Rk ∈ A : d(Rk)≤ d(Ri)∀Ri ∈ A
setFlag ←false
if |F |= 0

then setFlag ← true
end if
find f vk

i : ts( f vk
i ) = ts( f vk

n )−dmax with τk = (vk,ak) ∈ Rk
do while NOT setFlag AND ts( f vk

i )≥ ts( f vk
1 )

for each f v j
x j ∈ F do

if |ts( f v j
x j )− ts( f vk

i )| ≤ dmax
then setFlag ← true

else i← i−1
end if

end for
end while
if NOT setFlag

then QUIT, no solution
end if
xk ← i, f vk

xk
← f vk

i
F ← F ∪{ f vk

xk
}

A← A\{Rk}
end do
return F

Figure 6.6. Algorithm to add flags to the recordings for satisfying completeness
constraint.



6.4 First-fit algorithm 103

algorithm FIRST-FIT MASHUP GENERATION, assuming one camera-take per
recording
Input: minimum clip duration dmin, maximum clip duration dmax, multiple-camera
recording R̄, start frame f v

x , a1, a2, a3, a4
Output: M = (S1, . . . ,Sl)
M ← /0, Sp ← /0, F ←SET FLAGS(R̄)
A←FIND AVAILABLE RECORDINGS( f v

x ,dmax, R̄)
while |A|> 0 do

if M 6= /0 AND |A|> 1
then A← A\{Rp}

end if
if ∃ f vk

xk
∈ F : ts( f vk

xk
)− ts( f v

x )≤ dmax
then A←{Rk}

end if
for each Rk ∈ A

find frames f vk
c , f vk

d , f vk
e , f vk

j with τk = (vk,ak) ∈ Rk such that:
ts( f vk

c ) = ts( f v
x ), ts( f vk

d ) = ts( f v
x )+dmin

ts( f vk
e ) = ts( f v

x )+dmax, θ( f vk
j ) = max [θ( f j)] ,d ≤ j ≤ e

Sk ← (sa,sv) with sv ← ( f vk
c , f vk

j )
and sa is the corresponding audio segment
MSk ← a1C(Sk)+a2Q(Sk)+a4(Sk)
if Sp 6= /0 then MSk = MSk +a3δ(Sk,Sp) end if

end for
determine q such that MSq = max(MSi), 1≤ i≤ |A|
determine y such that tx( f v

y ) = ts( f vq
j ) with Sz = ( f vq

c , . . . , f vq
j )

if q = p
then S← merge(S,Sp), M ←M\{Sp}

end if
if ∃ f vq

xq ∈ F
then F ← F \{ f vq

xq }
end if
M ←M∪S, Sp ← S, p← q, x← y+1
A←FIND AVAILABLE RECORDINGS( f v

x ,dmax, R̄)
end while
return M

Figure 6.7. Algorithm for first-fit mashup generation in forward direction. The
function ts( f v) returns the time instant corresponding to the frame f v in a common
time-line, defined in Chapter 3.
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6.5 Mashup quality: objective evaluation
The quality of a generated mashup is computed using the objective function given
by Equation 6.4. We compared the quality of the mashups generated by the first-fit
algorithm with two other methods: naive algorithm and manual. In the following
sections we describe the methods and their mashup qualities compared to that of
the first-fit algorithm.

6.5.1 Naive algorithm
The naive algorithm is designed to generate a mashup which fulfills the constraints
given in Equations 6.5, and 6.6 derived from Requirements 2.6 (suitable-clip du-
ration) and 2.7 (completeness), respectively. No other requirements are considered
during the mashup generation.

The naive algorithm generates a mashup as follows. The starting point is al-
ways the very first frame on the common time-line. As described in Figure 6.5, the
available recordings are searched within the given maximum clip duration dmax. If
there is more than one available recording for the candidate clips and the previous
mashup clip belongs to one of the available recordings, then the recording corre-
sponding to the previous clip does not qualify to be included as a candidate clip. If
there is only one available recording, it is selected as the mashup clip. However, if
multiple recordings are available, one of the recordings is selected randomly. Once
a recording is selected, the last frame of the clip is selected randomly among the
frames that are located between dmin and dmax from the starting frame of the clip,
such that the clips are within the suitable clip duration (Equation 6.5). The algo-
rithm assures that a mashup contains at least one clip from each of the recordings,
to satisfy Equation 6.6 (completeness), by using flags as described in Section 6.4.
Figure 6.8 explains the naive algorithm.

Test set
In order to compare the mashup quality generated by the naive algorithm and the
first-fit algorithm, as a test-set, we used 10 multiple-camera recordings captured us-
ing non-professional cameras during concerts. Each of the multiple-camera record-
ings contained 3 to 9 recordings with both audio and video streams. The duration
and the time overlap among the recordings in the test-set are shown in Figure 6.9.
The recordings were synchronized using audio-fingerprints as described in Chap-

ter 4. We could have used the audio-onsets, but when it was developed the naive
mashups were already generated. All the recordings were longer than the duration
dmax and had the video frame rate of 25 frames per second. The recordings were
obtained from YouTube.

In order to generate mashups, both the first-fit and naive algorithms were given
the following values for minimum and maximum clip duration: dmin = 3 sec and
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algorithm NAIVE MASHUP GENERATION, assuming one camera-take per record-
ing
Input: minimum clip duration dmin, maximum clip duration dmax,
multiple-camera recording R, start frame f v

x
Output: M = (S1, ...,Sl)
M ← /0
A ← FIND AVAILABLE RECORDINGS( f v

x , dmax, R)
F ←SET FLAGS(R̄)
while |A|> 0 do

if M 6= /0 AND |A|> 1
then A← A\{Rp}

end if
if ∃ f vk

xk
∈ F : ts( f vk

xk
)− ts( f v

x )≤ dmax
then A←{Rk}

end if
Rz ← RANDOM(A)
determine c and d such that:

ts( f vz
c ) = ts( f v

x ) and
ts( f vz

d ) = ts( f v
x )+dmin + rnd(dmax−dmin)

S̃ ← (saz ,svz) with svz ← ( f vz
c , . . . , f vz

d )
and saz is the corresponding audio segment.
M ←M∪ S̃
p← z
determine y such that: ts( f v

y ) = ts( f vz
d )

if ∃ f vz
xz ∈ F
then F ← F \{ f vz

xz }
end if
x← y+1
A ← FIND AVAILABLE RECORDINGS( f v

x , dmax, R)
end while
return M

Figure 6.8. Algorithm for naive mashup generation. The function RANDOM(A)
returns an element contained in set A, with uniform distribution. The function
rnd(x) returns a random integer between 0 and x, with uniform distribution and
the function ts( f v) returns the time instant corresponding to the frame f v in a
common time-line, defined in Chapter 3.



106

0 2000 4000 6000 8000 10000

1

2

3

4

5

6

7

8

9

Frame number

C
am

er
a 

nu
m

be
r

1. Jason1

0 2000 4000 6000 8000 10000

1

2

3

4

5

6

7

Frame number

C
am

er
a 

nu
m

be
r

2. RATM

0 2000 4000 6000 8000 10000

1

2

3

4

5

Frame number

C
am

er
a 

nu
m

be
r

3. Jason2

0 2000 4000 6000 8000 10000

1

2

3

4

5

Frame number

C
am

er
a 

nu
m

be
r

4. Metallica1

0 2000 4000 6000 8000 10000

1

2

3

Frame number	

C
am

er
a 

nu
m

be
r

5. Crowded house

0 2000 4000 6000 8000 10000

1

2

3

4

Frame number

C
am

er
a 

nu
m

be
r

6. Madonna

0 2000 4000 6000 8000 10000 12000

1

2

3

4

5

Frame number

C
am

er
a 

nu
m

be
r

7. Justice

0 2000 4000 6000 8000 10000 12000

1

2

3

4

Frame number

C
am

er
a 

nu
m

be
r

8. Metallica2

Figure 6.9. Multiple-camera recordings used as a test-set for evaluating naive
and first-fit mashups. The recordings are represented by the bold dark horizontal
lines on a common time-line. The camera numbers represent the index of the
recordings. The remaining multiple-camera recordings are presented on the next
page.
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Figure 6.9. Continuation of the figure from the previous page.

dmax = 7 sec. The durations were chosen based on a common practice in amateur
video-editing, which assumes that it takes at least 3 sec to understand an event and
it becomes monotonous to watch a scene longer than 12 sec. Since the musical
genre of our test concert recordings are of rock and pop, to match with their fast
tempo we selected the maximum duration of 7 sec.

The recordings were analyzed and image quality and diversity scores were
measured according to the methods described in Section 5.1 and 5.3. The video cut-
point scores were calculated using the method described in Section 5.2, however,
we could not produce reliable tempo detection using an available algorithm, de-
scribed in [Schrader, 2003]. Since the algorithm was designed for studio-recorded
high quality audio, it failed to provide satisfactory result in non-professional con-
cert recordings. Therefore, we manually annotated the cut-points by listening to
the recorded music. The manual annotations represent perceptual changes in music
based on the opinion of a single subject. Among the synchronized multiple-camera
recordings, we chose a recording with a higher quality audio for annotating the au-
dio cut-points. The following rules were followed while annotating:

1. There should be a noticeable change in the audio, which lasts at least three
seconds. If it is less than three seconds, it cannot be perceived. Examples of
typical audio cut-points are transitions from solo to instrumental or chorus.

2. Beats are difficult to count and track accurately for a general music listener.
Therefore, beats and tempo were not consciously considered for annotating
the cut-points.

3. If there was a silence longer than three seconds, for example between chorus
and solo, two cut-points were annotated at the beginning and end of the
silence.

To have an objective comparison between the first-fit and naive algorithms, no
user preference scores were provided to the recordings in the first-fit algorithm.
Therefore, we ignored the preference score from our implementation of the objec-
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Table 6.1. Evaluation of first-fit and naive mashups in the given test-set.
Concert # Cameras Duration MS First-fit MS Naive
1. Jason1 9 20 – 283 sec 1.202 -0.005
2. RATM 7 250 – 360 sec 0.893 -0.007
3. Jason2 5 51 – 179 sec 0.975 0.029
4. Metallica1 5 140 – 339 sec 0.829 -0.035
5. Crowded house 3 71 – 285 sec 0.680 0.014
6. Madonna 4 136 – 316 sec 0.720 -0.017
7. Justice 5 135 – 424 sec 0.706 -0.006
8. Metallica2 4 134 – 494 sec 0.639 -0.014
9. Foo fighters 6 19 – 268 sec 0.867 -0.012
10. Kaiser chiefs 5 51 – 179 sec 0.611 -0.025

tive function given in Equation 6.4. The coefficients a1, a2 and a3 in the objective
function were set to be equal to 1

3 . The algorithm was repeated 20 times, each time
starting from a random location and the solution corresponding to the maximum
MS was accepted as the mashup.

Results
The mashup score (MS) of the mashups generated by the first-fit and naive al-
gorithms are shown in Table 6.1. The mashup scores were calculated using the
objective function given in Equation 6.4. The results show that the quality of the
mashups generated by the first-fit algorithm is consistently, at least 10 times higher
than that of the mashups produced by the naive algorithm. The difference in the
mashup quality score between the first-fit and naive mashups was mainly caused
by the cut-point score followed by the diversity score and the quality score.

6.5.2 Manual
The manual mashups were created by a professional video editor. The synchro-
nized multiple-camera recordings were provided to the editor and he was asked to
create a mashup without adding any special effects and following the time-line of
the content. It took approximately 16 hours to create 3 mashups using the editing
software Adobe Premiere Pro compared to a couple of seconds for generating naive
and first-fit mashups.

Table 6.2 shows the details of the concerts used as test-sets for creating the
manual mashups. Considering the complex and time consuming process of creat-
ing manual mashups, we chose only three concerts containing 4 – 5 cameras from
the concerts, given in Table 6.1. For example, in concert C1 we selected only 5
out of 10 recordings from concert Jason1, given in Table 6.1. The number of cam-
eras in all the concerts were chosen to be similar to have a fair comparison among
the different concerts. The test-sets represent typical concert recordings covering
different physical settings, light-conditions and size of the audience.
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Table 6.2. Multiple-camera recordings used for evaluating first-fit, naive and
manual mashups. The camera numbers correspond to the concert representations
in Figure 6.9.

Concert Camera # Duration Audience Venue Genre
C1. (Jason1) 1, 3, 7, 8, 9 20 – 283 sec <500 Indoor Rap
C2. (RATM) 1, 2, 3, 4, 5 250 – 360 sec >1000 Outdoor Metal
C3. (Madonna) 1, 2, 3, 4 136 – 316 sec >1000 Indoor Pop

In order to compare the quality of the mashups generated by the different meth-
ods, we generated first-fit and naive mashups from the test-set as described in
Section 6.5.1. The multiple-camera recordings and the naive, first-fit and man-
ual mashups are made publicly available in YouTube, which can be accessed via
the link given in [YouTube, 2009a].

The quality of the mashups generated by the first-fit, naive and manual methods
were evaluated using Equation 6.4. Table 6.3 shows the mashup quality score (MS)
from the given test-set, which increases in the order: naive, manual and first-fit.
The lowest score for a naive mashup is expected as it does not satisfy the image
quality, cut-point suitability and diversity requirements. We also expected that the
quality of a manual mashup should be the highest since the requirements for a
mashup can be better understood by a human editor than a model. However, the
results show the quality of a manual mashup is lower than a first-fit mashup.

The fact that the scores of the first-fit mashups are higher than that of the man-
ual mashups may be due to several reasons. Firstly, the requirements compiled for
the mashup generation may not be complete. Furthermore the automatic mashup
addresses only a number of these requirement, and it may have missed some im-
portant ones. Secondly, the techniques used in feature analysis may have failed
to accurately compute the image quality, cut-point suitability and diversity scores
of the test-set. Thirdly, the objective function maybe non-linear or the coefficients
a1,a2 and a3 should not be assigned equal values. Lastly, the manual mashups
may not fulfill the user requirements as they may be too difficult to fulfill manu-
ally. Since both the manual and first-fit algorithms may have addressed different
requirements or with different importance, it is difficult to compare the mashup
quality between the two algorithms by means of an objective evaluation. There-
fore, we conducted a user study that provides a perceptual evaluation of the naive,
first-fit and manual mashups. The study will also validate if the feature analysis
results correspond to human perception. The design of the user study and the anal-
ysis of the results is presented in Chapter 7. In order to check the behavior of MS
on changing the coefficient values, we analyzed the values of the coefficients used
in the manual mashup. The analysis method and the results are discussed in the
following Section 6.6.
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Table 6.3. Evaluation results of the naive, manual and first-fit mashups.
Concert MS Naive MS Manual MS First-fit

C1 0.077 0.087 1.09
C2 -0.003 0.13 0.83
C3 -0.017 0.054 0.72

6.6 Discussion
In the present implementation of the first-fit algorithm, we used equal weights for
the three mashup requirements: image quality, cut-point suitability and diversity
represented by the coefficients a1,a2 and a3, respectively. In order to check if we
can tune the weights, so that the MS of both the manual and the first-fit mashups can
be maximized, we started by analyzing the distribution of weights in the manual
mashups. For every clip included in the manual mashups, we computed the image
quality, cut-point suitability and diversity scores from the corresponding record-
ings. These average scores in the manual mashups from C1, C2 and C3 contribute
to the objective function as follows:

a10.16−a20.18+a30.29 = MSC1 , (6.7)

a10.21+a20.27−a30.09 = MSC2 , (6.8)

−a10.002+a20.05+a30.11 = MSC3, (6.9)

where a1 +a2 +a3 = 1.
We would like to find the values of the coefficients a1,a2 and a3 that can be used

to maximize the MS in all three mashups. In Equations 6.7 and 6.9, the MS will be
maximized if the weight of the diversity score is maximum and the weights of the
image quality and cut-point suitability score are minimum, (a1 = 0,a2 = 0,a3 = 1).
However, in Equation 6.8 the MS will be maximized if the image quality score is
weighed with the highest value, (a2 = 1,a1 = 0,a3 = 0). There is no consistency
in the order of importance among the requirements because diversity is the most
important requirement in Equations 6.7 and 6.9, while image quality is the most
important in Equation 6.8.

In order to further analyze the behavior of the mashup scores, we generated
the naive and first-fit mashups in the test-set, given in Table 6.2, using different
sets of coefficients. The same sets of coefficients were also applied to the manual
mashups given in Equations 6.7–6.9. Figure 6.10a shows the mashup scores of the
test-set in terms of naive, manual and first-fit mashups, when a1 = a2 = a3 = 1

3 .
In all three concerts, the mashup score increases in the order: naive, manual and
first-fit. The first-fit algorithm scores the highest with the minimum and maximum
score of 0.6 and 1. The score of the manual algorithm ranges between 0.05 and
0.13, and the scores of the naive ranges between -0.003 and 0.07. Figure 6.10b
shows the MS values when a2 = 0 and a1 = a3 = 1

2 . The MS value increases in
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the order: naive, manual and first-fit, similar to the previous set of coefficients.
However, the difference between the manual and first-fit is reduced in all three
test-sets. For example, in C1 the MS of the first-fit and manual mashups are 1
and 0.9, respectively. In C2 and C3, the first-fit algorithm has scores 0.5 and 0.4
respectively. Figure 6.10c shows the MS values when a2 = 1

9 and a1 = a3 = 4
9 .

In all three concerts, the mashup score increases in the order: naive, manual and
first-fit as in the previous sets of coefficients. The first-fit algorithm scores the
highest with the minimum and maximum score of 0.4 and 1. The score of the
manual algorithm ranges between 0.06 and 0.16, and the scores of the naive ranges
between 0 and 0.05. In all the cases, the average score of the mashups was in the
order: naive, manual and first-fit.

The behavior of the MS in different sets of coefficients is dependent not only
on the methods of generating the mashups but also on the test-sets. A set of coeffi-
cients may increase the mashup score of a mashup in one test-set, while in another
it may cause the opposite effect. Using different sets of coefficients did not change
the order of the mashup scores and there is not an a-priori reason for which one
of the features should be more important. For a more precise determination of the
coefficients from manual mashups, a larger number of test-sets would be required.
Therefore, based on this analysis, we used the equal value for all the coefficients in
the objective function.



112

C1 C2 C3 Avg

0

0.2

0.4

0.6

0.8

1

Test set

M
as

hu
p 

sc
or

e 
(M

S
)

(a) a1 = a2 = a3 = 1
3

C1 C2 C3 Avg

0

0.2

0.4

0.6

0.8

1

Test set

M
as

hu
p 

sc
or

e 
(M

S
)

(b) a2 = 0 and a1 = a3 = 1
2

C1 C2 C3 Avg

0

0.2

0.4

0.6

0.8

1

Test set

M
ea

n 
sc

or
e 

(M
S

)

(c) a2 = 1
9 and a1 = a3 = 4

9

Figure 6.10. The MS value of the mashups generated for the test-sets given in
Table 6.2, with different coefficient values. The symbols ¤, ¦ and ∗ represent
naive, manual and first-fit mashups, respectively. The horizontal axis shows the
three test-sets and their average score.
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Mashup quality: subjective evaluation

In the previous chapter we generated an automatic mashup using the first-fit algo-
rithm, which is based on fulfilling the requirements for generating mashups elicited
in Chapter 2. Then we evaluated the objective quality of the first-fit mashups with
respect to the naive and manual mashups. A naive mashup is a random selection
of synchronized video clips within a given duration and a manual mashup is a cre-
ation of a professional video-editor. In this chapter, we describe a subjective test
conducted to measure the perceived mashup qualities by end-users.

The rest of the chapter is organized as follows. In Section 7.1, we present
the hypotheses and their operationalizations upon which the subjective evaluation
is based. In Sections 7.2 and 7.3 we describe the design and procedure of the
subjective test, respectively. In Section 7.4 we present the results of the test and
then discuss the perception of the mashup qualities based on the test results in
Section 7.5. We conclude the subjective evaluation in Section 7.6.

7.1 Hypotheses and operationalizations
The goal of the test is to compare the perceived quality of mashups generated by
different methods: first-fit algorithm, naive algorithm and manual. Ideally, we
expect the perceived quality of a mashup to be in the ascending order: naive, first-
fit, and manual. According to the objective evaluation as described in Section 6.5.2,

113
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Figure 7.1. Hypotheses on the perceived quality of the mashups generated by
naive, first-fit and manual mashups on a one-dimensional scale.

the naive mashups score the lowest, however, the first-fit mashups score higher than
the manual mashups. Therefore, from the user test we want to check if the quality
of the naive mashups are perceived as the lowest and how similar are the perceived
qualities of the first-fit and manual mashups. The formulated hypotheses for the
test are:

H1. The perceived quality of a mashup generated by the first-fit algorithm is higher
than that of one generated by the naive algorithm.

H2. The perceived quality of a manually made mashup is higher than that of one
generated by the naive algorithm.

H3. The perceived quality of a manually made mashup is equal to that of one
generated by the first-fit algorithm.

On a one-dimensional scale, the hypotheses on the perceived quality of the naive
mashups against the first-fit and manual mashups are visualized in Figure 7.1. The
perceived quality is an abstract concept and we need to define it in terms of mea-
surable factors (operationalization). According to the mashup requirements elicited
in Chapter 2, we operationalized the perceived mashup quality into three factors:
diversity, visual quality, and pleasantness. The factors are further divided into dif-
ferent parameters, which are easy for the users to judge, for example image qual-
ity, entertaining, variety. The user response on the perception of these parameters
provides a quality measure on the corresponding factors, which will lead to the
verification of the hypotheses. The following paragraphs describe the factors and
their measuring parameters.

7.1.1 Diversity
In a concert recording, users desire to watch not only the artists at stage but
experience the concert atmosphere as a whole (Requirement 2.3). A high quality
mashup should be able to provide a rich coverage of different aspects of a concert.
Based on the keywords used to associate diversity by the participants of our
focus group study, described in Chapter 2, we represent diversity in terms of the
following parameters: atmosphere, overview, and content variety. The atmosphere
signifies the mood during the concert such as dull, enjoyable and wild. The
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overview signifies the physical settings, such as location, audience size and the
content variety signifies richness in the content. A high quality mashup should
score high on atmosphere, overview and content variety.

7.1.2 Visual quality
Visual quality is a desirable feature of any video for clarity and understanding
of content (Requirement 2.2). It is an obvious and easily perceivable feature.
However, visual quality depends on multiple criteria such as brightness, edge blur,
and noise, which are difficult to differentiate and evaluate for a general user. We
selected two parameters: image quality and camera stability because they were the
keywords used to associate visual quality by the participants of our focus group
study, described in Chapter 2. The image quality signifies the perception of spatial
features like brightness, blockiness and blur. The camera stability signifies the
perception of spatial and temporal feature such as motion along the frames. A high
quality mashup should measure high on both image quality and camera stability.

7.1.3 Pleasantness
One of the main purposes of watching a mashup is to have a pleasant experience,
as given in the objective of creating a mashup in Section 1.1 of Chapter 1. There
are several ways to express this experience, which is very subjective. Based
on the keywords used to associate pleasantness by the participants of our focus
group study, described in Chapter 2, we represent pleasantness in terms of the
following parameters: boring, overall goodness, and entertaining. A boring
mashup is considered the opposite of entertaining, which could be due to the
failure of many requirements such as image quality, diversity, suitable cut-point
and suitable clip-duration. An overall goodness signifies that the mashup fulfills
the requirements in a satisfactory level. A high quality mashup should measure
low in boring and high in overall goodness and entertaining.

7.2 Test Design
7.2.1 Test variables
The test contained two independent variables. The first independent variable was
algorithm, which refers to the naive, manual, and first-fit methods for generating
mashups. The second independent variable was content, which were the concerts
C1, C2 and C3 shown in Table 6.2 at page 109. In our observation, the perceived
quality of a mashup also depends on factors such as length of the recordings, num-
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ber of cameras, and image resolution. For example, a mashup is more likely to
contain more variety in content and high image quality if there are large number
of recordings. The influence of these factors were minimized in the test by using
content with similar factor values. In all concerts the duration of the recordings
was between 2.4 min to 5.6 min, the number of cameras were 4 or 5 and the screen
resolution was 320×240 pixels.

7.2.2 Material
The test-set used in the subjective test is the same as the one used in the objective
test. The description of the multiple-camera recordings, size of the audience and
musical genre are presented in Section 6.5.2 and Table 6.2 in Chapter 6.

7.2.3 Full-factorial within-subject test design
The test was designed as full-factorial within-subject such that all the nine mashups
were evaluated by every participant. The advantages of this design are that all
the main effects of the variables and their interactions can be estimated with a
limited number of participants and the interpersonal differences do not influence
the evaluation. A drawback of this design is that the test run time per participant
increases with the number of test variables. In our case, since we had nine mashups,
each about 5 min long, for each participant the test run would take about 45 min
to play the mashups and about 20 min for answering questionnaire, which was an
accepted duration for a perception test.

In such a test design, participants may be biased in their perception by the
order of the mashups they watch (order effect), or by the memory mix-ups from
the contents of previous mashups (carry-over effect). In order to minimize the
influence of these effects, the presentation order of the mashups was balanced.

For every participant a balanced mashup presentation order was generated at
the beginning of the test. First, the order of content and algorithm was chosen
randomly from six corresponding permutations. Then a balanced mashup presen-
tation order is generated according to the chosen order of algorithm and content.
For example, if the chosen algorithm and content are in order manual, first-fit, naive
and C3, C1, C2 respectively, the balanced presentation order consists of mashups:
manual-C3, manual-C1, manual-C2, first-fit-C3, first-fit-C1, first-fit-C2, naive-C3,
naive-C1, naive-C2. In this mashup presentation order the distance between the
same concerts was always maximum to reduce the carry-over effect, and different
participants viewed the mashups in different order, to reduce the order effect.

7.2.4 Participants
A statistical estimation of the required number of participants was not possible be-
cause the population distribution with respect to the test hypothesis was not known.
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However, in a similar user test conducted to evaluate quality of video summaries
generated by three different methods the hypotheses were tested successfully us-
ing 40 participants, described in [Barbieri, 2007]. Therefore, we set the number of
participants to 40.

The mashup perception might be influenced by the age of a participant due to
the popularity of an artist among a certain age group. Therefore, we selected a
target group of the participants with age in between 20 and 30. The participants
were required not to be involved in developing any of the algorithms for mashup
generation to avoid bias in the evaluation due to prior knowledge.

7.2.5 Scaling
The test involved scaling the mashup, which was conducted by showing partici-
pants one mashup at a time, followed by a questionnaire that rates different pa-
rameters of mashup quality perception. The advantage of this design is that the
participants do no require to recall and compare an other mashup. A test design
involving direct comparison among the mashups, such as ranking and paired com-
parison, was impractical because that would require a participant to watch at least
two mashups before answering. If the two mashups were shown in parallel in a
split screen, it would be difficult to focus on two different mashups at a time. If
they were shown one after the other it would take about 10 min to watch, which
would make it difficult to remember specific parameters from the two mashups.

A disadvantage of scaling is that the quality scale is unknown at the beginning
of the test. To give an idea of the visual quality of the content, we showed four
recordings of a concert in a split screen whose quality vary along the time. Fig-
ure 7.2 shows a screen shot containing four recordings in a split screen. However,
showing an example of the highest or lowest quality mashup is difficult due to the
subjective perception of a mashup. The effect is reduced with enough participants
and a balanced ordering of the mashup presentation.

7.2.6 Questionnaire
A questionnaire was designed to measure the effect of the different parameters
described in Section 7.1 on the different mashups. The parameters represent the
mashup requirements elicited in Chapter 2. In total, nine statements were presented
to the participants and for each statement the participants had to indicate the level
of agreement or disagreement. The level of agreement (from strongly agree to
strongly disagree) was given by a popular seven point Likert scale used extensively
in perception tests. The statements presented were as follows:

S1. I got a good impression of the concert atmosphere from the mashup video.
S2. The different viewpoints shown in the video gave me a rich overview of the

concert.
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Figure 7.2. Screen-shot of a concert video recording with four cameras shown in
a split screen.

S3. I got disturbed by the lack of camera stability.
S4. I found this video entertaining.
S5. I think there was enough variety in the content.
S6. I found the video boring to watch.
S7. The cameras in the video were stable.
S8. The image quality in the video was very bad.
S9. Overall, I think the video was good.

Statements S1, S2 and S5 were aimed at measuring diversity (Section 7.1.1).
Statements S7 and S8 were aimed at measuring visual quality (Section 7.1.2).
Statement S3 was asked as a control measure to check if the perception of the
parameter measured in S7 reflects a subjective measure. Statements S4, S6 and S9
were aimed at measuring pleasantness (Section 7.1.3). The order of the statements
were arranged so that the questions, which can be interpreted to be very similar,
are not asked consecutively to avoid answering on memory.

7.2.7 Control variables
In addition to algorithm and content the perception of a mashup quality might be
influenced by other factors, such as age, gender, artist, genre, frequency of concert
visits. In order to check the effect of these factors, some additional questions were
asked to the participants.

The age and gender of every participants were registered. At the beginning of
the questionnaire, described in paragraph 7.2.6, three statements were added to in-
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Figure 7.3. Welcome window grabbed from the interface used in the test.

quire the participant’s opinion about the artist and the genre for each of the concert
recordings. The level of agreement (from strongly agree to strongly disagree) on
the statement was measured in the seven point Likert scale.

• I know this artist.
• I like this genre.
• I like this artist.
Participants who are regular concert goers or a concert-video viewers might

have different expectations in a mashup than participants with less concert or con-
cert video experience. However, it is difficult to accurately provide an average
number of concert visits or views per year. Therefore we formulated the following
questions along with the possible answers, given within brackets, one of which the
participant had to choose.

• Concert visits in last two years: (0-1, 2-3, 4-5, 6-10, > 10).
• Frequency of watching concert videos: (daily, weekly, monthly, yearly,

rarely, never).

7.3 Procedure
The participants were briefly introduced to the research on mashup generation.
They were informed that the mashups were generated by three different methods,
but they were not aware of the algorithms or the manual made mashup to avoid any
pre-conception. An example of concert recording from four cameras was shown
in split screen as shown in Figure 7.2, which gave an impression on the type and
quality of content used in the test.

The test began with a welcome window shown in Figure 7.3. Then the nine
mashups were shown according to the balanced order each followed by the ques-
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tionnaire and a free comment box. Participants could use the comment box to give
any remark about the last mashup they saw. The questions on knowing an artist,
liking an artist and liking a genre was asked for every concert after showing it
for the first time. Figure 7.4 and 7.5 show the presentation of a control question
and a statement, respectively, grabbed from the interface used in the test. Lastly,
questions were asked about age, frequency of watching concert videos and number
of concerts visited in past two years. Additionally, they were also given a final
comment box to report or remark anything about the test or the mashups. The
presentation of these questions and comment box is shown in Figure 7.6.

Figure 7.4. A control question grabbed from the interface used in the test.

Figure 7.5. A statement from the questionnaire grabbed from the interface used
in the test.

No control over the video player was given to the participant, to make sure
that no mashups were skipped or watched in fast-forward speed. Participants were
asked to continue watching during the play and answer the questionnaire right after

Figure 7.6. The final window used in the test, grabbed from the interface.
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Figure 7.7. User study setup.

the video stopped. Short breaks, like visiting toilets, were allowed while answering
the questions. The experimenter was available for clarifying questions or other
technical problems throughout the test, however, the participants were not being
observed.

The tests were conducted using personal computer and head phones in an lab-
oratory during working hours. A photo of the test setup is shown in Figure 7.7.

7.4 Test results
7.4.1 Participants
Forty participants (17 female, 23 male) volunteered in the test. Most of them were
student interns and some were employees at High Tech Campus, Eindhoven, The
Netherlands. The average age of the participants was 27 (min: 22, max: 34). The
average number of times they had been to a concert in the last two years was 3 (min:
1, max: 6). Among the participants, the frequency of watching concert videos was
distributed as: 10% never, 45% rarely (less often than once a year), 32.5% monthly,
10% weekly, and 2.5% daily.

7.4.2 Analysis techniques
An average response value to a given statement for each algorithm is computed as
a mean score across all the participants. Reliability of a mean score is estimated by
confidence interval, such that if the test is repeated with other participants from the
same target group, there is 95% probability that the mean score will remain within
the interval. The confidence intervals are presented graphically as an error bar on
the mean score.
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To verify whether the differences between the mean scores are statistically sig-
nificant, we conducted a two-way analysis of variance (ANOVA) with repeated
measures. The algorithm and content variables were treated as within-subject in-
dependent variables and the response of the participants was treated as a dependent
variable. The results are presented in terms of F-statistic and p-value such that if
p < 0.05 there is 95% confidence that the means are significantly different. The
ratio of the mean squares is given by F .

ANOVA indicates if the means are significantly different, but it does not dis-
tinguish which means are different. Therefore, an additional Tukey post-hoc test
was performed on both independent variables. The results provide pairwise com-
parisons of the means and their confidence intervals.

7.4.3 S1: Atmosphere
The mean scores for statement S1: I got a good impression of the concert atmo-
sphere from the mashup video, for the three algorithms and the three concerts are
shown in Figure 7.8. In concerts C1 and C2, the scores for algorithm seem to in-
crease in the order: naive, manual and first-fit. However, in C3 there seem to be
little difference among the scores of the three algorithms. The effect of the algo-
rithm is most obvious in C2, where naive scores considerably lower compared to
the other two algorithms. The mean across all the content shows that first-fit scores
higher than manual and manual scores higher than naive.

From the ANOVA analysis, a significant main effect was found for algorithm
(F = 3.119, p = 0.045) and also for content (F = 6.398, p = 0.002). A Tukey
test on algorithm shows that there is a significant difference between the scores
of naive and first-fit, while the score of manual is not significantly different from
both naive and first-fit. Similarly, a Tukey test on content shows that C2 scores
significantly higher than C1 and C3.

All the recordings of concert C3 contain similar views, mostly of the stage.
The clips containing audiences are mostly dark due to the light setting in the con-
cert hall, which was focused only towards the stage. Since the recordings provided
limited content, the algorithms made little difference in conveying the mashup at-
mosphere. Since C2 was held on a large open space during daylight hours, the
recordings contain different views like stage, audience, and display boards. The
mean scores show that first-fit and manual mashups are able to convey the concert
atmosphere with high values, in contrary to a naive mashup. In C1, as in the case
of C3, the audience views suffer from insufficient light. However, the recordings
contain stage views from very different angles including a top view from the theater
balcony. Since the concert was held in a small hall, it is relatively easy to capture
the atmosphere in the mashups. Therefore, we see only a slight improvement in
the mean scores of first-fit and manual algorithms over naive.
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Figure 7.8. Mean scores for statement S1: I got a good impression of the concert
atmosphere from the mashup video. The algorithms are represented as: naive (2),
manual (3), and first-fit (∗). The horizontal axis represents the mashups corre-
sponding to the three concerts. “All” represents the mean across all the concerts.
Error bars show confidence intervals of 95% of the mean value.

The score of first-fit is not statistically significant but slightly higher than man-
ual in C1 and C2. According to the comments written by some of the participants,
they preferred first-fit because the focus of the manual mashups were mainly to-
wards the artists, which limited their perception of the concert atmosphere.

7.4.4 S2: Overview
The mean scores for statement S2: the different viewpoints shown in the video gave
me a rich overview of the concert, for the three algorithms and the three concerts
are shown in Figure 7.9. In concert C1, the score of first-fit seems slightly higher
than naive and slightly lower than manual. In concert C2, there seems to be a
distinctly higher score for first-fit followed by manual and naive. In concert C3,
there appears little difference among the mean scores of the algorithms. The mean
across content shows that the score of first-fit and manual are about the same, which
is higher than that of naive.

From the ANOVA analysis, a significant main effect was found for algorithm
(F = 3.085, p = 0.037) and also for content (F = 11.214, p < 0.001). A Tukey
test on algorithm shows that naive is significantly different from manual and first-
fit. Similarly, a Tukey test on content shows that C2 is significantly different than
C1 and C3.

The results are similar to that of the statement S1, as described in Section 7.4.3.
The views captured by the cameras and lighting conditions in the venue plays an
important role in the perception of the concert overview. Due to the limited variety
in their content, the algorithms generate similar mashups for the concerts C1 and
C3, while the availability of rich content provides a clear distinction in concert C2.
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Figure 7.9. Mean scores for statement S2: the different viewpoints shown in the
video gave me a rich overview of the concert. The algorithms are represented
as: naive (2), manual (3), and first-fit (∗). The horizontal axis represents the
mashups corresponding to the three concerts. “All” represents the mean across all
the concerts. Error bars show confidence intervals of 95% of the mean value.

7.4.5 S3 and S7: Camera stability
The mean scores for statement S3: I got disturbed by the lack of camera stability,
for the three algorithms and the three concerts are shown in Figure 7.10. In concerts
C1 and C2, the scores for algorithm seem to increase in the order: first-fit, manual
and naive. However, in C3 the mean score for first-fit seems to be the highest and
closely followed by naive and then manual. The effect of the algorithm seems
most obvious in C2, where naive scores considerably higher than the other two
algorithms. The mean across all the three concerts shows that the naive algorithm
scores higher than manual and first-fit.

From the ANOVA analysis, a significant main effect was found for algorithm
(F = 4.356, p = 0.0126) and also for content (F = 25.005, p < 0.001). A Tukey
test on algorithm shows that naive is significantly different from manual and first-
fit. Similarly, a Tukey test on content shows that the mean score of C1 is signifi-
cantly different from C2 and C3.

The mean scores for statement S7: the cameras in the video were stable, for the
three algorithms and the three concerts are shown in Figure 7.11. In all the concerts
the manual algorithm scores higher than the other two algorithms. In concerts C1
and C3, the two algorithms first-fit and naive seems to score almost the same.
However, in concert C2, the naive score seems lower than the first-fit algorithm.
The mean across all the three concerts shows increase in the order naive, first-fit,
and manual.

From the ANOVA analysis, a significant main effect was found for algorithm
(F = 4.593, p = 0.010) and for content (F = 31.853, p < 0.001). A Tukey test on
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Figure 7.10. Mean scores for statement S3: I got disturbed by the lack of camera
stability. The algorithms are represented as: naive (2), manual (3), and first-
fit (∗). The horizontal axis represents the mashups corresponding to the three
concerts. “All” represents the mean across all the concerts. Error bars show con-
fidence intervals of 95% of the mean value.

algorithm shows that naive is significantly different from the other two algorithms.
Similarly, a Tukey test on content shows that C1 is significantly different from C2
and C3.

It is expected that the naive mashups are perceived as shaky and disturbing
since they do not take into account the camera stability. In C1 and C2, manual
mashups are perceived about as stable as the first-fit mashups. However, in C3,
the first-fit mashup is perceived as the most shaky and disturbing among the three
algorithms. This could be due to the low visual quality of the camera recordings of
concert C3, containing objects in fast motion (dancing) and dynamic lights, which
caused errors in feature analysis, in particular in the shakiness detection algorithm.
The scores of the statements S3 and S7 show that there is a direct relationship
between the measure of camera stability (S7) and the measure of feeling disturbed
(S3).

7.4.6 S4: Entertaining
The mean scores for statement S4: I found this video entertaining, for the three
algorithms and the three concerts are shown in Figure 7.12. In C1 and C2, the
scores for algorithm seem to increase in the order: naive, manual and first-fit.
However, in C3 the mean scores of manual and naive seem to be about equal and
higher than first-fit. The mean across all the three concerts shows that manual and
first-fit score the same, while naive scores lower.

From the ANOVA analysis, no significant main effect was found for algorithm
(F = 2.209, p = 0.113). However, a significant main effect was found for content
(F = 8.086, p < 0.001). A Tukey test on content shows that there is no difference
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Figure 7.11. Mean scores for statement S7: the cameras in the video were stable.
The algorithms are represented as: naive (2), manual (3), and first-fit (∗). The
horizontal axis represents the mashups corresponding to the three concerts. “All”
represents the mean across all the concerts. Error bars show confidence intervals
of 95% of the mean value.

between the mean scores of C2 and C3, while the score of C1 is significantly
higher.

Although there was no effect found for algorithm, C1 and C2 show a consistent
decrease of mean score in order: first-fit, manual and naive. According to the
comments written by some of the participants, manual mashup are too predictable
as every camera switch is accompanied by a music beat. The trend is absent in
C3 and first-fit scores even lower than the other two algorithms. As explained in
Section 7.4.5, it might be due to the low visual quality of the camera recordings of
the concert C3, which caused wrong estimation of the visual features.

7.4.7 S5: Variety
The mean scores for statement S5: I think there was enough variety in the content,
for the three algorithms and the three concerts are shown in Figure 7.13. In concert
C1, the first-fit score seems to be slightly higher than naive and slightly lower than
manual. In concert C2, the score seems to increase in the order: naive, manual and
first-fit. In concert C3 naive seems to score slightly higher than first-fit and manual.
The mean across all the three concerts also shows that the scores for manual and
first-fit are very similar, which are slightly higher than naive.

From the ANOVA analysis, no significant main effect was found for algorithm
(F = 1.168, p = 0.312). However, a significant main effect was found for content
(F = 7.266, p < 0.001). A Tukey test on content shows that there is no difference
between the mean scores of C1 and C3, while the score of C2 is significantly
higher.

The results show that the perception of variety is largely dependent on the cam-
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Figure 7.12. Mean scores for statement S4: I found this video entertaining. The
algorithms are represented as: naive (2), manual (3), and first-fit (∗). The hor-
izontal axis represents the mashups corresponding to the three concerts. “All”
represents the mean across all the concerts. Error bars show confidence intervals
of 95% of the mean value.
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Figure 7.13. Mean scores for statement S5: I think there was enough variety in the
content. The algorithms are represented as: naive (2), manual (3), and first-fit (∗).
The horizontal axis represents the mashups corresponding to the three concerts.
“All” represents the mean across all the concerts. Error bars show confidence
intervals of 95% of the mean value.

era recordings. For C1 and C3, the algorithms cannot contribute to the perception
of variety in a mashup since the available recordings have limited variety. The rich
recording contents of C2, described in Section 7.4.3, provide an opportunity for
the manual and first-fit algorithms to create a mashup with better diversity.

7.4.8 S6: Boring
The mean scores for statement S6: I found the video boring to watch, for the three
algorithms and the three concerts are shown in Figure 7.14. In C1, manual and
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Figure 7.14. Mean scores for statement S6: I found the video boring to watch.
The algorithms are represented as: naive (2), manual (3), and first-fit (∗). The
horizontal axis represents the mashups corresponding to the three concerts. “All”
represents the mean across all the concerts. Error bars show confidence intervals
of 95% of the mean value.

first-fit seems to score about similar, which looks slightly lower than naive. In C2,
naive score seems to be higher than manual followed by first-fit. In C3, both naive
and manual score seems the same, while first-fit looks slightly higher. The mean
across all the three concerts shows that both manual and first-fit score about the
same, which is lower than naive.

From the ANOVA analysis, no significant main effect was found for algorithm
(F = 1.397, p = 0.248). However, a significant main effect was found for content
(F = 7.705, p = 0.002). A Tukey test on content shows that C1 is significantly
different than the other two concerts. Although there was no effect found for al-
gorithm, the naive mashup scores consistently high as boring in concerts C1 and
C2. However, in C3 the manual algorithm scores the highest. As explained in
Section 7.4.6, this might be due to the low visual quality of the camera recordings
that caused poor feature analysis.

7.4.9 S8: Image quality
The mean scores for statement S8: the image quality in the video was very bad,
for the three algorithms and the three concerts are shown in Figure 7.15. In all
the concerts the naive score seems to be higher than the other two algorithms. In
C1 and C2, the two algorithms first-fit and manual scores seem to be about the
same. In concert C3, both the first-fit and manual seem to be close to naive. The
mean across all the three concerts shows naive scores higher than the other two
algorithms, which score about the same.

From the ANOVA analysis, a significant main effect was found for algorithm
(F = 7.833, p < 0.001) and for content (F = 16.051, p < 0.001). A Tukey test on
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Figure 7.15. Mean scores for statement S8: the image quality in the video was
very bad. The algorithms are represented as: naive (2), manual (3), and first-
fit (∗). The horizontal axis represents the mashups corresponding to the three
concerts. “All” represents the mean across all the concerts. Error bars show con-
fidence intervals of 95% of the mean value.

algorithm shows that naive is significantly different from the other two algorithms.
Similarly, a Tukey test on content shows that C3 is significantly different from C1
and C2.

The results in C1 and C2 show that the mashups generated by the naive algo-
rithm, which does not take into account image quality, are perceived as containing
bad image quality. However, in concert C3 the mean scores of all the algorithms
are about the same because of the low quality of the concert recordings.

7.4.10 S9: Overall good
The mean scores for statement S9: overall, I think the video was good, for the three
algorithms and the three concerts are shown in Figure 7.16. In C1 the mean score
seems to increase in the order: naive, manual and first-fit. A similar trend is seen
in C2, however, the mean score of the naive algorithm appears very low. In C3,
the naive score looks slightly higher than first-fit and slightly lower than manual.
The mean across all the three concerts shows that manual and first-fit score about
the same, which is higher than that of naive.

From the ANOVA analysis, no significant main effect was found for algorithm
(F = 2.271, p = 0.071). However, a significant main effect was found for con-
tent (F = 8.993, p < 0.001). A Tukey test on content shows that concert C1 is
significantly different than C3.

The Tukey test results are the same as in the case of statement S4, described
in Section 7.4.6, and S6, described in Section 7.4.8. The perception of overall
goodness in a mashup is mainly dependent on content rather than on algorithm.
However, in concerts C1 and C2 there is a consistent trend that the score increases
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Figure 7.16. Mean scores for statement S9: overall, I think the video was good.
The algorithms are represented as: naive (2), manual (3), and first-fit (∗). The
horizontal axis represents the mashups corresponding to the three concerts. “All”
represents the mean across all the concerts. Error bars show confidence intervals
of 95% of the mean value.

in the order: naive, manual and first-fit. In concert C3, the first-fit scores the lowest
maybe due to the poor visual quality of the camera recordings that caused wrong
visual feature analysis.

7.4.11 Effects of control variables
We included some control questions in the test, as described in Section 7.2.7, to
check the influence of factors such as age, gender, liking the artist. The analysis in-
volved one-way ANOVA in which the users’ response to the statements, described
in Section 7.2.6, is divided into groups according to the users’ response to a con-
trol question. The ANOVA results indicate how significantly the group means are
different (p-value) and the ratio of the mean squares, (F-statistic). An additional
Tukey post-hoc test was performed for pairwise comparison of the group means and
their confidence intervals. The following sections present the results for different
control variables.

Age
To simplify the analysis, we mapped the age of the participants into three groups:
25 and younger (13 participants), between 26 to 30 (18 participants), 31 and older
(9 participants). A significant main effect of age was found on statements S2: the
different viewpoints shown in the video gave me a rich overview of the concert,
(F = 3.31, p = 0.037) and S5: I think there was enough variety in the content,
(F = 5.180, p = 0.006). Tukey tests on both statements show that the perception
of variety and overview in a mashup is significantly lower in the age group 25 and
younger than that of the age group 31 and older. The result can be explained if
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we observe the trend in professionally produced music videos where the density of
shot-cuts and fast transitions has increased tremendously in recent years [Reeves
& Nass, 1996]. The results show higher expectations of the younger generation for
variety and overview in a mashup.

Knowing an artist
No significant main effect was found for knowing the artist for any of the state-
ments. So the participants were not biased in the test because they knew an artist.

Liking an artist or musical genre
There was a strong similarity in the user response to the control statements, I like
this genre and I like this artist, which was measured in the scale of one to seven, as
described in 7.2.7. The estimation of correlation between the two statements using
standard Cronbach’s α, results in α = 0.946.

In the ANOVA analysis, both control statements show a significant main effect
for statements S4: I found this video entertaining, S6:I found the video boring
to watch, and S9: Overall, I think the video was good with results F > 6 and
p < 0.001. The participants who did not like the musical genre in the mashup
perceived it as significantly boring to watch than the people who were neutral and
who liked the genre. The more the participants like an artist or a genre, the more the
mashups were perceived as entertaining, overall good and not boring. Therefore,
the pleasantness of a mashup is influenced by liking an artist or musical genre.

Number of concert visits
According to the user response on the number of concert visits in the last two years,
participants were mapped into three groups: two or less visits (17 participants),
three to five visits (15 participants), six or more (8 participants). No significant
main effect was found on the statements due to the number of concert visits. How-
ever, a positive trend was found for statements S2: The different viewpoints shown
in the video gave me a rich overview of the concert, S9: Overall, I think the video
was good, and a negative trend was found for statement S3: I got disturbed by the
lack of camera stability. It is an interesting observation that people who like going
to concerts more often are less disturbed by the camera stability and appreciate a
mashup more than people who visit concerts less often.

Frequency of concert-video watching
According to the user response on frequency of watching concert videos, partici-
pants were mapped into three groups: daily or weekly (5 participants), monthly
or yearly (13 participants), rarely or never (22 participants). A significant ef-
fect was found for statement S8: The image quality in the video was very bad,
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(F = 5.82, p < 0.001). Tukey tests showed that the first group of participants
perceives the mashup image quality significantly lower than the third group of par-
ticipants. The result shows that people who are concert video fans are more critical
towards the image quality of a mashup.

7.4.12 Comments
The comment-boxes were provided after every mashup and at the end of the test.
The participants filled-in total 160 boxes (on average 4 boxes per participants),
where each box contained comments on a number of topics. We clustered the
comments into six categories according to their topics and they appeared at least
twice in each of the algorithms: naive, manual, first-fit. Table 7.1 presents the six
categories and the number of positive and negative comments on each category per
algorithm. The comments that are not relevant for the comparison of the algorithms
or appeared only once are not shown in the table.

The highest number of comments were made on the shot-cuts which included
shot duration and timing of the cut. Since the naive algorithm did not consider the
timing of the cut, it received the highest number of negative comments, such as
‘shaky scenes too long and good scenes too short’, ‘I’m distracted with the abrupt
cuts’. Other interesting comments were that the manual mashups had very regular
cuts accompanied with the music beats, which made them predictable and boring.
The first-fit mashups received most of the positive comments in this category, how-
ever, it was also mentioned in some of the comments that there were obvious signs
of an automatic mashup generation such as ‘there was a cut right in the middle of
the most interesting moment’.

The comments in the content category include user opinions on the artist, genre
and the concert itself. The concert C3 got most of the comments as the participants
had more strong opinions on the artist. Typical remarks were: ‘I can’t watch this
video I hate her’ and ‘she is the best’. The brightness category includes comments
referring to black shots and overall brightness level in the mashup shots. As ex-
pected, the naive algorithm got most of the negative comments, such as ‘too many
dark scenes’. Similarly, in the other comment categories: stability, quality, variety,
the naive algorithm got most of the negative comments. In general, the comments
reflect a similar opinion towards the algorithms as found in the user response to
the questionnaire. The naive mashup is perceived as the lowest in quality, while
first-fit and manual mashups are similar to each other.

Another very common comment, almost from every participant, was on the in-
consistent audio quality of the mashup. We did not present the topic in Table 7.1
because it was not a differentiating factor among the algorithms. All the mashups
contained audio along with the corresponding video as recorded by the cameras,
which were different in quality and volume due to different ambient noises and
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Table 7.1. Comment categories and number of positive and negative comments
per algorithm

Naive Manual First-fit
+ - + - + -

Shot-cuts 1 12 4 3 7 5
Content 0 8 2 5 2 6
Brightness 0 7 0 2 2 0
Stability 1 7 1 1 1 3
Quality 1 5 4 5 3 3
Variety 3 2 6 2 5 4

microphone settings of the individual cameras. Choosing audio stream from one
of the recordings was not an option as one recording might not always be available
throughout a mashup and even if it was available it might not contain high quality
audio. Since we did not have access to the original high-quality audio recording,
we could not analyze and improve the audio quality of the mashups. The test
participants were informed about the state of the audio in the mashups during in-
troduction of the test. However, many commented that ‘I was disturbed by the
low-quality audio’ and ‘I would have enjoyed the mashups a lot more if the audio
would have been better’.

7.5 Discussion
The test results provide a measure of quality perception in terms of the criteria
diversity, visual quality and pleasantness, described in Section 7.1. The following
sections discuss the test results on these criteria.

7.5.1 Diversity
The diversity criteria, described in Section 7.1.1, were tested in terms of S1: I
got a good impression of the concert atmosphere from the mashup video, S2: I got
disturbed by the lack of camera stability and S5: I think there was enough variety
in the content. A high score of these statements corresponds to better perception
of diversity. The mean scores across the content for the statements are shown in
Figure 7.17. In all the three statements manual and first-fit score about the same,
which is always higher than naive. An estimation of correlation among the scores
of the statements using standard Cronbach’s α results in α = 0.881. The high
value of α suggests that all three statements agree on the same opinion on the
measurement of diversity.

According to the results presented in Sections 7.4.3, 7.4.4, 7.4.7 and Figure
7.17, the mashups generated by the naive algorithm are perceived as the least di-
verse, while the ones generated by manual and first-fit are perceived as comparable.
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Figure 7.17. Mean scores across the content for naive (2), manual (3) and first-
fit (∗) algorithms on the statements measuring diversity. The horizonal axis rep-
resents the three statements. Error bars show confidence intervals of 95% of the
mean value.

The perception of diversity in a mashup is found to be influenced by the age
factor as described in Section 7.4.11. The younger participants (25 and younger)
found that the mashups contained less overview and less variety in content than the
older participants (31 and older).

7.5.2 Visual quality
The visual quality criteria, described in Section 7.1.2, was tested by statements S3:
I got disturbed by the lack of camera stability, S7: The cameras in the video were
stable and S8: The image quality in the video was very bad. Statement S7 provides
a measure of camera stability, while statement S3 provides a measure of feeling
disturbed due camera instability. Statement S8 provides perceptual measure of the
image quality. Since the statements S3 and S8 have negative connotations, the
lower scores indicate higher visual quality. For the clarity in illustration, the scores
of these statements were subtracted from 8, such that in all the three statements
higher scores correspond to a better visual quality. The mean scores across content
are shown in Figure 7.18.

In all the three statements, manual scores the highest, closely followed by first-
fit, while naive scores the lowest. The correlation measurement among the scores of
the statements using standard Cronbach’s α results in α = 0.811. The high value of
α suggests that all three statements agree on the same opinion about visual quality.
According to the results presented in Sections 7.4.5, 7.4.9 and Figure 7.18 it is
verified that naive algorithm generates a mashup with lower visual quality than the
other two algorithms. In the case of manual and first-fit there is not a big difference
in mean scores, however, manual mashups are consistently perceived as having
higher visual quality.

The evaluation of visual quality is found to be influenced by the frequency
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Figure 7.18. Mean scores across the content for naive (2), manual (3) and first-
fit (∗) algorithms on the statements measuring visual quality. The horizonal axis
represents the three statements. Error bars show confidence intervals of 95% of
the mean value.
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Figure 7.19. Mean scores across the content for naive (2), manual (3) and first-
fit (∗) algorithms on the statements measuring pleasantness. The horizonal axis
represents the three statements. Error bars show confidence intervals of 95% of
the mean value.

of watching concert videos. As described in Section 7.4.11, people who watch
concert videos on weekly or daily basis were more critical towards mashup image
quality (S8) than people who rarely watch concert video.

7.5.3 Pleasantness
The pleasantness criteria, described in Section 7.1.3, is tested in terms of S4: I
found this video entertaining, S6: I found the video boring to watch, and S9: Over-
all, I think the video was good. A pleasant mashup is indicated by higher scores of
statements S4, S9 and lower score of statement S6. For the clarity in illustration,
the scores of S6 is subtracted from 8, such that in all the three statements higher
scores correspond to a more pleasant mashup. The mean scores across content are
shown in Figure 7.19. In all the three statements, the naive algorithm scores the



136

lowest. The manual and first-fit score about the same. The correlation measure-
ment among the scores of the statements using standard Cronbach’s α results in
α = 0.893. The high value of α suggests that all the three statements agree on the
same opinion on the measure of pleasantness. According to the results presented
in Sections 7.4.6, 7.4.8 and 7.4.10. It is verified that the naive algorithm generates
mashups that are less pleasant than the ones generated by manual and first-fit.

The evaluation of pleasantness is found to be dependent on liking an artist (or
genre) present in a mashup. As described in Section 7.4.11, people who like an
artist (or genre) found the mashups containing the artist (or genre) more pleasant
to watch than people who do not like them.

7.6 Conclusions
From the user study we can conclude that the perceived quality, in terms of diver-
sity, visual quality and pleasantness, of a mashup generated by the naive algorithm
is consistently lower than that of the ones generated by the manual and first-fit
algorithms. Therefore the hypothesis H1 and H2, described in Section 7.1 are
confirmed.

Between the first-fit and manual mashups, the first-fit scores slightly higher
in diversity but slightly lower in visual quality. The pleasantness scores of both
algorithms are very similar. Therefore, hypothesis H3 is confirmed.

The perception of a mashup quality is highly dependent on the content. The
camera recordings with multiple view angles, variety in content and good visual
quality allow the manual and first-fit algorithms to generate mashups that are per-
ceived as significantly higher in quality than that of the ones generated by the naive
algorithm.

The feature analysis techniques, described in Chapter 5, used in measuring the
degree of fulfillment of the mashup requirements provided fairly satisfactory re-
sults. On average, the perceived image quality and diversity of the first-fit mashups
were close to the manual mashups and higher than the naive mashups. The cut-
points in the first-fit mashups were preferred even more than that of the manual
mashups, however, this may be caused by the manually annotated audio cut-points.
So we cannot comment on the performance of feature analysis on the cut-point
suitability. The feature analysis, however, failed in case of concert C3 where the
recordings were of bad visual-quality.

The effects of control variables such as knowing an artist and liking an artist on
the perception of the mashup quality show some interesting findings. The mashup
evaluation was found to be not influenced by knowing an artist present in the
mashup. However, the perception of pleasantness was biased by liking an artist
or a genre. A significant difference was found between people who watch concert
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videos very often (daily or weekly) and people who watch concert videos rarely or
never. The former group was found to be more critical towards the image quality of
the mashups than the latter group. Another significant difference was found on the
demands for content diversity between the younger group of participants (25 and
younger) and the older group (31 and older). The results show higher expectation
of the younger group for more diversity in content than that of a slightly higher age
group. The results match with the recent trend in video-production of increasing
shot-cut density and fast transitions [Reeves & Nass, 1996].





8
Conclusions

In this thesis, we presented an automated mashup generation system for multiple-
camera recordings captured during musical concerts by non-professionals. We
described the research methodologies and techniques followed in designing, de-
veloping and evaluating the system. In this final chapter, we present the main
contributions of this thesis and suggest some future work.

8.1 Conclusions
We started our research by selecting a target application area and eliciting require-
ments for generating mashups. We interviewed experts on video-editing and con-
ducted focus group meetings involving multimedia researchers, industrial design
students and amateur video-editors. Based on the opinions of the focus groups and
the rising popularity of concert videos in web-sites like YouTube, we decided to
focus on concert recordings captured by non-professionals. We also compiled a
list of 12 requirements for concert video mashups, such as image quality, diversity,
special effects.

We proposed a system consisting of three steps: pre-processing, mashup-
composition and post-processing, where each step addresses certain requirements
that help addressing other requirements in successive steps. This thesis focuses
on the first two steps and post-processing is left as future work. We introduced
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a formal model for an automatic mashup generation system by translating the re-
quirements into mathematical terms.

In the pre-processing step, recordings from multiple cameras are aligned in
a common time-line to address the requirement synchronization. We proposed
an automated synchronization approach based on detecting and matching audio
and video features extracted from the recorded content. We developed three re-
alizations of the approach using different features: still-camera flashes in video,
audio-fingerprints and audio-onsets. In each realization, features of a recording are
compared with the corresponding features of another recording using techniques
such as cross-correlation, longest subsequence matching and Hamming distance.
We evaluated the performance of the different realizations in a common test-set.
The audio-fingerprint and audio-onset based realizations were found to be the most
suitable for synchronizing multiple-camera recordings from musical concerts.

In the mashup-composition step, we proposed an optimization based approach
to select the mashup clips. We modeled the requirements into score functions and
constraints. The score functions provide a numerical representation of the degree
of fulfillment of the requirements: image quality, diversity and cut-point suitability.
Different audio-visual feature extraction and analysis techniques were employed to
compute the scores of the recordings, where a higher score indicated better fulfill-
ment of a requirement. The constraints represent the requirements: suitable-clip
duration and completeness, which must be fulfilled in a mashup. A global objec-
tive function was defined to combine all the score functions and provide a measure
of the mashup quality. We developed an algorithm, first-fit, based on a greedy op-
timization technique, which composes a mashup by satisfying the constraints and
maximizing the objective function.

We performed an objective evaluation of the quality of the mashups, generated
by the first-fit algorithm with respect to the ones generated by two other methods:
naive and manual. In the naive method, a mashup was generated by satisfying only
the requirements given as constraints. The comparison between naive and first-
fit mashups on ten multiple-camera recordings containing 3–9 recordings shows
that the quality score of the first-fit mashups are at least ten times higher than the
naive mashups. In the manual method, mashups were created by a professional
video-editor. The comparison among naive, manual and first-fit mashups on three
multiple-camera recordings containing 4–5 recordings shows that the quality score
of the first-fit mashups are the highest and that of the naive mashups are the lowest,
while the manual mashups score slightly higher than the naive mashups.

We performed a subjective evaluation to measure the end-user satisfaction of
the first-fit, naive and manual mashups. We used the test-set containing three
multiple-camera recordings, the same as used in the objective evaluation of the
three mashups. The subjects were asked to provide their ratings on the mashup
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quality in terms of three aspects diversity, visual quality and pleasantness after
watching each of the mashups. The results showed that the naive mashups score
consistently and significantly lower than the other mashups in all the aspects. The
first-fit mashups scored slightly higher in diversity but slightly lower in visual qual-
ity. The pleasantness scores of the mashups generated by the first-fit and manual
methods were very similar. Therefore, we conclude that the perceived quality of a
mashup generated by the naive method is lower than the first-fit and manual while
the perceived quality of mashups generated by the first-fit and manual methods are
similar.

In Section 1.2 of Introduction, we presented four research questions. To con-
clude the thesis, here we revisit the questions and present our answers:

1. What are the requirements for generating a mashup?
We conducted interviews with experts and focus group meetings involving
multimedia researchers, design students and amateur video-editors to under-
stand the usage of multiple-camera recordings. Based on the discussions,
we selected musical concerts as the target application of our research. We
also compiled a list of 12 requirements for generating a mashup from non-
professional multiple-camera concert recordings. The requirements contain
desired characteristics in a mashup and user control during the mashup gen-
eration process. We addressed a set of these requirements in our automati-
cally generated mashup. In both objective and subjective evaluation, these
mashups scored higher than the mashups created by a naive method, which
addresses only two of the requirements. This shows that the compiled re-
quirements are applicable in generating a higher quality mashup. In compar-
ison to the mashups made by a professional editor, our automated mashups
scored higher in objective evaluation, which indicates the set of requirements
addressed by the professional are different from our set of requirements. We
analyzed the manual mashups to understand how different requirements were
weighed by the expert, but the results show no consistency on the weights of
the requirements in different mashups. Since we had manual mashups from
only three sets of multiple-camera recordings made by one expert, a larger
number of test set would be required to verify the differences in requirements
addressed. In the subjective evaluation, both the manual and our automated
mashups were perceived as similar. This shows that the requirements rep-
resent end-user needs. However, a thorough analysis with a mashup that
satisfies the complete set of requirements would be needed to further answer
this question.

2. How can the requirements be addressed by a mashup generating system?
To address the requirement for synchronizing multiple-camera recordings,
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we proposed synchronization techniques based on audio-visual features: still
camera flashes in video, audio-fingerprints and audio-onsets. The proposed
techniques are applicable independent of the number of recordings and their
frame rates. The flash based technique requires at least 2 common flashes
in the recordings and provides synchronization accuracy of ± 40 msec, as-
suming videos are captured at the rate of 25 frames per sec. The audio-
fingerprint and audio-onset based technique requires 3 sec of common audio
in the recordings and provide synchronization accuracy of ± 11.6 msec. In
our test-set the audio-onset performed the best by synchronizing 29 out of
30 test recordings. We conclude that the audio-onset and audio-fingerprint
based method are suitable to apply in synchronizing concert video record-
ings. To address other requirements for generating a mashup, we modeled
the mashup generation problem as an optimization problem. We defined an
objective function, which maximizes the degrees of fulfillment the require-
ments while satisfying the constraints. The model allows to address multiple
requirements and provides a mashup quality score corresponding to the de-
gree of fulfillment of the requirements.

3. How can a mashup that satisfies the requirements be generated?
We proposed an algorithm, first-fit, based on a greedy optimization approach
to select the clips that best satisfy the requirements. According to the formal
model for automatically generating mashups, the algorithm maximizes the
fulfillment of some requirements and satisfies the constraints. The advantage
of the approach is that it efficiently addresses multiple mashup requirements,
however, it does not guarantee a globally optimal solution. The mashups
generated by the first-fit algorithm were compared with the mashups created
by a naive algorithm, which satisfies only the constraints and manually made
by a professional video-editor. In our objective evaluation on 10 sets of
multiple-camera recordings containing 3–9 recordings, the first-fit mashups
scored at least 10 times higher than the naive mashups. This shows that the
first-fit algorithm addresses the mashup requirements better than the naive
method. The manual mashups score slightly higher than the naive mashups
but lower than the first-fit mashups. Since we had manual mashups only on
three sets of multiple-camera recording made by one individual, and there
are many factors involved in creating both mashups, we cannot conclude if
the first-fit or manual mashups better address the requirements.

4. How can the generated mashups be evaluated?
To measure the end-user satisfaction offered by the first-fit, manual and
naive mashups, we conducted a subjective evaluation. The results show that
the naive mashups score consistently and significantly lower than the other
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mashups in all the aspects. The first-fit mashups score slightly higher in di-
versity but slightly lower in visual quality than the manual mashups. The
pleasantness scores of both algorithms are very similar. Therefore, we con-
clude that the perceived quality of a mashup generated by the naive method is
lower than the first-fit and manual while the perceived quality of the mashups
generated by the first-fit and manual methods are similar. Additionally, per-
ception of a mashup quality is found to be highly dependent on the content.
The recordings that contain multiple view angles, variety in content and good
visual quality allow manual and first-fit methods to generate mashups, which
are perceived as significantly higher quality than that of the ones generated
by the naive method.

8.2 Future work
The thesis focuses on the generation of an automatic mashup. Therefore, the re-
quirements for a mashup generation system compiled in Chapter 2 have not been
completely addressed. The remaining requirements can be applied in the post-
processing step, described in Section 3.1. Below we describe some research ideas
that can be helpful in addressing these requirements and extending the mashup
generation to other application areas.

8.2.1 Color balance
Recordings from different cameras may look different in color, even if they contain
the same object at the same time, due to camera quality and settings. Figure 8.1
shows example frames from two wedding recordings. Although both frames con-
tain the same couple in the same location around the same time, the overall color
effect is very different. Available editing tools such as Adobe Premiere Pro and Fi-
nal Cut Pro offer tools to correct the color discrepancies between clips by manually
selecting a color of a clip as a reference and adjusting the corresponding color of
the another clip. In order to achieve a desirable match, a user has to adjust several
parameters such as highlight, mid-tones, shadows, brightness and contrast in these
editing tools. The process is very time consuming and in many cases it is impossi-
ble to find the right color balance. Therefore, a research challenge is to provide an
easy solution to normalize the color of the clips contained in a mashup.

When there are multiple-camera videos, all with non-professional sources, a
challenge is to automatically find a reference video that can be used to normalize
the other recordings. A solution could be to use a professional recording, which is
most likely to contain a high quality color, or use a color model that is perceptu-
ally most pleasing, or allow users to provide a reference. In [Shrestha, Sekulovski,
Weda, Barbieri & Clout, 2008], we propose an algorithm to normalize colors be-
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(a) (b)

Figure 8.1. Two images captured at the same event from different cameras. How-
ever, the same objects in the two images show different colors.

tween two images using dominant colors at reference points given by users. The
algorithm could be extended to balance the colors of the clips from different record-
ings in a mashup.

8.2.2 User interface
Since user-generated videos are personal recordings, users would like to be in
charge of the decisions while editing them. We can assume that automatic mashups
cannot satisfy the requirements of all users. However, as we described in Chap-
ter 1, current tools for editing multiple-camera recordings are extremely complex
and technical, which makes their use very time consuming and difficult. The re-
search challenge is to design an intuitive user interface for editing multiple-camera
recordings, which provides balance between user control and automation.

[Campanella, 2009] proposes a semi-automatic editing interface for home-
videos recorded by a single camera, in which an automatic summary is generated
based on video features and users can apply their editing decisions on the automatic
summary. A similar approach can be applied in the context of multiple-camera
videos, where a user can personalize the automatic summary rather than synchro-
nizing the videos and edit on frame level. Figure 8.2 shows a concept of a multiple
camera editing interface, designed by a multimedia design student, Ilona Hein, as
a part of her study assignment. The design allows visualization of videos, generate
summaries and apply editing functions intuitively in a single window. The users
can import multiple-camera recording and assign a preference score to each of the
recordings using the number of stars. The recordings are automatically synchro-
nized and represented in a time-line. The users can specify an audio stream from
one of the recordings or import another stream. In order to generate a summary, the
user provides a preferred duration. The summary is represented by a collection of
key frames from the recordings in a three dimensional elliptical plane. A player is
located at the front of the ellipse, where the key frames can be dragged individually
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Figure 8.2. Concept design of a web based multiple camera interface prepared by
Ilona Hein. The synchronized videos and audio stream are presented in a time-line
at the left side. The mashup summary from different recordings are presented in
an elliptical array of frames, which represent clips from the recordings. A player
is located at the front of the ellipse. The buttons for simple editing functions such
as adding texts on the video, special effects are displayed at the lower right side.
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or play the summary in sequence. On clicking a key frame on the ellipse, the cor-
responding synchronized segments in all the multiple-camera recordings become
highlighted and can be swapped by the user. The interface also provides simple
editing functions like adding texts on the video, transitions and effects.

8.2.3 Other applications
Since the use of multiple cameras is common in many types of events such as
sports, surveillance and lectures, the idea of generating mashups can be applied in
many other applications. Some of the application scenarios for home videos are
presented in Chapter 2. In events such as sports, the events are captured not only
by amateurs but also by professionals. The stationary cameras at lecture-halls,
meeting-rooms and super-markets also produce multiple-camera recordings. The
recordings from amateurs, professionals and stationary cameras are most likely to
have different characteristics, however they capture the same event. Similarly, the
purpose of a mashup of the recordings from a meeting should be very different
than that of a sport. The research challenge lies in developing a method for gen-
erating mashups that is general enough to be applicable to different applications
by employing different sources of recordings and easily accommodate different
requirements.
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ENGSTRÖM, A., M. ESBJÖRNSSON, AND O. JUHLIN [2008], Mobile collabora-
tive live video mixing, MobileHCI ’08: Proceedings of the 10th interna-
tional conference on Human computer interaction with mobile devices and
services, ACM, 157–166.

GAO, W., C. MERMER, AND Y. KIM [2002], A de-blocking algorithm and a
blockiness metric for highly compressed images, IEEE Transactions on
Circuits and Systems for Video Technology, Volume 12, 1150 – 1159.

GREENE, K. [2009], Photosynth for video and other techfest treats. http://
www.technologyreview.com/blog/editors/23023/?a=f.

GUIMARAES, S. J. F., M. COUPRIE, A. A. ARAÚJO, AND N. J. LEITE [2001],
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Automatic mashup generation of
multiple-camera videos

Summary

The amount of user generated video content is growing enormously with the in-
crease in availability and affordability of technologies for video capturing (e.g.
camcorders, mobile-phones), storing (e.g. magnetic and optical devices, online
storage services), and sharing (e.g. broadband internet, social networks). It has
become a common sight at social occasions like parties, concerts, weddings, vaca-
tions that many people are shooting videos at approximately the same time. Such
concurrent recordings provide multiple views of the same event. In professional
video production, the use of multiple cameras is very common. In order to com-
pose an interesting video to watch, audio and video segments from different record-
ings are mixed into a single video stream. However, in case of non-professional
recordings, mixing different camera recordings is not common as the process is
considered very time consuming and requires expertise to do. In this thesis, we
research on how to automatically combine multiple-camera recordings in a single
video stream, called as a mashup. Since non-professional recordings, in general,
are characterized by low signal quality and lack of artistic appeal, our objective is
to use mashups to enrich the viewing experience of such recordings.

In order to define a target application and collect requirements for a mashup,
we conducted a study by involving experts on video editing and general camera
users by means of interviews and focus groups. Based on the study results, we
decided to work on the domain of concert video. We listed the requirements for
concert video mashups such as image quality, diversity, and synchronization.

According to the requirements, we proposed a solution approach for mashup
generation and introduced a formal model consisting of pre-processing, mashup-
composition and post-processing steps. This thesis describes the pre-processing
and mashup-composition steps, which result in the automatic generation of a
mashup satisfying a set of the elicited requirements. At the pre-processing step,
we synchronized multiple-camera recordings to be represented in a common time-
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line. We proposed and developed synchronization methods based on detecting and
matching audio and video features extracted from the recorded content. We devel-
oped three realizations of the approach using different features: still-camera flashes
in video, audio-fingerprints and audio-onsets. The realizations are independent of
the frame rate of the recordings, the number of cameras and provide the synchro-
nization offset accuracy at frame level. Based on their performance in a common
data-set, audio-fingerprint and audio-onset were found as the most suitable to apply
in generating mashups of concert videos. In the mashup-composition step, we pro-
posed an optimization based solution to compose a mashup from the synchronized
recordings. The solution is based on maximizing an objective function containing a
number of parameters, which represent the requirements that influence the mashup
quality. The function is subjected to a number of constraints, which represent the
requirements that must be fulfilled in a mashup. Different audio-visual feature
extraction and analysis techniques were employed to measure the degree of fulfill-
ment of the requirements represented in the objective function. We developed an
algorithm, first-fit, to compose a mashup satisfying the constraints and maximizing
the objective function.

Finally, to validate our solution approach, we evaluated the mashups generated
by the first-fit algorithm with the ones generated by two other methods. In the first
method, naive, a mashup was generated by satisfying only the requirements given
as constraints and in the second method, manual, a mashup was created by a pro-
fessional. In the objective evaluation, first-fit mashups scored higher than both the
manual and naive mashups. To assess the end-user satisfaction, we also conducted
a user study where we measured user preferences on the mashups generated by the
three methods on different aspects of mashup quality. In all the aspects, the naive
mashup scored significantly low, while the manual and first-fit mashups scored
similarly. We can conclude that the perceived quality of a mashup generated by the
naive method is lower than first-fit and manual while the perceived quality of the
mashups generated by first-fit and manual methods are similar.
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