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Abstract 
 
Copyright legislation was prompted exactly 300 years ago by a desire to protect authors 

against exploitation of their work by others. With regard to modern content owners, Digital 

Rights Management (DRM) issues have become very important since the advent of the 

Internet. Piracy, or illegal copying, costs content owners billions of dollars every year. 

DRM is just one tool that can assist content owners in exercising their rights. Two 

categories of DRM technologies have evolved in digital signal processing recently, namely 

digital fingerprinting and digital watermarking. One area of Copyright that is consistently 

overlooked in DRM developments is 'Public Performance'. 

 

The research described in this thesis analysed the administration of public performance 

rights within the music industry in general, with specific focus on the collective rights and 

broadcasting sectors in Ireland. Limitations in the administration of artists' rights were 

identified. The impact of these limitations on the careers of developing artists was 

evaluated. 

 

A digital audio watermarking scheme is proposed that would meet the requirements of both 

the broadcast and collective rights sectors. The goal of the scheme is to embed a standard 

identifier within an audio signal via modification of its spectral properties in such a way 

that it would be robust and perceptually transparent. Modification of the audio signal 

spectrum was attempted in a variety of ways. A method based on a super-resolution 

frequency identification technique was found to be most effective. The watermarking 

scheme was evaluated for robustness and found to be extremely effective in recovering 

embedded watermarks in music signals using a semi-blind decoding process. The final 

digital audio watermarking algorithm proposed facilitates the development of other 

applications in the domain of broadcast monitoring for the purposes of equitable royalty 

distribution along with additional applications and extension to other domains. 
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Chapter 1: Introduction 

In recent years there has been much research conducted in the area of audio and 

video compression and manipulation using digital signal processing techniques. The 

ubiquitous MP3, more properly titled MPEG-1 Audio Layer 3, is almost 20 years old 

having been approved as an ISO standard in 1991 [1]. It was, however, only one step in a 

long process of the exploitation of research into how the human hearing system works. As 

the MP3 is but a single step in the development of audio encoding based on perceptual 

factors, so there has been much further development and the MP3 has since been 

superseded by later codecs. While research and development efforts continue to be 

expended in an attempt to find ways of making file sizes (and therefore transmission times) 

smaller without affecting perceived quality, modern research in the area of audio processing 

has devolved from a focus on compression to one of using such knowledge for digital rights 

management applications. 

 

This shift in focus has been driven, in part, by the needs of the Entertainment 

industry to find means for protecting, tracking or identifying intellectual property such as 

photographs, music and movies. The SDMI (The Secure Digital Music Initiative) [2], a 

group consisting of more than 200 companies in the fields of I.T., Music and 

Entertainment, Consumer Electronics as well Security and Internet Service Providers, 

issued a challenge at the turn of the century, with regard to digital music, which invited 

investigation into the area of digital fingerprinting and watermarking as a content protection 

mechanism in the music industry. The challenge that was issued invited members of the 

public to break, hack or otherwise compromise various data-encoding techniques and 

technologies that the SDMI had developed as an initial step towards ‘Digital Rights 

Management’ (DRM) standardisation. The technology that the SDMI purported to 

recommend to the Industry was broken by outside sources almost immediately [3]. Crave et 

al noted that the SDMI challenge provided invited attackers with less information than 

would be available to an everyday ‘pirate’, and was apparently therefore deliberately 

intended to be a limited test of its technologies. 
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Eventually, the SDMI folded, claiming that it was awaiting further technical 

improvements before implementing DRM technologies. One of the reasons identified for 

the SDMI’s failure was that the technologies then available were insufficient to achieve the 

aim of completely hiding an added watermark from those expert or talented listeners 

described as having ‘golden ears’. This meant that there was no way of preventing potential 

removal of the watermark, since at least some of the human population could detect 

whether a file had been watermarked, detection being the first step before attack on a 

watermarking scheme. 

 

Still, DRM-focused research continued apace. Much research has gone into copy 

control, copy limitation or copy prevention as these are the areas where stakeholders see 

most potential losses [4]. The ease of availability and simplicity of copying digital media 

(such as films and music) impacts heavily on sales. While losses might not be as high as the 

Music industry claims, because not everyone who downloads or copies a file is a potential 

customer, there is no doubt that digital copying and internet availability is damaging music 

sales. The ‘Recording Industry Association of America’ (RIAA) states that it is estimated 

by the ‘Institute for Policy Innovation’ (www.ipi.org) that illegal copying costs the industry 

US$12.5 billion [4] globally in lost music sales alone, along with more than 70,000 jobs in 

the US. This relates only to music piracy and does not include the potentially larger losses 

caused by the illegal distribution of DVD / TV / film. The obvious reaction to this, in 

commercial terms, is to try to limit or prevent illegal copying.  

 

1.1 Background to this work 

Parallel to the requirement of the corporate sector of the Entertainment industry 

are the requirements of the multitude of artists, performers and associated producers that 

create the material in the first place and for whom Copyright legislation was originally 

intended. Copyright is of course ancient in comparison to Computer Science, essentially 

being born in the ‘Statute of Anne’ in 1710 in England, but it is nevertheless a valid and 

topical area of active computer science research. The ‘Statute of Anne’ was introduced to 
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prevent authors and their assignees being exploited by unauthorised re-printers copying, or 

pirating, their works and doing so ‘to their very great detriment and too often to the Ruin of 

them and their Families’ [5]. The first page of the Statute is reproduced in Figure 1.1 and it 

clearly states the motivation of the act in the introductory paragraph as being for the 

‘Encouragement of Learning’ and further contends that this can be achieved by ‘Vesting the 

copies of the Printed Books in the Authors or Purchasers of such Copies’ [5].  In the case of 

this early statute the works in question were books. However, the concept soon migrated to 

other creative areas and Copyright and its derivatives now extend to a wide variety of 

creative endeavours. Perhaps the most common would be in the Entertainment industry.  

 

Figure 1.1: The first page of the ‘Statute of Anne’ (1710), generally considered to be the 
world’s first copyright legislation [5]. 
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While the Statute was intended to prevent the exploitation of authors’ works by 

what was then the perfectly legal reprinting of paper publications, it opened the debate into 

wider areas. Within 65 years the scope of the legislation had widened to include, in the 

words of Lord Chief Justice de Grey, speaking in the House of Lords, ‘composers of music, 

the engravers of copper-plates, the inventors of machines’ [6]. In that year (1774) the case 

of ‘Donaldson v Beckett’ was debated at the House of Lords in England and the Attorney 

General observed that booksellers, who had previously been re-printing and reselling books 

without recourse to the author, had not ‘ever concerned themselves about authors, but had 

generally confined the substance of their prayers to the legislature, to the security of their 

own property’ [6]. 

 

The corporate sector of the creative industries then, as now, would seem to have 

had little concern for authors while furthering their own ends. After the case was settled, it 

was held that the author had certain inalienable rights that he or she could choose to avail 

of, waive or assign. In the judgement it was further observed that ‘literary works, like all 

others, will be undertaken and pursued with greater spirit, when, to the motives of public 

utility and fame, is added the inducement of private emolument’. This is the basis for the 

development of modern Copyright: that an author of a work has rights that he or she can 

choose to either use, waive or limit, and that the potential for profiting on an ongoing basis 

from their work, by availing of their rights, is an incentive to further development of these 

and similar works. 

 

It is almost exactly three hundred years since the Statute of Anne was enacted. 

Digital Rights Management (DRM) technologies in digital audio and video have received 

much attention in recent years with various efforts made to protect content from illegal 

copying, use or distribution. Some schemes were technically successful but not well 

received by end-users so therefore not successful in implementation. Others were not 

particularly successful technically, falling to the efforts of ‘hackers’ and other attacks. 

Efforts made by the corporate sector of the Entertainment industry to enable and 

standardise DRM technologies has so far served one purpose, namely protecting ‘the 

security of their own property’ [6]. Some organisations have, of course, made attempts to 
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ensure that artists are protected. However, comparatively small research output in the areas 

of DRM is targeted at schemes which do not primarily protect the corporate sector. 

 

The world’s most well-known digital music retailer, Apple’s iTunes store, recently 

agreed to remove all Digital Rights Management (or ‘electronic protection measures’) 

restrictions from its music [7] and the rationale behind this decision can be illustrated by the 

widely reported fact that Norway’s Consumer Ombudsman agreed to drop his country’s 

legal challenges to iTunes use of DRM. It had been contended by the Norwegian 

Ombudsman, among others, that DRM technologies employed by Apple were restrictive to 

consumers, denying them the right to transfer purchased music to other devices. This issue 

was also being monitored closely by other European countries but the threat of any legal 

action was subsequently dropped after Apple removed DRM protections. Apple’s defence 

of their DRM measures in the past may have been cloaked in claims of protecting the artist 

but they were in fact never about the artist. Opponents of DRM might claim they were more 

like 18th century publishers who had never ‘concerned themselves about authors’ but rather 

were more interested in ‘the security of their own property’ [6]. 

 

Notwithstanding the general acceptance of the need for copy protection and 

prevention and the obvious financial losses incurred by the recorded music industry, one 

area of digital rights management that receives comparatively little attention is the collation 

of data and subsequent distribution of royalties from public performance licensing. ‘Public 

Performance’ is an area specifically legislated for in modern Copyright and it is potentially 

an important source of revenue for Copyright holders (authors and their assignees). It is for 

this reason alone that the music publishing industry exists. It should be noted in this regard 

that ‘public performance’ in terms of music publishing is quite distinct from traditional 

sheet music publishing. 

 

Research into potential technologies for the protection or monitoring of public 

performances is quite limited in scale and scope. One reason for this lack of urgency may 

be because breaches of public performance Copyright are not causing any tangible financial 
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losses to the Music industry in the same way that illegal copying does. Indeed, the opposite 

may be the case, at least in some jurisdictions. It is apparent that, in some royalty 

distribution systems, not only do incorrect royalty distributions negatively affect some 

musicians and performers, they can actually create the reverse effect for which the concept 

of Copyright was invented before it evolved into an economy that is today worth more than 

€5Bn in Europe [8]. Since the concept of collective rights administration was born in 

Europe and the various European organisations have developed a multitude of mechanisms 

for the task, the amount of revenue generated from these activities is almost triple what was 

collected in the US and almost five times what was collected in Japan (on 2004 figures) [8]. 

It follows therefore, that artists and performers who have their collective rights 

administered by European organisations must be at an advantage compared to international 

counterparts. 

 

Unfortunately, instead of providing accurate royalty payments to those who have 

had their works used in a ‘public performance’ capacity (including TV and Radio), thereby 

adding ‘the inducement of private emolument’ [6] to an author’s other potential rewards, 

today’s royalty distribution systems often penalise developing and unrepresented artists 

while over-compensating well-established artists, corporate publishers and Copyright 

owners. This is perhaps why research in the area of audio coding for the monitoring of 

public performances such as radio and TV broadcasts is not as well resourced as that which 

deals with protection against illegal copying. Instead of costing the corporate sector and 

established artists, it can be shown to be rewarding them more than it should. 

 

1.2 Introduction to the problem-domain 

In order to understand the proposed technological solution to the problem of 

equitable monitoring of public performances for royalty distribution it is necessary to have 

a broad understanding of the technologies available, how they differ and to what purposes 

they are better suited. There are many different techniques within each sub-discipline but a 

broad overview is given here and expanded later.  
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1.2.1 Digital audio fingerprinting 

Digital audio fingerprinting involves analysing a signal in some way in order to 

create a set of representative data that will be used as a reference at a later date in order to 

compare against a new ‘fingerprint’ taken in the same manner from a candidate signal. The 

two are compared in order to see if they are the same, thereby identifying the candidate 

fingerprint as being from the same source as the reference fingerprint. This concept is 

analogous to fingerprinting a person as it is used to provide acceptably individual 

identifying data (the reference print) that can later be used to identify whether the candidate 

print (e.g. a print taken at a crime scene) belongs to the same person from which the 

reference print was taken. The basic concept is illustrated in figure 1.2. 

 

 

Figure 1.2: Basic fingerprinting scheme. 
 

 

Fingerprinting techniques are used to some extent in broadcast monitoring to allow 

content owners or producers to track use of the content, distribution and/or audience reach. 

Implementations include ‘AudioID’, developed by the Fraunhofer Institute for the Digital 

Media Technology group headed by Prof. Karlheinz Brandenburg – who also headed the 

development of the MP3 standard, as well as the commercially available proprietary ‘Media 

Analytics’ technology from New Media Lab. There are many other implementations of 

fingerprinting techniques used for broadcast monitoring. However, they are also commonly 

available for other tasks related to content identification. One of the better known 

fingerprint-based scheme’s is the ‘Gracenote’ database (formerly the Compact Disc Data 

Base, or ‘CDDB’). This is an internet-based database of millions of tracks which is used to 
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provide internet look-up for automatic recognition of Compact Discs as well as for on the 

fly identification of music as it is being played. 

 

Fingerprint-based techniques can be used for many content-identification 

processes but they have some important limitations. For example, if a work is made 

publicly available and the content creator is not previously aware of the potential for 

fingerprint identification, then no fingerprint will be made available to the monitoring 

organisation before public release. Perhaps the largest broadcast monitoring provider in the 

UK and Ireland, Nielsen Music Control, has a database of 500,000 [12] pieces but this is 

obviously not the full range of all recorded music. If the monitoring organisation has no 

copy of the fingerprint of a piece of audio, then it might as well not exist for the purpose of 

monitoring. Another problem is that of versions: if an author remixes or otherwise alters a 

piece after release and initial fingerprinting, then the new piece is different so its fingerprint 

will be different. The monitoring organisation must have a copy of every version of a work 

that is made publicly available. However, perhaps the most obvious problem with 

fingerprinting techniques is the necessity to have a large and continuously increasing data 

store of fingerprints to be able to monitor for current and future releases into perpetuity.  

 

According to Melinda Newman, West Coast Bureau chief of Billboard magazine, 

in 2004, ‘There are about 30,000 albums released a year’ [9]. If the average album has 

only ten tracks, this amounts to 300,000 tracks per year in the US alone and only by official 

major record labels and subsidiaries. In the UK market, figures taken from the Music 

industry periodical ‘Music Week’ indicate that there are approximately 11,000 albums 

released annuallyi. Again, taking a conservative estimate of 10 tracks per album, this 

equates to 110,000 album tracks in the UK. Adding in various single mixes, radio edits, 

collaborative remixes and sampled derivations – not to mention live or recorded-as-live 

performances on TV and radio - it becomes clear that the collection of digital fingerprints 

from which royalties are calculated is very limited. Nielsen’s database accounts for little 

                                                
i Data compiled privately by David Reid (Music industry A&R representative, Choice Music Prize 
founder) from ‘Music Week’ magazine and Official Chart Company figures for 2006, 2007. 
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over 12 months worth of new US and UK releases alone. Given that releases in different 

territories may be mixed and mastered differently, the limitations widen.  

 

This takes no account of the thousands of artists worldwide who now release 

albums without the involvement of the record industry in any form. By way of illustration, 

there are only more than 200 albums and more than 500 singles released in Ireland each 

yeari. Of these, a large number are by artists who have no corporate record label or 

publisher contracts and instead release their work independently. It is estimated by 

‘IrishUnsigned.com’, a web-based promotional organisation for developing artists, that 

approximately 50 albums, singles or EPs are released in Ireland by independent artists each 

year. This equates to approximately 7-8% of all releases in the territory. It is not suggested 

that the same ratio exists in other domains but the advent of digital-only releases will 

certainly not cause a decline in the ratio of independent/corporate releases. Even if only 1% 

of singles and albums released in the UK and US was independent of corporate record label 

or publisher involvement, this would still be a substantial number, not least because it is 

those artists who most need equitable treatment to ensure their careers are ‘undertaken and 

pursued with greater spirit’, as England’s Attorney General said in 1744 [6]. 

 

There is no way to estimate the number of individual tracks made publicly 

available in a given year but it is likely to be well above 500,000 internationally. Apple’s 

iTunes store claims to have as many as 10 million tracks in its system [7] in January 2009. 

Providers like Nielsen, it has to be said, only monitor what they are specifically requested 

to monitor. Since there is a cost involved, owners usually only pay for the monitoring of 

singles released and likely to be broadcast on radio/TV – assuming they know of the 

possibility of doing so. 

 

On considering one of the most requested tracks in the US, Led Zeppelin’s 

‘Stairway to Heaven’, such limitations in the opt-in systems used for broadcast monitoring 

                                                
i Figures compiled from research undertaken through ‘IrishUnsigned’ based on confidential sales 
chart data supplied to the Music industry by Chart Track UK.  
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become more obvious. The track was not originally released as a single yet has amassed 

almost 1.5 million radio plays in the US alone [10] [11]. The track did eventually chart in 

many countries when digital downloads became chart-eligible but approximately 1.4 

million of those US radio plays (and countless tens of thousands worldwide) would never 

have appeared on any airplay chart as there was no single released. While this is an extreme 

case, it does serve to illustrate the problem of only monitoring the airwaves for a small 

selection of tracks according to little known opt-in measures. 

 

Another interesting point to note is that the Performance Rights Society (PRS), the 

UK’s performance rights agency, agreed a deal in mid-2008 to use data supplied by 

‘Nielsen Music Control’. This has led to a claimed increase in the accuracy of royalty 

distribution to 90% [12]. It is also claimed that this partnership will ‘double the accuracy of 

radio royalty payments to its members’. While it makes sense that the majority of 

broadcasts from major broadcasters are of commercial releases, the problems caused by 

inaccurate distributions will still continue. This is because the final 10% of royalties from 

the major broadcasters, and the ‘remaining smaller commercial radio stations [which] will 

continue to be paid by taking samples of the music broadcast throughout the year’ are 

likely to include a disproportionate number of minor and/or less commercially successful 

artists. It does have to be accepted that, limited as it is, this is a major improvement on 

previous systems. 

 

Unfortunately, it is still the less established, less well-informed and less well 

resourced developing artists who will be left out of the distributions. They are, in effect, 

being dealt with exactly as was the case when Copyright was first legislated for. In fact, 

these same artists will now be even more likely to be impacted ‘to their very great 

detriment and too often to the Ruin of them and their Families’ [6]. This is because some of 

the money they should receive from the PRS for even occasional plays on large or small 

broadcasters may be, as with all of the fingerprint-based royalty administration processes, 

incorrectly distributed instead to more well known artists. The service provided by ‘Nielsen 



   

- 22 - 

Music Control’ to the PRS relies on audio fingerprinting technology, as explained on their 

websitei. 

1.2.2 Digital audio watermarking 

Digital audio watermarking, as is suggested by its name, can be visualised as 

similar to watermarking of images by photographers or content owners, as in Figure 1.3, or 

watermarking of notes by banknote issuers to prevent or inhibit unauthorised copying, to 

prove ownership or to prove authenticity. Generally, the purpose of the watermark is not to 

physically or technically prevent copying but to make unauthorised copies either of little 

value or noticeably invalid. This same purpose generally applies to digital audio 

watermarking. 

 

 

Figure 1.3: An example of a watermark used on a photographic image to make 
unauthorised copying an unattractive option [13]. 

 

 

Essentially, in the case of audio watermarking, the process involves adding some 

form of information – the watermark – to some signal – the host – in order that it can be 

recovered and decoded at a later date and used to prove the authenticity or identity of the 

candidate presented. The process is outlined in figure 1.4. 

                                                
i ‘Nielsen Music Control uses a unique patented electronic fingerprinting technology 'Medicor' 
developed for the sole use of Nielsen Music Control and the direct specific needs of the music 
industry’. http://www.nielsenmusiccontrol.com. Accessed October 23rd 2009. 
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Figure 1.4: Basic watermarking scheme. 
 

 

One interesting example of the use of digital audio watermarking for authenticity 

verification is in the real-time watermarking of witness and defendant statements at the time 

of interview with the police to prove they were not tampered with at a later date [14]. This 

technique is termed a ‘fragile’ or ‘semi fragile’ watermarking scheme as the host, 

watermark, or both would be noticeably damaged by any form of manipulation of the 

watermarked audio signal, in the same way as the photograph in Figure 1.3 would be 

noticeably damaged by removal of its watermark. 

 

While it might appear that security of the watermark against removal should be a 

major consideration for all watermarking schemes it should be noted that the domain of 

audio or broadcast monitoring offers no realistic advantage to broadcasters, listeners or 

even potential pirates by the illicit removal of the watermark if that watermark serves only 

to identify the work in question or to provide added value to the end-user. The attempted 

removal of a digital watermark would in fact be likely to damage the audio in terms of 

quality.  
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One aspect of watermarking schemes that is sometimes overlooked or otherwise 

relegated to an incidental consideration is the detection procedure. As mentioned in Section 

1.2.1, digital fingerprinting only works if there is a stored set of data to which a candidate 

fingerprint can be compared. This is one of its major limitations, particularly for less well-

informed artists. Some watermarking schemes also specify detection or decoding processes 

that require access to either the original (unwatermarked) audio or to some other related 

data. These are called ‘informed’ watermark detection schemes [15] and they certainly have 

their uses in audio watermarking. However, broadcast monitoring would not benefit from 

such a system to any great extent as it would suffer the same limitations as fingerprint-

based monitoring. 

 

The ideal scenario in most applications would be for decoding to be possible in the 

complete absence of the original audio or any information related to it, except perhaps the 

knowledge that it actually has a watermark. This is called ‘blind’ or ‘zero knowledge’ 

decoding depending on its application [16]. A realistic compromise exists whereby the 

decoder might have access to some information relating to the host audio or the watermark. 

This is called ‘semi-blind’ decoding [72]. An extension to this is the case where there is no 

prior knowledge of the original host audio, nor the watermark itself, but there is known 

information relating to the watermarking process. This is also a form of ‘semi-blind 

decoding’ but it is perhaps more useful. In the case of a transparent, standardised 

watermarking technique, using standard pre-defined input values, the decode process could, 

indeed, become ‘almost blind’. 

 

1.3 Problem statement 

The distribution of royalty payments for the authorised use of copyrighted works 

is a very important factor in the career of any artist. As proponents of early Copyright 

legislation clearly outlined in its promotion [5] [6], these considerations were particularly 

important to developing artists. Current processes used for the allocation of fees generated 

from licensed users to content owners, according to content use, are inaccurate, inefficient 

and weighted (at least incidentally) against developing artists. This is caused by ad hoc and 
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inadequate mechanisms for the reporting of content used by licensed music users. The 

result of this is that, at least in some case, artists are abandoning their careers due in part to 

inadequate financial reward.  The solution to this problem is an efficient and equitable 

system for monitoring the output of broadcasters and other licensed music users in order to 

be able, as much as possible, to ensure the correct remuneration is allocated to content 

owners when their content is used by licensed users.  

 

Digital audio fingerprinting techniques are currently used in the broadcast 

monitoring domain in order to create these reports. However, audio fingerprinting 

techniques have some inherent limitations and disadvantages which, when fingerprinting 

alone is used as the basis for reporting, can actually lead to a worsening of the situation as 

far as developing artists are concerned. The solution to the problem is a transparent and 

accessible digital watermarking scheme. A successful digital audio watermarking scheme 

would address many, if not all, of the limitations of a digital fingerprinting scheme in 

relation to accuracy and equitability. 

 

1.4 Structure of the remainder of this document 

Chapter 2 provides an introduction and explanation of the area of Copyright as it 

relates to music and the creative processes, with specific reference to Public Performance 

copyright. Analysis of the Irish music industry is provided by way of illustrating how the 

rights provided for in this area are actually implemented and administered practically. Brief 

analysis of the global collective rights licensing sector is also provided for context. Issues 

and limitations that arise in administering some of the rights provided for by Copyright 

legislation are addressed and the effect of these limitations is outlined, specifically with 

reference to developing artists.  

 

Chapter 3 investigates how the existing systems and structures in the Music 

industry may have a detrimental impact on artistic development, particularly for those at the 

threshold of their artistic career. A brief outline is presented of the various metrics that are 

currently employed for the furtherance of both an individual career as well as the 
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perpetuation of the Music industry itself. The problems and limitations encountered in the 

industry, as a result of reliance on this information, are also discussed. 

 

Chapter 4 provides an introduction to sound and the human auditory system. This 

is followed by an explanation of how humans perceive sound, how the ear deals with 

conflicting sounds and how the brain processes the resultant signals from the ear. This 

section also suggests ways in which the limitations of the human auditory system can be 

exploited to achieve various goals. The concept of data hiding is introduced and explained 

in general terms. 

 

Later in the section an explanation is provided of how digital signal processing 

techniques are implemented and how the digitisation of sound is undertaken.  An overview 

of sound file digitisation, storage, manipulation and compression is also provided in general 

terms. The chapter continues with an explanation of the two main audio identification 

techniques, namely watermarking and fingerprinting, before comparing the two techniques 

and identifying problems and limitations with the use of digital fingerprinting as the de 

facto standard for identification of audio in a broadcast environment.  

 

Chapter 5 evaluates the technical domain of audio watermarking techniques and 

technologies. Various disparate audio watermarking techniques are outlined and examples 

of their implementation as published in the literature are provided. In each case, the relative 

advantages and disadvantages of each technique are mentioned as appropriate. 

 

Chapter 6 details the watermarking scheme proposed as a solution to the various 

limitations in current implementations of audio identification and monitoring systems. A 

digital audio watermarking scheme is described from the initial design phase, through 

multiple phases to a scheme that addresses with some level of success most problems 

associated with broadcast monitoring for audio identification. The chapter also discusses 

some issues relating to watermarking schemes used for various applications. The 

development of the scheme is described in three distinct phases with reference to the 
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various problems encountered and how they were solved or circumvented. Results and 

analysis of the output of the proposed scheme are provided.  

 

Chapter 7 provides a conclusion to the research undertaken and outlines the 

advantages and disadvantages of the proposed system compared to existing schemes as it 

pertains to the domain of audio-monitoring for equitable and efficient royalty collection and 

distribution. A suggested implementation for a complete broadcast monitoring process is 

then outlined. 

 

Chapter 8 suggests future work that may be undertaken to develop the proposed 

scheme in different domains, as well as suggesting developments within the audio domain 

that might take advantage of the characteristics of the scheme to provide alternative 

applications for the basic watermarking technique. 

 

1.5 Summary 

In this chapter, the problem domain was introduced and some analysis of the 

problems faced was provided. The history, background, development and motivation were 

briefly discussed. A description and brief explanation of the advantages and disadvantages 

of broadcast monitoring techniques based on audio fingerprinting and watermarking was 

provided. In the next chapter, the relationship between Copyright, licensing, royalties and 

content owners is explored with specific attention paid to the benefits of an efficient and 

equitable monitoring and distribution system for developing artists. 
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Chapter 2:  Copyright, royalties and Music 

 This chapter introduces the fundamental concepts that underpin Copyright 

legislation and examines these concepts insofar as such legislation pertains to the 

Entertainment industry in general and the Music industry in particular. Specific attention is 

paid to the area of ‘public performance’ Copyright, which includes broadcast performances 

of pre-recorded works. The existing systems of royalty reporting, collection and 

administration are outlined and briefly evaluated before an overview of the economic value 

of the sector is given. 

 

2.1 What is Copyright and what can be copyrighted? 

The concept of Copyright has been around for centuries. Since the first major 

milestone in its legislative development, Copyright concepts have centred around the 

premise that the Copyright in a piece of work should belong automatically and without any 

special requirements – except perhaps those taken to prove ownership - to the person who 

created it (the author), unless and until he or she decides to give that right to a third party, 

whether for a fee or otherwisei. This right should extend for a fixed period and then expire 

so that the work is part of the ‘public domain’. Initially, Copyright was a notion that was 

developed and legislated in each country and each had its own requirements and solutions. 

In 1883, the ‘Paris Convention for the Protection of Industrial Property’ [17] extended 

French legislation to automatically protect content owners from one co-signatory of the 

Treaty against exploitation in territory controlled by another co-signatory. Later, in 1886, 

the Berne Convention [18] solidified the cross-border nature of both Copyright and 

protection from infringement. 

 

                                                
i The ‘Statute of Anne’ in 1710 first recognised the inherent and automatic rights of the author where 
previous legislation defined Copyright as, amongst other things, a revenue-generating tool for the 
State. See http://www.nisus.se/archive/050902e.html for a background of Copyright, including the 
period prior to 1710. 
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According to Mr. Tom Kitt T.D, in a Dáili debate on the introduction of recent 

legislation, the purpose of the concept of Copyright in modern terms is ‘an attempt to strike 

a balance between the needs of creators and the interests of the wider public’ [19]. No 

mention is made of the needs of any industry segment. In the same debate, Mr. Stanton 

T.D. stated ‘There is an educational and information deficit in our society concerning 

Copyright and intellectual property’. Most people know that Copyright exists, and most 

people are peripherally aware that its purpose is to compensate artists and authors, 

including songwriters, when their works are used for anything other than the private 

listening/reading pleasure of the individual who holds a legitimate copy.  

 

Notwithstanding this observation, it is likely that only a small proportion of the 

public at large will know the facts of Copyright. In a nutshell, Copyright is the term for the 

right of the creator of a work to allow or prevent certain acts being done to/with the work, 

such as copying, broadcasting, selling, lending etc. Allowing for the possibility that others 

may abuse their Copyright, legislation provides for procedures to recover fees (royalties) 

for such breaches and also allows for punishments in law for such breaches. In practical 

terms, almost anything that can be committed to a physical representation can be 

copyrighted. The Copyright will be held in most cases by the person or organisation that 

first made it available publicly or the person or organisation that can prove its existence on 

a date earlier than anyone elseii. For example, if a lyric-writer tells a writing partner the 

lines for a song and his partner commits the lyrics to music, transcribes the song to paper-

notation, thereby recording it, and subsequently registers the piece, the lyricist has lost 

Copyright as he did not commit the lyrics to a physical medium. Even if he had done so, the 

partner would still own the Copyright as the lyricist would have no way of proving he had 

created the lyrics first. 

 

                                                
i The ‘Dáil’ is the Irish Parliament. 
ii There is no actual requirement to copyright a work as Copyright is automatic and vested in the 
creator. However, it is sometimes important to be able to prove it was copyrighted on or before a 
certain date. See IMRO’s advice in this regard in their FAQ for music makers, online at: 
http://www.imro.ie/faq/music_makers.shtml, question 2. Accessed 24th October 2009. 
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Registering a Copyright is not strictly necessary for it to exist in Law. Copyright 

exists (or ‘subsists’, to quote the act [23]) automatically. The process of registering a piece 

of literary or musical work only serves to prove, using a trusted third-party or other 

verifiably secure system, that the piece existed on the date of registration and the Copyright 

is/was owned by the registrant. There are, as with any Legislation, numerous exceptions, 

loopholes and provisos. However, in the context of this thesis, Copyright ownership and 

registration need not be considered in any detail. Suffice to say that, while Copyright exists 

automatically upon creation of a work, it can be difficult to prove prior ownership of that 

work at a specific date in the past if no copy of the work can be proven to have existed at 

that date. 

 

Copyright legislation provides for the Copyright owner (or their representativei) to 

license third parties for any and all specified uses of the copyrighted works. In some cases, 

such as open-source licensing in the software arena, the licenses exist but it still costs 

nothing to use the works. In other cases, the author may state that licenses must be sought 

for any and all uses, whether physical or otherwise, of their work, by anyone other than for 

private use by an individual who holds a legitimate copy of the work. Essentially, the 

Copyright owner can make his or her requirements for legitimate users be as wide or as 

narrow as he or she wishes since they are the owner of the item in question. 

 

The licensing of most of the rights associated with Copyright can be assigned to 

third parties to administer. Some of the rights that are routinely assigned to third-parties, 

specifically in the area under consideration (the music industry) arei: 

 

o ‘Duplication rights’ (to a record label, for example, to make CDs or to a library or other 

institution to make photocopies). 

o ‘Synchronisation rights’ (the right to add, or synchronise music/audio to film and video). 

                                                
i Most collective rights organisations act on behalf of content owners to administer some, but not 
necessarily all, of their rights. ‘Broadcast Music Inc.’ is one such organisation that offers multiple 
licensing options, including those listed here. http://www.bmi.com/licensing/entry/533606  
Accessed 23rd October 2009. 
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o ‘Public Performance rights’ (the right to make music or video available to others, who 

have not themselves purchased it or obtained a legitimate copy). 

o ‘Digital Performance rights’ (permit the use of the sound recording for digital 

transmission, e.g. Internet streaming). 

 

Again, there are exemptions. It is the public performance right that is dealt with in 

this work although the techniques examined can be adapted to address other concerns in the 

Digital Rights Management arena, such as ownership verification, tracking leaked pre-

release content and so on. Similarly, although it is not the focus of this document, those 

concerned with areas as diverse as covert communications, additional broadcasting revenue 

streams and automated video subtitling can adapt the techniques to suit their requirements. 

 

2.1.1 Public performance rights and royalties 

The area of ‘Copyright control’ in music has been heavily researched in recent 

years, with a particular focus on the protection of copyrighted material from illegal 

copying. Almost from the beginning of recorded music, it has been copied by home users. 

As time and technology progressed such copying became easier. The cassette tape allowed 

for easy recording direct from radio. Video cassettes allowed for easy copying direct from 

television. Industry schemes to deal with such illegal copying have always been reactionary 

and – to a certain extent – predictable. The addition of a levy to all cassette sales [20] was 

one solution to the industry’s perceived loss of income but it did not solve the actual 

problem of illegal copying. Rather, it merely financially compensated record labels for such 

illegal copying to a limited degree. Schemes such as this do not make any real difference to 

the group for whom the concept of Copyright was designed to protect. Instead they serve to 

compensate a group who have been assigned some of the rights enshrined in Copyright (the 

right to duplicate or copy) for what are, at best, notional losses that are incurred when 

illegal copies of a work are made, on the assumption that those who use the illegal copy 

would otherwise always pay for it. This is, of course, patently not the case. 
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With the advent of widespread use of the Internet in the home and workplace, 

music has been illegally shared on a much wider scale and with much less difficulty. The 

focus of research, particularly with commercial backing or motivation, is in the area of 

preventing ‘pirating’ of music and video. This has led to an explosion of the development 

of various techniques to tackle the problem. However, it is obvious from the proliferation of 

pirate sources and the lack of any real success in restricting pirating that any attempt to 

prevent illegal copying is not much more than an exercise in staying one step behind the 

pirates.  

 

Indeed, some believe that pirating should be allowed and that it should benefit the 

creator (as opposed to the current owner) of the copyright. In Germany, as far back as 18th 

century, widespread ‘pirating’ of published material (books) was shown to lead to increases 

in sales due to increased awareness and to the growth of public lending libraries [20]. In 

recent discussions in legal circles in the United States of America, some sections of the 

profession suggest Copyright legislation can actually work against those it is intended to 

protect. It is suggested that copyright legislation merely serves as a means of artificially 

inflating the revenues generated by industry organisations and the highest-earning bracket 

of the music industry at the expense of the lower-earning, developing, and more vulnerable 

section [21].  

 

Moreover, many developing artists and performers realise that widespread copying 

of their works is often a way to increase awareness of them and therefore to create a 

potential audience and market for future works. The rise of some ‘stars’ in recent years has 

been developed on this premise, most notably Lily Allen and ‘The Arctic Monkeys’ in the 

UK. Record labels and other Copyright owners (who are not necessarily the creators of the 

works but are instead licensed to exploit the works) have different perspectives on the 

necessity of Copyright legislation. It is this sector that has financed and fuelled recent 

trends in protecting Copyright and punishing transgressors such as Napster, Kazaa, 

Limewire and Pirate Bay. Those most likely to have been tackled by industry efforts to 
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address piracy are not actually pirates themselves. They are instead providers of services 

which are used to facilitate or expedite piracy. 

 

The current situation that exists has similarities to the 15th and 16th centuries, prior 

to the development of copyright. In the past, the actual creator of a piece would sell it to a 

third party such as a book publisher for further exploitation and it was the publishers and 

producers (analogous to today’s record labels) that benefited most from exploitation of the 

works. The focus of much research in the area has in recent years switched from 

compression to tracking and identifying the proliferation of high-capacity pirates. These 

high-capacity or high-profile illegal copiers are seen to be the main cause of lost earnings as 

well as being most likely to lead to a successful prosecution and therefore most useful as an 

example to the public. The impact of these measures or, in fact, the impact of any 

copyright-related research on the development of the artist is a distant secondary concern of 

related research.  

 

Other than copying, with or without permission, the second main area of 

Copyright legislation - and one that is often overlooked - is that of ‘public performance’ 

royalties. Essentially, the owner of the Copyright of any piece of music made available to 

the public is entitled to a fee for such public performance. The Irish Courts have ruled that 

‘…a performance of music which takes place outside the domestic or family circle of the 

audience be regarded as a performance in public. It does not matter whether the audience 

has paid, whether they have come for the sole purpose of listening to the music or whether 

the music is performed by musicians or by mechanical means such as a radio, CD or a 

tape’  [22] 

 

This definition can be extended to cover any use of music in public, even in a 

setting as innocuous as a group of friends sitting around a CD player while out camping. 

However, in reality this description is usually referred to in terms of royalties due when a 

song is played on the radio or TV, or when a song is played as background music in an 
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establishment of some sort that is open to the public or where employees have access to the 

music in question (deliberately or otherwise). 

 

Legally, any Copyright owner can monitor the airwaves and, when they notice a 

‘play’ of their piece, they can then contact the relevant broadcaster and negotiate a fee for 

the use of that material. However, this is obviously impractical and the cost/benefit trade-

off would make it a worthless exercise. Instead, Copyright owners are usually represented 

by an agent or organisation which will license their catalogue of material for use along with 

material from its other members. License fees or royalties are then collected and distributed 

according to the number of times a piece has been reportedly made available on radio or 

TV over a given period. In practical terms, in Ireland, this task falls to IMRO (the ‘Irish 

Music Rights Organisation’). IMRO is a royalty collection and distribution agent 

representing over 3000 Irish songwriters which is authorised under legislation by the 

‘Controller’ of the copyright act. IMRO also administers reciprocal collection agreements 

with international equivalent organisations. There are other such organisations in Ireland 

and their roles will be mentioned within this document but for clarity it will generally focus 

on IMRO in terms of analysing the current state of royalty collection and distribution in 

Ireland as the requirements of other collective rights societies are similar. 

 

2.1.2 The need for a royalty collection and distribution process 

Copyright collection is now a huge industry. Moreover, it involves an almost 

limitless number of potential inputs in order to accurately complete a report of royalties 

due. However, even before such a ‘distribution report’ can be prepared, the royalties must 

be collected. As mentioned in the previous paragraph, this task can theoretically be 

undertaken by the owner of a work or works but there are inherent problems with this 

theoretical idea: 

  

o The owner of the work(s) must be aware that the work has been used in some manner 

o The license for use of such work(s) must be negotiated, even retrospectively 

o The license fee (royalty payment) agreed for such use must be collected 
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In the current climate, in Ireland alone, there are dozens of radio stations and a 

number of TV stations. There are then those broadcasters who broadcast into Ireland from 

another territory. In modern digital communications, there are literally thousands of 

potential outlets for the owner of a work to monitor. Of course, if they are the owner of 

more than one work, they must monitor for each. Furthermore, since there is no way of 

knowing when (or even if) a given broadcaster will use any given work, then they must all 

be monitored continuously and simultaneously. This is an unrealistic prospect. 

 

Even if the beneficial owner of a group of works, such as a publisher or other 

aggregator, might want to perform this task privately to ensure compliance and maximise 

returns for their works, the cost of undertaking such a task would far outweigh the benefit. 

Monitoring Irish-originated broadcasters alone would require an outlay of more than €5 

million per annum, per publisher (or artist) calculated below: 

 

According to the current information (2008) on the website of the Broadcasting 

Commission of Ireland i, there are more than 50 licensed radio broadcasters in the State, 

along with 13 television broadcasters and re-broadcasters. This equates to over 1500 hours 

of broadcast per day (63 x 24 hours) or over half a million hours per year. Assuming the 

task could be done by a 24-hour roster of monitoring staff, manpower payments at the legal 

minimum wage of €8.65 per hour (2008) would produce a cost of almost €5 million per 

annum. It is obvious that it is therefore not a viable proposition for any artist or publisher to 

undertake to perform the monitoring task themselves, particularly if they have either a 

small collection of works or are unlikely to be extensively featured on broadcast media. 

 

When one considers the above, and then widens the perspective to take in the 

scope of thousands of artists in Ireland (including defunct artists), and then widens it again 

to take in the tens of thousands of artists worldwide and the thousands of licensed 

                                                
i http://www.bci.ie 
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broadcasters that must be considered, the problem becomes almost impossible to visualise, 

let alone solve. 

 

It is with the scale of this problem in mind that artists and performers have, over 

the years since the end of the nineteenth century, grouped together as collection societies to 

perform the task. This arrangement now has a legal basis in most European countries. In 

Ireland, for example, the ‘Copyright and Related Rights Act 2000’ [23] permits a 

representative subgroup of a larger group (such as songwriters, performers etc) to represent 

the wider body of their peers under license in order to administer their rights. The collection 

society in question is conferred with certain legal rights which make the administration of 

these rights not only easier to manage but easier to enforce since they have the backing of 

legislation and the threat of punitive action against non-compliant users of the works they 

represent. 

 

2.2 The existing royalty collection and distribution process 

Copyright collection and distribution in the current environment relies on 

anachronistic, ad-hoc and unscientific amalgamation of procedures and systems. The owner 

of a piece of copyrighted material (a song, for example) registers it with a collection and 

distribution organisation (such as IMRO) and assigns permission to the organisation to 

collect royalty fees from plays on TV and radio or other public performances. At the other 

end of the process, when songs are played on TV or radio the broadcaster is required to 

submit a list of all songs broadcast along with time and date for referencing. Where such 

data is not submitted, the Copyright owner or their assignee has the Statutory right to 

demand it from the broadcasters or other users.  

 

The process briefly outlined would seem like a reasonable one. In practice, 

however, it is useful only to a point. Some of the main flaws in the system will be examined 

along with the known erroneous outcomes that actually exacerbate the problems associated 

with the system in the first place. Limited as it is, the system is not operated to any great 
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efficiency or accuracy. Much data remains uncollected, collected data is often unverified 

and a minimal account is taken of non-mainstream music broadcasting. 

 

According to IMRO, revenues generated by collection of the blanket license fee 

charged for public performance rights is grouped and distributed according to various rules. 

In essence, ‘for broadcasters, each station's revenue is distributed as a separate pool on the 

basis of logs submitted by the broadcasters’i. This would suggest that if ‘Broadcaster A’ 

pays a blanket fee, then this fee should be distributed to Copyright owners according to all, 

exactly all, and only all, of the songs that it has broadcast 

 

Of course, there are exceptions. RTE1, Lyric FM and Radio Na Gaeltachta are 

treated as one broadcast pool. On television, RTE 1 and RTE 2 are similarly ‘pooled’ into 

one distributioni. This might not seem like it should be a problem but it can cause the wrong 

Copyright owner to be paid or the wrong amount to be paid to a recipient. Of course, in a 

scheme where one recipient gains, another one (or more than one) has to lose. 

 

When calculating how much of the royalty pool each Copyright owner should get, 

there are two distinct metrics: number of plays and duration of play(s). Again, according to 

IMRO, ‘All TV stations are paid out on a duration basis, as are all RTE Radio stations plus 

Newstalk. All other stations are paid on a per play basis’i. There will obviously be 

advantages and disadvantages in either, depending on the individual event (or ‘play’). For 

example, if a track is only one minute long, and it is paid-per-play, then it will receive the 

same royalty as a track that is 12 minutes long. Alternatively, in a pay-per-duration 

distribution, a 12-minute piece would earn twelve times the amount of a one-minute piece. 

It is therefore advantageous for shorter pieces to be played on stations that are distributed 

on a per-play basis and for longer pieces to be played on stations that are paid out on a per-

duration basis. 

 

                                                
i From private communications with IMRO 
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Since there is no realistic way of identifying ‘quality’ as all arts are subjective, 

then payments have to be made on quantity. For example, John Cage’s ‘Four minutes thirty 

three seconds’ (also known as 4’33”) is entitled to the same royalty payment as any other 

piece, despite having no actual sounds (other than auditorium background sounds). In fact, 

if a royalty payout is calculated on a per-play basis, then this piece of ‘silence’ would 

generate the same royalty as any other piece of work, no matter how long or complex. On 

stations distributed on a per-duration basis, the Cage piece (which was ‘played’ by the BBC 

Symphony Orchestra and broadcast live on BBC Radio 3 on January 16th, 2004 to mark his 

death [24]) would generate more royalties than the vast majority of other works, since 

modern music is generally shorter than 4.5 minutes and, even where it is longer, it is 

generally shortened for radio and TV broadcasts. 

 

If the letter of the law is to be followed [23], royalty distributions should, in 

theory, be calculated on the basis that a piece played on a small local radio station with a 

small audience would be entitled to a royalty payment correspondingly smaller than if it 

was played on a National broadcaster with a correspondingly large audience. Furthermore, 

a piece played on any given station in a ‘quiet’ time should not still be paid the same 

royalty as a piece played during ‘peak’ listener hours for the same station as the ‘public’ to 

which the performance is available is correspondingly larger. Distributions are, therefore, 

only partially based on audience size and are, in reality, based more on potential audience 

size. A work broadcast to a few thousand people will currently often be awarded the same 

royalty as one played at peak time to tens of thousands. 

 

2.2.1 Why is there a need for a new system? 

The systems and process in place for the collection and distribution of royalty 

payments do not really address the practical problems faced by – in particular – the 

developing artist. As mentioned in section 2.1.2, the royalty agent (IMRO, for example) has 

the right to demand data on playlists of music broadcast by radio and TV stations. Rather 

than demanding such information from all broadcast sources, IMRO contents itself with 

only some data. According to IMRO, ‘Stations are categorised either as full census, 
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sampled or mixed. Where a station is sampled, the value paid for each play is 

correspondingly higher than it would be if the station were subject to a full census. If a 

station is on a mixed rate this means that they are delivering full census reports for all 

automated programming (i.e. where music is played out using an automated/playout 

system)’[25] 

 

While a ‘full census’ of a station’s output would be the most accurate, and 

therefore fairest, data to base the payouts on, it is currently not available for every 

broadcaster. In fact, the definition of ‘full census’ can be misleading as this suggests that a 

station provides complete listings of all music broadcast in a given period. In reality, while 

most stations do try to achieve this level of accuracy they do not do so consistently as there 

are often tracks that are played on a specialist show that are not in the list and, ironically, 

these are likely to be the shows that broadcast music from less well known artists.  

 

Perhaps the most revealing part of IMRO’s description of their distribution 

calculations is the statement ‘Where a station is sampled, the value paid for each play is 

correspondingly higher than it would be if the station were subject to a full census’ [25]. 

What this means is that a ‘sample’ of the data is taken for these broadcasters and the entire 

blanket fee of royalties collected is then distributed according to these samples. The result 

of this sample-based distribution is that pieces with very few plays are correspondingly less 

likely to be reported on the sample, while the full royalty fee is then distributed among 

those that are reported. In fact, in many cases, a piece that is played on stations that are 

sample-reported may not ever be part of the data submitted to IMRO and other royalty 

agents and may never generate any royalties from public performance, regardless of the 

number of times they were broadcast. A list of licensed broadcasters and their reporting 

categorisation is shown in Table 2.1 in Section 2.3. 

 

If ‘Song A’ is played ten times and does not appear in a station’s sample, while 

‘Song B’ is played ten times and does appear in the sample, then – all other things being 

equal – ‘Song B’ will generate more royalties than it is entitled to as its share of the overall 
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royalty pool will include some of the portion that otherwise should have been distributed 

for ‘Song A’. More importantly, if ‘Song B’ is only played once, and this play is included 

in the sample, then ‘Song B’ may well end up with rather large payouts (comparatively 

speaking) and some of these payouts would actually belong to the owner of ‘Song A’. In 

order to overcome this problem, and to make the collection and distribution of royalties 

fairer, in particular for works played less often, a complete and accurate list of all works 

broadcast at all times on all stations needs to be available. 

 

While the problem of inaccurate reporting in the domestic market primarily affects 

developing artists, even major artists are adversely affected by the lack of accurate data 

from the international markets. There is no accurate information available to a collective 

rights organisation for broadcasters outside its own jurisdiction. This is a huge problem, 

both in logistical terms and in terms of the potential royalties that go uncollected. What 

generally happens is that the relevant collection society in a jurisdiction will inform a sister-

organisation with whom it has a reciprocal arrangement of the amount of royalties it 

collected that are due to that sister organisation. There is no real scope for querying the 

information provided since there is no record of plays of works that should be paid to 

members of the society. 

 

2.3 What is the ‘collective rights’ market worth? 

In commercial terms, the collection and distribution of royalties may seem 

inconsequential and lacking any commercial imperative to change, especially when 

compared to the resources and efforts being committed to the other main Copyright area of 

piracy. However, in the case of IMRO’s Irish marketplace alone, license fee income is in 

the region of €36 million per annum, of which approximately €31 million is distributed to 

members for public use of their registered and copyrighted material. The remainder is 

absorbed by administration, including the actual generation of distribution details [26]. 

There are other royalty agents and collectors in Ireland and, of course, Ireland a 

comparatively small market. In European terms, the revenue generated by this sector is 

circa €5 billion and growing [8].  
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By way of illustration of some of the issues that arise when allocating royalties 

correctly, consider a well-known song. If a radio station played ‘My Way’ twice, performed 

once by Frank Sinatra and once by U2, then the Copyright owner of that song would be 

entitled to a portion of the IMRO license fees collected for two individual instances. 

However, IMRO only deals with royalties owing to songwriters and publishers. There is 

then the performance royalty fee which is due to the person or group actually performing 

the recording that was made available. In this case, this would be due to Frank Sinatra’s 

estate for one performance and to U2 for the other. In Ireland the recently-formed 

‘Recorded Artists And Performers’ (RAAP) administers the collection and distribution of 

the performers’ royalties and, as such, RAAP have as much use as IMRO for fair and 

accurate reporting of broadcast data. RAAP distributed over €3 million to Irish performers 

alone in 2005 [27]. The public performance royalties generated by performers’ collecting 

agents in Ireland and the EU is approximately 10% of the value of the royalties generated 

by writers’ collection agents [8]. 

 

While the revenue generated by public performance licensing for giants of the 

Irish music industry like U2 would be expected to be substantial enough to warrant careful 

administration [28], it could also make a huge difference to grass-roots developing artists 

and songwriters. A relatively small payout for an independent artist or songwriter could 

easily make the difference between pursuing their art and choosing an alternative career. 

Some of these artists could go on to become the U2’s of the future on the basis of such 

income. The amount of revenue generated from high-rotation radio play for even one or 

two songs in a year could be enough to finance the recording and release an album. 

 

2.3.1 Royalty payments to content owners 

The amount of money paid to an artist for a single play of a single work by a 

single broadcaster varies significantly according to the reach and target audience of the 

broadcaster, as well as the type (i.e. commercial broadcaster or community broadcaster). 

Table 2.1 illustrates the variations, using IMRO figures from 2005 [25]. Table 2.1 also lists 
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those broadcasters for whom only sampled data is available and those for whom full census 

data is available. Note from Table 2.1 that, while some broadcasters provide full data for 

automated broadcasts, they only provide sample data for non-automated broadcasts. There 

is no indication of the ratio of automated to manual broadcasts.  

 

Description Sample Days (Per Month) Rate Per 

2FM - General All €4.40 Minute 

96 FM - General All €1.83  Play 

98 FM - General  All €3.50 Play 

Beat 102-103 FM - General  All €0.31  Play 

Clare FM - General  3 €3.84 Play 

County Sound - General  All €1.34 Play 

East Coast Radio - General  5 €3.68 Play 

FM 104 - General  All €2.62 Play 

Galway Bay FM - General  All  €0.65  Play 

Highland Radio - General  2 €16.87 Play 

KCLR 96fm - General  All  €0.35 Play 

KFM - General  All  €0.18 Play 

Limerick's Live 95FM - General Mixed -  Full Census Automated & 
4 Days/Month Non Automated  €0.85 Play 

LM/FM - General  2 €10.18 Play 

Midland Radio 3 - General  2 €9.80 Play 

MWR FM - General  4 €29.31 Play 

NewsTalk 106 FM - General  All €4.83 Minute 

NWR - General  4 €10.37 Play 

Ocean FM - General  All €0.19  Play 

Q102 - General  All €0.86 Play 

Radio Kerry - General  2 €23.82 Play 

Red FM - General  All €0.25 Play 

RTE Radio 1/Lyric FM/RNaG  All €2.40 Minute 

RTE TV - General  All  €4.22 Minute 

Shannonside/Northern Sound - General  3  €11.99 Play 

South East Radio - General Mixed  Full Census Automated & 
6 Days/Month Non Automated  €0.49  Play 

SPIN 103.8FM - General All €0.40 Play       

Tipp FM - General Mixed  Full Census Automated & 
4 Days/Month Non Automated  

€0.86 Play 

TnaG - General  1 in 5 days  €0.64 Minute 

Today FM - General  All €4.92 Play 

TV3 - General  All €3.88 Minute 

WLR - General Mixed Full Census Automated & 
2 Days/Month Non Automated 

€0.90  Play 

Table 2.1: IMRO distribution run from 2005 listing rates paid to each artist for a single 
play of a single work. It also lists those broadcasters who supply full / limited data. 
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The discrepancy between the number of plays reported and the actual number of 

plays as discussed above is only one area of concern for developing artists. Is likely to 

exacerbate the problems experienced by these artists and songwriters because not only are 

they less likely to be played on lucrative and influential media outlets such as Radio and 

Television, but, even if they do manage to get such exposure, their rightful income is often 

not received. Additionally, it is often added to the income distributed to other artists and 

songwriters who have appeared extensively on reported playlists. These artists and 

songwriters are, of course, often the more successful and well-known performers (which is 

why they receive more exposure in the first place). 

 

In fact, it is clear from the information provided in Table 2.1 that a well-informed 

artist can benefit greatly from information available about distribution runs. If an artist had 

a work played on, for example, Radio Kerry, on one of the two days that the broadcaster is 

sampled, this single broadcast of a single work would be paid €23.82. Another artist may 

have their work broadcast on each of the other 26-29 days (excluded from the sample data) 

and would be paid nothing. If this is extrapolated across the whole broadcast year and 

duplicated in other ‘sampled’ broadcast reports worldwide, the scale of the problem can be 

seen. While the variables (broadcasters, rates and metrics) may change over time, the fact 

remains that well-informed or well-connected artists can stand to gain dramatically higher 

royalties at the expense of under-informed or under-represented artists. 

 
2.4 Summary 

This chapter has introduced the fundamental concepts that underpin Copyright 

legislation in relation to the music industry. Existing royalty reporting, collection and 

administration systems were outlined and briefly evaluated before an overview of the 

economic value of the sector was given. The importance of royalties for the development of 

an artistic career has been recognised since the inception of a legal Copyright framework. 

However, there are other factors that may be considered to be equally important to the 

career development of artists. Some of these factors are connected to the same topic of 

broadcast monitoring and reporting. These issues will be discussed in Chapter 3. 
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Chapter 3: The Developing Artist. 
 
In Chapter 3, additional factors that can impact on the relative success of the 

careers of developing artists are outlined, specifically in relation to the standing of these 

artists in the public eye and in the wider industry. Various metrics for gauging early-career 

successes are introduced and are related back to the importance of fair and equitable 

reporting of broadcast data as a means of measuring and artist’s appeal and exposure. Some 

problems that exist in this regard are discussed with a view to solving them with techniques 

extended from those used to solve the problems discussed in Chapter 2.  

 
 
3.1 Popularity networks and attractedness 

It is perhaps a well-known paradigm in everyday life that popularity breeds 

popularity. The music industry, in particular, is founded on the whole concept of popularity. 

Individual organisations within the industry attempt to create or promote some sort of 

‘critical mass’ of buyers or listeners of a particular act so that they may become 

‘mainstream’ and generate a return on the initial investment as soon as possible. 

 

In recent years, the development of ‘social networks’ and ‘popularity networks’ 

has been exploited as practical marketing tools and deliberately utilised to propel acts 

towards achieving a ‘critical mass’. As mentioned in Section 2.1.1, Lily Allen and ‘The 

Arctic Monkeys’ are just two artists who can count popularity networks as being 

responsible to a comparatively large degree for their success in their early careers. In terms 

of music, fashion and myriad other taste-based products, the desired result of marketing is 

to make an act (or product) fashionable. While creating a ‘fad’ can generate enough of a 

return on investment, making an act become fashionable while increasing the likelihood of 

their long-term success is the key to long term survival and growth in the music industry. 

Many promotional strategies are employed in an attempt to create or promote an act, with 

the hope that some acts will become commercially successful for the benefit of both 

themselves and the industry in the longer term. These strategies include reality television 

talent shows at one extreme and deliberate manipulation at the other. However, there are 
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many strategies utilised which are not so direct. Examining the rise of the aforementioned 

Lily Allen and The Arctic Monkeys will serve to illustrate this idea. 

 

Lily Alleni is now a well-known name in music circles, with several successful 

singles and two successful albums under her belt. She was originally signed to a record deal 

with the Warner Music Group. The deal expired without her ever having released any 

material. She then released into the ‘MySpace’ virtual world the original ‘demo’ songs that 

had prompted Warner and then Regal (part of EMI) to sign her.  

 

As a result of interest generated in online communities and then amongst students 

(mostly in the UK), the music press started to review her material, creating enough 

exposure to warrant the mainstream media picking up the story. This prompted the record 

company, who maintained the rights to the recorded material, to release her album to huge 

successi. It is questionable whether any of this would have happened but for the online 

release of her original demo material. Having said that, the power of ‘community’ sites 

such as ‘MySpace’ has proven that the Internet equivalent of ‘word of mouth’ can be just as 

useful a marketing tool as real-world ‘word of mouth’ recommendations from trusted 

sources, despite the fact that most ‘sources’ on the Internet are virtually unknown, as are 

their motives. 

 

The second example is the rise of The Arctic Monkeys, a UK ‘indie’ band who 

became the ‘coolest’ of the modern batch of bands during their development and then broke 

music Industry records after they released ‘the fastest-selling debut album in UK chart 

history’ [29]. This followed on the heels of an ad-hoc, fan-powered campaign which saw 

their demos being ripped from the (few) CDs that the band had made themselves at home. 

The ripped files were uploaded onto file-sharing networks and made available to new fans 

after ‘recommendations’ online and by word-of-mouth. After a short time, the band’s gigs 

were becoming well attended by fans that seemed to know the lyrics and sang along with 

                                                
i While the story of Lily Allen’s rise to fame should be treated with caution, most of the salient points 
are confirmed by the singer herself. An interview carried out in November 2006 for ‘Pitchfork’ can be 
found online at http://pitchfork.com/features/interviews/6476-lily-allen. Accessed 24th October 2009 
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the songs, songs which officially they could never have heard as there were no authorised 

copies available publicly. The band obviously did not mind their music being made 

available in this way – few ‘unsigned’ bands would object to the extra exposure. As a result 

of this, the band created enough interest at grass roots level to warrant interest from record 

label scouts, who the band allegedly shunned before eventually signing a deal with one of 

the lesser labels, the independently-owned ‘Domino Records’. This is just one case of how 

illegal copying actually worked to the benefit of, rather than to the detriment of, the 

copyright owner. In this case, the artist in question (or an assignee) could have attempted to 

stifle such illegal copying but this could have proven detrimental to their development. 

 

3.1.1 Popularity networks and social marketing 

In both cases, the concept of popularity networks and concepts related to 

multiplicative stochastici processes seem to be at work [30]. Word of mouth 

recommendations have always played a part in peer-groups. In recent years these peer-

groups have become more than the handful of loosely affiliated music fans that previous 

generations might associate with the term. Certainly, they have a world-view of 

technological developments that far supersedes the previous generation. Their promotional 

power is unquestionable and, given the size of the group in question and by virtue of the 

fact that often they spend a lot of time online, they are very aware of what is going on in 

this arena. 

 

It has even been suggested ii that even successful acts (or their associates) employ 

people to operate online and ‘unofficially’ promote them the same way as they would 

employ PR personnel to promote them to traditional audiences through traditional media. 

Online, there is little or no way of knowing if some ‘recommendation’ has been paid for as 

identities are obviously hidden, including the identity of the referring individual. The 

                                                
i Briefly, stochastic processes are those that are non-deterministic and therefore unpredictable. The 
output of a stochastic process relies on the predictability of the system itself and some random input. 
In a multiplicative stochastic process, the ‘randomness’ leads to random outputs, returned as inputs to 
the process, thereby leading to more and more random outputs, essentially exponentially. 
ii Anecdotal evidence collected privately through ‘IrishUnsigned’. 
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commercialisation of these concepts in the industry has led to the growth of online or 

virtual ‘street teams’ (defined below) which replicate the functions of real street teams on a 

contract basis. There are also virtual ‘street teams’ that perform the same function in the 

mobile phone environment [31]. 

 

‘Street Teams’ are groups of people who create an awareness of an act or 

campaign and perhaps execute purchases of current material in order to initiate sales for the 

purpose of promoting awareness of the act to industry or the public. This is perfectly legal 

and many campaigns have been started or extended using these techniques. In July 2003, as 

an experiment to analyse the accuracy of the Sales Chart reporting system, online artist 

collective ‘IrishUnsigned’ released a compilation of material from 18 independent Irish 

acts. Through the use of street teams and online promotional techniques, the release 

eventually made the chart [32] albeit with lower reported sales than had actually transpired. 

The exercise showed that with only a small number of people, existing reporting systems 

can be manipulated to suggest an apparent market for a product, thereby creating the 

market. The same organisation has also been contracted to provide similar services to the 

major corporate record labels to ensure that releases by established artists are immediately 

successful, promoting awareness and leading to further sales.  

 

Identified by marketing ‘guru’ Philip Kotler, the growing practice of marketing by 

use of ‘popularity’ and ‘community’ networking perfectly fits the description of ‘Social 

Marketing’ [33]. Social Marketing, as defined by Kotler, is ‘the use of marketing principles 

and techniques to influence a target audience to voluntarily accept, reject, modify, or 

abandon behaviour for the benefit of individuals, groups or society as a whole’ [34]. There 

is no mention here of selling a product, but selling a philosophy, concept or idea (or the 

rejection of an idea) can be central to a ‘Social Marketing’ campaign. In terms of the music 

industry, this phrase may be paraphrased as ‘the use of marketing principles and techniques 

to influence a target audience to voluntarily accept an act for the benefit of the act and the 

network or society in which the social marketing is performed’.  
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3.2 Industry indicators 

3.2.1 Radio as a referrer 

So, how does the concept of ‘Social Marketing’ raised in Section 3.1.1 concern 

radio broadcasts and the monitoring of output from radio stations? In the context of the 

development of any act, it can be seen that perhaps one of the most important things that 

can be done for the act is ‘spreading the word’. The related functions of ‘marketing’ and 

‘promotion’ are used to create an awareness of a product (in this case the act or the song) 

with a view to persuading the customer to ‘buy’ the product. Given that customers cannot 

exactly ‘buy’ an act, this might seem misleading. However, it is not. 

 

Customers, in this case, might mean the record labels themselves. In Ireland, most 

developing acts would admit, privately at least, that they would like to be signed or licensed 

to a major record label, or their subsidiaries, in order either that they might reach a wider 

audience or they might be rewarded for their artistic endeavours (or both). ‘Marketing’ and 

‘promotion’, therefore, could mean the process(es) of making potential customers (i.e. 

record labels and their scouts as well as the listening public) aware of the availability and 

qualities of a product (i.e. the act or the song). It could also mean the ‘word of mouth’ 

recommendations made by people to their friends and acquaintances, whether online or 

offline. 

 

In its earliest days, Ireland’s National radio and television broadcaster ‘Radio 

Telefis Eireann’ (RTE) was a taste-maker. The station could, and still can, make the career 

of an act simply by allowing their material to be broadcast while limiting the broadcast 

opportunities for ‘competitive’ acts.  Richard Pine [35] describes how RTE (or ‘Radio 

Eireann’ as it was then) and its offshoot the ‘Radio Eireann Studio Orchestra’, afforded the 

new listenership of the post-war years the opportunity ‘for making decisions – or at least 

establishing viewpoints – on the preferability of one cultural genre to another’.  While Pine 

was writing about a bygone era when radio was in its infancy as a communications medium 

in Ireland, RTE (indeed, all radio) still affords this opportunity to its listenership.  
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This is an accepted fact of life in the music industry in Ireland (perhaps 

worldwide) and the relationship between the musician and the broadcaster is one that still 

offers huge potential for the development of an act or, as Pine said, the chance for the 

public to ‘judge the preferability of one act to another’. It is in affording that opportunity 

that radio can best be of service to the act in its development. Insofar as the wider industry 

is concerned, radio also offers the opportunity for record labels and scouts to become aware 

of new talent and to ‘judge the preferability of one act to another’ [35]. This is where 

airplay statistics are important. Even more important are airplay statistics that are accurate 

and representative 

 

If it is possible to control what the airplay reports show, then it is possible to 

control which acts are given the exposure within the music industry that they need to 

promote their career. While it is fair to say that airplay statistics are post-event, in that they 

are produced after an act has had some broadcast exposure, it is also fair to say that these 

statistics provide the basis for at least some further opportunities. Industry-watchers use 

these reports as both a monitoring device to identify where their acts may or may not be 

gaining exposure and as a sort of barometer of taste, particularly at local stations, which 

tend to be more accessible to independent artists. 

 

The advent and popularity of music video television certainly has made it more 

difficult for independent artists to become successful, mainly because a large proportion of 

the music-buying public now consumes more of its music on television, which is harder for 

unknown artists to break into. Radio, on the other hand, is still relatively easy to gain 

exposure on, particularly independent and/or local radio broadcasters. In Ireland, 

approximately 86% of adults listen to radio at some point every day according to official 

figures [36]. Radio is, therefore, still a major factor in the development of an artistic career, 

albeit a factor that might be expected to diminish over time as younger audiences who 

consume music on the Internet as much as anywhere else become adults and such listening 

habits become more prevalent in the survey demographic. 
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3.2.2 Sales charts 

There are some common metrics that are used in the location and evaluation of 

potential new talent by a record label or their scouting networks. One such metric is the 

sales chart. When we hear that a record has reached a certain number in the charts, this is 

usually referring to the ‘official’ sales charts. Of course, the term ‘official’ may often be a 

misnomer. In Ireland, for example, the ‘official’ sales charts are compiled on behalf of the 

‘Irish Recorded Music Association’ (IRMA), which is a representative body for the actual 

record labels who release the records. Given that a lot of radio play has been, and still is, 

based on sales charts, this gives rise to the opportunity for manipulating the sales chart in 

such a way as to give the impression that a song is performing better than it really is. 

 

This manipulation of chart position may be designed to persuade record labels that 

the act in question is ‘popular’ on the underground scene. However, it may also be done by 

a record label. While a record label may not be manipulating sales in order to persuade 

anyone that the act has some ‘selling power’, they may wish to see their particular product 

reach a higher number on the chart so that the song is likely to generate more radio plays. 

This generates more awareness among the public who, in turn, buy the song because they 

(a)heard it more often and like it or (b)believe the act must be popular because it featured in 

the charts or the radio playlists. The act, then, becomes more popular and generates more 

sales which generate more awareness which in turn generates more popularity and so the 

cycle continues. More interestingly, because many commercial radio stations base their 

playlist at least in part on sales charts, and because higher positions in these charts lead to 

higher rotation on major broadcasters, higher royalty payments can be generated in the 

longer term.  

 

An act may arrange the purchase of all of its own material released for sale. It may 

make a loss on this process (although the potential loss is much lower since the advent of 

charts that allow digital-only releases) but this loss can be offset by the fact that the higher 

sales figures will result in a higher chart placement and by extension to higher rotation on 

radio and higher royalties. The royalties may even pay for the losses incurred in the 
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purchasing of the material while the whole process simultaneously increases public (and 

industry) awareness of the act. Of course, there is no reason why even established acts 

could not use such a process to ensure higher placement, high rotation and higher sales 

along with higher royalties. As mentioned in Section 3.1.1, an experiment was carried out 

by ‘IrishUnsigned’ whereby a release was manipulated onto the official sales chart. This 

process was repeated by ‘IrishUnsigned’ on behalf of other artists, both commercial and 

independenti. 

 

Other than manipulation of the data supplied to the public as the ‘official’ charts, 

there is another simple logistical and commercial problem faced by any developing act that 

has no connection to a record label. In Ireland, the sales data from approximately 285 

retailersii (6 of whom are online retailers) is compiled into the official charts, with various 

‘modifications’ performed to the data (admittedly) by the organisation compiling the data 

for various reasons. This does not include all of the sales in all of the retailers selling into 

Ireland. Indeed, it is not even all of the sales in any given retailer. Instead, it is the number 

of qualifying sales in these retailers. 

 

All sales must meet certain criteria to qualify for inclusion in the sales charts. The 

simplest one is that the physical item (CD, DVD) sold must be barcoded. Not only do many 

acts not realise this but, even if they did, it automatically disqualifies any sales of an item 

that was ‘home made’. Moreover, not many acts are aware of the route they must take in 

order to register a barcode for their product. This raises a related problem: how do 

developing acts know which retailers fall into the category of those from whom sales data is 

collated and how can they then ensure that these retailers will stock the product, given that 

it is from an ‘unknown’ and not backed by a marketing campaign from a record label or 

distributor? It is logical to assume that record labels and their affiliates would know where 

                                                
i While the information about the artists concerned in manipulation of chart position is 
provided confidentially, they include a number of highly successful acts.  
ii From private communications with ‘Chart Track UK’, compiler of the official Irish music 
and games/software sales charts. 
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to stock their product (and how to achieve this), since they contract an outside third-party 

(UK based Chart Track Limited) to collate sales data and publish the chart. 

 

3.2.3 Airplay charts 

A second common metric used for the purposes of assessing the relative success of 

an act is the ‘Airplay Charts’ published privately to clients by Nielsen [71] who also 

publish the ‘Radio and Records Airplay Charts’ for Billboard magazine in the US [37]. 

Airplay charts are only used to evaluate the relative exposure of a song in the broadcast 

environment. However, this in turn reflects the overall popularity or performance of the act. 

Airplay charts are generally a report on the songs played on radio stations in a given period 

ranked according to how many times each song was played. The charts can be weighted 

according to the audience reach or territorial importance of the broadcaster on which it was 

played. Therefore, a play on a mainstream, national station would generate more chart 

points than a local, specialist or community station. While this may seem like a useful 

metric to use when monitoring the development and potential of an act, it is inherently 

limited and may actually be counter-productive. An understanding of the techniques used to 

monitor output will help to illustrate the problem. 

 

One provider of broadcast monitoring services in Ireland is ‘Nielsen Music 

Control’i. ‘Nielsen Music Control’, like IMRO, is not an official body. Instead, it is simply 

a private organisation set up as a result of a perceived commercial opportunity. The 

organisation monitors radio output and produces reports on material broadcast. However, it 

is in the way this is achieved that the limitations become obvious. In order for a piece to be 

tracked, it must first be sent to ‘Nielsen Music Control’ by the act (or their representative). 

It is then put through a proprietary fingerprinting processi to create a pattern and this pattern 

is added to their database. The output of most, but not all, Irish radio broadcasters is then 

monitored and the system attempts to pattern-match the output with the stored patterns, 

recording the time, date and source if successful.  

                                                
i http://www.nielsenmusiccontrol.com/ 
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‘Nielsen Music Control’ is not a well-known organisation and, other than the 

major record labels and their subsidiaries, plus a few well-informed independents in 

Ireland, few acts even know that this can be done, let alone how they would go about 

achieving it. In a survey of almost 500 acts, of which there were just over 100 respondents, 

less than 10 knew how they would get their music added to this monitoring systemi. 

Furthermore, while there is no cost involved in getting a work added to the monitoring 

system, there is a cost involved for the provision of reports on the plays of those works so 

acts would not necessarily be able to pay for monitoring reports on a year-round basis. 

Those who have used the system have used it for short term purposes (i.e. monitoring the 

airwaves during the period immediately surrounding a release). Record labels and others in 

the music industry do, however, regularly pay for airplay statistics [71]. 

 

3.3 Impact of the current systems on developing acts and industry 

As mentioned earlier, systems such as the ‘sales chart’ and ‘fingerprint 

recognition’ airplay chart that rely on some foreknowledge of both the existence and 

importance of the system, while at the same time being unable to take into account every 

possible release as it becomes available are inherently flawed. It is possible that these 

flawed systems of identifying new talent and of analysing the relative success of such new 

talent may be detrimental to the overall long-term health of the Irish music industry as both 

an employer and an export tool. Consider the following hypothetical scenario: 

 

An artist at the early stage of their career releases their first record and achieves 

some exposure on local radio stations. The record is available in local ‘bricks and mortar’ 

retailers as well as online retailers. The awareness generated by local broadcast exposure 

along with word-of-mouth (one of the most important marketing techniques available to 

developing artists) means that the artist has soon reached the point where they are relatively 

well-known in a small geographic area. The artist then releases a follow-up record and 

                                                
i Primary research conducted personally through ‘IrishUnsigned’. 
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begins work on a full length album. The follow-up release also manages to achieve local 

broadcast exposure and the artist is even featured in-studio, perhaps in an interview or live 

performance of their work. Awareness of the artist is now much greater than it was, albeit 

still local. 

 

The artist in question then manages to accumulate the finances needed to record, 

release and promote a full length album which will be likely to cost above €10,000. At this 

point, the artist really needs to be promoted to the rest of the broadcast and record 

industries. However, nobody outside his or her small geographic area has even heard of the 

artist because industry organisations do not routinely monitor the output of local radio 

broadcasters. To make matters worse, the artists does not appear on any airplay or sales 

report. This happens because their local broadcaster is not monitored by collective rights or 

airplay monitors and their sales, while comparatively good, were on non-affiliated retailers 

systems. As far as the wider industry is concerned, they simply do not exist. When the artist 

finally releases their album it is likely to sell relatively badly and cost them a heavy loss. 

This means the artist is less likely to try again so their career comes to a halt. 

 

Had the above artist had the good fortune to have their two early releases and 

interview featured by a broadcast which was monitored for airplay or royalty purposes and 

had their sales been processed via only affiliated retailers, the artist may well have become 

relatively widely known and maybe even sparked some interest (or at least awareness) 

within the industry. Their album release might then have been more successful and this in 

turn might also have sparked interest from the industry, regardless of whether or not the 

artist desired to sign a contract. Selling as few as 2500 copies of an album would more than 

likely be enough to recover their costsi and encourage further artistic endeavour, as was 

envisaged by the early Copyright proponents. Moreover, even if their success had not 

materialised, they would still at least have generated some royalties from the exposure they 

                                                
i Assuming an album costs €10,000 to produce and promote, and was sold for €10, the costs 
would be recouped as the artist’s share of the sale of this album in stored would be c. €4 - 
€5. Therefore, 2500 sales would generate between €10,000 and €12,500. 
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did manage to achieve. In the above case, the hypothetical artist would receive no royalties 

whatsoever. 

 

The scenario outlined above is depressingly common in reality, not only in Ireland 

but in most countries. In Ireland alone, for every relatively successful act such as ‘Republic 

of Loose’, ‘Director’ or ‘Delorentos’ there are hundreds of less successful acts like 

‘Hoarsebox’, ‘Reemo’ or ‘Jaded Sun’ who have not had quite the same level of exposure or 

return on their investment. In hundreds of cases, acts have either had to persevere in the 

face of little encouragement or give up. The organisations which collect and distribute the 

tens of millions of euro paid in licensing fees by radio broadcasters every year, have the 

ability and the legal duty [23] to ensure that those artists who provide the material from 

which broadcasters generate their income streams are correctly rewarded.  

 

3.4 Overview of royalty collection and distribution in Ireland 

Irish artists are the third-highest selling category (by nationality) in world music 

sales. Irish-originated artists sell more music than all other nationalities, regardless of 

population or potential catchment, except artists from the United States and the United 

Kingdom [35] [39]. All this in an economic sector worth in excess of €100bn [38]. This is a 

point worth noting as it suggests that the current system is inherently unfairly weighted 

against Irish artists, particularly abroad, when the wider music industry is considered. 

 

The three existing agents for the licensing of copyright music in Ireland are IMRO 

(the Irish Music Rights Organisation), RAAP (Recorded artists and Performers) and PPI 

(Phonographic performers of Ireland). Any outlet that plans to ‘make available’ any of the 

works that are protected under Copyright and are even partially owned by IMRO’s 

members must apply for an IMRO license to make those works available publicly. 

Similarly, outlets are required to obtain licenses from the PPI (and, through the PPI, from 

RAAP) for public performances. This is because IMRO members are not necessarily 

RAAP/PPI members and vice versa. IMRO members are songwriters/publishers and RAAP 

members are performers/musicians. Sometimes, of course, a writer may also be a 
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performer. In this regard, music users likely to require a license to ‘make available’ 

copyrighted works are: 

 

o Radio and television broadcasters, as well as internet-based webcasters; 

o Owners of public houses, hotels, and other venues where music is performed live 

or pre-recorded whether by the owner of the music or other persons; 

o Owners of stores, workplaces, restaurants, shopping centres and other locations 

where music is used in the background; 

o Organisers of events in public areas, such as parks and streets (for example, local 

authorities) if the music is being made available to the public. 

 

In fact, almost any type of outlet where music can be heard by any person(s), other 

than in the ‘domestic circle’ as defined in law, must all have permission from IMRO (and 

RAAP, and PPI as appropriate) to use the works of said members. 

 

When an outlet pays for a license to use music owned by members, this money is 

then pooled and distributed to the owners of all music subsequently made available by all 

license holders [25]. The license fee received for a particular outlet over a given period 

should be distributed pro-rata amongst all the content owners who have had their works 

made available by that particular outlet. Essentially, if the work of one artist is played twice 

as often by license holders than another artist, then he or she should receive twice the 

amount of the royalty when it is distributed. 

 

While this appropriation of license fees to owners may be a relatively simple task 

when a one-off license is sought, perhaps for a fireworks display that is set to music, or for 

a concert where the music is known and consistent, it is not feasible for IMRO or any other 

Organisation to keep a complete and perfect record of all the pieces used in all of the outlets 

for whom it has issued licenses. Therefore, they cannot distribute the license fees received 
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as royalties to all of the correct owners. IMRO readily admits this limitationi. There are, 

however, systems and processes in place to generate playlist data from many outlets such as 

radio and television and then extrapolate the overall distribution ratios using the limited 

sample data collected.  

 

3.4.1 Limitations in the current system 

Unfortunately, the systems and processes used by organisations like IMRO are by 

definition likely to overlook a certain section of their members when distributing royalties. 

This leads to an ever-increasing disadvantage to this section in a permanent downward 

spiral. It is, moreover, this particular section that the entire concept of Copyright was 

evolved to protect. As explained in Section 2.2.1, a work may be broadcast numerous times 

and receive no royalty fees whatsoever if its use is not reported in sampled data while 

another work, broadcast once, may receive far more royalties that it is entitled to, including 

some royalties due to the unreported work.  

 

This is of course an extreme example but it is certainly indicative of the way that 

distributions are calculated that this does, to some extent at least, happen in the Irish 

territory. This can be seen from the information provided in Table 2.1 in Section 2.3. There 

is no reason to believe that the same does not happen to some degree elsewhere. 

 

In terms of the more accessible ‘community radio’ sector, the fees generated are 

only a very small amount in comparative terms. The difficulty in collating play data is 

exacerbated in the case of community broadcasters by the time, effort and cost that can be 

involved in collating such data. IMRO find it is not economically viable to collect play data 

from smaller community broadcasters. Instead they simply add the fees generated from 

community broadcasters to the comparatively large and thinly-spread RTE pool of license 

fees. RTE is the biggest broadcaster with the widest range of broadcasted material in the 

territory. This, of course, means that the plays that developing artists and writers do receive, 

                                                
i From private communications with IMRO. 
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which very often happen on easily-accessible community and local radio stations, will be 

overlooked. Instead, the royalties due to these developing artists will be added to the RTE 

pool and paid to the very well-known and usually very industry-aware artists played on 

RTE’s various channels, thereby compounding the problems already faced by developing 

artists in this area. 

 

It is reasonable to presume that the more organised, informed and commercially 

aware artists, writers and publishers will all be able to navigate these obstacles and will take 

steps to ensure that their works are properly recorded and reported to the licensing agent. 

Moreover, these commercially-aware sections of the membership are likely to be involved 

on a regular basis in the music industry as this is the only real way that such concepts come 

to light as far as artists are concerned. Newcomers to the industry are often underinformed 

about Copyrighti and how it is administered. Even when they are informed enough to have 

their works copyrighted and register as members of organisations like IMRO their rights 

cannot be administered perfectly. They simply cannot be and IMRO acknowledge as much 

in its members handbookii. 

 

It is up to the artist to ensure that they are paid the correct royalties from the ‘pool’ 

of any given license fee received. Of course, like IMRO and its peer organisations, artists 

are unable to monitor all radio and television output, as well as all publicly-heard music all 

over the (licensed) world and are therefore at the mercy of the agents. Given that more 

commercially-aware members will be actively submitting data to the agent, and that the 

agent’s collection and distribution system is already (accidentally, at least) inherently 

weighted against the uninformed developing Artist, the disadvantage suffered through lack 

of awareness is magnified, often to the long-term detriment of artists who see no return 

even when relatively successful in terms of the Irish marketplace. 

 

                                                
i From primary personal research conducted through ‘IrishUnsigned’. 
ii From private communications with IMRO. Also, see the IMRO members’ handbook, 
Section C, paragraph 2(c). 
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In order to overcome the problems caused by the systems currently used to collate 

information, and to make the entire process of collection and distribution of royalties fairer 

(albeit never perfect), in particular for works played less often and for specialist or 

developing musical shows, a complete and accurate list of all works broadcast at all times 

on all stations needs to be made available. This is unlikely to ever be possible, but modern 

technology should be able to produce a system fairer than it currently is. Currently, as 

illustrated by the information shown in Table 2.1 in Section 2.3, the distribution of the 

entire license fee paid by a broadcaster may be distributed in its entirety to the owners of 

less than 8% of the pieces played. 

 

Of course, non-broadcast outlets such as shops and factories simply cannot be 

monitored at all so estimates and extrapolations are used to distribute the license fees 

collected from these groups of outlets. This is sometimes done using the same metric 

derived from the extrapolated data generated by incomplete radio and television playlist 

data. This assumes that a large number of outlets will be using radio and television for 

public performance, without regard for those that might use CD or those that never play 

music other than live music. The pool of fees generated from these sectors is therefore 

distributed as unfairly as that of broadcasters. There are always going to be limitations like 

this, but it is obvious that the more complete the available data is, the more accurate the 

distribution will be.  

 

IMRO generally collects a standard ‘blanket’ license fee from most broadcastersi 

as does the PPI along with myriad fees of all sizes from other users of music for public 

performance (see Appendix 1). This may include record stores, live music venues, cinemas, 

hotels, and restaurants where music is used as part of the ‘ambience’ and so serves a 

commercial purpose. It also includes anywhere that music is listened to, outside the 

‘domestic circle’, including workplaces, factories, and retailers and extends in theory even 

to buses and cabs. Each type of music use is treated in a different manner, depending on the 

                                                
i Some broadcasters, such as Community Radio Stations are either exempt from having to pay a 
license or may not be exempt but are assessed to pay a license fee of zero 
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use of such music, what purpose it serves and what revenue it generates. Some users, such 

as restaurants and hotels, are charged a flat fee dependent on size and potential audience. 

Others (for example, radio stations) are charged a percentage of their income if they rely on 

music to generate that income. The entire pool of license fees collected, after deduction of 

overheads, administration and other costs, is then distributed to Copyright owners 

according to whatever data IMRO has been able to collate from broadcasters. Given that 

IMRO alone generates c. €36 million in license fees (increasing year on year) [26], the 

revenue is not insubstantial. 

 

3.5 The importance of fair and equitable rights administration 

Some relevant statistics might serve to illustrate the reasons for, and the potential 

scale of, the long-term benefit to organisations like IMRO, its members and the Irish 

economy in general: 

 

1. The royalty collection industry in Europe alone is worth an estimated €5bn in 2004 

[8] and is increasing in size. IMRO’s own revenue increased 10% in 2007 [26]. 

This figure of €5bn excludes the rest of the world and of course excludes 

significant public performance royalties that might accrue from the US. 

2. IMRO collected only approximately €3.5 million in royalties from affiliated 

organisations in the rest of Europe (including the UK) [26], suggesting that Irish-

originated IMRO members accounted for only a miniscule amount of 

radio/television output and live performances. Given the success of Irish-

originated artists [39] [40], this is obviously open to debate. IMRO itself admits 

that it faces major obstacles trying to recover royalties for its members from 

public performances abroad because it cannot quantify them and because the US 

continues to delay introducing legislation to protect public performance royalties 

within its borders [26]. 

3. In the UK music sales market, ‘Irish-originated’ artists were ranked a cumulative 

third place in the overall UK sales statistics [39] in all of the years from 1986 – 

1994, except 1989 (when Irish artists were ranked 4th) in terms of sales. If radio 
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output reflects, to an extent, sales statistics then it would be logical to assume that 

Irish-originated artists made up a large proportion of public-performances. From 

IMRO’s annual results, it is apparent that, even many years on from these 

statistics, income from UK public-performance royalties paid to IMRO for use of 

its members’ works in the UK should be a lot higher than the €1.5 million shown 

in their 2007 results [26]. 

4. According to the Music industry governing body, ‘Revenues from public 

performance and broadcasting income grow incrementally every year’ [40] so 

there is ever more reason for both more accurate public-performance playlist data. 

5. ‘The fact that Irish people use English is often cited as increasing our 

vulnerability to Anglo-American mass culture. This is so, but it also increases our 

opportunities in the vast English-speaking market, the most affluent in the World’ 

(former Irish Cultural Minister Michael D. Higgins) [41] 

 

If the Irish royalty-collection industry were to take a lead in the development of an 

open-source, transparent and accountable measuring and reporting system, then Irish artists 

(meaning, by default, their more established and well-known members) could easily benefit 

exponentially from being at the forefront of this development by generating an increased 

inflow of revenues from European and US royalty revenues, notwithstanding that this takes 

no account of other markets, such as China, which is apparently moving towards providing 

more protection for intellectual property of all types [42] [43]. 

 

The problem in implementing a system to identity all musical works made 

publicly available by all licensed broadcasters is not one of technology or of identification 

of the beneficial owner of the piece. Instead it is one of logistics and motivation. The 

system under consideration in this document is one that deals with automated identification 

of the work ‘on the fly’ in a realistic radio or TV scenario. It also addresses the very 

difficult logistics of monitoring use of Copyrighted material in non-broadcast outlets such 

as retail, industrial and tourism.  It would be a simple step then to assign the correct royalty 
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payment to content owners according to a more fully-monitored, accurate, open and 

transparent reporting mechanism.  

 

3.6 Identification of a unique piece of audio in the Music Industry 

In order to perform the function of this system and identify any particular piece of 

music, the identifier used must be capable of being applied to only one piece of music. 

While the initial choice might be to use a barcode-based system, this soon proves 

inadequate and outdated. In reality, a barcode identifies a physical object. In terms of music 

- released publicly or otherwise - this barcode would generally be assigned to a physical CD 

or DVD containing the music, rather than to the actual music itself. This is an important 

distinction for two reasons. First, a CD can hold more than one song and all songs would be 

represented by the same barcode. Second, physical CDs are likely to eventually become as 

rare as vinyl recordings and it is now common practise for artists and songwriters to release 

songs in a digital-only format which owners can then add to a CD if they choose. Songs 

released only to the music industry or broadcasters, for the purposes of promotion or radio-

play are also, in the current climate, delivered on CD. There is generally no barcode for a 

digital release. 

 

On hearing a track, most people are very capable of identifying an artist. They 

might know the artist and track. They might know the album it was included with. They 

might even know the year it was released. However, this is only useful as a means of 

identification when communicating such details to other people as it is possible to correct 

any assumptions or misunderstandings and incorrect decision-making is easy to rectify. 

 

In the music industry, something more specific and less error-prone is required in 

order to ensure that royalties are not paid simply to the first or most well-known artist who 

might have performed a song. Similarly, even a single work can have multiple Copyright 

owners as described in Section 2.3 
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Every recording of every version of every work ever released to the public, 

whether released by a record label, an artist, a singer, a manager, a performer or any other 

person or organisation whatsoever, for any reason, should be uniquely identifiable in a 

manner that makes it clearly different than every other work. Moreover, it should be 

possible to differentiate it from every version of the same work, or every version that 

includes portions of the work in question (such as is the case with remakes and sampling, 

for example). In fact, even if the recording contains no audio, or no deliberate audio, it 

would need to have the capacity to be catalogued, as evidenced by John Cage’s ‘Four 

minutes thirty-three seconds of silence’, discussed in Section 2.2. 

 

3.6.1 The ISRC Code 

Fortunately, there is no need to invent such a cataloguing system as such an 

identifier is already in existence and internationally recognised. It is called the 

‘International Standard Recording Code’ or ISRC. This code has been in use for almost 20 

years by the membership of the ‘International Federation of the Phonographic Industry’ 

(IFPI) which is the representative body for almost 1500 record labels in around 70 

Countries. As its name suggests, the ISRC code is an International Standard, published by 

the ‘International Organisation for Standardisation’ (ISO). The current revision of the 

ISRC Standard is ISO 3901:2001 [44]. An ISRC code identifies a song by using four 

segments as follows: 

 

o A 2-character Country Code (e.g. ‘IE’ for Ireland) 

o A 3-character Registrant code for the record label(i) that assigned the ISRC 

o A 2-digit year of the assignation 

o A 5-digit sequential number of the recording within the year 

 

                                                
i Any individual or organisation that issues a recording has the right to assign an ISRC code to that 
song, including the artist themselves. Their only requirement is that they are assigned a registrant 
code from the PPI. The PPI should then be informed of all releases from the Registrant. 
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Consider as an example the Irish record label ‘Vinyl Destination Records’. It has 

been assigned the three letter registrant code ‘AVY’ for audio releases and ‘VVY’ for video 

releases. All of the audio releases from this content producer would begin with ‘IE-AVY’ 

followed by the year and the sequential release number within that year. Therefore, since 

‘Vinyl Destination’ released a song entitled ‘Angel from Heaven’ by a band called 

‘DeXtra’, which was the first public release from this label in the year 2004, its ISRC code 

is ‘IE-AVY-04-00001’. 

 

A song’s ISRC code is a unique identifier and can be used to identify the song by 

referencing a database of ISRC codes stored for such a purpose. In Ireland, this task falls to 

‘Phonographic Performance (Ireland) Ltd’ (PPI).  The example song can therefore be 

identified by referring to PPI with the above-mentioned ISRC code for cross-referencing 

against their national database. One example use of the ISRC code is in ensuring that only 

material with an assigned ISRC code actually appears in the sales charts. Multiple remixes 

of the same song should have multiple ISRC codes but may be counted together for sales-

reporting purposes. 

 

3.7 Summary 

 This chapter described some metrics by which the early career of an artist is 

measured by the public and the music industry. Explanations of the impact their incorrect or 

inefficient production can have on the artist’s career were explored. The difficulties that can 

sometimes be encountered when attempting to uniquely identify artistic works, particularly 

in the broadcast environment, were outlined. The standard identifier currently in use was 

then explained. In the next chapter, the human auditory system is introduced and sound 

processing explained. This will provide the level of understanding necessary to fully 

understand the effectiveness of the developments described later in this work. 
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Chapter 4: Sound, hearing and data-hiding 

 In this chapter, the human auditory system, and how it responds to sound waves, is 

described. Psychoacoustic concepts are introduced and explained briefly, concentrating on 

those concepts that might be of relevance in the current work. Data-hiding concepts are 

introduced later in the chapter in order to provide grounding and to differentiate data hiding 

from other forms of data security. Finally, basic digital signal processing concepts are 

described and an overview of how they apply to broadcast monitoring is provided. 

 

4.1: The Human Auditory System 

Sounds heard in the real world are continuous waves of varying amplitude and 

frequency. Waves with higher frequency are described as being ‘higher pitched’ than those 

with lower frequency, while waves with greater amplitude are louder than those with lower 

amplitude. All sounds can be described using combinations of frequency and amplitude 

values. Even very complex sounds such as an orchestral piece involving thousands of 

instruments can be described in this way. The overall sound is created by the sound waves 

of individual instruments ‘superposing’. Superposing is essentially the same as overlaying 

or, in the case of sound waves, adding the waves together. In reverse, given a complex 

sound, it is possible to calculate the individual waveforms of the component parts [74]. 

 

In general terms, sound is considered to be the perceived impact of a disturbance 

on a medium. The physiological manner in which the human hearing system converts 

waves into nerve impulses to be perceived as sound is beyond the scope of this thesis. 

However, by way of illustration, if we clap our hands (this causes the disturbance) we 

create a movement in the air between our hands (the air is the medium) which propagates 

away from the source of the disturbance, diminishing as it goes. We hear these sounds 

because they cause the ear-drum to vibrate (see Figure 4.1). The ear drum converts 

vibrations into nerve impulses, with the responding nerves reacting to predefined 

frequencies. The frequency components are transmitted to the brain for processing which is 

done by analysing which nerves have fired and in what order. 
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Figure 4.1: Representation of the way in which humans process sound. 
 

4.1.1 Visualising sound waves 

Normally, when a sound wave is considered, the intuitive (graphical) 

representation of the wave is in terms of a wave-form along the timeline as produced, for 

example, by the sound of human speech (Figure 4.2a) or a heartbeat represented in a heart 

monitor (Figure 4.2b).  

 

 

Figure 4.2a: A waveform representation of a voice saying ‘Will you have 
marmalade or jam?’ [45] 

 

 

Figure 4.2b: A sample heartbeat output on a heart monitor [46]. 
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However, there is no reason why the information contained in the representation 

cannot be represented in other formats. In fact, it is often more useful and easier to visualise 

sound in other domains, particularly the frequency domain. In this way, the frequency 

spectrum of the sound can be analysed. The frequency-domain representation obtained via 

the Fourier transform presents the signal in terms of the sum of a number of simple 

sinusoidal waves of different frequencies, amplitudes and phases which make up the overall 

sound [54].  

 

The principles that allow the conversion of continuous analogue sounds from the 

time domain into the frequency domain facilitated the evolution of digitised sound into 

modern formats. One such commonplace facility is the compression of sound from CD-

format ‘Pulse Code Modulation’ (PCM) into a more useful compressed format (e.g. MP3) 

which has become the de facto standard for modern digital distribution of sound files. The 

theory behind the transformation from time to frequency representation (and, perhaps more 

importantly, back again) was first demonstrated in a paper submitted by Jean Baptiste 

Joseph Fourier in 1822 [47]. The wider area of Fourier theory is so great that it is beyond 

the bounds of this paper. Having said that, it is referred to continuously as there is really no 

way of talking about the relationship between time and frequency domains without using 

Fourier theory and the ideas that were developed using it. 

 

Sound, as we perceive it, is made up of complex collections of less complex 

sounds which can theoretically be decomposed to the lowest possible level: individual 

sinusoids of different frequencies, amplitudes and phases. The complex sound can, in fact, 

be described as a series of individual waves of different frequencies and phases, interacting 

with each other. Figure 4.3a shows the fundamental frequency of ‘middle C’ at 440 Hz, 

plus its first 4 harmonics at 880 Hz, 1320 Hz, 1660 Hz and 2200 Hz. Figure 4.3b is the 

combined sound generated by these five components. 
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Figure 4.3a: Synthesised fundamental frequency and first four harmonics of ‘Middle C’. 
 

 

Figure 4.3b: The composite wave generated by adding the fundamental and the next four 
partial frequency waves together. 

 

  

Any periodic sound can be described in terms of a set of underlying components. 

For example, the complex periodic sound in Figure 4.3b can be described in terms of the 

individual amplitudes and frequencies of the components in Figure 4.3a. 

 
 
4.2 Psychoacoustics 

It is generally accepted that humans hear frequencies in the range of 20 Hz to 20 

kHz, deteriorating with age. Similarly, it is accepted that we hear amplitudes (or ‘loudness’, 

‘sound volume’ etc) in the range of -6dB to 130dB (the latter of which is generally 

considered painfully loud). Ordinary daytime noises generally vary between 0dB and 

100dB. We can also detect sounds more accurately the longer they are played. 

 

There is, it must be pointed out, a very distinct difference between what can be 

heard and what can be detected. The priority for most professional users of music, from 



   

- 69 - 

artists to record labels and TV/radio broadcasters is - correctly - on audio reproduction that 

is as close to being ‘imperceptibly different’ from the original as possible. Any difference 

that is perceptible will obviously alter the reproduced sound in a way that makes it 

unacceptable for professional use and so should therefore be avoided at all costs if the 

resultant sound file is to be used in a professional manner.  

 

4.2.1 Auditory masking 

When a sound that can normally be heard by a listener in isolation is no longer 

audible in the presence of another sound, it is said to be masked. There are various forms of 

auditory masking and they are employed for a variety of tasks, often completely unrelated 

to the field of audio recording. Sound masking principles are employed to create either a 

passive or active barrier to unwanted or distracting sounds. These may be, for example, 

traffic noise, building noise or machinery noise [48]. Imagine, for example, even a 

relatively quiet intermittent beeping sound in a quiet room. It will obviously command the 

attention of most listeners and become a distraction. However, if there is an underlying 

sound between the listener and the beeping sound, it will often shield the ear from the 

distraction. These techniques are used in areas where sound travels beyond an acceptable 

distance, either for reasons of confidentiality or interference, and where intermittent sounds 

may cause unwanted distraction. 

 

One simple example of the masking concept masking is amplitude masking. While 

a listener may comfortably hear an Opera singer from the stage in an Opera house, the same 

singer performing at the same volume (or amplitude) might be impossible to hear standing 

in front of a Jet engine. The reason is simply that the amplitude (loudness) of the engine is 

much higher than that of the singer and therefore drowns it out. Similarly, normal 

conversation may be impossible to hear even in the presence of a rumbling diesel engine, a 

much quieter masking sound than a jet engine but nonetheless louder than normal speech. 

This form of masking is referred to as ‘simultaneous masking’ [49] as it happens when two 

sounds are simultaneous to each other. 
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However, there are also non-simultaneous masking phenomena. These occur when 

a ‘strong’ sound masks a weaker sound that precedes or follows closely in time. If the 

weaker sound is masked by the stronger sound that follows, this is said to be backward 

masking because the strong sound masks backwards. Conversely, if the stronger sound 

masks a sound that comes after it, this is said to be forward masking. Both are examples of 

‘temporal masking’ or ‘time-masking’ effects. 

 

4.2.2 Threshold of hearing 

As mentioned in Section 4.2, the human auditory system is capable of detecting 

sounds in the range from 20 Hz to 20 kHz, with most of us capable of hearing a much 

narrower range of frequencies. However, it should be noted that ability to hear a given 

sound is not consistent across the range of frequencies. At the lowest frequencies, most 

sounds need to be very loud to be heard. In the mid-range, in which our hearing system is 

designed to be most effective, a much quieter sound can be detected. Finally, at the upper 

reaches of the range, high frequency sounds must be played at a louder volume than mid-

range sounds in order to be detectable. There are accepted levels at which various 

frequencies will be considered to be equally loud, as illustrated in Figure 4.4 which 

‘specifies combinations of sound pressure levels and frequencies of pure continuous tones 

which are perceived as equally loud by human listeners’ [50]. 
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Figure 4.4: Equal loudness curves, indicating the sound pressure levels (SPL) 
at which tones of a given frequency (Hz) are described as ‘equally loud’. 
 

 

Figure 4.4 represents the sound pressure level or ‘loudness’, displayed in decibels  (dB 

SPLi) on the y axis, at which tones at frequencies on the x axis are perceived to be equally 

loud in normal hearing (identified in ‘phons’ in this graph [51]). The ‘threshold’ curve 

indicates to lowest SPL at which a given frequency can be detected by the human ear. For 

example, at very low frequencies up to 100 Hz the curves are comparatively high and these 

tones must be played comparatively loud in order to be perceived to be just as loud as tones 

in the mid-range (e.g. between 1 kHz and 6 kHz) played relatively quietly. 

 

Another way to analyse the information in the equal-loudness curves is to examine a 

horizontal line across from a chosen sound-pressure level on the y axis. Take for example, 

the value of 20dB on the SPL scale. As the horizontal line extends from left to right, the 

frequency of the tones become higher pitched. Note that the equal-loudness curves vary 
                                                
i dB SPL is defined as twenty times the log of the ratio between the measured sound 
pressure level and a reference point.  This reference point normally is defined as 0.000002 
Newtons per square meter, the threshold of hearing [51]. 
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from very far above the 20dB line, to somewhere just below it in the mid-range, before 

increasing above it again as it approaches the 10 kHz frequency range. This indicates that 

lower frequencies will be difficult to detect at 20dB while mid-range frequencies of the 

same SPL will be relatively easy for most people to detect. At frequencies above 

approximately 15 kHz they become almost impossible to detect. The curves represent equal 

loudness levels for a person with normal hearing [50]. 

 

4.3 Data-hiding concepts 

Understanding of the concepts outlined in Section 4.2 helps to enable the 

development of a strategy to hide sounds in other sounds. Whether deliberate hiding or 

masking of one sound by another, or accidental obfuscation of a sound, the effect is the 

same. The question should be asked: why would we want to cover up the presence of one 

sound using another? Unlike subliminal visual messaging, as employed for example for a 

short while in television commercials, it is unlikely that many listeners would be able to 

detect a sound masked by another sound in the same way that a subliminal video message 

would be sometimes detected although apparently unnoticed. Also, when data is hidden in 

audio by the use of additional sound waves, the data is in a format indecipherable to 

humans so even if it was detected it would have no discernable meaning.  

 

For millennia, people have sought ways to hide information from prying eyes. 

Using encoding of one sort or another (‘cryptography’) to change a message is a technique 

that has been common-place, particularly in military circles, for thousands of years [52]. In 

business and commerce, encoding and hiding information from unauthorised sources has 

become hugely important as a result of industrial espionage. Even in the entertainment 

industry, preventing unauthorised access or distribution is becoming increasingly important 

as a result of the recent rise in albums and movies made available on the Internet even 

before they are officially released. Protecting such content from access is a very important 

consideration for respective sectors. 
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The purpose of cryptography is to make information unreadable, or 

‘indecipherable’, to anyone not intended as a legitimate recipient of the information. The 

message may even be visible, but in a way not easy to understand. For example, one of the 

simplest forms of cryptography is to assign numeric values to the letters of the alphabet 

according to their position, add or subtract a value across all the characters in the message 

and re-write it with the characters that are at the new value. Any unintended recipient of the 

new message will have no way of reading it as it no longer makes sense. The intended 

recipient - assuming they know the numeric value that has been added or subtracted - can 

simply reverse the process and decrypt the message. The process can be illustrated simply 

as followsi: 

 

1. Start with the original message 

‘THIS IS A MESSAGE’ 

 

2. Write the message in numbers according to letter-values in the alphabet becomes: 

T    H   I   S   I    S   A   M   E   S    S   A   G   E 

20, 8, 9, 19, 9, 19, 1, 13, 5, 19, 19, 1,   7,   5 

 

3. Adding a value (for example, 1) to each digit produces: 

21, 9, 10, 20, 10, 20, 2, 14, 6, 20, 20, 2, 8, 6 

 

4. This, in turn, according to the alphabet placement of the new numbers above, becomes: 

UIJTJTBNFTTBHF 

 

To decrypt, the recipient needs to know what process was performed on the letters 

in order to be able to decrypt the message by reversing the process. The process of 

encryption is performed using a ‘key’ which, in this case, is ‘add 1’. In the above example, 

the string ‘UIJTJTBNFTTBHF’ would be decoded by subtracting 1 from its numerical 

alphabetical values and the new characters deduced from the new numbers. 

                                                
i This simple encryption employs a form of ‘shift cipher’ or Caesar cipher’ 
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4.3.1 Steganography 

One of the major disadvantages of cryptography is the obvious one: if an 

unintended recipient intercepts the message after it has been encoded, they can then set 

about decoding it. Another early historical development to hide information from 

unintended recipients was the lesser-known technique of ‘Steganography’. While the 

purpose of cryptography is to change the content of a message so that interceptors could not 

read it, the purpose of steganography is subtly different: to hide the fact that there is any 

message. In its simplest terms, steganography requires that the sender hides the fact that 

he/she is sending any message and the intended recipient is the only one who knows that 

(a)the message has been sent and (b)where and how to find it. 

 

Steganography means ‘hidden writing’ in Greek, as does cryptography. However, 

the difference is in transmission of the information. As far back as 440BC, according to 

Herodotus, details of a future attack were sent to Greece by Demeratus by writing them on 

a wooden panel and then covering the writing in wax [53]. Since wax tablets were a 

common writing implement, on which writing was clearly visible and this particular tablet 

had no visible writing (the message was under the wax), no suspicion was aroused. Another 

example from ancient Greece tells of Histiaeus shaving the head of a trusted slave and 

tattooing his scalp with a message, completely hidden when the hair grew back. In this 

scenario, perhaps even the intended recipient did not need to know of the existence or 

location of the message, only the carrier did. 

 

In order to be able to transmit a message using steganographic techniques, the 

sender will usually need to have some form of ‘carrier’. In the case of Demeratus the carrier 

was the tablet disguised as a blank wax tablet while in the case of Histiaeus it was a person. 

In both cases, and ideally with all steganography, nobody intercepting the carrier would be 

aware that there was a hidden message being transmitted so would not attempt to decode it. 

Of course, combining the two techniques would seem to be logically more effective – 

hiding an encrypted message rather than a plain message – but if the steganographic 
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process is successful, the message does not need to be encrypted since the presence of the 

message is not discovered in order for the content to be intercepted. Nevertheless, given 

that most encryption can be broken, steganography seems a sensible measure to take where 

possible, and vice versa. 

 

In recent times, cryptographic and steganographic techniques have been applied to 

the transmission of digital data to protect it from unintended recipients and unintended uses. 

‘Digital Signal Processing’ (DSP) techniques are used to alter the host digital file so that an 

alternative, but invisible (or inaudible), set of data can be embedded within it and later 

recovered and deciphered if necessary. In steganographic terms, the original digital file 

(image, music, voice, video etc) becomes the carrier analogous to Histiaeus’ servant while 

the information embedded is hidden ‘in plain sight’ as the file is used publicly. The key 

difference between cryptography and steganography is simply one of visibility: in 

cryptography, the encoded or encrypted data is often visible or audible while in 

steganography it is not. 

 

4.4 Digital Signal Processing concepts 

While modern recording techniques may use digital formats for the production, 

storage and duplication of sounds, this has not always been the case. Previously, analogue 

systems (such as vinyl records and magnetic cassettes) were used for these tasks and there 

are pre-existing catalogues and libraries of musical pieces that are still in analogue formats. 

Like continuous time analogue signals, these can be converted (digitised) to be processed 

within a digital domain.  

 

Digitising, in the audio context, is the process of converting continuous (analogue) 

signals into information that can be used by a computer. In its simplest terms, this process 

of converting, or digitising, a signal is achieved by taking a series of time-separated 

‘samples’ of the waveform of the audio at a pre-determined time increment. This process is 

known as ‘sampling’. At each time-segment the audio waveform at that point is given a 
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value according to a scale. Once the whole signal has been ‘sampled’, the series of values at 

each time-step is used to reproduce the new, digital, signal. 

 

Of course, the actual process is more complex than suggested above. For example, 

caution must be exercised when deciding how many samples are taken in any given time 

period as well as the ‘scale’ used to record the amplitude (or ‘height’) of the current 

waveform position at any given time. The following example (Figure 4.5a) shows a very 

simple segment of continuous waveform and is used to illustrate the main problems with 

digital sampling. 

 

Figure 4.5a: A simple waveform showing selected points sampled at 
time-intervals 5, 6, 9 and 10. 

 

If the waveform is ‘sampled’ at time-intervals represented by 1-10 on the 

horizontal axis, and a value taken from the corresponding intersection on the vertical axis, 

then the following values result for selected points: 

Time:  Approx value: 

5  6.1 

6  2.4 

…  … 

9  4.1 

10  4.8 
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Problems arise when the end result of the ‘sampling’ process is examined. 

Looking at a ‘digital’ version of the above waveform, it becomes apparent that it is likely 

that some of the ‘finer detail’ between samples can be lost. For example, the sample values 

for time-points 9 and 10 are 4.1 and 4.8 respectively. When plotted onto a graph they 

appear linear, with an upward bias between points 9 and 10 (4.1 to 4.8). However, looking 

at the original waveform, there is a downward wave segment towards an amplitude value of 

approximately 3.9 at time-point 9.5 (Figure 4.5b) before the increase towards an amplitude 

of 4.8 at time-point 10. If no record is taken of the amplitude values in between points 9 

and 10, then there is no record available of the values in this region and the lower 

amplitudes in the waveform will be impossible to recreate. 

 

Figure 4.5b: The coloured point shows extra information gained by taking 
samples more often. 

 

It is relatively simple to correct the problem of potentially missing out on 

important samples and that is to increase the sampling rate (i.e. the number of samples 

taken in a given time segment). If this was done in the above example, and twice as many 

samples were taken between time points 1 – 10, then the sample taken at 9.5 would record 

the lower value of the sound wave at that point, shown in figure 4.5b, and it could be more 

accurately reconstructed. Put simply, the more samples that are taken in any given time 

period, then the more accurately the record of the wave can be made and the more accurate 
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the reconstructed wave would be. Of course, there are trade-offs. More samples means 

more information, more processing, more delay and more data storage required. 

 

Problems also start to arise when examining exactly how to record the values for 

each ‘intersection’ of time and amplitude (or each ‘sample’). Consider the sample at time-

point 6 in Figure 4.5b. A decision must be made as to whether to record this with amplitude 

of 2 or 3. Assuming the value would be rounded to the nearest whole number, the recorded 

value would become ‘2’. Similarly, rounding up or down the rest of these selected values 

would result in the following table of values: 

 

Time:  Amplitude value: 

5  6 

6  2 

…  … 

9  4 

10  5 

 

This ‘rounding’ of values is called ‘quantising’ and it can introduce errors to the 

digitised signal [54]. It cannot be avoided completely so must be minimised. One way of 

minimising the ‘quantising error’ is to use a smaller increment between the values on the 

vertical amplitude (y) axis. If, on the scale shown on the y axis in the Figure 4.5b, each 

whole number increment was sub-divided 5 times, the quantising error would be reduced as 

there would be values closer to the original value that can be rounded to. As mentioned, this 

would not completely solve the problem and quantising errors will always be present in the 

final output but at least the difference between the original and the digital signals would be 

smaller and therefore less noticeable.  

 

As with increasing sampling rate, increasing the number of increments between 

quantising values will lead to more accurate data recording and more accurate 

reconstruction. However, there will again be a corresponding increase in the amount of data 
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recorded and therefore the processing load and storage requirements. This can become 

particularly important at the time the signal is reconstructed from its digital record. There is 

no ‘ideal’ sampling rate or quantising step. There are, however, values that result in 

‘acceptable’ audio reconstructed from the sampling process. 

 

4.5 Digital audio files 

When modern music is digitised for CD recording purposes it is sampled at a 

frequency of 44,100 Hz, meaning samples of the sound are taken 44,100 times each second 

This rate is chosen because it is considered the lowest sampling rate that meets the 

requirements of exceeding the Nyquist [54] rate, with added ‘headroom’ for safety. The 

Nyquist rate is defined as being at least twice the frequency of the sound that needs to be 

sampled. Since human hearing has a theoretical maximum frequency of 20 kHz, then the 

Nyquist rate for the highest perceptible frequency is 40 kHz. Since the amplitude value is 

stored for every sample, this equates to more than 9 million amplitude values per three-and-

a-half minute pop song or more than 12 million for John Cage’s ‘silent’ piece referred to in 

Section 2.2. 

 

The level of accuracy of the stored value can also affect the sound quality on 

reconstruction, as mentioned in Section 4.4, due to quantising. For modern digital systems, 

there are 16 bits allocated to store the amplitude value per sample. A 16-bit sampling 

system can store up to 65,536 (or 2 to the power of 16) amplitude values. An 8-bit system 

would be limited to 256 possible amplitude values. It is therefore evident that a 16-bit 

sample can store amplitude values to a far higher degree of precision than an 8-bit sample. 

This is, however, at the cost of higher computational cost.  

 

Given that a 16-bit sampling process will store 2 bytes of information per sample 

(a byte is 8 bits, so 2 bytes are required for 16-bits), and the above sampling rate is 44,100 

samples per second, it follows that each second of sampled audio results in 88,200 bytes of 

information. Across a three-and-a-half minute pop song this equates to over 18 million 

bytes. This is then doubled as there are left and right channels in stereo music, to give over 
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36 million bytes or more than 30Mb. A rule-of-thumb equivalent of 10 megabytes of 

storage per minute of audio is indicated for standard CD quality. 

 

In recent years, the digital music world, in terms of both the PC and the Internet, 

has converged towards accepting compressed file formats as the de facto standard in audio 

transmission. While the MP3 is by no means the best format for storing digital audio, it 

might be said to be one of the best known. The MP3, or ‘MPEG-1, Layer 3’ [55] format is 

also quite old in digital terms. It is based on ‘Audio Spectral Perceptual Entropy Coding’ 

(ASPEC) and allows for high-quality sounds compressed even to bitrates of as low as 

64kbps (kilobits per second) in its official standard definition [56].  

 

Recent advances in processing power and capability have led to the same MP3 

standard being used to generate extremely high fidelity audio files of 320kbps while 

maintaining relatively small file sizes and, more importantly to broadcasters, relatively fast 

processing for ‘almost real-time’ broadcast (or ‘streaming’). In terms of psychoacoustics, it 

has been demonstrated that human perception does not permit noticeable differences 

between the reproduced sound of files coded to 192kbps and those coded to higher bitrates 

[56]. It has also been also suggested in the same publication that humans cannot 

differentiate between audio coded at 192kbps and that coded at the CD-quality 44,100 kHz, 

at least in everyday use. This means that an audio file greater than 30Mb in size can be 

reduced to less than 5Mb without any perceptible ‘loss’ of quality to listeners. While there 

might be some argument about the perceived difference between 192kbps MP3 and CD-

quality 44,100 kHz encodings, using a 320 kbps encoder would limit any possible 

difference through higher bit rate. These high quality 320kbps compressed files offer a 

compression ratio of 4.4 : 1i, meaning a 30Mb track would require less than 7Mb for the 

highest possible quality MP3. 

 
 
 

                                                
i CD audio has a bit rate of 1411.2 kbps (16 bit/sample × 44100 samples/second × 2 channels / 1000 
bits/kilobit). Therefore, a 320 kbps bit rate indicates a compression ratio of 1411.2 : 320 or 4.41 : 1. 
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4.6 Automatically identifying audio in the digital arena 

As explained in Section 3.6.1, every song in recent years, and every variation of it, 

can be assigned its own standardised unique identifier which can then be used to identify 

the song if encountered in the real world. Pre-existing works can even have ISRC codes 

assigned retrospectively by the Registrant that beneficially owns them. Many uses of ISRC 

codes already exist in industry. For example, in order to ensure that the ‘official’ charts 

published in Ireland (and other countries) are restricted in some way to ‘legitimate’ and 

identifiable releases, the chart compilation system operated by ‘Chart Track UK’ on behalf 

of IRMA insists that only those digital sales of works with an issued ISRC code are 

included. While unfair to developing, and perhaps uninformed, artists this does attempt to 

ensure that digital sales are of some reasonable quality to qualify for chart status. ISRC 

codes are used in other areas and at the time they were created it was envisaged that they 

would also be used in broadcast monitoring [57]. 

4.3.3 Digital Rights Management 

There are two distinctive techniques utilised for the purposes of ‘Digital Rights 

Management’ (DRM), namely ‘audio fingerprinting’ and ‘audio watermarking’. The area of 

DRM includes, but is not limited to: 

 

o Validation and authentication. 

o Verification of ownership. 

o Copy protection, copy-prevention. 

o Broadcast monitoring. 

o Identification of illicit distribution and unauthorised access. 

 

Broadcast monitoring is perhaps the least prioritised of these areas despite being of 

potential value in an economy worth more than €5bn in Europe alone [8]. However, 

broadcast monitoring systems are not just of potential value for identification and 

calculation of royalty distribution. They could also be useful as a barometric tool, being 

implemented in the TV domain to monitor the effectiveness of advertising campaigns, the 

re-use and re-broadcast of news items and for many more tasks [58]. 
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Instead of providing accurate payments to those whose works were used, thereby 

adding ‘the inducement of private emolument’ [6] to an author’s other potential rewards, 

today’s royalty distribution systems often penalise developing and unrepresented artists 

while over-compensating well-established artists, corporate publishers and Copyright 

owners. It is clear from an examination of the information provided in Table 2.1 in Section 

2.3 that at least some of the royalties that should be paid to developing artists is instead 

likely to be paid to well-established corporate content owners and successful artists. Any 

redistribution of this revenue, no matter how small, might be expected to reduce the 

urgency within the corporate sector of the Music industry that which might otherwise be 

attached to such technological development. 

 

4.7 Fingerprinting and Watermarking 

Research efforts into the areas of Audio Fingerprinting and Audio Watermarking 

for music classification, identification, search and retrieval etc, date back to the early days 

of digital signal processing [59]. Before that, in such areas as speech recognition, 

researchers were aware that audio could be modelled in some way and later a candidate 

audio sample could be recognised as being of the same source. In ‘Signal Modeling 

Techniques in Speech Recognition’  [60], Picone outlines various techniques that had been 

published in the preceding half-decade, dating back to the mid- to late-1980’s, which dealt 

with speech recognition problems and solutions. It is clear that much research had already 

gone into the area since the 1970’s. 

 

Most of the early speech-recognition research was based on recognition of the 

specific characteristics of the voice of individual speakers rather than being independent of 

the individual who was recorded. Attempts were then made to model the characteristics of 

speech, including its spectral composition, in order that future techniques and technologies 

may be more extensible and may prove more useful in the wider world. Even at this 

relatively early stage in the research, however, Picone admits that ‘There are far too many 

algorithms in use today to make an exhaustive survey feasible’ [60]. These early efforts did 
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lead to the adoption of a number of techniques to identify what Picone called ‘perceptually 

meaningful’ parameters that could be used for describing and therefore identifying human 

speech. He points out that the existing de facto techniques were attempting to find some 

manner in which normal human speech could be parametrically represented in order that a 

system could ‘emulate some of the behavior observed in the human auditory and perceptual 

systems’ [60].  

 

It follows that if a person’s speech patterns can be shown to be individual, while at 

the same time there could be shown to be a sort of collective standard of parametric 

characterizations of speech, then it would be possible to record and analyse some candidate 

speech, reproduce it in its parametric representation and then compare it to stored/known 

speech characterisations of individual speakers There would be a means, therefore, by 

which it could be determined if the candidate speech was from the same source as the 

reference speech. In his paper, Picone illustrated the 6 major spectral analysis algorithms, 

reproduced in Figure 4.6. It is worth noting that many of the techniques used for producing 

representations of human speech can be used, as one would expect, to represent any other 

form of audio, including music. Many of the same techniques made their way into later 

research in the general area of audio characterisation and recognition. Research in the area 

of characterisation of human speech is still topical [61] and it is likely this will continue for 

some time because, despite advances in the area, it is still a difficult task.  

 

Figure 4.6: The six major spectral analysis algorithms [60]. 
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From the turn of the 21st century, there has been a marked increase in research in 

the area of digital fingerprinting and watermarking. As the Internet became more prevalent 

and users began to realise they could digitally transmit files of any type, it soon became 

clear that illegal file sharing, particularly of music, was going to be the ‘battlefield’ on 

which industry and technology were going to become legally entangled [62]. 

 

The success of the file-sharing facilitator paradigm embodied by ‘Napster’ (1999 – 

2001) soon caused issues to come to a head. The music industry began to take seriously the 

dangers posed by unlimited and uncontrolled access and to take legal action to try to 

prevent technological facilitation of illegal distribution [62]. While music has been the main 

area of threat to and from industry, recent developments in provision of high-speed 

bandwidth to Internet users and of high-quality compression techniques for movies  are 

likely to see the movie industry, previously protected by the comparatively huge size of 

movie files, drawn into the ‘battle’ on a more regular basis [63]. The illegal release of the 

unfinished version of the movie ‘Wolverine’ in early 2009 seems to have been a particularly 

eye-opening incident for the movie industry. Nevertheless, at the turn of the century it was 

predominantly the music industry that was suffering from illegal distribution.  

 

4.7.1 Audio fingerprinting and broadcast monitoring 

As explained in Section 1.2.1, ‘an audio fingerprint is a compact content-based 

signature that summarizes an audio recording’ [64]. Fingerprinting involves performing a 

digital analysis of the audio to serve as the ‘fingerprint’. In order to attempt to identify 

candidate audio, it is again fingerprinted in the same manner as the reference fingerprint 

was derived and some form of pattern matching against the reference fingerprint is 

performed. If the two fingerprints are identical, a match is reported and the audio is 

identified. The process is outlined in Figure 4.7. 

 

When a musical work is finalised (i.e. a song is mastered) a digest, known as a 

fingerprint, is generated based on the particular algorithm used. The fingerprint itself is then 

added to a database before the song is ‘released’. It is important to note that the source 
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audio is unaltered in any way by the process. This is of course a concern for content owners 

who would want to ensure that their creative works are not altered after they have been 

released. However, while it might be cited as an important consideration, the fact is that 

most content is altered by many of the uses to which it is put, including modern digital 

radio and TV broadcasts. What is most important, in fact, is that any process that is applied 

to content will have no perceptual impact on it. In other words, the user can identify no 

difference between the unprocessed and processed content. 

 

Analyse audio file 
 

Create 
Fingerprint 

Add to 
Database 

Publish fingerprinted 
audio 

    
Monitor inputs for 
fingerprinted audio 

Extract 
Fingerprint 

Match 
fingerprint 

Report 
match 

 
Figure 4.7: Basic fingerprinting process. 

 

Audio Fingerprinting is not a particularly new technology and has seen relatively 

widespread Industry uptake over the years as it is useful in various scenarios. While 

commonly used to compare the fingerprint of a file ‘in the wild’ (i.e. in the real world) with 

a fingerprint of the original file, to ascertain whether they are from the same source (or 

copies thereof), fingerprinting has also many uses in other situations. It is based on the 

premise that all files (in this case, audio signals) are inherently different in terms of their 

audio content and as such would have differing audio fingerprints. A further assumption is 

that, given two copies of the same file, and identical fingerprinting algorithms, the resultant 

fingerprints are identical. Furthermore, it should be impossible to generate a fingerprint that 

is identical to another fingerprint, except by way of using the same original audio and the 

same fingerprinting algorithm. 

 

Fingerprinting can be used to automatically identify digital files across Peer-to-

Peer (P2P) sharing networks and help to identify possible areas for further investigation, 

such as automatically preventing copying across networks, or collecting appropriate fees 

and royalties. It is not likely to be a useful technique in identifying whether a song has been 

illegally copied or whether it has been legally copied by a rightful owner for ‘fair use’ in 

creating a personal backup. As a result of the legal issues surrounding personal copying 
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(‘fair use’) [65], along with the obvious fact that ‘audio will eventually be played in an 

unscrambled or decrypted format’ [66] and could therefore be re-recorded without 

protection, the systems currently in use are not of much protection against Copyright 

infringement by determined attackers. 

 

A form of compression and subsequent error-checking known as ‘hashing’ is 

similar to fingerprinting [67] as is the file-checking ‘Cyclic Redundancy Check’ technique 

[68]. These two techniques are similar in that they first create a ‘reference’ of the original 

file and, later, to compare a suspect copy to the original, they again perform the routine to 

generate a reference. Simple comparison of the two references will confirm if they are the 

same. However, audio fingerprints tend to be more complex as they must survive all forms 

of tampering – both malicious and accidental – such as compression, cropping, format-

changing, broadcasting and editing. 

 

It is not intended to examine the technical difficulties experienced by 

fingerprinting technologies. The most obvious limitation is one of access. Even assuming a 

content owner knows that there is a requirement or facility for fingerprinting their works, 

they must then decide which fingerprinting technique to employ and which database(s) to 

add their works to.  

 

Consider ‘Shazam’, a freely available iPhone application from Apple’s iTunes 

App-store. It records sounds through the microphone of a device such as the iPhone, 

processes the recordings and compares them to its own stored database of fingerprints. The 

candidate audio must already be in the ‘Shazam’ database, which consists of 8 million 

tracks [69], in order to be recognised. An online/mobile application which provides similar 

services is ‘Midomi’. It recognises tracks by recording through a microphone and 

comparing the recording to data from its own database [70]. The candidate audio must 

already be in the ‘Midomi’ database in order to be recognised. ‘Nielsen Music Control’ 

provides TV and Radio broadcast monitoring services using proprietary fingerprinting 

technology to various sectors of Industry, including over 1000 record labels in the music 
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industry. It does this by comparing processed output from broadcasts to its database 

[71].The candidate audio must already be in the ‘Nielsen’ database in order to be 

recognised. Other broadcast monitoring services include ‘MusicTrace’ [137]. The candidate 

audio must already be in the ‘MusicTrace’ database in order to be recognised 

 

These are just a few of the service providers using fingerprinting technologies. 

Since these providers, as well as most other providers, use proprietary fingerprinting 

techniques and maintain proprietary databases, each work released publically must be 

fingerprinted by all providers and added to their databases in order to be recognised. 

 

Fingerprinting techniques used in broadcast monitoring, as mentioned in Section 

1.2.1, have some important limitations that are specific to broadcast monitoring for royalty 

reporting. If a piece of audio is made publicly available before being fingerprinted and 

added to the database, then the track will not be identified in the broadcast environment. As 

mentioned in Section 1.2.1, the official partner of the PRS for provision of royalty 

distribution information, ‘Nielsen Music Control’, has a database of only 500,000 pieces. 

This means, obviously, that if there are more than 100 million tracks availablei, Nielsen’s 

official UK procedures could only possibly identify less than 0.5% of them, assuming it had 

perfect accuracy of identification. 

 

It is still the less established, less well-informed and less well resourced 

developing artists who are likely to be left out of the distributions in a system that is based 

on the recognition of audio fingerprints compared against a database. This is simply 

because developing artists are less likely to have the knowledge or the finances required to 

have their works included and monitored as part of the myriad databases against which the 

comparisons might be performed. 

 

                                                
i Online music information provider ‘Gracenote’ claims to have a database containing over 
100 million tracks. http://www.cddb.com/business_solutions/music_id. 
Accessed 25th October 2009. 
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4.7.2 Audio watermarking and broadcast monitoring 

The process of ‘audio watermarking’ attempts to add a message or some other data 

to the original audio. For example, in a bank note, the watermark hidden in the paper itself 

adds the message that the note is not likely to be a forgery. When watermarking of paper 

was first introduced in the thirteenth century, its prime purpose was to differentiate the 

products of different paper manufacturers [72] by adding a mark identifying the producer, 

in a manner similar to Silver and Gold hallmarks. The purpose of a watermark, therefore, is 

simply to add information to an original for a reason set out by any person who adds the 

watermark. In recent developments, digital watermarks are often used by the owners of 

copyrighted material such as images/videos on the internet, to make them less attractive to 

casual and opportunist would-be Copyright infringers. Watermarks, however, are not solely 

designed to prevent or hamper copying and they are not insurmountable. For example: 

 

o Bank notes with high quality watermarks, although forgeries, are available. 

o A digital image that bears the legend ‘specimen’ might irritate an opportunist but 

is not going to be much of a barrier to a determined user with even a standard 

graphic manipulation software package. 

o The explosion in illegally shared video content would seem to indicate that video 

files with embedded visible Copyright warnings are accepted by the 

opportunist/average user as an ‘acceptable’ quality of copied material. 

o Low quality audio, even with audible inconsistencies, was not a deterrent to early 

Internet-based copying or file-sharing. This is evidenced by the fact that, even 

though low bit rate MP3 files are likely to be perceived as lesser quality than 

higher bit rate files [55], they were being illegally copied on file-sharing services 

such as Napster. One of the earliest legal music download providers, ‘MP3.com’, 

provides access to .mp3 files compressed at a ratio of approximately 11.5 : 1 [73], 

which is equivalent to a bit rate of approx 128 kbps, far short of the perceptually 

transparent 320 kbps or acceptable quality 192 kbps [56]. 
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The most important aspects of, and the form taken by, a watermark are generally 

defined by their intended use. For example, banknote watermarks should be as secure as 

possible against copying while watermarks embedded in images should generally be semi-

transparent to allow viewing of the image but should be difficult and/or time-consuming to 

circumvent.  

 

When a watermark is used to promote the owner or producer of a piece of video, 

rather than to prevent or inconvenience its illegal copying, the watermark could be 

deliberately made visible as a form of subliminal advertising. In most cases, however, it is 

preferable if the watermark cannot be detected as users would then not be aware of its 

existence and less likely to attempt to remove it. With audio watermarking, almost all forms 

of watermarking should be transparent to the user. There are limited occasions where an 

audible watermark might be of interest to an owner or producer of a piece audio. For 

example, a piece that is going to be sent to a very limited set of people for their 

review/analysis (i.e. a CD pre-release sampler) might be audibly watermarked and the 

process for removing/circumventing the watermark sent by separate cover, so as to make 

copying worthless to the end user. 

  

Not only should public users of the audio be unable to hear the watermark but 

there should also be no obvious sign, even on closer examination, that a watermark has 

been applied. This is to prevent attempts to remove the watermark for malicious reasons. 

This requirement makes watermarking, in audio implementations, more difficult as there is 

a trade-off between hiding the watermark effectively and affecting the integrity (and overall 

perceived quality) of the audio it is embedded in. Where the watermark is simply an 

identifier, however, the question of deliberate ‘attacks’ to remove the watermark are less of 

a concern. After all, malicious copiers of a CD are unlikely to be interested in taking the 

time to remove the identifier from the audio as there is no reason to.  

 

Even such watermarks, however, are likely to come under attack, albeit incidental 

attacks, such as those related to compression and broadcasting. The effects of these attacks 
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on the watermark and its subsequent identification and recovery are of more interest in the 

case of a watermark technique that is used simply to identify of a piece of audio. A 

watermarking scheme that adds the watermark message as some form of post-processing 

‘addition’ to the audio is likely to be defeated by perceptually-based compression. 

Similarly, while such a scheme might be of value in the digital environment, where 

‘headers’ can be transmitted alongside the file, they will not survive in the analogue domain 

(e.g. traditional radio transmission). For the purposes of broadcast monitoring, therefore, a 

watermarking scheme should embed the watermark message as part of the audio, rather 

than alongside it, and should do so previous to public release if possible. 

 
4.8 Summary 

 In Chapter 4, the human auditory system was introduced and a brief overview 

provided of how humans process sound. Psychoacoustic concepts that will prove of interest 

in formulating an effective audio watermarking system were discussed. Concepts relating to 

the hiding of data were introduced in order to frame the problem and potential solution. 

‘Digital Signal Processing’ techniques and considerations were also discussed, along with 

considerations relating to digital audio file formats. A discussion of the relative advantages 

and disadvantages of audio fingerprinting and audio watermarking followed, specifically as 

they relate to broadcast monitoring. In the next chapter, the focus will turn to reviewing the 

systems and schemes already proposed in literature in the area of digital watermarking. 
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Chapter 5: Existing watermarking techniques 

In this chapter, various general and specialised digital audio watermarking 

schemes will be described. These schemes propose alternative means of embedding 

watermarks in audio, for various applications and in various domains. The proposals will be 

described and, where appropriate, their relative advantages and disadvantages will be 

outlined. As a broadcast monitoring tool a standardised watermarking scheme could be 

implemented to facilitate worldwide recognition, tracking and reporting of public 

performances of watermarked audio. This could include any audio recording, such as 

political speeches, advertising and news reports. However, for the purpose of this thesis the 

following example is intended to be applied to music. 

 

5.1 Application of watermarking to broadcast monitoring 

The ISRC code of a piece of audio recorded or produced for intended release 

could be embedded as a watermark continuously throughout a piece of audio at the time of 

production. Indeed, to protect somewhat against it being stripped out either accidentally or 

by ‘pirates’, it is suggested that the code be made part of the audio waveform rather than 

being an addition to it. It is suggested that this would make the watermark harder to identify 

and harder to remove without degrading the audio quality. Once embedded throughout the 

audio rather than in some discrete section such as a ‘header’, the ISRC is permanently 

available to any system capable of distinguishing it from the ‘host’ or ‘cover’ signal (i.e. the 

actual audio file in which the watermark is embedded). 

 

A system could then be designed to monitor the output signal from broadcasters to 

‘read’ and decode the ISRC from the audio along with the output source and the time/date. 

A report of ISRC codes found could then be created and presented to the rights agency in 

order that they might be able to correlate these codes against the national repositories 

and/or the central ISRC repository and distribute royalties accordingly.  
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Since some royalty payments are distributed according to number of plays, a 

simple tally of identified ISRC codes would suffice with regard to producing a royalty 

payment report. Therefore, the output could be monitored on a continuous basis in order to 

detect when a new ISRC code was detected. However, where royalties are paid according 

to duration of play(s) rather than a simple count, some means is needed of identifying how 

long a piece was played for. This might also make the system more efficient as it means 

that a signal need not necessarily be monitored continuously. Once an ISRC code is 

identified, the signal could then be ignored for a specified amount of time, and the 

monitoring system could then monitor another signal for a short time. 

 

For example, if it is decided that royalties are to be paid for each 30 seconds of 

play (or part thereof), a broadcast output signal could be monitored until a single instance 

of an ISRC code is identified. This particular output does not need to be monitored again 

for 30 seconds. If the same ISRC code appears in the subsequent analysis after 30 seconds 

or more, then the play has exceeded 30 seconds in duration and the signal can then be re-

analysed a further 30 seconds later. Further monitoring of the output from this source could 

then be undertaken only ever 30 seconds until the ISRC extracted from the source has 

changed, at which time the cycle repeats. 

 

In attempting to understand how a digital watermarking or fingerprinting scheme 

might work, it is useful to have at least a conceptual understanding of the domain of digital 

signal processing in general, and an understanding of Fourier theory as it is implemented in 

this area would be useful in this regard. The essence of Fourier theory as it applies to sound 

waves is that any sound can be ‘decomposed’ down to a set of components of individual 

frequencies [74]. 

 

It has been explained in Chapter 4 that the human auditory system is not perfect in 

that it does not allow us to hear every sound exactly as it was generated. We know that our 

hearing is often overwhelmed by the presence of conflicting sounds and the auditory system 

has to ‘choose’ which sound is delivered to the brain. We know also that we can be 
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deceived into hearing things that are either not present or are very different than we 

perceive them to be. Examples of these auditory phenomena include those presented by 

Professor Diana Deutsch, Professor of Psychology at the University of California, San 

Diego, who has written extensively on subjects related to the psychology and physiology of 

sound, music and hearing [75]. Research into the physiological workings of the ‘Human 

Auditory System’ (HAS) in the past few decades has led to clear understanding of how we 

process sound and how we can manipulate sonic components to take advantage of the 

limitations of our hearing system [75].  

 

With these concepts in mind, the next step is to devise a means in which digital 

signal processing techniques can be utilised to perform a deliberate manipulation in order to 

manage human perception, by adding sounds to other sounds in such a way as that they 

cannot be detected. There are many different techniques and technologies researched and 

investigated in the area of digital audio watermarking, which of course has different criteria 

than the areas of image or video watermarking. The techniques used are often dependent on 

the expected implementation domain of the technique or application. For the purposes of 

the current research and in the intended application domain of broadcast monitoring, the 

two major considerations for a watermarking scheme are as follows: 

 

Robustness 

o A watermark is called fragile if it is altered and cannot be detected after the host 

audio in which it is embedded has been subject to any form of modification, 

deliberate or otherwise. Fragile watermarks are commonly used for proving the 

integrity of a candidate sample. If the watermark is intact, the audio has not been 

tampered with in any way [76]. 

o A watermark is called semi-fragile if it resists some permitted modifications, such 

as transmission interference, addition of channel noise and so on, but is noticeably 

corrupted after unauthorised modification [14].  

o Conversely, a watermark is said to be robust if it is unaltered after modifications 

to the watermark itself or to the host in which it is embedded [77]. 
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Perceptibility 

o A watermark is called imperceptible or perceptually transparent [77] [78] if the 

original host audio and the watermarked audio are perceptually indistinguishable 

from each other in the domain in which the scheme is to be implemented. 

Generally, this means that human listeners cannot tell the two apart. 

o A watermark is called perceptible if its presence is noticeable to either deliberate 

or casual observers [78]. This might mean that the watermark itself, which is 

simply an added signal of some sort, is noticeably audible in the watermarked host 

audio or if the original audio and the watermarked audio are noticeably different.  

 

There are, of course, many other considerations when evaluating a watermark 

embedding scheme, including capacity (data payload) and computational complexity, not to 

mention decoding techniques and associated issues. Proponents of digital audio 

watermarking schemes must also exercise caution in addressing the various permitted or 

accidental attacks that will be allowed against the watermarked audio in the intended 

application domain. In this regard, the most likely attacks to be faced by a watermarking 

scheme which serves only to allow the automatic identification of audio in a broadcast 

environment will be those associated with transmission and compression. If a watermark is 

robust against these attacks, in this domain, it will be successfully implemented. 

Notwithstanding this consideration, the actual process of creating and separately embedding 

the watermark can be achieved using many techniques, each with their own advantages and 

disadvantages. Some techniques are discussed in the next section. 

 

5.2 Literature review of watermarking techniques 

 
5.2.1 Least significant bit modification embedding techniques involve 

manipulation or replacement of the least significant value of each byte that 

represents information about the ‘cover’ or ‘host’ signal (the signal in which the 

watermark is to be embedded) in order to create a predefined bit sequence that, upon 
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decoding, will recreate the hidden message. This is a simple enough technique, 

described as the ‘simplest way to embed data into other data structures’ [79] and, 

while it has some uses, it has some major problems in that the least-significant value 

of a signal is the value most likely to be altered by typical signal manipulations 

expected by the authors of  [79]. Even those ‘attacks’ which are simply incidental to 

transport are more likely to impact on the least significant bit [80] as well as more 

direct manipulation, such as compression, DA/AD re-encoding and so on. Some 

effort can be made to ensure that the sequence of least significant bits, if altered, can 

still be recovered. One simple trick is to repeat the watermark numerous times and 

recreate the message from the most commonly recovered bits in a form of Mode 

operation. Even if most bits are altered, it is unlikely that they will always be altered 

in the same way, in the same sequence, so recovery accuracy is increased by 

comparing the repeatedly recovered bit-streams against each other and selecting the 

most common bit at each index. 

 

Least-significant bit (LSB) modification is a common technique in image-

processing but, as explained by Kaliappan Gopalan in [81], which deals with 

utilising bit-modification techniques for covert communications, the same technique 

as used in image processing cannot easily be transferred to the audio domain because 

the human visual system is not as sensitive to minor variations as the human auditory 

system. The added data would be more likely to be perceptible to the end user or to 

an unintended interceptor. Gopalan suggests that a human listener can detect changes 

in an audio file (in comparison to an original) of one part in 10 million [81]. 

However, there is cause for concern in using a technique that might work well in one 

domain, and transferring it to a domain where it would appear to be significantly less 

effective and more likely to aid unauthorised detection. 

 

Finally, as Gopalan also points out [81], individual bits cannot be correlated 

to particular frequency components in the cover audio, so any chance of using 

amplitude masking techniques to aid perceptual hiding would be accidental at best 
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and counter-productive at worst. Gopalan is also concerned with embedding actual 

human speech into a cover signal [127], and as such, even if the speech is not 

completely recovered, it would be possible (to acceptable levels of effectiveness) to 

recover the main thrust of the ‘message’. While this might be acceptable for 

embedded human speech it would not be adequate for a stream of embedded bits, 

representing the unique identifier, because even a single missing bit would render the 

message illegible. Similarly, a bit that is recovered incorrectly might make the 

message meaningless or, perhaps worse, incorrectly decoded. 

 

Taking a different approach, manipulating bits that are more perceptually 

significant would increase the accuracy of recovery of the data, since these are less 

likely to be corrupted accidentally. However, such manipulation would be also more 

likely to lead to perceptibility problems. Having said all his, the technique is still 

being implemented at present, particularly in image watermarking [82] as it does 

show promise for some applications, particularly where the problem of added noise 

is not a major consideration. It is also said to be resistant, even from its earliest 

investigation by Bassia et al [83], to expected signal manipulations and compression 

techniques. Bassia claimed in 2001 that the technique was resistant to time-shifting, 

which is one of the attacks in the audio domain that could adversely affect echo-

hiding techniques, another relatively uncomplicated watermarking technique. 

 

5.2.2 Echo-hiding consists of a technique for embedding the watermark into the 

host or cover audio by taking advantage of the human auditory system’s inability to 

detect certain very short echoes in a sound. As a simple explanation, a signal might 

be broken into non-overlapping frames of user-defined length before the encoder 

adds a delayed version of a candidate frame (or even just some components from the 

frame), delayed by, say 0.005s to represent a ‘0’ and 0.008s to represent a ‘1’ bit. In 

theory, even neglecting to add a delay for a ‘0’ bit would be potentially useful but 

more likely to increase incorrect detection as there will obviously be times when an 
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echo is either present or absent in the original audio and this might be confused with 

deliberately-controlled echo. 

 

The added echo also has its amplitude weighted against the original host 

audio so that it is less perceptible. According to [83], echoes less than 1ms will 

‘fuse’ with the original audio, from which the echo is derived and the listener will 

not be able to hear the echo, it being perceived as the part of the original. Based on 

the belief that the human auditory system cannot distinguish a very short echo, 

various researchers have proposed different echo durations that would allow the 

watermarked audio to pass as indistinguishable from the original. Application-

specific requirements may determine the delays to be used. 

 

In order to embed the watermark as a sequence of echoes, the segmented 

host audio is first duplicated with delay d1. It may be duplicated again with delay d2 

if dual echoes are required for ‘0’ and ‘1’ bits. Then, according to the sequence of 

bits to be embedded, the system applies the relevant delayed audio, and adds it to the 

original audio. The end result is described by equation (1): 
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dnxwnx
dnxwnx

ny    (1) 

where 0d  and 1d  are the delays introduced by the scheme to represent a ‘0’ and ‘1’ 

bit respectively and w is a weighting factor. Figure 5.1 illustrates the two variants of 

echo-hiding, with the first variant leaving the audio unaltered to represent a ‘0’ bit 

while the second variant adds a different delay for ‘1’ and ‘0’ bits respectively. Note 

that the use of two delays increases the technique’s robustness and accuracy but also 

add to its complexity. 
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Figure 5.1: Two variants of echo-hiding watermarking techniques. 
 

 

One major issue in decoding echo-coded watermarks is that any sort of 

time-shift (such as stretching or compressing the signal in the time domain, even 

accidentally) will result in the delay (d1 or d2) between the original and echoed 

signal being incorrect, and the watermarked bit could therefore be incorrectly 

decoded. As far back as 1996, early efforts at research into watermarking described 

the successful of hiding bits in a media stream in a perceptually acceptable manner 

[79]. It was not described as perceptually invisible, as the addition of echo often 

results in a noticeably different resonance between the original and the watermarked 

audio, with the echo making the audio more ‘full’ sounding [79]. In order to alleviate 

the resonance addition caused by the echo, the work suggests that the encoding 

mechanism should set the ‘initial amplitude and the decay rate below the audible 

threshold of the human ear’, thereby making any echo perceptually invisible. 

 

Conversely, making these settings so low would mean the echo is less likely 

to be recoverable, being susceptible to added noise from the transmission channel or 

the environment. Various supplemental techniques are suggested [79] to ensure 

effectiveness of the echo-hiding technique, but, as with all such supplemental 

techniques, each adds its own distinct disadvantage. Redundancy and error-

prevention techniques might increase recovery rate but might also increase 

likelihood of detection, fragility and susceptibility to accidental and deliberate 

attacks while simultaneously decreasing capacity. For example, if a code is 

repeatedly embedded in a cover signal, this aids robustness because it can be 

decoded multiple times and correlated to increase recovery precision. However, this 
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also means that a signal of a given length has a lower capacity as it must repeat the 

watermark multiple times within the same signal. 

 

Later research, from both Ko et al [84] and Kim & Choi [85], who 

introduce forward-echo or pre-echo (which they also describe as ‘virtual echo’) in 

addition to ‘normal’ echo, developed the echo-hiding concept in such a way that the 

echoes that are added are of much lower amplitude and are simultaneously less 

perceptible and more effectively recovered. This makes the technique much more 

viable as a practical watermarking technique. 

 

Another issue of concern with echo hiding, particularly in schemes where 

the process of ‘blind decoding’ is important, is that the original unwatermarked 

audio is required in order to identify where echoes occur that are not simply part of 

the original audio or added as a result of the transmission environment (e.g. added 

‘reverberation’) or some form of attack on the signal. Also, production of a corrupted 

version of the audio would be possible simply by applying an echo delay across the 

whole signal, thereby making it impossible to detect the echoes that are part of the 

watermark and those that are added as part of the attack.  

 

5.2.3 Amplitude masking consists of a process of embedding the watermark into 

the host audio in the form of an additional audio signal at very weak power. This 

technique utilises the known masking effect of sounds on other sounds, as described 

in Section 4.2. Masking of one sound by another is dependent on various parameters, 

including but not limited to, the frequency distance between the components, the 

amplitude or magnitude difference between the two components and the individual 

magnitude of the components themselves. Low-powered components may simply be 

too quiet to mask another component. Conversely components may be below the 

threshold of hearing (shown in figure 4.4) and therefore the presence of other 

components is irrelevant. Masking can be described as: 
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1)()( 12  cWcW      (2) 

 

where 0 < W < 1, W is the independent level of audibility of a component C1 or C2 

and W approaches 1 as C2 gradually becomes more audible in the presence of C1.  

 

The audibility of individual components is a function of the frequencies and 

amplitudes of these components. Three conditions must be satisfied for masking to 

occur. Firstly, the frequency separation between the components f1 and f2 must be 

below a frequency-dependent threshold T1 

 

  fTff 112 ||       (3) 

 

and magnitudes A1 and A2 must be separated by a threshold T2 

 

 AT2        (4) 

 ATAA 212 )(   

 

and the magnitudes of both components must be above their audibility threshold 

 

 213 , ffT       (5) 

 2132,1 , ffTAA   

 

This latter requirement in equation (5) simply means that if two component 

frequencies are present but are so quiet as to be independently inaudible to humans, 

then they cannot mask each other since the concept of masking is that one 

component makes the other inaudible in its presence. If either is inherently inaudible, 

masking does not occur. Similarly, if one component is audible but the other is not, 

then neither can act as a masker. 
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The watermark signal, representing a bit-sequence, might be converted into 

a sinusoid in such a way that the components of the sinusoid and their relationship to 

each other (or the cover audio) are controlled to represent the appropriate bit [86]. 

Adding the watermark to the host audio will of course result in potentially audible 

artefacts, even if added at low power, especially where the host audio has low-

powered components. This can be mitigated by ‘perceptually shaping’ the watermark 

signal either using a well-defined psychoacoustic shaping model or by weighting the 

watermark components against the relative power of some or all of the components 

of the host audio at the point of embedding. 

 

In [86], Gopalan and Wenndt attempt to take advantage of knowledge of the 

limitation of human hearing and the masking effect of components against each 

other. As with Gopalan’s work using bit-modification techniques outlined in section 

5.2.1 [82], this work relates to embedding a watermark message into a cover signal 

consisting of human speech. The technique uses two components and manipulates 

their power against each other in order to create a relationship that represents ‘1’ and 

‘0’ bits. The components chosen are in the lower end of the human hearing range as 

human speech is, itself, in the lower half of the hearing range, generally not 

exceeding the mid-hearing range. 

 

Decoding the watermarked audio is simply a matter of analysing these 

components in the candidate audio and recreating the bit depending on the 

relationship of the components to each other. It is a computationally simple and 

elegant solution and it appears to work quite well in cover audio consisting of human 

speech. There are, however, problems with this technique when implemented using 

cover audio that consists of music rather than speech, partly as music uses a much 

wider range of frequencies than speech. 
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Gopalan and Wenndt also noted the problem of cover audio that already has 

some components at the frequency that is about to be manipulated: if a frequency f1 

is added that should be lower than  another frequency f2 but if there is already a 

higher-power component at f1 the decoding would be inaccurate. Finally, while low-

powered components would be imperceptible to listeners, the pattern of these 

manipulations would likely be visible in a spectrum analysis such as a spectrogram, 

making the ‘covert’ nature of the watermarking technique open to question [86]. As 

a watermarking technique, it works well, although embedded messages would 

probably also need to be encrypted to increase security. 

 

5.2.4 Phase coding techniques work by substituting the phase of one piece of audio 

by the phase of another, or simply by altering the phase of the cover audio to 

represent some binary value. In [79] the phase coding method is outlined in 

theoretical terms and it points out that its success as a watermarking technique in 

certain situations is a result of the inability of the human auditory system to detect 

phase, within certain limits. A binary message is represented by a series of + π/2 or - 

π/2. The cover audio is modified so that its phase represents the message. The 

absolute phase of the cover audio’s initial frame is substituted by a ‘reference’ phase, 

artificially constructed, and subsequent frames have their phase set relative to this 

reference phase, depending on the binary bit to be embedded. 

 

The phase coding process is illustrated in the Figure 5.2 [A - H] and the 

algorithm is also presented, reproduced from [79]. 
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Figure 5.2: The phase coding process. 
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1. Break the sound sequence s[i], (0 i I 1), into a series of N short segments, 

sn[i] where (0 n N 1) [Figure 5.2.A and 5.2.B] 

 

2. Apply a K-points discrete Fourier transform (DFT) to n-th segment, sn[i], where 

(K=I/N), and create a matrix of the phase,  kn   and magnitude  knA   for 

(0k K1) [Figure 5.2.C] 

3. Store the phase difference between adjacent segments for (0 n N 1)  

      knknkn   11   [Figure 5.2.D] 

 

4. A binary set of data is represented as  

data  /2 or /2 for bit ‘0’ or ‘1’ [Figure 5.2.E] 

 

5. Re-create phase matrixes for n > 0 by using the phase difference [Figure 5.2.F] 
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6. Use the modified phase matrix  kn   and the original magnitude matrix 

 knA   to reconstruct the sound signal by applying the inverse DFT [Figure 

5.2.G and 5.2.H] 

 

Embedding a watermark by altering the phase of components within the 

cover signal can be troublesome as, while the human auditory system is generally 

not able to detect absolute phase, any sharp or radical alteration of phase from one 

frame to the next may result in audible phase inconsistencies. In [87], Lipshitz et al 

state that ‘Even quite small midrange phase nonlinearities can be audible on suitably 

chosen signals’. While this contention might be open to debate, it seems to have 
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been supported by research in 2000 by Koya [88]. Therefore, phase changes from 

one frame to the next must be more gradual and this causes reduced capacity of the 

scheme. Having said that, no watermarking scheme is of much use if it introduces 

unwanted audible artefacts, so capacity reduction is an acceptable trade-off to reduce 

such artefacts.  

 

Decoding of the watermark in a phase coding scheme requires information 

about the length of each segment and the number of DFT points (‘K’ in step 2 

above) and perhaps some additional information. It is therefore not a blind decoding 

technique but rather a semi-blind or informed technique. 

 

This technique was further developed over intervening years. Work by 

Yardimci et al [89] in 1997 took a slightly different approach to phase modification, 

utilising all-pass filters with different phase characteristics to represent the bits to be 

embedded. However, these filters had the effect of adding disturbances to the cover 

audio and altering its characteristics. In comparing watermarked to original audio, 

this would make the presence of the watermark easy to discover and therefore limit 

the usefulness of the technique. 

 

Takahashi et al [90] published a work that used dynamically varying phase 

characteristics in order to embed watermark data by altering the phase of the cover 

audio. Takahashi describes a time-varying ‘Finite Impulse Filter’ (FIR) setup which 

is controlled by a sinusoidal function to have smoothly-changing coefficients. The 

filter described by Takahashi is referred to as a ‘Phase-Modulation Filter’ [91]. The 

technique described allows for watermark data to be embedded using amplitude shift 

keying, frequency shift keying, phase shift keying or any combination of the three. 

The phase-shifting process allows for the inter-channel phase difference to be used 

for binary bit representation. However, as Takahashi explains, a simple down-mix 

from stereo to mono will result in the phases being altered in such a way as to be 

impossible to detect the inter-channel phase difference.  
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5.2.5 Multiplicative watermarking is also referred to as transform-domain 

watermarking and refers to the embedding of the watermark data after the cover 

audio has been transformed in some way. In recent years there has been an 

increasing number of publications of watermarking schemes based on manipulation 

in a transform domain of some sort, including but certainly not limited to the 

Discrete Fourier Transform (DFT) domain, Discrete Cosine Transform (DCT) 

domain, Integer Wavelet Transform (IWT) domain, the Modified (or Modulated) 

Complex Lapped Transform (MCLT) domain and Discrete Wavelet Transform 

(DWT) domain. 

 

There are also various modifications and adaptations of these techniques 

along with a multitude of other transforms of various types, each with its own uses, 

advantages and disadvantages. None of them are, in themselves, a watermarking 

technique. Instead, they are a primary step to perform before the digitised audio is in 

a form that can then be watermarked. The actual watermark message itself, in any of 

these transform-domain techniques, could be in any of a number of forms (e.g. 

pseudorandom sequence or even a simple unencrypted bit sequence). A brief 

description of some of the common transforms follows, with reference to 

watermarking or related works that implement them. 

 

 Discrete Fourier Transform. As explained by [74] and [91], the ‘Fourier 

Transform’ is a means whereby the relative strengths of the various 

components (frequencies) inherent in a given signal can be calculated. The 

‘Discrete Fourier Transform’ (DFT) can be implemented using a ‘Fast 

Fourier Transform’ (FFT), a fast implementation of the DFT, on a sampled 

signal. The transform performs this calculation on discrete segments (also 

known as frames or windows) of the signal, one at a time, treating them as 

if they were infinitely periodic in order to satisfy the requirements of 

Fourier concepts. The result of the DFT expresses the signal in terms of 

complex exponentials, capturing information about the magnitude and 
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phase of its inherent components over the whole frame. The output of the 

transform on a given audio signal is the frequency representation of the 

signal but only for the frame under consideration as if it was completely 

independent of the rest of the signal. Where the frequency changes 

continuously, or occasionally but for a short time, the Fourier transform is 

inadequate [92]. Finally, since it provides information only about enough of 

the components to be able to replicate the signal there may well be 

components in the signal for which no information is captured. These 

considerations limit the use of the FFT for signals such as music and 

suggest that increased usefulness is achieved by using smaller and smaller 

time segments (windows) thereby increasing resolution of the analysis 

output but also increasing computational complexity. Nevertheless, the 

transformation of a signal by DFT is a first step in many watermarking 

schemes including [93] [94] and [95].  

 

 Discrete Cosine Transform: The Discrete Cosine Transform is similar to 

the DFT. Like the DFT, it represents or decomposes a signal so that its 

components might be described.  Unlike the DFT, the DCT uses only 

cosine waves. This is an efficient algorithm because the DCT is equal to a 

DFT or approximately twice the length and so it is an important 

development in terms of computational complexity in signal processing 

tasks. As there are multiple types of DCT with different input and 

parameter values, the DCT is flexible in its applications. 

 

The DCT has many of the same advantages as the DFT, but also many of 

the same disadvantages related to non-stationary signals. However, its 

complexity is much less than that of the DFT so much smaller windows can 

be analysed at the same computational cost. Note also that the DCT 

transformation is more useful and more prevalent in the transformation of 

image and video signals than audio signals, perhaps because the granularity 
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of the higher-frequency components in images and video is less important 

than in audio signals. Examples of audio processing after DCT 

transformation include [96], which interestingly uses an embedded 

watermark as an audio quality test. In this work, the authors embed the 

watermark after a DCT transform, and then allow the signal to undergo 

various forms of attack. An analysis of the watermark after attacks is then 

performed on the assumption that the watermark will undergo the same 

corruption as the rest of the signal. DCT-based watermarking schemes are 

still very topical and recent publications include [97] in image 

watermarking and [98] in the audio watermarking domain. 

 

 Wavelet Transforms have become more commonplace in recent years 

because of their versatility. Essentially, a Wavelet is a ‘small wave’ that 

compromises multiple frequency components. The ‘Continuous wavelet 

transform’ was discovered by George Zweig [99], a physicist and 

neurobiologist, during research into the human auditory system in the mid 

1970’s and was initially called the ‘cochlear transform’. However, it is in 

the signal processing arena as well as the area of human physiology that 

wavelet transforms have recently generated much research interest. 

 

In Fourier analysis, sine and cosine waves are used as the basic components 

with which to decompose the input signal of complex waveforms into 

something more fundamental. The same purpose is served by groups of 

related wavelets in this area of transformations. Essentially, in all forms of 

wavelet transform a tightly defined ‘reference’ wavelet is created and the 

input signal is manipulated with regard to both this wavelet and others 

closely related to it in order to identify certain inherent characteristics of the 

input signal. 
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The design and specification of the wavelet is paramount to its usefulness 

and it is therefore application-dependent and purpose-dependent. For 

example, in simple terms, a wavelet comprising frequencies oscillating at 1 

kHz, 2 kHz and 3 kHz may be created and applied to the input signal in 

order to ascertain if and where there are any components at these 

frequencies. Of course, any number of wavelets comprising different 

frequencies may be utilised and this would be sufficient to provide an 

analytical breakdown of the input signal.  

 

This is the fundamental difference between sine-based or cosine-based 

analysis and wavelet analysis. A sine or cosine wave is a single-component 

continuous and periodic signal that stretches from minus infinity to infinity 

whereas a wavelet is generally short-lived, limited time and of multiple 

components. This distinction is illustrated in Figure 5.3. 

 

 

Figure 5.3: A periodic and stationary sine wave comprising a single component 
alongside a non-stationary wavelet comprising multiple componentsi. 
 

 

Wavelets are also more useful than sine and cosine waves as the basis for 

decomposing signals that have sharp changes, very short duration 

components and localised features [100] [101]. 

 

Other transforms that might be used prior to the subsequent embedding of 

watermarks include the ‘Integer Wavelet Transform’ (IWT) [102], the 

                                                
i Image from the MathWorks tutorial ‘What is Wavelet Analysis?’ 
http://www.mathworks.com/access/helpdesk/help/toolbox/wavelet/ch01_in9.html 
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‘Modified (or Modulated) Complex Lapped Transform’ (MCLT) [103] and 

transform to the ‘Cepstrum’ domain [104]. 

 

It is worth repeating that none of these techniques is, in itself, a 

watermarking technique. These few transform examples serve to illustrate 

the various means by which a cover signal can be transformed into another 

domain before the watermark data is added.  

 

5.2.6 Spread spectrum watermark embedding techniques were developed out of the 

use of spread spectrum techniques in military communications beginning after the 

Second World War [105]. This, in turn, derived from Nikola Tesla’s research into 

frequency hopping, apparently prompted when he encountered problems trying to 

demonstrate the remote control of a radio-controlled boat [106]. The central concept 

behind spread spectrum encoding is that the message to be embedded can be ‘spread’ 

across a wide spectrum of the frequency range, thereby adding some advantages. 

 

Firstly, and most relevant for the current research area, if a watermark is 

spread across the entire spectrum of a cover signal, the watermark appears to 

observers to be no more than noise. Secondly, the watermark can be detected (as 

long as the detector has a pre-defined decoding ‘key’) even in the case that the 

carrier signal is very weak at the receiving end. This was of course very useful in 

long-range radio communications. Thirdly, the watermark can be embedded in the 

significant components of the cover signal, as well as the less-significant, and this 

leads to increased robustness against attacks which often concentrate on perceptually 

less significant components. As a result of this, spread spectrum embedding is very 

robust against ‘jamming’ [107], whereby an opponent may not know whether a 

message is present or not, but simply ‘jams’ or tries to corrupt the entire signal. 

 

Like other watermarking techniques, spread spectrum watermarking is a 

technique for actually embedding the watermark data, not necessarily encoding or 
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cryptographically enciphering it. Therefore, as a steganographic tool, its usefulness 

is a function of whether or not an intercepted cover signal is believed to include a 

watermark. Having the watermark data spread across the entire spectrum can help or 

hinder the potential attacker.  

 

In a 2002 paper [108], Kirovski and Melvar introduced an ‘asymmetric 

direct sequence spread-spectrum’ watermarking technique (although there are many 

alternatives to ‘direct sequence’). The embedding in spread-spectrum watermarking 

techniques is achieved by first applying a pseudo-random signal, generated using a 

‘key’ that becomes the decode key, to the watermark data before actually adding the 

newly-modified signal to the cover audio. Assuming the pseudo-random ‘key’ 

represents a filter of sorts that has a frequency response that is flat across the 

frequency range (for example, a chaotic or white-noise type signal) the newly-

modified watermark signal generated by multiplication of the watermark and the 

pseudo-random key is then added to the cover audio and would be identified by 

attackers as noise, but could be reproduced using the same ‘key’ in decoding. 

 

In their system, compromising by an attacker of a single client (e.g. a 

computer, a music player or a video player) would not lead to a breach of security of 

all watermarked cover video. They state that a single two-hour high-definition video 

file had the capacity to protect as many as 900,000 individual devices. This might 

seem a relatively small number, considering that Apple have sold over 7 million 

devices in the iPhone range alone (not including video-enabled iPod devices) in one 

quarter-year of 2009 [109]. 

 

In [66] Kirovski & Malvar make a point that is often overlooked but should 

be noted in relation to all watermarking schemes: ‘audio will eventually be played in 

an unscrambled or decrypted format’. What this means is that no watermarking 

scheme is of any practical use unless the watermark message is, and remains, part of 

the actual audio rather than just an addition. Otherwise, in order to produce a version 
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of the signal with no detectable watermark, all the attacker has to do is play the 

signal through normal speakers and allow it to propagate through the air before re-

recording. On that point, spread spectrum watermarking has some scope for use as it 

covers the whole spectrum of the audio, so it would seem it could be used to embed 

a watermark throughout the frequency range in such a way that it becomes part of 

the signal and not just something to be removed from it, thereby reverting to the 

original cover audio. 

 

5.2.7 Patchwork methods were initially proposed for use in the area of image 

watermarking [79] but could potentially be of use in other areas such as video and 

audio watermarking. The key concept of patchwork watermarking is that a single 

sample of the cover signal has some statistical modification performed on its 

mathematical representation. This could be achieved by modifying the value of a 

parameter in an individual sample by a constant value while modifying another 

sample so that the relationship between the two modified samples is known. 

 

For example, the brightness of a pixel in an image could be increased while 

being simultaneously decreased in another pixel that is mathematically related to the 

first in some pre-defined manner. Alternatively, the value of a Fourier coefficient for 

some selected pair of frequencies could be simultaneously modified by some 

constant, either by addition/subtraction of a constant value or by multiplication by +1 

or -1. In [110], Kim describes the publication of a development on the idea by 

Arnold in 2000 [111] as a ‘landmark’. The process is described as a ‘blind detection’ 

system but it is worth noting that this assumes certain limitations in the 

modifications to the watermarked signal. It is also a relatively low-capacity system. 

Arnold’s ‘landmark’ system managed a capacity of only 1 bit in more than 1 second 

of audio (1bps).  

 

5.2.8 Interpolation methods are another alternative watermarking method, 

this time said to have good capacity and resistance to DA/AD conversion and some 
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common attacks [112]. They include ‘spline’ interpolation and ‘polynomial’ 

interpolation [113]. The latter is perhaps the best-known interpolation method for 

one-dimensional signals such as audio. The term ‘interpolation’ means to define a 

data point using other data points to calculate it. For example, if there are two points 

in space, separated along an axis, then theoretically, any point along the line between 

these points can be calculated by interpolation, as illustrated in Figure 5.4.  

 

 

Figure 5.4: Illustration of linear interpolation concept. 
 

 

In the example in Figure 5.4, assuming the co-ordinates of the point (x0, 

y0) and (x1, y1) are known, any point along the line between these two co-ordinates, 

such as at the point (x, y), can be calculated. This is, of course, a very simplistic 

example but the concept can then be expended so that any ‘new’ data point can be 

constructed by using the locations or values of known data points in a given set, such 

as sample points in audio. 

 

It is worth noting that the data point that is to be constructed may be a 

‘virtual’ point because it does not inherently exist in any way in the sample set it is 

being interpolated into. This can have benefits and can also have a very obvious 

downside: additions to a sound can be problematic in terms of perceptibility of any 

artefacts created. A very recent publication by Fallahpour and Megas [114] claims a 

capacity of almost 3kbps, which is an extremely high capacity for a watermarking 
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system, by using ‘spline interpolation’ techniques. The technique is also claimed to 

be stable, robust to attack and perceptually transparent. 

 

5.3 Additional watermarking schemes 

The foregoing examples of watermarking techniques represent some common 

approaches to the task. However, since the earliest forays into digital audio watermarking, 

there have been a number of unusual and innovative approaches to the problem – some 

more successful than others. Included amongst this group would be the following:  

 

5.3.1 Muteness based audio watermarking is an interesting, if somewhat limited 

variation on the watermark embedding scheme. In this scheme, Kaabneh and Youssef [115] 

analyse audio to identify very short periods of muteness. Their definition of muteness is 

essentially experimental and in reality would rely heavily on the audio that is being 

analysed. Opera pieces, for example, along with spoken word and many other types of 

audio, would have a comparatively large number of mute periods, while heavy Rock music 

or even orchestral classical music would be expected to have less. Nevertheless, this is not a 

criticism of the scheme. The success of most digital audio watermarking schemes could be 

said to be reliant to a greater or lesser extent on the type of audio that is being used to hide 

the watermark. 

 

In this scheme, the watermark is added to the audio by first creating a record of the 

mute periods and their lengths before deciding to increase by a small amount the length of 

any given mute period or to leave it untouched to represent an embedded bit. Leaving the 

mute period untouched to represent a ‘0’ and extending it slightly to represent a ‘1’ is just 

one option. Alternatively, the mute period could be increased by a value for a ‘0’ and a 

different value for a ‘1’. With the mute periods altered, the watermark is detected by 

analysis of the candidate audio, and comparison of the lengths of the newly-analysed mute 

period sequence against a record of the original mute periods in the unwatermarked audio. 

It is not necessary to have access to the original audio at the time of decoding – all that is 
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required is a record of its mute periods. The scheme therefore provides for a semi-blind 

decoding process. 

 

This is an unusual approach to watermarking and at first glance it would seem to 

be quite limited in scope. The main advantage of the technique is that periods of relative 

quiet or silence in an audio host would be considered inherently important to the audio and 

so would generally be assumed to survive compression and perceptually-focussed attacks 

on the watermarked audio. The authors did concede in [115] that at high MP3 compression 

rates (down to 16 Kbps) there was deterioration in the recovery rate but this would be 

expected in most watermarking schemes - MP3 compression to 16kbps is quite destructive 

and is rarely used. Less drastic compression was accompanied by much higher recovery of 

the embedded data. 

 

Another advantage that this technique has is that it is a time-domain embedding 

technique. Band-pass filtering, another common attack on audio signals, was carried out by 

the authors with a cut-off frequency of 2205 Hz and had no adverse impact on the recovery 

rate. Resampling from the original 44.1 kHz down to 22.05 kHz and 11.025 kHz, before 

being reverted back to 44.1 kHz led to a noticeable distortion in comparison to the original 

audio but still allowed for a recovery rate of more than 98%. 

 

One apparent disadvantage of the scheme is in the definition of muteness. As 

mentioned, it is dependent on the host audio and this in itself is not a major problem except 

insofar as capacity of individual audio would be concerned. However, it would appear 

likely that transmission across noisy channels, the addition of random or white noise and 

even atmospheric interference might be issues that would negatively affect the recovery 

rate by introducing noise where previously there had been a mute period. Having said that, 

there may be error-correction techniques that could overcome some or all of these obstacles 

and it remains a simple and elegant technique. 
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5.3.2 Sinusoidal pattern watermarking. In attempting to address some of the problems 

experienced in the use of pseudo-random sequences embedded as watermarks in spread 

spectrum watermarking techniques, Liu and Inoue [116] proposed the use of sinusoidal 

patterns rather than pseudorandom sequences as the material to be embedded. According to 

the authors, there are a number of generic problems associated with spread spectrum 

watermarking, including  

 

 The requirement in many cases for access to the original audio, to be subtracted 

from the candidate audio to accurately determine the watermark.  

 

 The need for near-perfect synchronisation between the pseudorandom sequence 

and the watermarked audio in decoding means that cropping of the audio or 

any form of time-shifting will make synchronisation, and therefore detection, 

much less effective. 

 

 The detection of the watermark in these schemes can be adversely affected by 

short pseudorandom sequences. Longer sequences are used to ensure effective 

correlation. This is not a major problem in image or video watermarking but in 

audio watermarking it is more restrictive because the Human Auditory System 

is more sensitive than the Human Visual System, therefore limiting the 

components in which watermarks can be embedded transparently. 

 

There have, of course, been efforts made to address these issues. However, in their 

scheme, Liu and Inoue took an unusual approach [116]. First, they created a set of 

sinusoidal ‘patterns’ consisting of a small number of frequencies, each representing a given 

value. These were then modified according to a psycho-acoustic model in order to ensure 

they fell below an audibility threshold before being embedded in the host audio. Performing 

this step in advance meant that it was a one-time, computationally inexpensive process. The 

amplitudes of the concatenated sinusoidal patterns, constructed to represent a message 

sequence, were then modified against the power of the host audio in which they were to be 
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embedded - thereby ensuring they were not loud enough to be audible above the host. The 

sinusoidal pattern included a signal that represented its own start point, thereby making it 

self-synchronising and overcoming the problem of synchronisation before decoding. 

 

Detection was a matter of computing the correlation between step-wise blocks of 

candidate audio against the sinusoidal patterns. This made the process a semi-blind 

detection scheme as it does not require the host audio, merely some information about the 

embedding process or data such as the initial group of sinusoidal patterns. As explained by 

the authors, some of the problems with this scheme included the negative effect of cropping 

and time-shifting [116]. Down-mixing from stereo to mono might also be a potential 

problem as the scheme relied on the correlation of timing marks in the left and right 

channels to enable it to self-synchronise. However, the authors did achieve some excellent 

results and the scheme would certainly be computationally much less expensive than some 

other schemes. 

 

5.3.3 Linear chirp watermarking. In ‘A Robust Audio watermark Representation Based 

on Linear Chirps’ [117], the authors proposed a scheme which embedded data in the host 

using ‘linear chirps’, with the composition of the chirps designed to represent various 

values. A linear chirp is a sound that has a constantly increasing (or decreasing) frequency 

and it therefore has a ‘slope’ that is constant. Essentially, the variation of the frequency 

from one time-segment to the next is the ‘slope’. 

 

This work is actually concerned more with the composition of the watermark 

itself, rather than how or where it is embedded. In their experiments, the authors state that 

they used spread spectrum techniques for embedding the watermark in the host audio but 

also suggest that their ‘linear chirp’ approach to construction of the watermark message 

could be extended to most other types of embedding algorithm. 

 

What was significantly noticeable from this work was the recovery rate after 

hostile attacks on the watermarked audio. The authors state that they recovered the 
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watermark with an extraction rate of 100% as long as the Bit Error Rate (BER) did not 

exceed 20%. They also state that in their robustness testing after signal manipulations, the 

BER did not exceed 11.36%, even after attacks on the signal [117]. The authors also state 

that they were able to ‘detect the message when even half of the message bits are 

consecutively in error’, assisting greatly in the robustness of the watermark, at least when 

using the particular spread spectrum embedding mechanism that they did. As mentioned, 

this work was focused on the actual construction and subsequent extraction of the 

watermark. The authors contend that their watermark construction scheme is extensible to 

not only many different embedding techniques but also to other domains such as image and 

video watermarking. This makes the technique very useful but it also suggests that it 

requires much experimentation to categorise the relative effectiveness of the watermark 

detection process using different embedding techniques and in different domains. 

 

5.3.4 Watermarking with ‘MPEG 1 Layer 3’ compression. In attempting to address 

some of the potential problems facing any watermarking scheme in the use of digital audio, 

Megias et al [118] focussed on trying to identify where in the frequency spectrum the 

watermark should be placed by using watermarking based on MPEG Layer-3 compression. 

They achieved this by analysing which components of the host audio would be susceptible 

to removal or alteration by modern ‘MPEG 1 Layer 3’ (better known as ‘MP3’) 

compression. Essentially, their scheme processed the unmarked host audio with a 

compression algorithm before reconstituting the original from the compressed audio. This 

might seem like a redundant or pointless process but what it did was identify which 

components would be fully recovered after compression / decompression. It is worth noting 

that the quantity of fully-reconstructed components would be a factor of the compression 

bit rate but even if an extremely high bit rate was used, some components would still be 

altered due to the nature of the MP3 compression algorithm.  

 

At this point, the authors proceeded to embed their watermarked message in the 

frequency components which were left unaltered (or altered only to a predefined threshold). 

This served to ensure that, in the event that the watermarked audio would be compressed / 
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decompressed using an MP3-compliant algorithm, the watermarked components would be 

assumed to be recreated intact. The scheme then proceeded to increase or decrease the 

magnitude of the chosen components, obtained by computing the FFT of the host audio. 

The increase or decrease factor that was applied to the component by the authors was 

variable and could be ‘tuned’ as required. On performing an ‘Inverse Fast Fourier 

Transform’ (IFFT), the altered signal was then transformed back to the time domain. 

 

Watermark decoding was achieved by computing the FFT of the candidate audio, 

after MP3 conversion / compression if it was in another format. The process of identifying 

the potentially watermarked frequency components relied on a comparison against the 

original, meaning that the decode process was not a blind-decode process but rather an 

‘informed’ process. The major advantage of the scheme was in its inherent natural ability to 

survive many compression type attacks. 

 

The authors reported that, as would be expected, the watermark was fully 

recovered when the decode process used the same compression bit rate as the embedding 

phase. However, they also reported that even with re-compression of the candidate audio to 

MP3 with bit rates much lower than the embedding bit rate, recovery rates were promising. 

They used bit rates of 128kbps for embedding and were able to recover the watermark after 

any level of up-compression (to higher bit rates) of the candidate audio. This might be 

expected, of course, but they also had promising results in the order of 97% recovery when 

the candidate audio was subjected to down-compression to bit rates as low as 64kbps. 

 

It would seem likely that there is scope for developing this scheme for indentifying 

watermark embedding regions. One obvious option is to use lower bit rates for MP3 

compression before watermarking. This would mean less unaltered components to be used 

for embedding (i.e. lower capacity) because more components from the original audio 

would be affected by lower bit rate compression. However, it would conversely mean more 

robustness of the message after compression even into the lowest bit rates. 
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While the requirement to have access to the original audio for decoding is one 

limitation of the scheme, a potentially more serious disadvantage is that of conversion 

across codecs. Given that the published MPEG standards do not include instructions or 

requirements for the design of an MPEG-compliant file encoder but proscribe only the 

content of the MPEG-compliant file after encoding [55], providers are free to create their 

own encode/decode mechanism. How this encoding is achieved is entirely up to the 

designer of the encoder. If a particular MP3 codec was used for identifying the relevant 

areas used to represent the watermark, and the marked file was then cross converted either 

by another MP3 codec or amongst any of the myriad compression codecs (not just MP3) 

that are in modern circulation the possibility is that some of the components that would 

otherwise be preserved unaltered might be altered beyond recovery of the watermark. 

Nevertheless, the scheme did prove to be highly robust against compression, at least insofar 

as it was tested, and seems like a promising approach to ensuring robustness of a scheme 

against modern compression attacks. 

 

A similar compression-based watermarking scheme was presented by [119]. In this 

scheme, instead of adding the watermark to a signal and then compressing it, the watermark 

is spread using spread-spectrum modulation before being added to the cover signal while it 

is undergoing compression. In essence, the cover signal is passed through a perceptual 

model to ascertain the appropriate compression parameters. The same analysis parameters 

are then used to transform the watermark signal. Since the spectral values of the watermark 

and cover signal are the same, they are then simply added together on a line-by-line basis. 

This work was again robust against compression attacks but could be susceptible to the 

same issues as other spread spectrum schemes, as outlined in Section 5.2.6. 

5.3.5 High capacity watermarking schemes. 

Fujimoto et al proposed a scheme which reports extremely high capacity [120]. 

Normally, one might expect capacity to be in the order of a few bits per second (i.e. a small 

number of bits of a watermark sequence per second of host audio) and sometimes lower, 

depending on the intended application domain. Fujimoto et al reported capacity more than 

1kbps, which is extraordinary, especially in the context of a claimed transparent scheme. 



   

- 121 - 

Imperceptibility and transparency are often mutually conflicting, so achieving high capacity 

in a transparent manner is noteworthy. This work has been developed since, and the authors 

and others have produced some promising results. In a recent publication, Fallahpour and 

Megias [121] reported data capacity of about 3kbps ‘without significant perceptual 

distortion’ along with good robustness to common attacks. Their scheme differed from 

Fujimoto’s by using a variation on the concept and interpolating FFT samples to represent 

the watermark. They claim that capacity and imperceptibility could be improved depending 

on the intended application and domain.  

5.3.6 Audio watermarking for live performances. 

Watermarking of live performances is an area of little research interest, perhaps 

because of the limited financial losses incurred by the majority of the music industry or 

because it is actually the artists and performers who lose out on illegally copied live 

performance content, rather than the corporate sector of the industry. Whatever the reason, 

the output from research into this area is quite small. In one of the comparatively few 

publications in the area, Tachibana [122] reports on experiments to mix a watermark into a 

live performance that is either fed through a mixing desk and mixed therein with the output 

of the performer or is instead mixed ‘in the air’ with the sounds of the performance and, 

presumably, the venue. 

 

It is an interesting approach to the field of audio watermarking and it is also an 

area that may have increasing usefulness in the future as more and more of an artist’s or 

performer’s revenue, particularly for the more established names, is derived from live 

performances and sales of recordings of these. The purposes of watermarking in this 

context is twofold: first, to identify the origin of illegally-recorded material in order to try 

to identify means of preventing them and second, to perhaps add a watermark that might 

make the recorded material lose audio quality when played back elsewhere, thereby making 

it less attractive to organised illegal copiers. 

 

In his conclusion, Tachibana included a very perceptive and otherwise apparently 

unconsidered issue, namely that of ownership of the watermark itself. The statement ‘if a 
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person plays music and another person generates a watermark sound, an ownership 

conflict could occur’ raises a very important question in terms of the legal position relating 

to the Copyright and ownership of watermarks, especially if they have been added to 

content owned by another person and more importantly, especially if this is done without 

consent such as when added by a radio or TV broadcaster. The signal that contains the 

watermark is, by definition of the legislation, the property of the watermark creator. This 

point might only be of theoretical legal interest but it is a perceptive insight nonetheless. 

5.3.7 Chaos-based watermarking scheme. 

In an attempt to develop a watermarking scheme that addresses some of the issues 

relating to the creation of the watermark by the use of pseudo-random sequences, Mooney 

and Keating proposed the use of a chaos-based watermarking process [123]. While directed 

at the area of image watermarking, the concept would appear to be as valid in watermarking 

video and audio in that it is one of watermark creation rather than embedding and the 

watermark generation phase in most schemes, particularly those in the transform domains, 

is actually independent of the embedding phase. 

 

The scheme described in [123] provides for a semi-blind decoding phase since the 

chaotic function used to generate the watermark is based on an initial value and a seed 

value. Each subsequent product of the function using the same two values will result in the 

same output. The detection algorithm needs only these two values in order to recreate a 

chaotic sequence and then examine candidate signals for the presence of the sequence 

before decoding it back the watermark. 

 

Having two separate input parameters means having two separate, and 

independent, ‘keys’. Without both keys, rather than one pseudo-random value as a key, 

there is a reduced possibility of the watermark being decoded by an unauthorised recipient. 

Even having discovered one of the keys, an attacker will not be able to decode the 

watermark. This makes the process more secure against unauthorised decoding.  
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The advantage of chaos-based watermark creation over pseudo-random techniques 

is primarily one of robustness against bandpass filtering and, secondarily, the information 

required to enable watermark detection. As an extension of the robustness of chaos-based 

watermark creation, there is also scope for controlling the watermark so its resistance 

against filtering is application and/or domain dependent. Initial value and seed value for the 

chaos algorithm can be selected and adapted depending on the intended application domain, 

so as to be most robust against likely attacks (common or accidental) in that domain. 

 

While there seems to be little in the literature relating to the use of chaotic 

techniques in audio watermarking, adaptation of the technique for use in this related area 

might warrant further examination since the generation of a watermark and its subsequent 

embedding in a host signal are independent steps that are not necessarily co-dependent.  

 
5.4 Summary 

As evidenced by the various disparate techniques outlined in this chapter, digital 

audio watermarking is an area that has seen much research in recent years. Researchers 

have approached the problem of transparently hiding data in a cover signal in many 

different ways. Some schemes are more successful in achieving their goal than others. 

Some are perhaps more useful in very specific problem domains or for very specific 

applications. Some are more complex or computationally costly than others. A comparison 

of some of the more commonly researched techniques is shown in Table 5.1. 

 

Technique Advantages Disadvantages 

Least significant bit. Computationally simple. 
 
Mature technique in image 
processing. 
 
Resistant to time-shifting of the 
audio. 
 
Can be decoded without original 
or watermark. 
 

Least-significant bit is most 
likely to be altered by typical 
signal manipulations. 
 
Not suitable to audio processing 
due to sensitivity of auditory 
system. 
Masking techniques would be 
inconsistent. 

Echo-hiding. Human auditory system often 
cannot perceive very short echo. 
 
Audible added echo can cause 
sound to be perceived as 

Weak against time -domain 
compression and time-shifting. 
 
Low-amplitude echo 
susceptible to interference from 
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‘warmer’. 
 
Addition of ‘p re-echo’ can 
improve effectiveness. 
 

channel noise. 
 
Original or watermark required 
for decoding. 

Amplitude masking. Computationally simple. 
 
Ineffective in signals with low-
powered components. 
 
 

Not suitable for real music. 
 
Problems encountered with 
interference from inherent 
components. 

Phase coding. Human auditory system generally 
unable to detect phase. 
 
 

Phase inconsistency between 
components must be controlled. 
 
Easy to identify the presence of 
a watermark. 
 

Multiplicative techniques: 
Discrete Fourier Transform 
Discrete Cosine Transform 
Wavelet Transform 
 

Transformations of cover audio 
that take place before a 
watermark is then added, 
allowing for different types of 
watermarking to take place. 

These are not watermarking 
techniques as such. Instead, 
they are a primary step to 
perform before the digitised 
audio is in a form that can then 
be watermarked.  
 

Spread spectrum. Watermark spread across 
spectrum so appears as noise. 
 
Robust technique, even against 
signal corruption. 
 
Can be embedded in significant 
components, which are more 
likely to survive attacks. 
 

Susceptible to corruption by 
compression. 
 
Requires the signal to remain 
synchronized.  

Patchwork method. Can be implemented as a blind-
decode system. 
 
Can be designed to be robust in 
given domains. 
 

Low capacity. 
 
Computationally complex. 

Interpolation method. Good capacity. 
 
Resistant to Digital/ Analogue 
conversion and transmission.  
 

Added ‘virtual’ components can 
cause perceptibility issues. 
 
 

Table 5.1: Comparison of some common watermarking techniques 
 

 

Insofar as broadcast monitoring is concerned, no particular technique is right or 

wrong. If a watermarking scheme is successful in transparently embedding a hidden 

message in cover audio in such a manner that it can be accurately recovered after the types 

of attacks that would be common in a broadcast domain (e.g. format conversion, analogue 

transmission, compression), then it would be suitable for the application under 

consideration. In the next chapter, such a watermarking scheme is proposed and developed. 
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Chapter 6:  Low Complexity Watermarking Scheme 

In this chapter, an audio watermarking scheme is proposed and developed. The 

intention from the beginning was to address the specific requirements of a broadcast 

monitoring application rather than a generic audio watermarking application. The 

watermarking scheme should fulfil the requirements of robustness against common attacks 

likely to be faced in the broadcast domain, particularly analogue transmission. In addition, 

the watermark should also be perceptually transparent and difficult to remove without 

adversely affecting the quality of the audio. 

 

The procedure investigated in this research is the embedding of a unique identifier 

in a host audio file in such a way as to be inaudible, easily recovered and robust. Any type 

of information can be hidden in sound if it can be converted into sound itself. The principle 

behind this is simple: some sounds cannot be heard by humans if they are ‘masked’ by 

other sounds. Similarly, some sounds are simply outside the hearing range of humans, such 

as high-frequency dog whistles. Further, some sounds are within the hearing range of only 

the most effective ears, such as the ‘mosquito-buzz’ deterrents used by Police forces and 

Local Authorities to target loitering groups of teenagers [124], which cannot be heard by 

adults as their hearing has deteriorated slightly. 

 

Psychoacoustics, as mentioned in Section 4.2, is the area of research devoted to 

these concepts and the MP3 audio format is just one well-known technological 

advancement that has been developed using the results of psychoacoustic research. If a 

watermarking scheme is designed to add some signal to the cover audio, then care should 

be taken to ensure that audibility is avoided. Knowledge of psychoacoustic principles 

underpins decisions taken when designing such schemes. On the other hand, if a scheme 

does not actually add anything to the cover audio but instead modifies it slightly so the 

watermark can be represented by some characteristics of the cover audio itself, then the 

considerations relating to audibility are likely to be less of a problem. While psychoacoustic 
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modelling is an additional step that can be applied to watermarks before embedding them 

into the host or cover audio in a watermarking scheme, it may not always be necessary. 

 

As discussed in Section 4.4, one major advantage of watermarks over fingerprints 

in terms of their application is that the decode process often does not need to have access to 

the original audio or any digest of it. There are many different forms of watermarking 

decoding technique and all rely on their corresponding embedding technique. However, all 

decoding techniques fall into one of three types. 

 

When the decoding phase of a watermarking scheme does not need access to the 

original host audio, or to the form of the actual watermark before it was embedded, it is said 

to be a ‘blind’ decode process [125]. Conversely, if the decoding phase requires knowledge 

only of the watermark message or some criterion that was used in the watermark 

embedding process, such as the frequency range in which the watermark was embedded, it 

is said to be ‘semi-blind’. Finally, if the decode phase requires knowledge either of the host 

audio prior to watermarking or to the watermark itself, in order to successfully decode, it is 

said to be ‘informed’ decoding. This latter type of decoding is less useful in the case of 

broadcast monitoring as it suffers many of the same limitations as fingerprinting. 

 

Generally, a self-contained blind decode watermarking scheme could probably be 

adapted to most purposes, including those that could otherwise be achieved using a semi-

blind or informed scheme. The reverse is not the case. In short, a blind watermarking 

scheme that provides acceptable levels of transparency, robustness and security as well as 

reasonable capacity is likely to be most useful in the vast majority of applications, all other 

things being equal, including in a broadcast monitoring scheme. 

 

A blind or semi-blind decoding technique removes the need for a central publicly-

accessible data store of watermarks or audio files for comparison purposes. A watermarking 

scheme that can accomplish decoding without any external input or additional resources, 
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other than the candidate watermarked audio, is the ultimate goal of most audio watermark 

research, albeit with acceptable levels of transparency, robustness, security and capacity. 

 

6.1 First phase of the development of the watermarking scheme 

The purpose of this research is to attempt to define a blind or semi-blind audio 

watermarking scheme with applications in the domain of monitoring of radio and television 

broadcasts with a view to transparent and accurate reporting of broadcast output. The 

primary motivation is one of equitable administration and distribution of Copyright 

royalties [126]. The initial hypothesis for such a watermarking scheme is outlined in Figure 

6.1 and was inspired by previous research by Gopalan et al [86] [127]. It initially revolved 

around the well-understood ‘Dual Tone Multi-Frequency’ (DTMF) standard [128] as used 

in touch-tone and mobile telephony where two tones are combined to represent a single 

piece of information. The initial decision to embed the watermark by manipulation of the 

DTMF frequencies was prompted by the possibility of the scheme being implemented using 

modern telecommunications systems that are already DTMF-compliant. It was believed that 

this would enable candidate audio to be identified over a standard telephone system without 

any additional hardware. 

 

The initial idea was to reduce the data to be watermarked (the unique identifier, in 

this case the ISRC code, as described in section 3.6.1) to a series of bit-representations of 

its ASCII codes. Every alpha-numeric character has a unique ASCII code and since all of 

the characters of the ISRC are simply letters and digits, it made sense to use the decimal 

ASCII values, converted into binary representation, as the basis for the watermark. Once 

the Binary sequence was created, it was then used as the pattern for the creation of a pair of 

pure sinusoidal waves using the combined DTMF standard frequencies for ‘1’ and ‘0’. The 

process is illustrated in Figure 6.1a and the spectrogram of the resultant signal is illustrated 

in Figure 6.1.b. The DTMF tones consist of [128]: 

DTMF ‘1’ tone: 697Hz and 1209Hz combined 

DTMF ‘0’ tone: 941Hz and 1336Hz combined 
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Figure 6.1a: A simple block diagram of the watermarking scheme. 
 

 
Figure 6.1b: Spectrogram of a section of audio illustrating the DTMF-based watermark 

pattern. In this case, the frequencies used are 697 Hz, 9412 Hz, 1209 Hz and 1336 Hz. 
 

 

To ensure that no waveform discontinuities occurred when concatenating the sine 

waves the instantaneous frequencies of the pattern were first created, integrated to generate 

the phase, and then the sine of this phase was taken resulting in a smooth waveform. To 

illustrate, denoting the two possible tone combinations for a ‘0’ and ‘1’ respectively as 0f  

and 1f , and given a bit sequence of ‘101’ (sequence length = 3), with the tone for each bit 

lasting for N samples, the watermarked signal is described as: 
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    nny  sin       (6) 

 

where 130  Nn  and the generated phase is the integral of a normalised sequence of 

frequency values, with sampling frequency Fs 

        sFnnfnfnfn ],,[2 312011    (7) 

and  10 1  Nn        (8) 

122  NnN       (9) 

132 3  NnN        (10) 

 

The sequence was generated for 12 ASCII characters of 8 bits, each lasting 20ms 

(total watermark length = 1.92 seconds). Finally, after storing the watermarked audio as a 

file (WAV format) and reading it in again before decoding the watermark, this initial proof-

of-concept experiment resulted in 100% recovery of the watermark as would be expected in 

the absence of any attack on the signal. 

 

The length of each tone in this case was set at 20 milliseconds although this length 

is not necessarily fixed. The duration of each tone can be reduced to any length as long as it 

can still be detected by the decoding process after the candidate audio is sampled 

appropriately. It is worth noting that shorter tone duration would logically increase the 

capacity of the watermarking scheme. However, reducing to the absolute minimum may 

increase the likelihood of missed tones and false decoding of the embedded message. The 

process of embedding and decoding a single ‘0’ bit is illustrated in Figure 6.2a.  

 

In an effort to aid robustness of the watermarking scheme, it was decided to 

implement a Mode operation in the decoding phase. This operation would increase the 

likelihood of the watermarked message being recoverable. In order for the mode operation 
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to be successful, the watermark message, which has been converted into a bit sequence, 

would have to be embedded repeatedly throughout the length of the cover signal. The 

number of loops of the watermark was therefore a function of the watermark length and the 

signal length.  

 

Upon decoding the bit sequence embedded in candidate audio, it contained 

multiple loops of the watermark and so it was first broken into subsets of the length of the 

watermark. Each subset was then broken into sequential 8-bit lengths and converted back to 

decimal. At this point, the mode of the set of values encountered at each index of the 

watermark was chosen as the watermarked value. It was felt that, in the event that one 

instance of the watermark in some part of the signal was corrupted, the remaining loops of 

the watermark would be unlikely to be corrupted in the same manner. Therefore, taking the 

mode, or the most common value in a given index of the watermark, would increase the 

likelihood of identifying the correct watermarked value. The process is shown in Figure 

6.2b. Initial experiments to embed/decode the watermark independent of the host audio file 

were very successful, as would be expected, returning 100% precision. 

 

Figure 6.2a: Block diagram illustrating the encoding and decoding steps. 
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Figure 6.2b: Block diagram illustrating repeat embedding in the encode phase and the 
mode operation in decode phase to aid robustness of the scheme. 

 

These experimental watermarked audio files were written to CD and played to 

listeners in various environments. As the purpose of the listening test at this point was not 

intended to be definitive, none of the volunteer listeners were required to be ‘expert’ and 

the equipment used to reproduce the audio differed in each case. The audio files used for 

the casual listening test were chosen at random from audio files in a variety of genres.  

 

Once informal listening tests were carried out, the limitations of the system started 

to become obvious. Initially, embedding the watermark was achieved by simple addition of 

one sound (the watermark signal) into another (the cover audio). This resulted in the 

watermark being audible. Since inaudibility of a watermark in the presence of a host signal 

is a constraint of any useful watermarking system, it was decided to reduce the amplitude of 

the signal representing the watermark in order that the host audio might mask its presence 

in the manner of auditory masking described in Section 4.2.1. Using this relatively basic 

method of amplitude reduction until the watermark signal became inaudible, it was 

embedded satisfactorily into cover signals again and a ‘straw-poll’ of listeners to ten 

watermarked tracks suggested that the watermark could not be readily detected. Again, 
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listening tests at this point were not intended to be definitive so no particular measures were 

taken to control the test. 

6.1.1 Identifying components present in the signal 

The problem of isolating and subsequently decoding the watermark then became 

obvious. The initial intention was to analyse the candidate audio file in which a watermark 

was believed to be present in order to identify its actual frequency content. A simple 

iterative check of each 20ms ‘block’ of audio would determine the presence or absence of 

the frequencies sought. Identification of both frequencies meant that the corresponding bit 

(‘1’ or ‘0’) was present. Eventually, a sequence of bits would be found using this method 

and decoded back from binary to ASCII and ultimately to alphanumeric ISRC characters.  

 

The first major problem encountered was to identify which actual frequencies 

were present in the candidate audio. This was not as simple as might be thought. For 

example, the ‘Fast Fourier Transform’ (FFT) method of decomposing complex audio 

signals into fundamental components is limited in that is does not analyse a signal for the 

presence of particular frequencies. Rather, because of its uniform sampling of the complete 

frequency spectrum, it will only plot the relative strengths of components that may be close 

to but not exactly the frequency locations of interest. This problem was partially overcome 

by using the Goertzel algorithm instead. This is because the Goertzel algorithm can be used 

to identify components energies that exist at specific frequencies in a signal, whereas the 

FFT identifies components across a bandwidth. The Goertzel algorithm is also more 

efficient than the DFT [129]. It essentially defines a high Q, narrowband, second order IIR 

filter. Given an input x(n), the first stage of the Goertzel algorithm produces an output 

according to: 

         212cos2  nsnsNknxns     (11) 

where  N is the length of the input,  

 k is a frequency index value with 10  Nk   

 and     021  ss . 
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The second stage then gives 

     12   nsensny Nkj      (12) 

The only output of interest from the algorithm is   2Ny  which is the energy of the 

component at the frequency of interest and is derived according to the following formula: 

           12cos21222
 NsNsNkNsNsNy  (13) 

6.1.2 Synchronising the watermarked bits 

Another issue that arose in the decode phase and needed to be addressed was 

identifying where the bit sequence started and ended. Some form of synchronisation had to 

be used. It was originally decided to use the DTMF tone for the ‘*’ key (1209 Hz and 941 

Hz combined [128] ) as a reference point to signal the start of the bit sequence since it 

would never need to be used for the bit sequence that represents the ASCII code that makes 

up the watermark message. Additionally, it was necessary to identify where one bit ended 

and the next began because if the monitoring of the host audio did not commence from the 

very beginning of the track (which would be unlikely in a broadcast scenario) the simple 

iteration over the candidate audio and analysis of each 20ms block would be useless as a 

measuring scale. Furthermore, a repeated ‘1’ or ‘0’ bit in the sequence might not be easily 

identifiable as the decoding process had no way of discerning if the decoded tone 

represented only one bit or two instances of the same bit in sequence. It was decided to add 

the DTMF tone for the ‘#’ key (1477 Hz and 941 Hz combined [128]) in between every bit 

in the bit-sequence. While this made it easy to identify where one bit-tone ended and the 

next one began, it also doubled the length of the watermark, thereby halving the capacity of 

the scheme. However, this was not an issue at this point since capacity was not being 

considered as a priority. 

6.1.3 Problems encountered with pre-existing components 

Once these changes were made, it became easier to identify the segments of audio 

that represented the bits in the watermark and this led to a much improved decoding phase. 

However, there was another issue that needed to be addressed, namely what would happen 
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in the case where the host audio, before being watermarked, already had high-power 

components at the same frequencies as used for the watermark tones. The components of 

five separate frequencies (697 Hz, 941 Hz, 1209 Hz, 1336 Hz and 1477 Hz) would be 

required to be added to the cover audio in various combinations to represent the watermark 

bit, the separator tones and the start point. However, these components may already be 

present in the cover signal. 

 

This would not be a problem if the current frame had large-magnitude components 

at the frequencies needed to represent the bit that was to be added. However, if it contained 

components of the frequencies for the other bit, the separator tones or the synchronising 

tone, this could lead to inaccurate decoding. By way of illustration, consider if the bit to be 

embedded was a ‘0’, comprising the frequencies 941Hz and 1336Hz and the frame of the 

host audio already had strong components at frequencies 697 Hz and 1209 Hz, there could 

be a false positive found in decoding. The decode process would evaluate the power of the 

various components in the frame and report the stronger of the two (in this case the 697 Hz 

and 1209 Hz components) as the bit embedded. In this example the stronger components 

would be those of the wrong bit but the decoding process would naturally return them as an 

incorrect value at that point in the binary sequence, thereby producing an inaccurate result. 

6.1.4 Analysis of representative audio for inherent components  

At this point, since the matter had become an issue worthy of consideration, it was 

decided to analyse audio in various musical genres. A statistical analysis of the actual 

frequency content of 100 audio files at specific frequencies of interest was performed. This 

was achieved by applying a 1 Hz width bandpass filter at the DTMF frequencies followed 

by the Goertzel algorithm to try to ascertain whether there was any correlation between the 

powers of the frequencies already inherent in general audio and the DTMF frequencies. 

 

As can be seen from the illustrations in Figure 6.3a and 6.3b, the energy of the 

components inherent in general audio that are at the DTMF frequencies that separately 

identify the ‘1’ and ‘0’ from each other is very low. In most cases it was zero or almost 
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zero. Nevertheless, there is sometimes energy at each component so no guarantee could be 

given before watermarking that the component being added would not be replaced in 

decoding by a component that was inherent in the host. It was clear that this method would 

be unsuccessful in a practical application. 

 

Figure 6.3a: Histogram Plots of Spectral Energy at 697 Hz determined by 
bandpass filtering and Goertzel analysis of 100 audio files. 

 
 

 

Figure 6.3b: Histogram Plots of Spectral Energy at 1336 Hz determined by 
bandpass filtering and Goertzel analysis of 100 audio files. 
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6.1.5 Weighting of frequency pairs 

The next development attempted was to weight the two tones representing the ‘1’ 

and ‘0’ bit against each other so that both the frequencies for the ‘1’ and ‘0’ were embedded 

in the host audio simultaneously, rather than separately, but at powers that made it easy to 

decipher which one was the required bit. This experiment was based on work by Gopalan 

and Wenndt [86] [127] which illustrated the use of a single frequency whose individual 

powers were weighted by the total power of the frame into which they were being 

embedded. Thus, if it was desired to embed a ‘1’ then, denoting the power at any frequency  

f  in the kth frame by  fPk , the algorithm adjusts the two component magnitudes at 

frequencies 0f and 1f so that the following relationship is satisfied:  
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Otherwise, if it is desired to embed a zero, the inverse relationship is specified as follows: 
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In using two components instead of one, the components were also controlled in 

such a way that their magnitudes met predefined minimum relational criteria to each other 

as well as the overall power of the frame. In the above example, the two modified 

components simply had to fulfil the criteria of one being of bigger magnitude than the 

other. However, this was then adapted so that the magnitudes of the components must differ 

by a threshold or margin. Various thresholds were considered and it was found that there 

was little difference between them, as long as the ratio of the powers of the desired bit to 

the undesired bit was significant enough to be detectable while the undesired bit was 

sufficiently powerful to be independently detectable. The process was therefore adapted to: 
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where a ‘1’ bit was to be embedded and  
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where a ‘0’ bit was to be embedded. The value c represents a threshold between the 

magnitudes of the two components and it is constant from frame to frame. Different values 

for c were experimented with and there was little difference in the decode result as long as c 

was above a minimum value. A sample of the weighting ratios used in modifying the 

component pairs, along with results from encode/decode trials, is shown in figure 6.4. 
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Figure 6.4: Results of watermark embed/decode cycle when component pairs 
are weighted. 

 

Figure 6.4 illustrates the precision of recovery of the watermarked message when 

using different combinations of weighting ratios between the two components and the 
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average power of the frame in which they are embedded. The ratios noted at the top of each 

stem are the ratios between components representing desired and undesired bits. The most 

accurate recovery was achieved by using a weighting ratio of 125:1, shown at number 12 

on the horizontal axis, meaning that both components were added to the cover signal with 

the component representing the desired bit being set 125 times more powerful than that of 

the undesired bit. While this might then seem to be an ideal ratio to use, it raises the issue of 

weighting such components against the frame average. 

 

The 125:1 ratio could be maintained by making the desired component 

comparatively large in relation to the frame average, meaning that the other component 

would be large enough to be independently detectable. However, it could mean that the 

component representing the desired bit might be of too large a magnitude in comparison to 

the rest of the frame’s components, leading to audibility problems. Alternatively, if the 

component representing the desired bit was set to a low enough magnitude to minimise 

audibility, the other component may be of such a small magnitude as to be undetectable.  

 

Various weighting ratios were compared and it was found that those where the 

component representing the desired bit was set between 0.07 and 0.1 of the average power 

of the frame and the other component was set to a detectable difference from this value, the 

precision of recovery was comparatively good. Note from Figure 6.4, for example, that 

numbers 3, 4 and 5 resulted in similar precision with weighting of 7:1, 8:1 and 9:1 

respectively. Weighting of 10:1 produced results slightly higher but it is notable that a 

similar precision is achieved with ratio of 10:9. This serves to confirm the contention that 

the magnitude difference between the two components does not need to be very large, as 

long as it is enough to permit the decode process to calculate a difference between them.  

6.1.6 Embedding at higher frequencies 

When the weighted frequency-pairs were added to the host audio the resultant 

decoding was significantly more successful than previously, as shown by Figure 6.4. 

However, the issue still remained that the energy of some components inherently present in 
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the original audio could impact on ability to correctly identify the embedded bit. In the 

event of the components representing the ‘0’ bit being present in a frame that was to have 

the ‘1’ bit embedded, and vice versa, they could negatively affect the result. Slight 

alterations were unsuccessfully attempted to circumvent this issue arising. The frequencies 

chosen to represent the ‘1’ and ‘0’ bits were changed from the DTMF tones previously used 

to higher frequencies, on the premise that higher frequencies would be easier to identify.  

 

Using much higher frequencies for the embedded tones did in fact increase the 

detection reliability of the system. Conversely, this increased the likelihood of very high 

frequencies – and therefore the watermark embedded at those frequencies – being lost in 

incidental ‘attacks’ such as format conversion, FM transmission and perceptual encoding 

(e.g. MP3). This is because high frequency components outside the range of normal human 

hearing would be removed or altered by such attacks. Frequency pairs across a wide range 

of values were evaluated and successful decoding rates were compared. 

 

Eventually, given the intended application domain for the proposed scheme, 

frequencies ranging from 8 kHz to 15 kHz were chosen for practical comparison. It was 

decided not to exceed a ceiling of 15 kHz to minimise the potential for the watermark to be 

lost, accidentally or deliberately, in perception-based attacks, as mentioned above. The 

equation for the algorithm as it was implemented at this point was: 

        }15000,8000{ 0101 
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where the bit to be embedded is a ‘1’ and 
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where the bit to be embedded is a ‘0’. 
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Despite achieving relatively good results from the watermarking scheme at this 

point, it was reasoned that the implementation outlined here would be inadequate in a 

practical watermarking scheme intended for broadcast monitoring. The most notable 

consideration was the frequency range chosen for the embedding components. If set too 

low, the watermark could be corrupted upon decoding by the presence of low-power 

components inherent in the cover signal as explained in Sections 6.1.3 and 6.1.4. 

Conversely, if the components selected for modification were at much higher frequencies, 

these components would be more likely to be lost in lossy compression based on perceptual 

models. 

 

6.2 Second phase of the development of the watermarking scheme 

6.2.1 Application of a notch filter 

By way of evolution of the technique, it was decided to attempt the removal of any 

existing frequency content inherent in the host at the same frequencies as used by the 

watermark, before actually adding the watermark to the host [130]. Essentially, the host 

would have a ‘hole’ or ‘notch’ created at the desired frequencies, setting the power of these 

components to almost zero. The watermark would then be included at those frequencies, 

weighted against the frame they were embedded and also weighted against each other to 

create the desired relationship.  

 

A ‘notch filter’ was designed that was as narrow as possible in the range of 

frequencies it attenuated but those that it did attenuate were reduced to almost nil. In terms 

of filters, a notch filter is a type of band-stop filter. A band-stop filter will pass most 

frequencies but lower the magnitude of specified frequencies to very low levels. Notch 

filters may be visualised as the opposite of a band-pass filter. Where a band-pass filter 

allows frequencies in a band (or range) to pass, a band-stop filter prevents these 

components from passing. A notch filter is a derivation of this technique with extremely 

narrow range and such filters are often designed to attenuate only those frequencies in a one 

or two hertz range. An example of a notch filter is shown in figure 6.5.  



   

- 141 - 

 

Figure 6.5: An example of a notch filter. 

 

The magnitude response of the filter shown in Figure 6.5 attenuates the frequency 

centred at the middle of the notch (i.e. at 1.0 on the horizontal/frequency axis). It will have 

no impact on the frequencies in the lower or upper section of the frequency range but those 

nearer to the middle of the notch (0.95 to 1.05) will be minimally affected. Those in the 

middle of the filter will have their magnitude attenuated to almost nil. The transfer function 

of a notch filter is of the form [131] 
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where  determines the frequency of the notch and   determines the width of the notch. 

 

In the application of notch filters to the watermarking scheme to attenuate the 

components at the embedding frequencies, it was hoped to remove any possibility that 

components inherent in the cover audio could negatively impact on the decode results. If 

such components were removed by the filter, and then manually set according to the desired 

relationship, this problem would be overcome without significantly affecting audio quality. 
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Figure 6.6a shows an example of a frame of audio under two conditions: (a) the original 

frame and (b) following a notch filter being applied to the frame and subsequent inclusion 

of the watermark signal at 10500 Hz and 11500 Hz. Note that the components at these two 

frequencies appear marginally different after the watermark has been added. Figure 6.6b 

shows a section of audio displaying the visible artefact of ‘notching’ the original signal in 

two places as a pair of horizontal lines across the signal at specific frequencies. Figure 6.6c 

shows the signal after subsequent addition of the watermark. Note that the pattern in these 

visible lines is the same as the pattern in the watermark bit sequence and so these lines 

provide a visible confirmation that a watermark may be present as well as initial clues for 

decoding attacks. 

 

Figure 6.6a: Spectral profile of a segment of audio before and after it is watermarked. 
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Figure 6.6b: A visible ‘artefact’ of the notching process can be distinguished as a pair of 

horizontal lines at frequencies of 10500 Hz and 11500 Hz, highlighted by the dotted ellipse. 
 
 

 
Figure 6.6c: A visible ‘artefact’ of the watermarking process can be distinguished as a pair 
of horizontal lines, highlighted by the dotted ellipse, which may offer some indication as to 

the watermark’s presence. 
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6.2.2 Optimising the watermarking scheme 

Once the above process was completed, the files were analysed for watermarks, 

and the identified watermark decoded. Initial results were promising and various 

modifications were made to increase the success rate. The most effective modification, as 

mentioned earlier, was the use of higher frequencies to create the watermark tones. 

Frequencies in the region of 12 kHz to 15 kHz produced significantly better success, all 

other parameters being equal. Unfortunately, audio watermarked at the higher frequencies 

proved to have an unacceptably high level of audible artefacts so they were discounted. 

The most acceptable compromise was in the frequency range of 9 kHz to 12 kHz 

which, under optimum conditions (in terms of the additional parameters) led to successful 

identification of the watermark for more than 99% of the tracks analysed (343 tracks 

correctly identified from 347 attempted). Moreover, the watermarked files did not display 

any watermark artefacts. In other words, it was not obvious which was the original and 

which the watermarked. Trial and error experiments were then performed on small groups 

of 25 - 50 audio files to ascertain which embedding parameters were promising enough to 

warrant full-scale analysis in order to identify optimum values. 

 

A subset of the results of a series of experiments, showing the parameters that 

resulted in the highest precision, is provided in Table 6.1. The full set of results from 

approximately 11,500 iterations of the embed/decode cycle is presented in Appendix 3, 

Table A3.1 for completeness. Note that the columns represent: 

Samples (S) = million samples decoded from the beginning of the audio file. 

Frequency (F) = base frequency from which two embedding frequencies were derived. 

Tone Length (L) = length of each tone per bit and separator in the watermark. 

Files Decoded = total number of files watermarked and decoded with these parameters. 

Percentage Accuracy (P) = accuracy of correctly recovered watermarks (rounded down). 
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The frequency value ‘F’ is the base frequency, intended to be a user-defined parameter. The 

two embedding frequencies were then calculated as ‘F + 1000 Hz’ to represent a ‘0’ bit and 

‘F + 2000 Hz’ to represent a ‘1’ bit. The tone length ‘L’ defines the length of the overall 

watermark (one tone per bit plus one tone per separator), which is then looped repeatedly, 

dependant on the length of the cover signal. 

 
No. Samples (S) Frequency (F) Tone (L) Files Decoded Accuracy % (P) 
1 4 9500 25 347 99 
2 3 9500 30 346 99 
3 3 9000 25 300 99 
4 4 9000 25 694 99 
5 4 9500 30 346 99 
6 2 9000 25 135 98 
7 3 9500 25 281 98 
8 3 9500 20 347 98 
9 4 7000 25 50 98 

10 3 7000 25 50 98 
11 2 9000 25 100 97 
12 4 7000 20 50 96 
13 3 6000 25 50 95 
14 2 9500 25 347 95 
15 3 7000 20 50 95 
16 2 9000 25 100 95 
17 1 12000 20 50 94 
18 2 9500 20 694 93 
19 1 12000 25 50 92 
20 4 7000 16 50 92 
21 3 7000 16 50 90 
22 1 12000 10 50 90 
23 2 13000 15 397 90 
24 2 9000 25 347 90 
25 2 12000 15 350 90 
26 1 11000 13 25 88 
27 4 7000 10 50 88 
28 1 11000 13 25 88 
29 2 11000 15 347 87 
30 2 11000 15 347 87 

 
Table 6.1: Results of the embed/decode cycle using different values for samples, tone and 

frequency parameters, with resultant decode precision. 

 

Table 6.1 shows that there are a number of permutations of input parameters that 

each independently contribute to the accuracy of the decoder. Also, the decode phase itself 

can sometimes provide identical results using different numbers of samples. These 

observations will be discussed shortly. The results in Table 6.1 are a subset of the results 

from more than 11,500 encode and decode cycles of a group of approximately 350 audio 
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files of varying genres from ‘Classical’, ‘Acapella’ and ‘Instrumental’ to ‘Rock’, ‘Pop’ and 

‘Punk’. The complete results of 150 encode/decode experiments is included in Appendix 3. 

 

The three parameters that contribute most strongly to the precision of the 

watermark embed/decode cycle are base frequency (F), tone length per bit (L) and the 

number of samples available at the decoder (S). Optimal values for these parameters are 

obtained according to: 

     120006000%99P:PFL,S,d
s

 fMin  (21) 

where S = number of samples decoded; L = length of watermark tone per bit; F = base 

frequency manipulated to generate tones; P=percentage of watermarks decoded accurately. 

 

In equation (21), d is a function that returns a value of P greater than or equal to 

99% for the lowest value of S with input parameters S, L and F and with the constraint that 

F (frequency) is constrained to be in the range 6-12 kHz. 

 

Note that watermarks were only considered to be accurately recovered if the 

system returned the complete identifier identical to that originally embedded in the host and 

that partially-correct identifiers were completely discounted as incorrect. Rather than 

calculating the number of bits that were accurately identified, the result was only 

considered successful if a complete identifier comprising almost 200 bits was successfully 

recovered. It was felt that this was a more useful metric than simply the number of bits that 

were accurately recovered as recovery of a string of bits would only be useful if actual 

watermarks could be decoded correctly from them. 

6.2.3 Minimising the computational cost of decoding 

The value S represents the number of samples read from the beginning of the 

audio file that are available for decoding to provide the result for P. In this regard, S has an 

increasing computational cost associated with it as it increases. However, the value of S in 
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producing a more accurate P does not increase continuously or consistently so it is useful to 

find out at which value of S it ceases to have a beneficial effect on P so as to minimise 

unnecessary computational cost in decoding. Since the decoding process is intended to be 

performed in real-time or better, the number of samples required for decoding, while 

maintaining an acceptable level of accuracy, should be as low as possible. While the 

maximum value of S is constrained by the length of the candidate audio signal, the 

watermark length is far smaller so it warrants minimising of S to only decode the number of 

watermark loops that are required to provide acceptable precision.  

 

This process of minimising the decode parameter S is preferred over minimising 

input parameters L or F since the encoding process is only performed once and so has 

comparatively little effect on overall computational complexity. However, as L increases, 

so the length of the watermark increases, meaning there will be a lower number of 

watermarks for the same number of samples decoded. The number of watermarks decoded 

can impact on the accuracy of the decoding process and so while it is true that S has more 

cost associated with it, L also has some cost-benefit trade-off in the decoding phase.  

 

The choice of frequencies F to manipulate has no apparent effect on the 

computational cost of decoding. The choice of base frequency should be left to the user, 

within the constraints mentioned in equation (21), so as to allow for private watermarking 

by using the value of F as a form of ‘private key’ required for recovering the watermark. 

 

The value for L is the length in milliseconds of the tone for each binary bit. The 

length of the watermark is a product of the value of L, where watermark length in ms = L x 

193 tones. This affects the number of loops of the full watermark that can be embedded in a 

given host audio length. The decoding process has a number of samples (S) available from 

which to decode the watermark. The number of loops of the watermark that could 

theoretically be embedded in S is a product of S divided by the sampling rate (48,000 Hz), 

then divided by length of the watermark.  
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According to equation (21), the optimal set of parameters is defined as being the 

lowest value of S that returns P equal to or above 99%, with constraints setting 6000 < F < 

12000. It was decided also to insist on the condition that L (tone length per bit) should be 

greater than 3ms in order to ensure it was not too short to identify in decoding without 

lowering the precision P. Other values of F and L are included in Table 6.1 and Table A3.1 

in Appendix 3 for illustration purposes. In implementing a lower limit for L, equation (21) 

is now re-written as: 
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The number of samples available for decoding the watermark is an important 

factor in producing accurate decoding results but, again, only up to a point. Not only is it 

not correct to say more samples always equals higher accuracy but a larger value for S 

equates to a much more computationally costly decode process so S must be minimised for 

an acceptable result of P.  

 

For comparison purposes, an excerpt from Table 6.1 is shown in Table 6.2. Note 

that the results indicate that decoding 2 million samples of signals watermarked with F = 

9000 and L = 25 provides 98% accuracy (line 6). Decoding 3 million samples, (line 3) 

produces the same accuracy as 4 million samples (line 4). However, note that cycles using 

the same parameters in lines 3, 16 and 24 provide markedly different results, suggesting 

that the cover audio or some unknown variable has some impact on the result. It is not 

correct, therefore, to say that a combination of three input parameter values will always 

result in the same decode precision.  

 

No. Samples (S) Frequency (F) Tone (L) Files Decoded Accuracy % (P) 
3 3 9000 25 300 99 
4 4 9000 25 694 99 
 … … … … … 

6 2 9000 25 135 98 
 … … … … … 

16 2 9000 25 100 95 
 … … … … … 

24 2 9000 25 347 90 
Table 6.2: Excerpt from table 6.1. 
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It would appear from the results of over 11,500 iterations of the cycle that a 

watermark with L=25ms tone length is optimal for accuracy at an acceptable level of 99%. 

However, using the same tone length in watermarks where the frequency manipulated is in 

the 6000 Hz range produces unacceptable results (Table 6.1, line 13). This suggests that the 

tone length value is only optimal when combined with certain other embed/decode 

parameters. Longer tones (e.g. with L = 30ms) can also result in precision of 99% (table 

6.1, line 5) but setting L = 30 would mean 20% less watermark loops in a given cover 

signal, compared to L = 25, for no gain in precision. 

6.2.4 Subjective listening tests 

Listening tests were carried out to investigate whether or not the method described 

here was perceptually transparent. The listening tests were performed on a small group of 

listeners representing various levels of expertise. The test subjects included: 

 

o One studio/live music sound engineer 

o One production sound engineer 

o One record company A&R representative 

o Three experienced musicians 

o One music critic/reviewer 

o Five music consumers (e.g. no professional connection to the music industry) 

 

Test subjects were presented with only a small subset of randomly selected audio 

files in order to avoid listening fatigue or boredom. The tests were carried out in a variation 

of the double-blind AB-X test [132]. This test was intended to identify whether listeners 

could state with any certainty whether a candidate audio file was the same as either one of 

two other files. A single blind test is one where the test subject has no way of knowing if 

the candidate file (‘X’) was identical to the first or second comparison files (‘A’ or ‘B’). A 

double-blind test is similar except that, to aid confidence in the results, the files chosen 
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were randomly selected by computer from almost 350 watermarked files in order to prevent 

any bias from the tester. In each case, the file chosen for ‘X’ could equally have been the 

original or watermarked version of the file and the tester would not know which was 

selected. Either ‘A’ or ‘B’ could be the original with the other being the watermarked file. 

In all cases, one of ‘A’ or ‘B’ was to be the original and the other to be the watermarked 

file. None of the tests was carried out with identical files selected for ‘A’ and ‘B’. Testing 

was carried out as follows: 

 

1. Random file selected.  

2. Subject listens to sample ‘A’: original OR watermarked audio. 

3. Subject listens to sample ‘X’: either original or watermarked audio. 

4. Subject listens to sample ‘B’: watermarked OR original audio, depending on step 2. 

5. Subject listens to sample ‘X’ again. 

6. Subject was then permitted to listen to any sequence of files to aid comparisons. 

7. Subject selects which of ‘A’ and ‘B’ is identical to ‘X’. 

 

Since these listening tests were not intended to be definitive, it was not necessary to 

use specialist equipment or perform the tests in a specialist environment. Tests were carried 

out in an informal setting, using the following equipment: 

Technics SL-HD350 CD player. 

Technics SE-HD350 amplifier. 

Technics SB-HD350 stereo speakers with 60 watt output and 6  impedance. 

Philips SBCHC8440 series FM headphones with frequency range 20-20,000 Hz [133]. 

 

* Note that subjects were permitted choose to listen with or without headphones and to 

alternate between headphones / speakers at will. 
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In these early listening tests, listeners were presented with ten audio comparisons 

each. Thus, a total of 120 AB-X comparisons were made. They were not informed whether 

sample ‘A’ or sample ‘B’ was the original. They were asked to ascertain if the ‘X’ audio 

sample was the same as either of the other samples. In all but a few cases, the test subjects 

could not generally identify the watermarked audio but the fact remained that at least some 

of the watermarked files were identifiable to some listeners as a result of perceptual 

differences between the two samples. This, of course, was not a positive development as it 

indicated that the modifications to the signal to embed the watermark were sometimes 

audible, even if only when compared directly to the original audio.  

  

However, what was slightly more encouraging was that there was no consensus in 

the comments from the test subjects about whether or not any differences they may have 

noticed made the watermarked audio sound worse or better. As with echo-coding, where 

the addition of echo to a cover audio can make the sound ‘warmer’, there were some 

watermarked files that sounded better to listeners than their original counterparts. 

Nevertheless, while the results were generally encouraging, if the scheme made the original 

and watermarked audio perceptually different it was cause for concern. 

6.2.5 Summary of scheme based on notched and weighted frequency components 

The watermarking technique discussed in the section 6.1 and 6.2 does provide a 

platform for a computationally simple watermark encoding/decoding system that could use 

a set of standard parameter values to enable semi-blind decoding of the watermarked 

message much like a public-key decryption system will allow holders of the public key to 

decipher the encrypted message. Similarly, the use of private values that are not made 

publicly available would facilitate covert communications. Conversely, a completely blind 

decoding system could be derived from this semi-blind process by using signal analysis 

techniques to identify patterns in candidate audio and therefore to derive potential values 

for L and F in the decode phase. The results of the watermarking scheme, at this stage in 

the research, was the full and complete recovery of the watermark embedded in an 
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encouraging 99.4% of the 350 watermarked audio files after approximately 11,500 

embedding and decoding cycles with varying input  parameters. 

 

6.3 The Complex Spectral Phase Evolution method 

6.3.1 Description of CSPE and its advantages 

Notwithstanding the satisfactory outcome of the experiments at this stage, the 

publication of a recent technique for analysis of audio at super-fine resolution led to further 

evolution of the watermarking scheme [134]. The Complex Spectral Phase Evolution 

(CSPE) method of signal analysis is described as’a tool to analyze and detect the presence 

of short-term stable sinusoidal components in an audio signal. The method provides for 

super-resolution of frequencies by evaluating the evolution of the phase of the complex 

signal spectrum over time-shifted windows. It is shown that this analysis, when applied to a 

sinusoidal signal component, allows for the resolution of the true signal frequency with 

orders of magnitude greater accuracy than the DFT’ [135].  

 

The CSPE input is a signal frame of user-defined length, the amount of zero 

padding and the window type. As the CSPE technique, when applied with carefully chosen 

parameters, allows for identification at much greater levels of accuracy of the frequency 

components of the signal under investigation it could be used to implement an almost-ideal 

notch filter. It was decided to develop the watermarking scheme described in Section 6.1 

and 6.2 in order to take advantage of the benefits of this new technique. 

 

As with the earlier method, a component value is first chosen which is used as the 

basis for calculating two other components to modify to hide the message. The initial 

component choice may be dependent on various factors, such as the type of audio used as 

host/cover. For example, human speech generally consists of lower frequency components 

than a modern Rock or Pop song so hiding data in a recording of speech would naturally 

limit the component of choice. However, even in such a limited range, there are still 

thousands of values to choose from due to the super-resolution capabilities of the CSPE 
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method. It is worth pointing out that the choice of initial component value does not need to 

be from those components inherently present in the audio. In fact, the value chosen is 

merely a reference or key value. 

 

The value of the chosen component becomes, in effect, a private key and this value 

is needed in order to decode the watermark – assuming that the presence of the watermark 

has previously been detected, which is not as likely as it would be in the earlier method. 

This private key adds to the security of the technique when used in an environment where 

security of the content of the hidden message is an issue.  

 

The signal intended as the cover or host audio is segmented into frames of uniform 

length and the frame is then analysed using CSPE techniques to identify the presence and 

magnitude of its inherent components.  The principal of CSPE algorithm can be described 

as follows:  

 

An FFT analysis is performed twice, firstly on the signal of interest and the second 

time upon the same signal but shifted in time by one sample. Then, by multiplying the 

sample-shifted FFT spectrum with the complex conjugate of the initial FFT spectrum, a 

frequency dependent function is formed from which the exact values of the frequency 

components it contains can be detected. The procedure of the CSPE algorithm is depicted in 

block diagram form in Figure 6.8: 
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Figure 6.8: Block diagram illustrating the CSPE process [134]. 
 

 

Mathematically, the algorithm can be described as follows. Assume a real signal 

S0, and a one-sample shifted version of this signal S1. Say that its frequency is β = q + δ 

where q is an integer and δ is a fractional number. If b is an initial phase, wn is the window 

function used in the FFT, 
0wsF is the windowed Fourier transform of S0, and 1wsF  is the 

windowed Fourier transform of  S1,  then, from [135], we find 
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The frequency dependent CSPE function can be written as 
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The windowed transform requires multiplication of the time domain data by the 

analysis widow, and thus the resulting transform is the convolution of the transform of the 

window function wf  with the transform of a complex sinusoid. Since the transform of a 

complex sinusoid is a pair of delta functions in the positive and negative frequency 

positions, the result of the convolution is merely a frequency-translated copy of wf  centred 

at +β and -β. Consequently, with a standard windowing function, the || Fw (Dn) || term is 

only considerable when k ≈ β and it decays rapidly when k is far from β. Therefore, the 

analysis window must be chosen carefully. It has been shown that apodization (the use of 

an appropriate windowing function) can be used to increase the resolution of the CSPE 

algorithm under certain conditions [136]. The use of a Nuttall window is suggested as a 

good choice in this regard. 

 

 If the analysis window is chosen so that it decays rapidly to minimize any spectral 

leakage into adjacent bins it will render the interference terms, i.e. the second and third 

terms, to be negligible. Thus, from equation (24) the CSPE for the positive frequencies is as 

follows: 
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From equation (25) we find the CSPE frequency estimate 
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The frequency dependent function produces a graph with a staircase-like 

appearance where the flat parts of the graph indicate the exact frequencies of the 

components. The width of the flat parts is dependent on the main-lobe width of window 

function used to select the signal before FFT processing. An example of the output of the 

CSPE algorithm is shown in Figure 6.9. 

 

Consider the signal St which contains components with frequency values (in Hz) 

of 17, 293.5, 313.9, 204.6, 153.7, 378 and 423. The sampling frequency is 1024 Hz. A 

frame of 1024 samples in length is windowed using a Blackman window and is padded 

using 1024 zeros. As shown in Figure 6.9a, the exact frequency of each component in the 

signal can be calculated using the CSPE algorithm and these are identified with an arrow in 

the graph. The largest error among all the estimates of the components frequencies is 

approximately 0.15 Hz.  
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Figure 6.9a: Frequency estimation of signal S1 by CSPE. 
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Figure 6.9b: A close-up view of a section of the graph in Figure 6.9a shows 
the flat area denoting the presence of a frequency component at 153.7 Hz.  

 

 

Notice too in Figure 6.9a that the widths of flat sections where the arrows point are 

related to the width of the window’s main-lobe in the frequency domain. A closer view of 

one of these sections is shown in Figure 6.9b where it can be seen that there is a flat section, 

and therefore a frequency component, at 153.7 Hz. 

 

In addition, with the CSPE technique, we can get the amplitude and phase of the 

kth frequency component using the following equations, where W(ω-fcspe(k)) is the Fourier 

Transform of window function which has been shifted to fcspe(k) in frequency domain. 
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6.3.2 Experimental evaluation of the CSPE algorithm 

Experiments were designed to evaluate the performance of the CSPE algorithm in 

correctly identifying frequency components within a multiple-component signal [134]. In 

each set of experiments, a total of 500 signals with sampling frequency 44100 Hz and 

containing components across the human hearing range of 100 Hz to 20,000 Hz were 

generated. Each signal contained many equally spaced frequency components. The number 

of components in each generated signal was not consistent. For each signal, there was a 

randomly-generated interval ranging from 169 Hz to 668 Hz, which defined the space 

between two neighbouring frequency components of the signal, making every input signal 

to the analysis unique. 

 

Equation (29) and (30) were designed to assess CSPE accuracy in frequency 

estimation. Denoting Freqestk as the value of kth components of the signal; Freqorgk as the 

original value of the kth component of the signal; Mk as the number of frequency 

components contained in the signal; FreqError as the frequency estimation error between 

Freqest and Freqorg of the signal and MeanErrorcspe as the mean error of the CSPE 

frequency estimation over N signals. For this experiment, N = 500, M changes with the 

randomly-generated signal interval as outlined above. 
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The estimation error of 500 signals is computed using equation (30) and shown as 

Figure 6.10 while the distribution of frequency estimation error (FreqError) is shown in 

Figure 6.11: 
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Figure 6.10: CSPE estimation error for each signal. 
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Figure 6.11: The distribution of frequency estimation error. 
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The mean error is calculated according to equation (30) 

 

N

FreqError
MeanError

N

k
k
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 1      (30) 

 

By data analysis, we note that 97.8% of signals analysed using the CSPE 

algorithm resulted in a FreqError value of less than 0.1 Hz, and the MeanErrorcspe is 0.0174 

Hz, meaning that the algorithm identified the component to within 0.1 Hz in almost all 

cases. It can be concluded from these results that the CSPE is extremely accurate in 

frequency estimation for signals containing constant frequency signal components. With 

accurate estimation of the frequency, the amplitude and phase can then be estimated using 

equations (27) and (28). 

6.3.3 Modifying components 

Once the user-defined base component has been identified in the signal by the 

CSPE algorithm, its magnitude is calculated. It is then a matter of modifying the magnitude 

of this component, weighting it against a second value from within the signal, in order to 

represent a single bit ‘1’ or ‘0’. We may choose to weight the user-defined components 

against the average power of the frame in which the bit is to be embedded. Recall that this 

was the procedure followed in both the earlier method described in Sections 6.1 and 6.2 as 

well as the work by Gopalan referenced earlier [86]. 

 

6.3.4 Dynamically selecting components 

It was decided to make the process of choosing the candidate component(s) for 

modification as flexible as possible by making this a dynamically chosen pair of values. 

The initial reference or key value can be selected by the user and it need not necessarily be 

an inherent component of the signal.  

 

Two components are then selected for modification dependent on the user-defined 

value but also dependent on the signal under consideration. Components chosen for 

modification were those identified by the CSPE method as being the nearest components 
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above and below the user-defined value by more than a calculated threshold as illustrated in 

equation (31) where compA is the highest CSPE-detected frequency component that is 

lower than the user-defined component u, by more than the threshold c while compB is a 

CSPE-detected frequency component above the user-defined component by the same 

threshold amount 

))(())(( cucompBucucompA     (31) 

 

What is interesting to note, using the formula in Equation (31) for defining which 

component we need to modify, and in which frames of the cover signal to perform such 

modification, is that only approximately half of the frames will require any modification. 

This is because the relationship between the values of the two chosen components in any 

given frame may already fit the criteria used for representing a ‘1’ or a ‘0’. In this case they 

would not have to be modified in any way. This consideration makes this method far more 

favourable than earlier efforts. Another very interesting observation, from the perspective 

of security of the watermark, is that during the formulation of such a selection algorithm it 

became obvious that it is unlikely that any two subsequent frames would have the same 

component modified. This means that any attempt to by an attacker to use visualisation or 

other techniques to discover the components in a frame that have been modified, in order to 

allow complete decoding, would be unsuccessful. This would overcome the problem 

referred to by Gopalan [86]. 

 

The system would then compare the magnitude of both components (compA and 

compB) in any given frame before deciding if any modification would be required in order 

to satisfy the embedding criteria, depending on the bit to be embedded and the magnitudes 

of the two components in that particular frame. If they are already in the correct 

relationship, no modification is required. If, however, they are not in the correct 

relationship, one of the components must be modified. The decision that it is necessary to 

modify a component leads to another issue being raised. As mentioned earlier, the CSPE 

algorithm can be used to accurately identify a component within a signal, and from there its 

phase and amplitude can be calculated. Assuming that the magnitude of compA is lower 
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than that of compB, in a frame in which it needs to be of a higher magnitude to represent a 

‘1’ bit, there are two possible methods available to achieve the desired relationship. First, 

the magnitude of compA can be increased until it is higher than that of compB. Secondly, 

the magnitude of compB can be lowered until it is below that of compA. Each has its 

advantages and disadvantages: 

 

If a component’s magnitude is increased, it increases the likelihood that the 

component will play more of a role in the perceptual evaluation of the audio by listeners. In 

other words, if compB occupies an important position in the audio, in terms of 

perceptibility, and compA is increased to be of a bigger magnitude, then the increased 

component may become too loud and therefore be audible as an artefact. Therefore, if this 

method is used, care must be taken to ensure that the modified component does not have 

too large of a magnitude. 

 

The alternative, lowering a component’s magnitude, might therefore seem the 

obvious choice as it means that, regardless of the magnitude of one component, if the other 

component is set to a lower magnitude it would not produce an audible artefact. This 

method is also, however, also problematic. If a component is chosen that is quite low-

powered in the frame, then lowering another component might make it so small as to be 

undetectable by the CSPE algorithm. As a result of these considerations, limiting the 

scheme to selecting candidate components only within certain thresholds would seem like 

an appropriate compromise. The algorithm can be further strengthened in terms of its 

transparency if the components so chosen are not amongst the higher-powered components 

in a frame. 

 

A set of rules is defined that would lead to the modification of only one of the 

components (compA or compB) in approximately half the frames. The rules are as follows 

(where ‘Amp’ refers to amplitude of the component) 

 
Let Amp(compA) > Amp (compB) + margin where bit = 1 
Let Amp (compB) > Amp(compA) + margin where bit = 0  
 



   

- 163 - 

In order to increase the magnitude of a particular component in the cover signal 

s(t), another component is added at a defined magnitude and matched to the phase of the 

component it is being combined with, as illustrated in Equation (32): 

 

        lptcompAthresholdlAmprAmptsts  2cos        (32) 

 

where  rAmp= amplitude of compB 

lAmp= amplitude of compA 

compA= Frequency of compA 

lp = phase of compA. 

 

This is equivalent to an ideal notch filter where an individual component can be 

altered without impacting on any other component. Conversely if it is decided to reduce the 

magnitude of a component s(t) so that it satisfies the requirements for embedding a ‘1’ bit, 

this is achieved by reducing the component to the right of the user-defined component 

value, by adding in a component that is o180  out of phase with the original component in 

the signal as follows: 

 

        rptcompBthresholdlAmprAmptsts  2cos   (33) 

 

where compB and rp define amplitude and phase of compB. 

 

6.3.5 Decoding 

In order to process candidate audio for detection and decoding of a potential 

embedded watermarked message, the system must first be provided with the user-defined 

value used as a basis for calculating the embedding values, along with the above rules that 

define a ‘1’ bit and a ‘0’ bit. The candidate audio signal is then segmented into frames 

using the same frame size as was used for embedding. The system calculates the magnitude 

of the components identified using the rules and after CSPE analysis, and performs a simple 

comparison. From this comparison the watermarked bit sequence can be recreated. It is a 



   

- 164 - 

comparatively simple matter of repeating the CSPE algorithm to identify the two 

components above and below the user-defined value by more than a pre-defined threshold. 

These two components would then have their magnitude compared and a ‘1’ or a ‘0’ bit 

would be determined according to the rules used in their embedding.  

 
 
6.4 Evaluation of the CSPE-based watermarking scheme 

A series of experiments was carried out to evaluate the performance of this codec, 

based on the same 500 synthesised signals as introduced in section 6.3.2. For each signal, a 

randomly generated binary bit-sequence of length 150 was embedded by means of 

increasing the magnitude of components as described. The system then decoded the 

modified signal in order to detect the watermarked code.  

 

The difference between these two code sequences can be calculated in terms of 

equation (34) below, where DCode denotes the code sequence obtained in the decode 

process, ECode denotes the code sequence initially embedded in the signal, CodecPrecision 

denotes the precision of the decode process with code length L for signal k and 

MeanPrecision denotes average error of the decode process over N signals. In this 

experiment, L and N are set to 150 and 500 respectively.  
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The results of this experiment are depicted in Figure 6.12. 
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Figure 6.12: Precision of codec for each signal. 
 
 

 

 

The distribution of CodecPrecision is shown in Figure 6.13. 
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Figure 6.13: The distribution of precision of codec. 
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From the experiment results, it can be seen that 99.2% of signals produce a 

CodecPrecision value of 1 (100%). This means that, from 500 randomly generated signals 

with multiple components of different frequency spacing, watermarked with a binary bit-

sequence of 150 bits, 99.2% of these signals were decoded to the exact 150 bit sequence. 

Only 0.8% (a total of 4 from 500 signals) was not decoded perfectly. Of those not perfectly 

decoded, the bit sequence recovery rate was above 98.66%. The MeanPrecision computed 

using Equation (35) is 0.9999 (99.99%). Therefore, the performance of this codec is almost 

perfect for this experiment, albeit with synthesised signals. 

 

What should be remembered is that the decode experiment in this case represented 

a single iteration of a bit sequence over the length of a signal. Given that any realistic use of 

such a scheme would embed the message repeatedly in a cover signal, sometimes hundreds 

of times, it would be possible to increase the effectiveness of the decode process by, for 

example, repeated decoding and using the mode of the results.  

 

6.5 CSPE-based watermarking of real signals 

Simulated signals, albeit with many different components at many different 

frequencies and with many different magnitudes are not real signals. Real signals usually 

contain hundreds, if not thousands, of continuously varying individual components. This is 

a much more difficult proposition for signal analysis. As mentioned in the discussion of 

DFT techniques in Section 5.2.5, the ubiquitous FFT-based analysis techniques used in 

digital signal processing cannot decompose a complex signal into its component parts [93]. 

The Goertzel algorithm used in the early phase of this watermarking scheme outlined in 

Section 6.1 is not capable of exactly identifying the components inherently present in a 

given complex signal at any given point. 

 

Initially, as discussed above, attempts to develop the CSPE algorithm into a 

watermarking scheme using synthesised signals proved to be encouraging. The technique 

was then applied to real signals, namely 20 music tracks of varying genres. After changing 

the frame size, it was possible to embed a series of watermarks in music tracks of varying 
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genres and then decode them to a high degree of accuracy. As described in Section 6.3.1, 

the CSPE watermarking of synthesised signal was achieved with a frame size of 1024. 

However, given that the CSPE algorithm is less effective at identifying components in 

small frames, the frame size was increased to 8192 and padded by the same amount. This 

meant that more components would be identifiable providing more candidate components 

for modification.  

 

6.5.1 CSPE watermarking by magnitude increase 

In order to test the overall usefulness of the algorithm in isolation a series of 20 

audio tracks was watermarked with a randomly generated bit sequence 700 bits long. This 

was done without any form of error-correcting being employed. In decoding the watermark 

from these 20 tracks perfect recovery of more than 97% of the 700-bit sequence without 

any additional processing was achieved, as shown in table 6.3: 

 

Track Precision Track Precision Track Precision Track Precision 
1 0.9846 6 0.9881 11 0.9849 16 0.9748 
2 0.9757 7 0.9749 12 0.9902 17 0.9826 
3 0.9909 8 0.9973 13 0.9914 18 0.991 
4 0.9836 9 0.9782 14 0.9761 19 0.9783 
5 0.9889 10 0.9823 15 0.976 20 0.9792 

 
Table 6.3 shows the precision values for decoding of 20 music signals when encoded and 
decoded using the CSPE-based magnitude-increase algorithm without error correction. 

 

 

The process was then further modified in an attempt to develop it into a practical 

application-dependent watermark embedding and decoding scheme. The first step was to 

reduce the embedded bit-sequence that represented the watermark from 700 bits long to the 

100 bits needed to represent the same 12 character identifier that was previously embedded 

using earlier methods described in Section 6.1 and 6.2. This shorter sequence was then 

embedded repeatedly in the cover signal. A single frame is shown in Figure 6.14 to 

illustrate the minute change made to the component in the algorithm when it increases the 

magnitude of one of the two components either side of a user defined value.  
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Figure 6.14: A frame showing the change from original to the watermarked signal 
when processed with the magnitude increase algorithm. 

 

 

Note from Figure 6.14 that the left component modified is in bin 1017 on the x-

axis and the right component modified is in bin 1036. A larger image is included in 

Appendix 2 for closer examination.  

 

Upon decoding the repeated watermark, the CSPE-based scheme proved to be 

apparently perfect in its operation. In performing the embed/decode cycle on the same 20 

files that had on average produced 98.35% precision as shown in table 6.3, the full 100-bit 

sequence was successfully decoded in all of the test cases. Of course, this was for only 20 

real world sound signals but it was certainly encouraging.  

 

6.5.2 CSPE watermarking by magnitude reduction 

One discouraging result of the work to this point was that the watermarking 

process introduced some audible artefacts in some frames. Of course, this would make the 

scheme unacceptable in a broadcast monitoring scheme. The cause of these artefacts was 

that the magnitude of some components was quite high after they were altered to reflect the 

desired relationship. The solution was to modify the embedding phase of the algorithm so 
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that instead of increasing the magnitude of any component, the magnitude of the other 

component was reduced. If a relationship of A>B was required for a particular bit and the 

components were not in such a relationship, the magnitude of A had previously been 

increased until A>B. Now, instead, the magnitude of B would be reduced until it was less 

than the magnitude of A, thereby satisfying A>B. Therefore, under none of the component 

modifications would a magnitude increase be introduced. A single frame is shown in Figure 

6.15 to illustrate the changes made to the components in the algorithm when it reduces the 

magnitudes of one of the two components either side of a user defined value. A larger 

image is included in Appendix 2 for closer examination. 
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Figure 6.15: A frame showing the change from original to the 
watermarked when processed with the magnitude reduction algorithm. 

 

 

Note from Figure 6.15 that the left component is noticeably altered. The process of 

embedding and decoding 20 real signals was performed again, this time by component 

magnitude reduction rather than increase. The result was that there were no audible 

inconsistencies or artefacts introduced by the process. However, the accuracy of the system 

dropped dramatically, with some files reporting watermark extraction barely above 50% as 

shown in Table 6.4. 
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Track Precision Track Precision Track Precision Track Precision 

1 0.8438 6 0.8438 11 0.7708 16 0.7500 
2 0.8854 7 0.7292 12 0.7604 17 0.8333 
3 0.8750 8 0.5521 13 0.8021 18 0.8750 
4 0.8542 9 0.7708 14 0.7396 19 0.8542 
5 0.7917 10 0.8542 15 0.8750 20 0.8438 

 
Table 6.4 shows the precision values for decoding of 20 music signals when 

encoded and decoded using the CSPE-based ‘magnitude-reduction’ algorithm. 
 

 

The reason for this was that the components chosen for manipulation were the first 

components that the CSPE could detect on either side of the key component. When two 

components were identified, often they were of such small magnitude that when one was 

decreased in magnitude it became almost zero. Ironically, it was the precision of the CSPE 

technique that allowed the identification of components of such small magnitude but it was 

not practical then in the decoding phase to identify components with magnitudes reduced to 

near-zero. 

 

6.5.3 CSPE watermarking by magnitude reduction and swapping 

The final experimental adaptation of the CSPE-based watermarking system was as 

follows. In the case where one component was greater than the other, and the ‘1’ or ‘0’ bit 

being embedded required that the relationship was the reverse, the magnitudes of both 

components was recorded, reduced to zero and then swapped. The result of this process on 

a single frame is shown in Figure 6.16. A larger image is included in Appendix 2 

. 
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Figure 6.16: A frame showing the change from original to the watermarked when 
processed with the magnitude ‘reduce and swap’ algorithm. 

 

 

What this meant in practise was that compA was re-introduced into the signal but 

with the magnitude that compB had previously had, and vice versa. This process did, of 

course, produce the relationship that was required since the components would then have a 

relationship opposite to that which had previously existed. As explained in section 6.3.4, 

component magnitudes were only altered in the case that the components were not already 

in the correct relationship. The results of this ‘reduce and swap’ algorithm are shown in 

table 6.5. 

 

Track Precision Track Precision Track Precision Track Precision 
1 0.9896 6 0.9896 11 0.9896 16 0.9792 
2 0.9792 7 1 12 0.9896 17 0.9896 
3 0.9896 8 0.7708 13 1 18 1 
4 0.9896 9 0.9479 14 0.9896 19 0.9792 
5 0.9792 10 1 15 1 20 0.9896 

 

Table 6.4 shows the precision values for decoding of 20 music signals when encoded and 
decoded using the CSPE-based ‘magnitude reduction and swap’ algorithm. 
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As can be seen when comparing Tables 6.1, 6.2 and 6.3, the precision for each file 

is uniformly worst in the ‘magnitude reduction’ algorithm and consistently best in the 

‘magnitude reduce and swap’ algorithm, which gives slightly better results than simply 

increasing magnitudes. 

 

There were still a number of alternatives and modifications that could be 

investigated in order to achieve the desired result of an inaudible but accurate watermark 

embedding. One of these modifications was simply to alter the magnitude of not only the 

first component to the left and right of the key component that were identified by CSPE, but 

two. This would serve the purpose of doubling the likelihood of correct comparison. If the 

first of these components was reduced to such a small magnitude as to be undetectable, then 

the second could possibly still be detected. Of course, the second component might also be 

undetectable but this modification would at least increase likely overall detection rates 

without increasing audibility of the watermark. 

  

Another modification to be investigated was to select as embedding candidates 

only the components that were above a certain minimum magnitude but within a certain 

range of each other. If two components above a certain magnitude were slightly modified, 

even if one was reduced to below that magnitude, the likelihood is that CSPE-based 

analysis would then be still able to find the component in the decoding phase.  

 

Still another modification that could be examined was to alter the magnitude of 

both candidate components to reflect the desired relationship. For example, if we need 

compA > compB and if compA is 0.02 and compB is 0.08 then, rather than increasing 

compA to 0.09, or reducing compB to 0.01, we instead do both at the same time, but only 

apply half as much change to each. In this case we would increase compA by 0.035 extra 

(half the difference, plus a small increase) to 0.065 and at the same time reduce compB by 

0.03 (half the difference) to 0.055 thereby creating the desired relationship in such a way as 

to minimise the possibility of making either component audible or undetectable. More 
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comprehensive testing of these possible developments would need to be undertaken before 

any conclusions could be drawn on their precision and transparency.  

 

6.5.4 Capacity of the scheme 

Watermarking schemes range in capacity from less than 1 bit embedded per 

second of cover signal [110] to more than 3 kbps [121]. Capacity is usually a secondary 

consideration of the scheme, being less important than robustness and transparency yet 

affected by both of these considerations. In the scheme proposed here, the capacity is a 

direct function of the frame size used in the CSPE algorithm. In Section 6.3.1, the frame 

size that produced perfect precision on synthesised signals was 1024. However, in order to 

overcome some of the shortcomings of CSPE analysis on small frames, the frame size was 

increased to 8192 when the scheme was applied to real signals, as described in Section 6.5. 

Capacity of the system is calculated by dividing the sampling rate by the frame size: 

 

frameFscap /       (36) 

 

In the watermarking of music files, capacity is therefore a comparatively low 5.85 

bps (48000/8192). However, the capacity can be increased in two ways. Firstly, multiple 

components can be modified on either side of the user-defined base component. For each 

additional component modified, the capacity doubles. Caution should be exercised, 

however, as each additional modification to the cover signal increases the chances of 

perceptible artefacts. If the scheme is used as a covert communications method this might 

not be a primary consideration. However, when implemented in a broadcast monitoring 

scheme, perceptual transparency is paramount. 

 

The other way of increasing capacity is simply to reduce the frame size. A smaller 

frame size will result in a higher value for cap in equation (36). In using synthesised 

signals, experimental results were generated and analysed with the CSPE algorithm. Frame 

sizes as small as 256 could be adequate for some types of signals (although not music). This 
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means that capacity would increase 32-fold in an application that utilised deliberately 

created synthesised signals for steganographic purposes. The capacity for a system that 

sampled the cover signal at 48 KHz and used a frame size of 256 would be 187.5 bps. 

 
 
6.6 CSPE and watermark security 

In the earlier watermarking scheme outlined in Sections 6.1 and 6.2, one 

noticeable result of the algorithm to notch the cover audio and then insert two components 

in the required ratio is that it would lead to some visible pattern when the signal was 

analysed using the spectrogram. Experienced practitioners who know what to look for 

would, in theory, be able to identify the presence of some repeated pattern and this could 

lead to breach of the security of the content of the watermarked message, assuming it had 

not been enciphered prior to insertion. Similarly, if a watermarking scheme was being 

employed for covert communications or any critical data-hiding purpose, the visible pattern 

itself could theoretically be decoded even without any knowledge of the watermarking 

technique. 

 

The CSPE-based watermarking algorithm described above does not introduce any 

such visible patterns. This is because the CSPE algorithm does not alter the magnitude of 

the same component in each frame. Instead, the proposed scheme modifies the magnitude 

of one component on each side of a reference component (the so-called private key). If the 

key component is, say, 3000 Hz, the CSPE-based scheme might alter the components 

perhaps at 2997 Hz and 3002 Hz in one frame and it might alter 2999 Hz and 3010 Hz in 

the next frame. In fact, it would appear that the choice of components to modify in a real 

signal would almost be random due to the non-stationarity of the content of real signals. 

 

It is a positive characteristic of the proposed CSPE-based scheme that it is actually 

more useful when implemented using real signals than synthesised signals because this 

variation in components modified from frame to frame provides additional security. 

Without having access to an unwatermarked version of the original cover audio, no attacker 

trying to decipher the content of the watermark, even if its presence could be perceived, 
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would know which components in each frame had been modified, if any. This quality of 

CSPE-based watermarking adds to the steganographic nature of this particular technique. 

 

In fact, if a non-watermarked signal and a watermarked signal were to be decoded 

without knowledge of the initial key component chosen at the embedding stage, their output 

would probably appear equally random. This contention will have to be investigated in 

some detail, particularly from the perspective of probabilities and statistics, in order to state 

with any degree of certainty that the content of the watermark, again even if its presence 

could be perceived, would be safe against unauthorised decoding as long as the ‘private 

key’ was kept private. A CSPE-based scheme that embeds a bit-stream in the cover audio 

would seem to be extremely secure in this context because the output of every signal, 

watermarked or otherwise, will be a sequence of bits.  

 

6.7 Summary 

While there is no significant different in precision between the two variations of 

watermarking proposed in Chapter 6, the development of the CSPE-based watermarking 

algorithm outlined in Section 6.3 led to a significant improvement on the techniques in 

Section 6.1 and 6.2. One of the limitations of the early technique was that it was not 

technically a steganographic scheme because spectral representations of the watermarked 

signal could be employed to identify a pattern created by the process to notch the cover 

signal and then add components. This limitation was removed in the CSPE-based scheme 

as there is no notch performed on the cover audio and, more importantly, the components 

modified in each frame are different, regardless of which magnitude modification technique 

is employed. There is therefore no pattern to discern. In steganographic terms this is a 

major improvement. 

 

The scheme is almost perfect in its precision and, with further development it may 

be made perfect. While a complete listening test is yet to be carried out, informal initial 

listening suggests that the watermark is perceptually transparent. Only one single file 

presented any form of audible distortion and it is not clear if this is a function of the track or 
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the watermarking process. A complete encode/decode of the collection of almost 350 audio 

files in various genres will be carried out to validate the transparency of the scheme.  

 

No claim for robustness is made at this stage as full tests have not been carried out. 

However, if the algorithm is modified so components modified in the CSPE-based scheme 

are chosen carefully to avoid using components that might be perceptually insignificant, 

then robustness against perceptually based compression should be ensured.  
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Chapter 7: Conclusions  
 

It is worth recalling that the primary motivation for this research was to identify 

problems with the current administration of Copyright, particularly as it pertains to public 

performance copyright. The intention was to attempt to address the problems inherent in 

these systems which lead to a negative or detrimental effect on developing artists – exactly 

the demographic that Copyright was envisaged to protect from exploitation, even if that 

exploitation was accidental and/or legal. As the ‘Statute of Anne’ was intended to address 

what was, at the time, the legal copying of works by book publishers [5], it might be said 

that the purpose of this research was to address the legal situation that can be shown to also 

be exploiting the less well informed artists to the unwarranted benefit of the better 

informed, mostly commercially aware, artist. 

 

The early stage of the research was spent analysing the impact of collective rights 

licensing at the grass roots level, including but obviously not limited to the direct financial 

impact on artists who should have seen reasonable royalty payments and who did not. The 

restrictions on career development caused by any alleged underpayment(s) are obviously 

impossible to judge but there are a number of case studies which illustrate the 

comparatively huge impact that royalty payments can have on an artist’s development. 

Most notable among artists who have seen such positive development as a result of 

receiving royalty payments they were entitled to, are Irish rock band ‘Jaded Sun’. For a 

single live performance in May 2006, the band received royalty payments that covered the 

cost of recording their first full album, ‘Gypsy Trip’. On the strength of this album, Jaded 

Sun toured Europe and were offered the opportunity to develop their career to the point 

where they were hailed as one of the best rock bands on the continent by many 

publications. While most artistic endeavour is undertaken, at least at first, whether there is 

ever any ‘promise of emolument’ [6], this single example is used to illustrate the effect on 

an artistic career that can be achieved with correct and accurate distribution of royalties that 

are actually due to an artist. 
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There are dozens of techniques that can be applied to the area of audio 

manipulation for broadcast monitoring and they can be described in two main categories: 

fingerprint based and watermark based. Fingerprint-based techniques are those where a 

copy or digest of audio is made and stored before being compared to a candidate signal in a 

broadcast monitoring environment. Watermark-based techniques are those where some 

identifier or other data is embedded within the audio and broadcasts are monitored for the 

existence of these marks within the signal. Given that this research was approached with no 

preconceived ideas about the ‘right’ way to solve the problems in the administration of 

collective rights licensing and with no a priori knowledge of the techniques and 

technologies already applied to this and related areas, there was no preference for any one 

over technique over any other. Each has its advantages and disadvantages but the 

disadvantages of fingerprint-based monitoring for developing or less successful artists 

would actually be advantages for the more commercially aware, successful artist. These 

disadvantages, and others, are the primary reasons why fingerprinting techniques were 

discounted as unsuitable for broadcast monitoring and audio identification in this research. 

 

There are a comparatively small number of broadcast monitoring schemes based 

on watermarking techniques. For example ‘Audio Auditing’ utilises echo watermarking (see 

Section 5.2.2). On the other hand, various digital watermarking techniques exist in image or 

video manipulation. The increased sensitivity of the human auditory system compared to 

the visual system means that watermarking in audio was a tougher prospect than in images. 

 

Given that watermarking was the preferred choice of technique to implement a 

fair, accessible and transparent broadcast monitoring system that would not unfairly weigh 

against any sector, research was undertaken into the myriad forms of watermarking that 

were already in existence and were continuing to be proposed. In order to understand the 

various techniques available and their relevant advantages and disadvantages, 

watermarking schemes based on echo-insertion, phase modification, amplitude 

modification, multiplicative or transform-based embedding, spread spectrum embedding  

and chaos-based watermarking techniques, amongst others, were investigated,.  
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A form of amplitude modification was first attempted and while this was very 

successful when implemented with synthesised signals, it soon became apparent that more 

realistic signals would be much less likely to be easily modified using a simplistic 

amplitude modification approach, most notably because of the pre-existing content of the 

host signal. Some analysis of the inherent content of the host audio sample set was 

undertaken to try to identify any relationship between various components in the signals. 

However, while there was no real identifiable relational pattern between components, and 

the relative strengths of the components that had previously been chosen for modification 

were not extreme at either end of the scale, it was felt that the approach needed to be 

changed in order to maximise decoding accuracy. 

 

Various alterations to the basic amplitude modification scheme were proposed and 

attempted, some with more success than others. One successful alteration was to modify the 

amplitude of higher-frequency components as these components tended to have relatively 

higher strengths within a given frame of audio. However, it was also noted that selecting 

components above certain upper bounds would mean that these components, and therefore 

any watermark embed by their modification, would be more likely to be altered or even 

removed by attacks such as compression or perceptual coding in any form. Components in 

the mid-range of the human auditory system were chosen for more in-depth 

experimentation. Eventually, recovery rates of more than 99% were achieved with 

perceptual transparency of the watermark achieved in almost all cases.  

 

Another successful alteration to the embedding phase of the scheme was the use of 

a notch filter to reduce to almost zero the power of the component in the host audio that 

was at the point where the watermark was to be embedded. In this way, inherent 

components that were higher-powered in the host signal than they should be after 

watermarking, were first reduced so as not to be too strong on decoding, spoiling the result. 

 

A concerted effort was then made to identify the relative contribution of each of 

the watermark input parameters to the overall output result. Using the results of 
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approximately 11,500 individual watermark embedding/decoding processes on hundreds of 

real audio signals taken from commercial releases in various genres, the relationship 

between the input parameters and the result was evaluated. A set of optimal embedding 

parameters was defined for most cases.  

 

The discovery of the Complex Spectral Phase Evolution (CSPE) technique for 

identifying components in an audio signal to a very high degree of accuracy led to a further 

alteration to the process. Since CSPE-based analysis could be used to identify components 

at frequencies down to a fraction of a Hertz, the embedding phase of the scheme was 

evolved to make use of this technique. Rather than applying a notch filter to the host signal 

in order to create a ‘hole’ into which the components used to represent the watermark 

would be added, the CSPE technique was used to identify components and they could then 

be manipulated directly. 

 

It was also found that the CSPE-based scheme had two major advantages over the 

previously proposed scheme. First, the ability to identify components very accurately made 

the selection of components for modification more fine-grained than previously and this led 

to the CSPE-based scheme being potentially more secure because the number of fractions 

of frequencies that could be used for watermarking was higher. The likelihood of 

identifying these components was subsequently much less. Secondly, modification of 

different components in each subsequent frame (rather than the same components in frame 

after frame) meant that the possibility of identifying a pattern and therefore identifying the 

modified components was reduced drastically. This alone makes the process a 

steganographic one, as there is no way of identifying whether or not a candidate signal has 

been watermarked. 

 

With these observations, the value of the CSPE-based watermarking scheme as 

something other than a simple broadcast-monitoring tool became evident. A robust 

watermarking scheme that is perceptually transparent has many uses. One that also 

produces a watermark that is undetectable, indecipherable and resistant to common attacks 
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such as perceptual coding or compression and achieves all of this with inherent pseudo-

security has many more uses. Furthermore, the characteristic of the proposed scheme that 

allows the modification of components at a high degree of granularity means that there is 

every opportunity to embed more than one watermark with no discernible loss of audio 

quality. This enables its use simultaneously for more than one purpose. Some of the 

potential applications for which such a watermarking scheme can be utilised include: 

 

o Covert Communications. 

o On-the-fly music identification. 

o Additional revenue generation for broadcasters & content producers. 

o Watermarking individual performers. 

o Tracking unauthorised distributions. 

 

An explanation of each of these potential applications is provided in Appendix 4. 

 

7.1 Step by step description of a proposed broadcast monitoring process 

Notwithstanding the multiple uses for which an effective watermarking scheme 

can be deployed, the purpose of the research undertaken and described in this document 

was to provide a system for broadcast monitoring that was efficient, accessible, accurate, 

transparent and robust. By considering the process that would be undertaken by a content 

producer from the beginning, it can be shown that these requirements have been met. 

Consider the following scenario: 

 

An artist, producer or other content creator completes their work. Before making 

any copies available to any third party the piece is watermarked. The watermark is 

embedded with a ‘public key’ value. This value is standard across the industry and issued to 

content creators along with the three-letter ISRC ‘Registrant’ code described in Section 

3.6.1 by any of the various organisations that provide these codes under the auspices of the 

IFPI. The ISRC system already exists in the industry so it is a simple matter to ensure all 

new Registrant are given the ‘public’ watermarking value. The content creator can choose 
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to add additional watermark(s) if required. The content is then released to interested parties 

or the public. 

 

A means of monitoring radio and television broadcasts is assumed to be in place. 

Such monitoring is already performed for audio-fingerprinting tasks by organisations such 

as ‘Nielsen’ [71], ‘MusicTrace’ [137] and others. These systems could be adapted to 

analyse the audio signal for watermarks instead of, or in addition to, fingerprints. 

Alternatively, collective rights societies could implement an industry-wide broadcast 

monitoring system in a collaborative development.  

 

Once identified, watermarks are decoded back to an alphanumeric ISRC code and 

a table created of instances where each ISRC code is identified. At the end of each 

reporting period, which could be daily, this data is used to query the database of ISRC 

codes already in place in the various ISRC national registers and the IFPI. The national 

registers then publish, extrapolate, condense or otherwise manipulate this data to increase 

its usefulness.  

 

Finally, and most importantly for this research, the collective rights organisations 

use the reports of plays over a period of time to calculate the distribution of royalties based 

exactly on the number (and length) of plays identified for each watermarked work. 

Monitoring can also be carried out by content owners as the values used to watermark the 

audio will be known to them. The issues of awareness and accessibility remain for the 

industry to address. It is, of course, impossible to ensure every artist is made aware of the 

availability of such a system. However, if implemented as outlined here, then every artist 

who is ever made aware of, and requests, an ISRC code would be made aware of the 

advantages and process of watermarking their works. 
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…ergo: 

The development of an accessible, perceptually transparent, robust and adaptable 

watermarking scheme has been achieved in this research. Moreover, it more than satisfies 

the primary goal of the research: namely an open and accessible broadcast monitoring 

scheme that could be used to provide accurate and correct records to enable the efficient 

and equitable calculation of royalties due for public performance of copyrighted works. 
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Chapter 8: Future Work 
 

The discovery of the relatively newly developed CSPE algorithm for super-high 

resolution analysis of signal components is likely to lead to significant development in any 

area that relies on accurate signal representation. The watermarking scheme outlined in this 

work will be developed further and will be extended to different domains. In the first 

instance, analysis of the output of the CSPE algorithm will be performed in order to 

identify where its use in the area of digital audio watermarking might be improved. 

 

The precision of component analysis, along with the capacity of the system, are 

areas that would benefit from further investigation. Precision of analysis is, as mentioned in 

Section 6.3, a function of frame size when performing CSPE analysis. However, capacity is 

also a function of frame size. These two characteristics of the algorithm as applied to an 

audio signal are counter to each other and have an inverse relationship. This means that a 

smaller frame size will lead to increased capacity of the system but simultaneously lead to 

decreased precision in identifying suitable candidate components for modification to 

represent the watermark. The converse is also true, that a larger frame size will lead to 

greater accuracy but also to lower capacity. The use of larger windows allied to smaller 

frame sizes is one area that warrants further attention as it seems to promise increased 

capacity without loss of precision. 

 

A full scale test will be carried out to ascertain if the results achieved in section 6.3 

can be replicated in a large number of audio files in a wide variety of genres. Wide ranging 

listening tests will also have to be carried out to investigate the perceptual transparency of 

the scheme more comprehensively. Similarly, objective testing will also be carried out in 

order to evaluate how the scheme compares to other watermarking schemes. 

 

The ability to embed information within, rather than alongside, the signal means 

that the watermarked message is more likely to survive attacks, particularly accidental 

attacks such as transmission channel noise and interference. A future development of this 
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technique will be to apply it to the sound channels that are carried alongside video in every 

television / cinematic environment. There are a number of applications for which this might 

prove useful, including but not limited to the following. 

 

A watermark scheme can be developed to embed a television programme’s script 

within the sound channel of the programme. This would not be too difficult to achieve and 

would be useful for several purposes. First, it could easily replace the traditional teletext-

based subtitling provided for deaf or hard-of-hearing viewers. Approximately 10% of the 

population suffers some form of hearing loss and subtitling for this demographic sector has 

been provided for some years. However, subtitling of a programme takes time to arrange 

and many programmes are left without subtitles. The ‘holy grail’ of subtitling is to be able 

to subtitle live television News broadcasts. With a watermarking scheme that uses the 

information produced for display on the newsreaders ‘teleprompter’ as a message source, 

and a decoder in a set-top box or a microphone in a modern mobile phone, this could be 

achieved relatively easily and inexpensively. 

 

An added bonus of such a scheme is that automated processing would mean that 

subtitling would become relatively inexpensive. Currently, subtitling is done ‘by hand’ 

which is costly in terms of man-hours, or by a form of speech recognition which is 

inherently inaccurate. Finally, in this regard, such a scheme would also widen the provision 

of subtitle display to the handheld arena. More and more, users are consuming their 

television on mobile and/or internet connected devices. These devices are generally not 

teletext-enabled and as such are incapable of displaying the subtitles. If the subtitle was 

actually part of the television signal, embedded in its sound channel, mobile devices could 

easily be programmed to decode them via their microphone and display them on screen. 

 

While subtitles are also a feature of cinema and DVD movie releases, they present 

a different challenge and are produced differently. However, a watermarking scheme for 

film might prove very useful for various purposes. The adaptation of the proposed scheme 

to embed script, director’s notes, associated information and dialogue within the sound 
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channel of a film would provide great flexibility in terms of searching film. In order to 

search through a film for a small section of dialogue, users must currently either know the 

general location of the dialogue in the film’s timeline, or must scan through the entire 

footage. Even having access to a typed script of the film will only help narrow down the 

search as scripts are not time-stamped. If the dialogue was watermarked into the sound 

channel, a basic search for a line of dialogue could direct the user to the film footage 

exactly at the right time segment. It would be a one-time task to produce the necessary 

watermark, embed it in the footage and make it available for more efficient and effective 

research in future. The same technique could be applied, for example, to animations, 

recordings of political speeches, parliamentary proceedings and even Court proceedings. 

Since the watermark is embedded in sound, not video, these techniques can be applied 

wherever audio can be recorded. 
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Appendices: 
 
Appendix 1: Example license costs for the Phonographic Performers of Ireland (PPI) and 

Performance Rights Society UK (PRS) public performance license. 

 

Appendix 2: Large scale images of frames before and after modification using three 

variations of the CSPE algorithm outlined in Section 6.3 

 

Appendix 3: Complete results of trial and error experiments performed to identify optimal 

encoding parameters in phase 1 of the watermarking scheme. 

 

Appendix 4: A series of suggested applications that could be implemented using the 

watermarking scheme proposed in Chapter 6. 
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Appendix 1: Example costs for the Phonographic Performers of Ireland (PPI) and 

Performance Rights Society UK (PRS) public performance license. 

Annual 
Income 
Band 

(EURO) 

Band 
Amount 

 
(EURO) 

Individual 
Band 
Tariff 
(%) 

Individual 
Band 
Tariff 

(EURO) 

Cumulative 
Top Of Band 

Tariff 
(EURO) 

Tariff 
Amount 
As % Of 
Income 

0 - 105,999 
 

106,000 1.30 1,378 1,378 1.30 

106,000 - 211,999 
 

106,000 1.95 2,067 3,445 1.63 

212,000 - 317,999 
 

106,000 2.60 2,756 6,201 1.95 

318,000 - 527,999 
 

210,000 3.25 6,825 13,026 2.47 

528,000 - 843,999 
 

316,000 3.90 12,324 25,350 3.00 

844,000 - 1,266,999 
 

423,000 4.55 19,247 44,597 3.52 

1,267,000 - 1,689,999 
 

423,000 5.20 21,996 66,593 3.94 

1,690,000 - 2,112,999 
 

423,000 5.85 24,746 91,338 4.32 

2,113,000 - 2,639,999 
 

527,000 6.50 34,255 125,593 4.76 

2,640,000 - 3,166,999 
 

527,000 7.15 37,681 163,274 5.16 

3,167,000 - 3,693,999 
 

527,000 7.80 41,106 204,380 5.53 

3,694,000 - 4,220,999 
 

527,000 8.45 44,532 248,911 5.90 

4,221,000 - 4,747,999 
 

527,000 9.10 47,957 296,868 6.25 

4,748,000 - 5,274,999 
 

527,000 9.75 51,383 348,251 6.60 

5,275,000 - 6,332,999 
 

1,058,000 10.40 110,032 458,283 7.24 

6,333,000 - 8,441,999 
 

2,109,000 11.05 233,045 691,327 8.19 

8,442,000 - 10,550,999 
 

2,109,000 11.70 246,753 938,080 8.89 

10,551,000  plus 
 

 12.35    
 

 

Table A1.1: PPI (Ireland) license costs for independent commercial radio stations [138]. 
 
 
 
 

 'Net Broadcasting Revenue' (NBR) Rate 

 Below £578,877  3% 

 £578,878 - £1,157,754  4% 

 £1,157,755 or more  5.25% 

Where the total music use is less than 15% of the broadcast then 

regardless of the level of the NBR the percentage rate to be 

applied will be 

 1% 

 
Table A1.2: PRS (UK) license costs for independent commercial radio stations [139]. 

 
 
Note: The above rates are provided for illustration purposes and reflect the royalty rates 
payable by commercial radio broadcasters.  The PPI and PRS have a range of license tariffs 
for different users 
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Appendix 2: Large scale images of frames before and after modification using three 

variations of the CSPE algorithm outlined in Chapter 6, Section 6.3. 

 
 

Figure A2.1: A large scale image showing the change from original to the watermarked 
when processed with the magnitude increase algorithm. 
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Figure A2.2: A large scale image showing the change from original to the watermarked 
when processed with the magnitude reduction algorithm. 

1010
1015

1020
1025

1030
1035

1040
1045

1050

2800285029002950300030503100

bin index

f re q u e n c y  v a lu e  in  H z

FCSPE result before and after 
encode

befor
e enc

ode
after

 enco
de 



   

- 191 - 

 

 
 

Figure A2.3: A large scale image showing the change from original to the watermarked 
when processed with the magnitude reduce and swap algorithm. 
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Appendix 3: Complete results of trial and error experiments performed to identify 

optimal encoding parameters described in Chapter 6, Sections 6.1 and 6.2. 

No. Samples (S) Frequency (F) Tone (L) Files decoded Accuracy % (P) 
1 4 9500 25 347 99 
2 3 9500 30 346 99 
3 3 9000 25 300 99 
4 4 9000 25 694 99 
5 4 9500 30 346 99 
6 2 9000 25 135 98 
7 3 9500 25 281 98 
8 3 9500 20 347 98 
9 4 7000 25 50 98 
10 3 7000 25 50 98 
11 2 9000 25 100 97 
12 4 7000 20 50 96 
13 3 6000 25 50 95 
14 2 9500 25 347 95 
15 3 7000 20 50 95 
16 2 9000 25 100 95 
17 1 12000 20 50 94 
18 2 9500 20 694 93 
19 1 12000 25 50 92 
20 4 7000 16 50 92 
21 3 7000 16 50 90 
22 1 12000 10 50 90 
23 2 13000 15 397 90 
24 2 9000 25 347 90 
25 2 12000 15 350 90 
26 1 11000 13 25 88 
27 4 7000 10 50 88 
28 1 11000 13 25 88 
29 2 11000 15 347 87 
30 2 11000 15 347 87 
31 2 11000 15 347 87 
32 1 10000 21 25 86 
33 1 11000 9 25 84 
34 1 11000 9 25 84 
35 4 10000 25 50 84 
36 2 10000 15 348 84 
37 2 10000 15 347 84 
38 1 10000 33 25 82 
39 1 10000 13 25 82 
40 1 10000 25 25 80 
41 1 10000 29 25 80 
42 2 9000 15 347 80 
43 1 10000 17 25 78 
44 1 8000 17 25 78 
45 1 9000 29 25 78 
46 1 10000 9 25 76 
47 1 10000 27 25 76 
48 4 5000 16 50 76 
49 6 5000 16 50 76 
50 1 9000 13 25 76 
51 2 9000 15 281 74 
52 1 11000 15 25 74 
53 1 9000 17 25 74 
54 1 10000 31 25 74 
55 1 11000 15 25 74 
56 4 7000 5 50 72 
57 1 9000 27 25 72 
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58 1 9000 31 25 72 
59 1 8000 29 25 72 
60 1 10000 35 25 72 
61 1 9000 9 25 72 
62 1 8000 13 25 72 
63 1 9000 21 25 70 
64 1 9000 33 25 70 
65 1 9000 25 25 70 
66 1 11000 11 25 68 
67 1 10000 19 25 68 
68 1 9000 23 25 68 
69 1 8000 9 25 68 
70 1 11000 11 25 68 
71 1 7000 17 25 66 
72 1 8000 25 25 66 
73 1 8000 21 25 66 
74 1 7000 13 25 66 
75 1 9000 35 25 66 
76 1 8000 35 25 66 
77 1 7000 21 25 64 
78 1 10000 23 25 64 
79 1 7000 29 25 64 
80 1 9000 19 25 64 
81 1 7000 10 50 64 
82 1 8000 23 25 62 
83 1 8000 31 25 62 
84 1 8000 33 25 62 
85 1 7000 33 25 62 
86 1 10000 15 25 62 
87 1 8000 27 25 62 
88 1 11000 5 25 62 
89 1 11000 5 25 62 
90 2 9000 5 117 60 
91 1 9000 11 25 60 
92 1 7000 9 25 60 
93 1 8000 19 25 60 
94 1 8000 15 25 60 
95 1 11000 7 25 60 
96 1 10000 11 25 60 
97 1 11000 7 25 60 
98 1 7000 27 25 58 
99 1 9000 15 25 58 

100 1 9000 5 25 58 
101 1 7000 25 25 58 
102 1 10000 5 25 54 
103 1 7000 31 25 54 
104 1 8000 11 25 54 
105 1 7000 15 25 52 
106 1 6000 9 25 52 
107 1 10000 7 25 50 
108 1 7000 23 25 50 
109 1 7000 19 25 50 
110 1 5000 16 50 50 
111 1 7000 35 25 50 
112 1 6000 13 25 46 
113 1 6000 21 25 46 
114 1 6000 31 25 46 
115 1 6000 33 25 46 
116 1 6000 17 25 44 
117 1 7000 5 25 44 
118 1 9000 7 25 44 
119 1 6000 35 25 44 
120 1 5000 21 25 42 
121 1 6000 29 25 42 
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122 1 7000 11 25 42 
123 1 8000 5 25 42 
124 1 6000 25 25 40 
125 1 6000 27 25 40 
126 1 8000 7 25 38 
127 1 6000 19 25 38 
128 1 6000 15 25 38 
129 1 5000 29 25 36 
130 1 6000 23 25 36 
131 1 5000 33 25 36 
132 4 12000 3 50 34 
133 1 5000 35 25 34 
134 1 5000 15 25 34 
135 1 5000 13 25 34 
136 1 5000 23 25 32 
137 1 5000 19 25 32 
138 1 5000 17 25 32 
139 1 6000 11 25 32 
140 1 5000 27 25 30 
141 1 6000 5 25 30 
142 1 5000 31 25 30 
143 1 5000 25 25 28 
144 1 5000 9 25 28 
145 1 5000 11 25 24 
146 1 7000 7 25 24 
147 1 5000 5 25 18 
148 1 12000 3 50 12 
149 1 6000 7 25 8 
150 4 7000 3 50 6 
151 1 5000 7 25 6 

 
Table A3.1: Complete results for the experiments outlined in section 6.1 & 6.2. 
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Appendix 4: Suggested applications for the watermarking scheme proposed. 

 

While the work described in this document was intended from the outset to be a 

digital audio watermarking scheme with an express focus in the domain of broadcast 

monitoring for the purposes of accurate airplay monitoring and equitable royalty 

distribution, it is by no means restricted to this realm. Almost any form of digital audio 

watermarking scheme will be applicable to a number of different domains and for a number 

of uses. A scheme that offers robustness against accidental or deliberate attack, combined 

with variable levels of security and a blind or semi-blind decoding phase will have a wide 

variety of potential uses, some of which are briefly mentioned here. 

 

Covert communications 

Almost since the dawn of indirect communications (i.e. communications other 

than face-to-face) there has been a place for secret transmission of messages. The domains 

of military, industrial and private communications have always been the most likely to 

warrant attempts to protect the communications from unauthorised interception. Whether it 

is a wax seal or some variant on a letter delivered by an intermediary – still used in some 

modern communications channels - which indicates unauthorised interception of the 

message content with a broken seal, or a fragile watermarking system which ‘breaks’ itself 

if any attempt is made to remove it, content protection is still an imperative in some 

communications. The types of indicators mentioned (fragile watermarks or wax seals) do 

not actually prevent the interception of messages. Instead they merely indicate when the 

messages have been intercepted or ‘broken’. They are, in effect, after the fact and are of 

little use in protecting the content of the message. The only means by which a sender can 

guarantee no unauthorised interception of their message is by limiting any knowledge of the 

fact that such a message exists. 

 

Covert communications will traditionally be viewed as the realm of cryptography 

rather than steganography. As mentioned earlier, cryptography is the process of encoding a 
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message so it (hopefully) cannot be deciphered if discovered, while Steganography is the 

process of hiding content to prevent it being discovered in the first place. If there is no 

knowledge of the actual presence of a message then there is no chance of it being 

intercepted. Combining the two related fields of steganography and cryptography is perhaps 

the most effective means of covert communications. If both methods are used 

simultaneously it would suggest that there is an expectation that the steganographic phase 

of the security is going to be inadequate. Nevertheless, caution is to be commended and 

there is nothing stopping an enciphered message being embedded in a steganographic 

process. If a message is hidden and its presence is unknown, it will be safe from 

unauthorised interception. However, if it should be discovered or, for example, leaked in a 

malicious incident, having it encrypted before embedding will add an additional layer of 

security to the message. 

 

If an attacker obtains an original version of the host audio signal as well as a 

watermarked version, one can be compared to the other to identify the watermark (plain, 

transformed or enciphered). One way of avoiding this, in terms of military or industrial 

covert communications, is to embed the watermark in audio signals that are not publicly 

available without the watermark. In this way, no attacker would have an original to 

compare the candidate watermarked audio signal against. This is not a difficult thing to 

achieve. A simple recording of some cover audio, even speech, made by the sender that is 

then embedded with the watermark, before deletion of the original, would suffice. In a 

situation where a covert message was embedded into a voice (or other) recording, no 

attacker or interceptor would have any indication that there was an embedded watermark 

within the audio. Nor would they be able to compare the candidate audio to an original if 

they did. 

 

Some watermarking schemes, however, process the host audio in such a way as to 

leave a visible pattern or other noticeable artefacts when embedding the watermark. As 

Gopalan mentioned in the work [86][127] that originally inspired the early approach of the 

proposed watermarking scheme, a spectrogram or histogram could provide visual clues of 
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the presence of a watermark thereby allowing attackers to focus their attempts to intercept 

the message on relevant signals and areas. In a watermarking process such as the one 

proposed in the third phase of the proposed scheme outlined in Section 3.4 above, there 

would be no pattern identifiable in a visual representation of the candidate signal. This is 

because the algorithm designed does not manipulate or modify the same frequency 

components in each subsequent frame. In fact, the choice of components to be modified in 

one frame is completely independent of the choice in any other frame and relies solely on 

the ‘key’ or ‘reference’ value chosen by the embedder. Without this value it would be 

impossible to know which components were modified. 

 

Of course, this key value chosen as the first input parameter to the scheme could 

be guessed or leaked. Similarly, it might be suggested that a ‘brute force’ attack could 

simply iterate through all possible values to find the correct parameters. This is correct but 

it omits the fact that an attacker would not have any idea what to look for in each of these 

brute force iterations and so would not know if they had found the correct parameters or 

not. Essentially, the choice of components to modify in a given frame (if any) is almost 

random, within a range of values. This includes fractions of values and the precision of the 

selection depends only on the input parameters used in the CSPE frequency analysis. The 

process is outlined in Figure A4.1 below. 
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Figure A4.1: Block diagram illustrating the covert communications watermark scheme. 
 

Given that the attacker is unlikely to know the length of the frame used to embed 

the bit, the length of the watermark (which is repeated any number of times within the bit 

sequence) or whether every individual bit is part of the actual message and not a decoy 

injected into the bit sequence before embedding, the chances of discovery of the presence 

of a message, let alone its content, is very slim indeed. In the event that an attacker was 

otherwise informed of the presence of a watermark there would still be the issue that the 

brute force attack would have no way of identifying when it has discovered a potential 

pattern in order to make an attempt to decipher it.  

 

On-the-fly music identification 

When a track is played on radio that a listener is unfamiliar with, he or she is at the 

mercy of the presenter or producer of the radio show for identification of the track. 

However, in many cases there is no identification given. This occurs when a radio presenter 
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plays a number of tracks in sequence and does not identify any/all of them, or when a radio 

station is using a computerised delivery platform – particularly in the so-called ‘dead hours’ 

where there is no human involvement in the broadcast. It can be a frustrating situation when 

a listener hears a track they are interested in and wants to know more about it but is given 

no information with which to identify the performer or track title. It is also a potential sales 

opportunity lost. Assuming the listener wants to find out more about the artist, and may 

even want to buy the material they are listening to, there is no current way of facilitating 

this discovery short of, perhaps, writing some lyrics and searching for them on the Internet 

at a later time. 

 

Digital audio watermarking at source could easily, quickly and – most importantly 

– at little or no added cost in the production chain - overcome this limitation and not only 

offer listeners the information they need to research the artist or buy the material, but also 

offer an ‘added value’ technology for a manufacturer of both domestic and in-car 

entertainment devices as a user-centred selling point [140]. It is not a complex development 

of the watermarking scheme proposed to design a system to ensure an audio watermark is 

embedded into songs, preferably at the time of production but perhaps even later, which 

will allow the real-time identification of the performer, track title and/or other content such 

as publisher details, ownership details etc. This information can be extracted and displayed 

on existing screens in both domestic and in-car audio entertainment systems, in a manner 

similar to the way in which time or station identification (known as Radio Data System or 

RDS) is currently extracted and displayed. The information will be part of the actual audio 

content, rather than meta-data such as MP3 headers, so would be transmitted with the audio 

even over an analogue transmission channel. 

 

Existing technologies allow the on-screen display of information about artist and 

title but only from a digital source or from an external source manually entered into the 

broadcast environment and transmitted alongside the audio. The scheme proposed here 

could easily be adapted so this may be achieved in a traditional analogue radio environment 

or in situations where an audio source (such as an ‘iPod’ etc) is being transmitted via FM to 
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a local audio device. This is a common setup in car audio setups and becoming more 

common in domestic scenarios where (for example) internet radio is received and 

wirelessly transmitted to a home entertainment system. Moreover, since the embedded 

information is actually part of the audio, rather than being transmitted alongside it, even the 

common action of recording the audio for later use on another device will preserve the 

watermarked message. Assuming the device used to play the recorded audio is designed to 

identify and display watermarks, it will still be present and displayed to the end-user. 

 

Another area in which the proposed watermarking scheme could prove of benefit 

to content creators and content owners is in on-the-fly content identification. This domain is 

very topical and there are many applications that purport to offer the end-user the chance to 

identify the music they hear, for example, in a local store or on the street. The microphone 

in modern mobile phones can be used as a recording device, as is the case with the Apple’s 

‘iPhone’, Nokia’s mobile range and RIM’s ‘Blackberry’ amongst others. Once sampled, the 

audio is then compared to existing databases of audio and identification attempted. One of 

the better-known of these providers is ‘Shazam’, which illustrates the popularity of the 

concept by its 20 million users in 60 countries on A45 network carriers. The major problem 

with these applications, as is the case with fingerprint-based broadcast monitoring 

applications, is that they rely on a database of files to compare the candidate to and also that 

they require some sort of data connection – which can incur a charge. 

 

Using a watermark-based system, where the identifier is embedded in the audio by 

the content owner or producer, these limitations can be completely negated. First, an 

application could easily be developed for modern smart-phone clients such as the iPhone, 

Blackberry and Nokia/Symbian operating system that would simply analyse the audio being 

recorded via the in-built microphone and perform a CSPE-type frequency analysis before 

outputting the identifier. No data connection would be needed and no fingerprints would 

need to be compared to a database. An illustration of the process is given in Figure A4.2: 
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Figure A4.2: Block diagram of on-the-fly decoding of embedded watermarks. 
 

The widespread use of existing (limited) applications shows that there is a viable 

and exploitable market for them [141]. Content creators could maximise their sales 

potential by utilising watermarking techniques in their production processes and this would 

encourage widespread use of the end-user application. More identifiable audio would make 

the applications more attractive to the customer. As with traditional broadcasters, 

watermarks could be used to embed sponsor messages alongside identification information 

so even if the user does not decide to buy the track, it creates a completely new revenue 

stream for content producers. These additional watermarks could be added by using a 

different key value from which the modified components are derived. As mentioned in 

Section 6.5.4, capacity could also be doubled by using two components on either side of the 

base frequency. The final point to note is that in the case where a work is watermarked at 

the point of creation, it does not have to be done by a record label, publisher, or other 

corporate sector of the music industry. Like the recording itself, the process could easily be 

undertaken by the artist independent of the rest of the creation process. In fact, the 

ubiquitous ‘bedroom artist’ would be just as capable of watermarking their information into 

their work as any commercial artist. This, of course, would help in some small way to level 

the playing field for developing artists. 
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Additional revenue generation for broadcasters and content producers 

In the commercial broadcasting environment the financial imperatives are at least 

as important as the quality and quantity of audio that is actually broadcast. Some would 

suggest that they are in fact more important. A digital audio watermarking scheme 

implemented by a broadcaster could offer three attractive opportunities for the broadcaster 

to optimise their existing revenue stream and develop a complementary source of additional 

revenue. A diagram outlining the various watermarking options that could be employed in a 

broadcast scenario is provided in Figure A4.3 below. It should be remembered that the 

embedded watermark in the proposed scheme is, and must be, completely inaudible to any 

human listener so it could not possibly impact on the quality of the material broadcast. 

 
Figure A4.3: Block diagram illustrating proposed scheme for a broadcast environment to 

enhance value for advertisers, broadcasters and content providers. 
 

 

Note that each of the three watermarks embedded at the production phase 

(indicated by the use of public key 1, 2 and 3) are independent and can be included or 

omitted. In the case that one of these watermarks was not applied, the result of the decode 

phase using that particular value would be null as no watermark would be found. Therefore, 

no message or information would be displayed. Alternatively, if all watermark phases were 
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utilised, all three messages would be displayed wither simultaneously, one demand or in 

sequence depending on the end-user’s device. 

 

In the first case, a broadcaster could embed a watermark in their output that acts 

like the aforementioned Radio Data System. Rather than simply identifying the broadcaster 

or displaying the time, however, it could be used to identify existing output. The 

watermarking mentioned up to this point has dealt mostly with watermarking the music that 

these broadcasters transmit. However, there is no reason why they cannot themselves 

employ a similar method of watermarking audio adverts with additional information from 

the advertiser, such as special offers, web address and so on. Since adverts on radio are 

traditionally ‘record once, play many times’, there is limited scope for adding to them once 

they have been produced, short of appending some information at the end of the advert. If a 

broadcaster had an in-house watermarking system, which would not in any way be a 

difficult or expensive setup to achieve, they could offer a service where the advertiser could 

contact them at any time and have additional information embedded as a watermark in the 

broadcast over their advert, which would in turn be displayed on the device used by the 

end-user. 

 

Second, a variation of the same technique could be used to embed content-

sensitive information that could be charged for. There are two obvious types of content-

sensitive information envisaged. In the first place, broadcasters playing work by a particular 

artist could embed details of their upcoming live appearances in their broadcast catchment 

area along with details of ticket availability. Artists and promoters already pay for this type 

of advertising and it would make commercial as well as common sense to have the details 

visually displayed while the artist in question is being broadcast. Listeners who hear the 

audio and like it are the prime targets for this additional information. Embedding the 

information into the audio to be displayed when the artist in question is being broadcast is a 

classic case of product placement which is a common marketing mechanism. 
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In the second variation of content-sensitive information, the broadcaster could 

provide an opportunity for advertisers who already use music in their advertising to have 

their advertising used in the music, thereby reinforcing the association and brand 

recognition. To illustrate this, consider for example the track ‘Let’s Dance’ by Paula Flynn. 

This track was originally released by David Bowie in 1983 but Ms. Flynn’s version of it 

was featured in a television advertising campaign for Vodafone in the last few years. This 

exposure led to the track being heavily featured on radio and becoming a sort of ‘cult’ track 

for some time. It was regularly referred to as ‘the Vodafone song’, even on radio and led to 

Ms Flynn developing a comparatively successful music career that otherwise might not 

have been as productive. 

 

There are myriad examples over the last few decades of such radio and television 

advertising campaigns leading to successful releases of golden oldies by famous artists as 

well as works by almost unknown artists. In many cases, careers have been made 

realistically commercially viable by such exposure. Bringing this into the present, note the 

current Budweiser campaign featuring ‘All together now’, which was written originally by 

The Beatles for ‘Yellow Submarine’ but recently recorded by ‘The Hours’, in a house and in 

one take, specifically for the campaign. This version is now so popular, particularly on the 

Internet where it has apparently been downloaded tens of thousands of times from various 

providers in a few short weeks since the campaign launch, that the act in question (‘The 

Hours’) are recording a full version for commercial release. Similarly, French newcomer 

‘The Do’ has seen their profile skyrocket when their track ‘Stay Just a Little Bit More’ was 

featured in O2’s ‘Turtles’ advertising campaign. Bell X1 might be just one act who are 

uneasy at the fact that ‘The people from the mobile phone company say who gets to play 

and who gets to not’ (‘The Great Defector’) but there is no doubt that marketing 

departments have become tastemakers in the world of music over the last number of 

decades. There is also no doubt that advertising campaigns can, and do, make an artist’s 

career. Given this, there should be every reason to make them complimentary so every 

party benefits. 
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Broadcasters could offer advertisers the opportunity to have their advert embedded 

into the broadcast when the track in question is being played and transmitted to the screen 

on whatever receiving device the end-user is using to receive the broadcast. Extending this 

concept to allow any combination of the content owner, record label, publisher, advertiser 

and the broadcaster co-ordinate to present a highly complementary synergetic package 

would also be very easy to achieve. This offers opportunities for all, not least the artist and 

the broadcaster but the advertiser would benefit from being associated completely and 

intimately with the work or the artist. It is for this reason that major corporations sponsor 

large-scale tours and cultural events.  

 

The third opportunity that broadcasters could avail of as a revenue generation 

stream is that of station-sponsorship or individual show sponsorship. Notwithstanding the 

regulatory requirements for such arrangements, broadcasters could contract a sponsor for a 

particular show (if not for the entire station). These arrangements already exist in both 

television and radio. In the case where an in-house watermarking process is used, the 

broadcaster would easily embed the sponsor’s name into their broadcast of the show. Even 

talk-shows and current affairs shows which do not tend to employ a lot of music content 

would be attractive vehicles for watermarking a sponsor’s name or message wherever an 

advertiser’s watermark was not being broadcast and displayed. Since it is obviously not 

possible to advertise in the traditional sense while a broadcast presenter is talking, 

advertising is currently limited to short blocks of time. In many cases, these are prompts for 

listeners to tune to a competing channel. Implementing advertising ‘streams’ as a text-on-

screen addition to current methods will enable more advertising, longer messages and less 

separation between the advertiser and the broadcast. This would be easily achievable with 

an in-house watermarking scheme. 

 

None of these applications of the basic watermarking scheme is inherently 

difficult. Environment-specific considerations might lead to modifications to the system. It 

is worth noting that if the in-house watermarking scheme used, for example, the same 

initial input parameter (the ‘key’ referred to earlier) to embed their watermark into the 
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audio before broadcast, it would effectively overwrite the watermark that might have been 

present in the audio. Broadcasters could instead use a unique key for their own watermarks 

which would leave any inherent watermark untouched. Care should be taken in this regard 

to ensure that not too many watermarks were embedded as, while multiple watermarks 

could be embedded using the proposed scheme, each one might impact slightly on the 

perceptual quality of the audio and the combined effect might be noticeable. 

 

Finally, in relation to broadcasters and other owners of archives or previously 

released audio, there is no difficulty in watermarking pre-existing audio. A simple once-off 

batch process could be employed to ensure any material already in their possession is also 

watermarked. In essence, there is no audio that could not be watermarked by the proposed 

system. It is entirely possible that what humans consider silence (which is not, of course, 

always silence [24]) could even be watermarked using this method. 

 

Watermarking individual performers 

Another area in which watermarking techniques can assist the artist, performer, 

collective rights societies and the Music industry is by watermarking individual 

performances within a work. Rarely is there a publicly released piece of music which 

contains only one individual track. In the recording process, individual instruments, 

vocalists and additional production ‘effects’ – often the creation of the Producer - can be 

assigned to individual tracks within the studio or live-recording environment. Once mixed 

down to the stereo ‘master’ for duplication and release, there are only two tracks – left and 

right channels. In the recording process, each individual performer (guitarist, drummer etc) 

is assigned a separate track. Similarly, vocalists and backing vocalists can be assigned 

separate tracks. This is important from the point of view of both performance royalties and 

‘sampling’. A watermarking scheme employed in the studio could embed a track with 

unique watermarks per each contributor, at the time of their recording, including the 

producer if appropriate. This process is described in Figure 4.4 below. The process of 

individually watermarking performances, separately from the watermark of the end-

product, would ensure that there would never be a version of the audio without the 
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performer’s identifier and this in turn would ensure correct and proportionate distribution of 

royalties. It would furthermore prevent any conflict at a later date about the contributions 

any individual that is used in the final ‘mix’. This might seem like a trivial matter but in the 

world of the creative artist this identification of ownership is paramount and is, in fact, one 

of the main reasons why Copyright exists. 

 

 

Figure A4.4: A block diagram illustrating the process of watermarking individual 
performers’ recordings separately from the end-product recording. 

 

 

As can be seen from Figure A4.4, the individual performances recorded for each 

performer on a work, which may be created on different dates, in different studios 

sometimes in different countries, are assigned an individual ‘private’ watermark. The ‘mix’ 
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down to a stereo master is then performed and this master is separately watermarked with, 

perhaps, an industry-standard ‘public’ key before being released.  

 

When a candidate signal is analysed for the presence of a watermark, an attempt is 

made to decode the watermark with the standard ‘public’ key. If there is no watermark 

founding this way, then it is likely the track is either not watermarked or its watermark is 

corrupt or damaged. If this is the case, there is no point in attempting to decode individual 

‘private’ watermarks as these are either similarly not present or damaged. If the candidate 

signal does have a standard watermark identified using the ‘public’ key, the track is 

identified and its identification appropriately reported. The signal can then be decoded 

using any of the ‘private’ keys that are potentially embedded within it. While in most cases, 

all of the individual performances will be identified, this process would identify even those 

remixes and versions of a work that have had some of the individual performances omitted. 

 

Tracking unauthorised distributions 

There are, in fact, a number of modifications to this CSPE-based watermarking 

technique that could allow it to be adapted and specialised for different requirements. A 

watermark could, for example, be designed to be audible (and irritating) when played in 

any digital music or video device that was not authorised to play it. Authorised players 

could have the relevant parameters input as part of their authorisation process or the 

parameters could be communicated to the authorised device via a networked on-demand 

‘handshake’ arrangement. This would perhaps be overkill for music and video files. 

However, it could be useful for pre-production evaluation copies of digital files where the 

owner might want to allow certain authorised devices unrestricted access while making it 

unattractive to copy the file for unauthorised distribution. 

 

Having the watermark embedded as part of the actual material would mean that 

simply playing it through speakers and re-recording it would not, as mentioned above, 

remove such a watermark. This is a critical and valuable difference between pre-release 

watermarking and post-release watermarking. In the case of an audible watermark, playing 
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the audio through speakers and then re-recording it would replicate the audible and 

irritating sounds added by the watermark. Such a system, if designed for tracking 

unauthorised ‘leaks’ of new music or films could easily achieve this by personalising the 

watermark-embedding parameters for the few authorised recipients.  

 

An alternative to this concept could be to embed the watermark inaudibly, per 

recipient and with individual private keys, in order to identify suspected leaks. If a version 

of the material were to appear in the public domain with no audible artefacts, this would 

suggest it contains no watermark, the watermark is damaged or it is a pre-release version. If 

it is suspected that the candidate signal is a pre-release version, distributed without 

authorisation (i.e. ‘leaked’), steps could be taken to identify the leak. The candidate signal 

could be analysed for the presence of the watermark and the parameters used in any 

watermark that was discovered would prove that it originated at the source to which the key 

was allocated. This process is described in Figure A4.5. 
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Figure A4.5: Block diagram of a proposed watermark system designed to identify and 
track illegal distribution of content. 

 

 

The source audio that is presented in the first step of the process shown in Figure 

A4.5 is unwatermarked. This means it has not been prepared for public release. Content 

owners can easily produce a small number of private-distribution versions of the audio to 

stakeholders and interested parties, each watermarked with using a separate key value. Each 

version of the audio would sound identical to stakeholders as the watermark is inaudible 

and has no impact on audio quality. These pre-release versions would obviously be 

expected to remain private and never to be found in public circulation. 
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However, should the content owner or monitoring agent be suspicious of a 

candidate audio found in public circulation, there would be a simple two-step process to 

identify the source of the leak. The first step is to ensure that the candidate is not a public-

release version. This is achieved by decoding using the standard key that all public-release 

versions would be watermarked with. If this key is not present, it is either damaged or was 

never present. An additional step could easily identify if the watermark is partially present 

and damaged. Otherwise, the candidate is decoded using the private values assigned to each 

recipient of the pre-release version. If the watermark is successfully decoded using any of 

these values, the recipient to whom that value was assigned is the likely source of the leak. 
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