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Abstract 

Searching for duplicated version video clips in large video database, or video identifi-

cation, requires fast and robust similarity search in high-dimensional space. Locality 

sensitive hashing, or LSH, is a well-known indexing method for efficient approximate 

similarity search in such space. In this thesis, we present a highly efficient video iden-

tification method for transcoded video content based on locality sensitive hashing and 

triangle inequality. To store large volume of videos, we design a small feature dataset 

and index the dataset using improved locality sensitive hashing. In addition, we em-

ploy triangle inequality to further enhance the system efficiency. Experimental results 

demonstrate that once the features of a given 8s query video are extracted, it takes 

about 0.17s to retrieve it from a 96-hour video database. Furthermore, our system is 

robust to the changes of the query videos on frame size, frame rate and compression 

bit-rate. 
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Summary 
The problem of content-based video identification concerns identifying the duplicated 

version of a given short query video clip in a large video database based on content 

similarity. Video identification has many applications, including news report tracking 

on different channels, video copyright management on the internet, detection and sta-

tistical analysis of broadcasted commercials, video database management, etc. Three 

key steps in building a video database for video identification are (i) video segmenta-

tion and feature extraction to represent the video clips; (ii) similarity measuring be-

tween the query video and the videos in database; (iii) indexing of the feature vectors 

to allow efficient search of similar video. 

In this thesis, we present a highly efficient video identification system at transcod-

ing level for a large video database by systematically taking “feature extraction”, “fea-

ture indexing” and “video database construction” together into consideration. The se-

lected feature is robust to the changes on frame size, frame rate and compression bit-

rate. Principal components analysis (PCA) and improved locality sensitive hashing 

(LSH, an index structure in database area) are then used to reduce the dimensions of 

feature space and generate the index code. Considering that the original LSH is only 

good for indexing uniformly distributed high-dimensional data points and can be im-

proved for video identification where data points may be clustered. We therefore give 

two improvements to LSH to distribute the points more evenly. First, by building a hi-

erarchical hash table, we adapt the number of hashed dimensions to the density of the 
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data points. Second, we choose the hashed dimensions carefully in such a way that the 

points are more evenly hashed, thus making the hash table more uniformly distributed 

and reducing the miss rate. We further apply triangle inequality on the resulted buckets 

by LSH to skip some redundant match operations. In terms of system design, to save 

the storage of the video database’s feature dataset, we slide the search window on the 

query video rather than the videos in database. 

Experimental results verify that our improved LSH is much better than original 

LSH in terms of both efficiency and accuracy when applied on the video feature data-

set for similarity search. For video identification, our system is robust to the transcod-

ing level noise, i.e. changes on frame size, frame rate and compression bit-rate. We 

greatly reduce the search space and redundant match operations by incorporating im-

proved LSH with triangle inequality to improve the efficiency. We further demonstrate 

the promising system performance by comparing our algorithm with NTT’s “active 

search” algorithm. The use of LSH with triangle inequality and sliding search window 

on the query video are two main contributions of this research work. 
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Chapter 1 

Introduction 
We live in a world of information. Information was first delivered to the general public 

through broadcasting media such as newspapers, radio, and eventually television. Later, 

the computer was invented. Computers allow information to be compiled in digital 

form, and make it possible for people to search for required information. Furthermore, 

information could be selectively retrieved when required, which is quite useful when 

querying huge database. Looking at the great success of text search engines, such as 

Google and Yahoo, researchers started to wonder if the same concept could be applied 

to videos because recently digital videos become increasingly popular with the devel-

opment of hardware and video compression standard like MPEG. There are a wide 

range of applications for content-based video search. For example, you may be inter-

ested in a historic event or a scene involving a movie star, but only have few materials 

about it. With an effective video retrieval system, you can find more detailed video 

content. For some video producers, they may be interested in how their publications 

are spread in the world. They can find if there are some illegal copies via a video iden-

tification system. A video search system is also useful for video editors. They can 

search for useful video clips with a simple query instead of spending hours browsing 

unrelated video content. For video database management, videos with similar content 

could be clustered to facilitate browsing. In [1], Hong-Jiang Zhang summarized the 
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state-of-the-art technologies, directions, and important applications for research on 

content-based video retrieval. Some applications are: 

• Professional and educational applications 

o Automated authoring of web video content 

o Searching and browsing large video archives 

o Easy access to educational video material 

o Indexing and archiving multimedia presentations 

o Indexing and archiving multimedia collaborative sessions 

• Consumer domain applications 

o Video overview and access 

o Video content filtering 

o Enhanced access to broadcast video 

While video is widely accepted as a form of broadcasting media, the ability to 

search through video contents has only recently been investigated. The search for text 

in documents simply looks for matching words and it achieves great success. Therefore, 

a straightforward approach to index video database is to represent the visual contents 

in textual form (e.g. keywords and attributes). These keywords serve as indices to ac-

cess the associated visual data. This approach has the advantage that visual databases 

could be accessed using standard query languages (SQL). However, this approach 

needs too much manual annotation and processing. More seriously, these descriptive 

data are not reliable because they do not conform to a standard language. So they are 

inconsistent and might not capture the video content. Thus the retrieval results may not 

be satisfied since the query is based on the features that have been inadequately repre-

sented. Actually, the search of content within video sequence is much more compli-

cated. There are different kinds of inputs and requirements for different video search 
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applications. We can classify the video search systems into “query by keywords” and 

“query by video clip” based on the inputs, or classify it into video retrieval and video 

identification based on the results. We will give more details about these different 

categories in next section. 

1.1 Classification for Video Search Systems 

1.1.1 “Query by Keywords” and “Query by Video Clip” 

We can classify video search systems into “query by keywords” and “query by video 

clip” based on their inputs. For example, we give the video search system several key-

words to find a category of video clips, i.e. query by keywords, and these returned 

video clips are ranked by their similarity to these query keywords. Here, the keywords 

not only refer to text, but also include some other properties that describe the video 

content, such as shape, color, etc. “Query by keywords” is a semantical level video re-

trieval application [2, 3, 4] which works just like the text search engine. The advantage 

is that it is easy for the users because they only need to give the system some keywords 

or some descriptions to search what they want. However, since text can not well repre-

sent the content of video, the returned results may not be satisfied. Another case is us-

ing an example video clip as the query to search the similar videos, i.e. query by video 

clip, which also has been actively researched [5, 6, 7]. This kind of system is suitable 

when the user can not clearly describe what they want in keywords, or the text index 

structure for the video database is unavailable, or they just want to search some speci-

fied video clips like pirated video copy detection. Compared with “query by key-

words”, “query by video clip” provides a more flexible method to search the video da-

tabase because usually a well-built text index structure is unavailable for a large video 

database. It is quite laborsome to manually label the whole video database while the 
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performance of automatically indexing the video database is poor. For “query by video 

clip”, the query clip could be a sub-shot, a shot or several shots, based on the require-

ments of the users. Since the query clip is usually a logical story unit which contains 

cohesive semantical meaning, “query by video clip” is a more natural way for users to 

access and search the video database. The application of “query by video clip” com-

prises video copyright management [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20], 

video content identification in broadcast video [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 

31, 32, 33, 34, 35, 36], and similar video content search by given example [6, 5, 7, 37, 

38, 39, 40, 41]. 

1.1.2 Video Retrieval and Video Identification 

We can classify video search systems into video retrieval and video identification 

based on their results. For video retrieval, we measure the similarity between the query 

and the video clips in database. The resulted video clips will be ranked by their simi-

larities and returned to the users. The users will browse these results and decide which 

one is exactly they wanted, just like the text search engine. Thus, video retrieval is a 

measurement problem. For video identification, the system need to decide whether a 

video clip in database is a duplicated version or not based on the similarity matrix, so 

video identification is a decision problem. Video identification is a relatively new area 

compared to video retrieval. The topic of video retrieval has been extensively re-

searched for more than ten years, but only recently has video identification been pro-

posed as a new topic. The two areas are similar in some aspects. Some of the main re-

search issues in video retrieval including video content representation and indexing are 

shared by video identification. Video identification can inherit many techniques from 

video retrieval. For example, those representation schemes used in video retrieval sys-

tems, such as key frame representation, color histogram feature, motion histogram, etc., 
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are also used in some video identification systems [11, 24]. However, video retrieval 

and video identification are different: 

Firstly, the query is different. The query of video retrieval could be text, shape, 

color or other properties that describe the video content; also it could be a query video 

clip. For video identification, the query must be a query video clip. Therefore, video 

identification definitely belongs to “query by video clip”, while “query by video clip” 

also includes some video retrieval systems which use the video clip as the query. 

Secondly, video retrieval aims to search video clips that somehow look similar to 

the query, such as contain similar objects as the query, while video identification is to 

identify video clips that are perceptually the same, except for quality differences or the 

effects of various video editing operations. The results in video retrieval are similar to 

the query in semantical level, but for video identification they may be false alarms. 

Thus, the features for video identification need to be far more discriminatory, but they 

do not necessarily need to be semantical which is used for video retrieval.  

Thirdly, video retrieval generally has the loop of relevance feedback in which user 

interaction is incorporated, i.e. users will decide which one is better in the returned 

video clips, but for video identification the system will output the final results. That is 

to say, generally video retrieval needs more manually work like in feature extraction, 

data supervision and training, etc., due to the poor performance of artificial intelligence 

on semantical level applications in current stage. 

Video Retrieval Video
Identification

Video
Retrieval

Query by
Keywords

Query by
Video Clip

 

Figure 1.1 Two types of classifications for video search systems 
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Figure 1.1 shows the relation of the above classifications for video search systems. 

Since the topic of this thesis is video identification, we will not discuss with “query by 

keywords” any more. For the case of “query by video clip”, the differences between 

video retrieval and video identification result in different considerations and emphases 

on the system framework, although video retrieval and video identification have the 

same term of “similarity video search”. For video retrieval, the task of retrieving simi-

lar video clips of the query at the concept level is associated with the challenge of cap-

turing and modeling the semantical meaning inherent to the query. With an appropriate 

semantical model and similarity definition, video clips (a shot or several shots) with a 

similar concept as the query can be found [42]. However, for video identification, as 

the recognition task is relatively simple, complex concept level content modeling is 

usually unnecessary to identify and locate the duplicated versions of the query, but the 

prospective features or signatures are expected to be compact and robust to some varia-

tions, e.g. different frame size, frame rate, compression bit-rate and color shifting, 

brought by digitization, coding and post editing. 

Furthermore, the methods and intentions to organize and manage the video data-

base are different when targeting video retrieval and video identification tasks. Both of 

the tasks need to organize and index the video database, but their purposes are funda-

mentally different, even though they may apply the same term of “video indexing”. For 

video retrieval, “video indexing” refers to annotating the video contents and classify-

ing them into different concepts or semantical classes. By doing this, it could help the 

user to browse and retrieve the video content more effectively. On the other hand, 

“video indexing” mentioned in the video identification means to apply some basic da-

tabase index techniques to organize the feature dataset extracted from the video con-

tents, e.g. using a tree structure or hash index [43, 44]. Such a database index structure 
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aims to provide an efficient method to accelerate the search speed. The nodes of the 

basic database index structure do not contain semantical level meaning, which is just 

the case for video retrieval indexing, to facilitate the video content browsing. 

Finally, the search speed requirements are different for video retrieval and video 

identification. When doing video retrieval, normally we are not concerned with the 

search speed since the performances on precision and recall are not good enough. The 

bottleneck against a promising performance is the gap between low-level perceptual 

features and high-level semantical concepts. However, for video identification, the 

search speed is a big concern, because its applications are usually oriented to a very 

large video database or a time-critical online environment. On the other hand, com-

pared with video retrieval, the task of video identification is relatively simple. Gener-

ally, video identification can achieve quite high precision and recall, which making 

efficient search possible. 

Video identification and video retrieval are research issues on different levels. In 

fact, even inside video identification itself there are different level research problems. 

We will show different level video identification problems in next section. 
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1.2 Different Levels of Video Identification 

Query Video Clips Potential Resulted Video Clips Levels
nearly duplicate
version detection
(recorded by two

cameras from
different angles)

D
ifficulty

H
ard

Easy

C
hange From

 the
O

riginal C
opy

Large
Sm

all

shot level video
editing

(the order of the shots
may be changed, or

insert additional shots)

frame level video
editing

(the logo, subtitle,
etc. may be changed)

overall brightness,
contrast, hue,
saturation, etc

adjustment

transcoding
(different frame size,
frame rate, bit-rate,

or different
compression codec)

nearly same
version

(recorded by two
TV recorders with
same conditions)  

Figure 1.2 Different levels of video identification 

We divide the video identification problems into 6 levels based on the noise between 

the original and the duplicated version video clips. Figure 1.2 illustrates these different 

level problems of video identification. The systems for high level or semantical level 

video identification problems have to be robust to large noise, like recorded by cam-

eras on different angles, different shot orders, various video editing operations, etc. 

These systems concern more on the performance of precision and recall than the search 

speed. Usually they need to apply some models and semantical level features to 

achieve acceptable results, which is a relatively difficult task. Compared with high 

level video identification, low level or exact match level video identification problems 

are easier. They only have small noise, like frame shift, transcoding, overall brightness 
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adjustment, etc. Since nearly 100% of the performance on precision and recall can be 

achieved, low level video identification systems have more concerns on the search 

speed and scalability. Usually they will not apply models and their features do not nec-

essarily need to be semantical, but have to be far more discriminatory. More details 

and some typical research works about each level are listed here: 

1) Nearly duplicated version detection: The duplicated version video clip may be re-

corded by cameras from different angles. Some objects may be obstructed while 

some other objects may be reappeared because of the different view angles. Dong 

Qing Zhang et al. [36] presented a part-based image similarity measure derived 

from the stochastic matching of Attributed Relational Graphs that represent the 

compositional parts and part relations of image scenes. They compared this model 

with several prior similarity models, such as color histogram, local edge descriptor, 

etc. This presented model outperforms the prior approaches with large margin. 

2) Shot level video editing: The order of the shots in duplicated version video clip 

may be different, or the duplicated vision can insert/delete shots into/from the 

original version. Victor Kulesh et al. [25] presented an approach for video clip rec-

ognition based on HMM and GMM for modeling video and audio streams respec-

tively. Their method can detect the new shorter version of video clip which is pro-

duced by removing some shots from the original one. 

3) Frame level video editing: The video editing operation is limited to frame level. 

The logo, subtitle, etc., may be changed. Timothy C. Hoad et al. [14] presented the 

shot-length comparison method for video identification. This method is found to be 

extremely robust to changes in the video, including alterations to the colors as well 

as changes in frame size, frame rate, bit-rate, and introduction of analogue interfer-

ence, because the feature is not related to the content of a single frame. 
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4) Overall brightness, contrast, hue, saturation, etc. adjustment: This is common in 

different standard TV programs (like PAL, NSTC) conversion. Color (brightness) 

ordinal feature is useful for this kind of video identification [28, 33, 37], since or-

dinal measure is non-sensitive to uniform color shifting. 

5) Transcoding level: The duplicated version video clip is transcoded from the origi-

nal version. It may be different on frame size, frame rate, bit-rate or compression 

codec. Oostveen et al. [17] proposed a new hashing solution (i.e., perceptual/robust 

hash or fingerprints) and a database index strategy for video identification. Their 

fingerprints are robust to the above transcodings. Unfortunately, they did not report 

their performance on search speed. Our work in this thesis is also in this level. 

6) Nearly same version level: The duplicated version video clip may be captured from 

real-time TV broadcasting using other TV recordings (in same conditions) which 

are different from their original version. There is only a little frame shift noise be-

tween the duplicated and original version video clips. Kunio Kashino et al. [31] 

proposed a quick search method for audio and video signals based on histogram 

pruning. They tested their algorithm on a 48h video database and get good per-

formance on search speed. 

1.3 Different Tasks of Video Identification 

Besides the above 6 levels, there are 3 different tasks of video identification: 

1) Task 1 is to find the identical video clips by comparing the query video with the 

videos in database [15]. The video database comprise of many short video clips. 

This task does not need to locate a short query video in a long video in database. 

2) Task 2 is to identify the reoccurrences of some specified video segments in a long 

video clip [29]. The noise of task 2 is quite small because these reoccurrence video 
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segments are in the same video clip, i.e. the query videos have no distortions like 

changes on frame size, frame rate and compression bit-rate for a normal video 

identification application. 

3) Task 3 is to search and locate a short query video clip in a large video database, 

which comprises of many long video clips [17, 31]. This is a general case for video 

identification, which is more difficult than the above two cases. Our work in this 

thesis is in this category. 

1.4 Objectives 

Our work in this thesis is located in the second lowest level of video identification 

problems, i.e. transcoding level. The task is to search and locate a transcoded version 

short query video clip in a large video database which comprises of many long video 

clips. That is to say, our objective is to build a highly efficient content-based video 

identification system which is robust to the transcoding level noise, i.e. changes on 

frame size, frame rate and compression bit-rate. 

1.5 Organization of Thesis 

The rest of this thesis is organized as follows. Chapter 2 gives a broad survey about 

content-based video identification. Some backgrounds about similarity search in high-

dimensional database and locality sensitive hashing (LSH) are also provided since they 

are closely related to this thesis. Chapter 3 presents our highly efficient video identifi-

cation system for a large video database based on improved locality sensitive hashing 

and triangle inequality. Chapter 4 evaluates our system performance. Finally, chapter 5 

concludes the thesis and points out the future work. 

 



 

 12

 

Chapter 2 

Background and Related Work 
In this chapter, some backgrounds and related work are provided. Firstly, we will give 

a survey of related issues to video identification which include “feature extraction”, 

“similarity measuring” and “index structures”. Some profound surveys about video 

search can be found in [1, 45, 46, 47]. Secondly, we will give some backgrounds about 

efficient similarity search in high-dimensional space via database index structures, 

which is closely related to this thesis. Finally, we will introduce locality sensitive hash-

ing (LSH), a highly efficient index structure applied in our work.  

2.1 Content-Based Video Identification: A Survey 

2.1.1 Architecture of a Video Storage and Identification System 

A systematical video database used for video identification has two main processes: 

storage and identification. The storage process extracts features from videos and or-

ganizes these feature vectors for storage in the database. In the identification process, 

an input query is represented by the appropriate features, and a search is formed on the 

stored feature vectors to find the closest videos. A similarity metric is used to measure 

the similarities between the query video and the videos in database. The feature vector 
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indexing structure can improve the search efficiency. Figure 2.1 shows the architecture 

of a video storage and identification system. 

Query User
Interface

Output User
Interface

Video
Segmentation

& Feature
Extraction

Feature Vector
Indexing

Add New
Videos into the

Database

Database (videos + features)

Query

Output

New Videos

Similarity
Measuring

 

Figure 2.1 Architecture of a video storage and identification system 

In the above system, there are 3 key modules: (i) video segmentation and feature 

extraction; (ii) similarity measuring; (iii) feature vector indexing. Some high level or 

semantical level video search systems do not have module “feature vector indexing”, 

which is useful for increasing the search speed, because they only care the perform-

ance on precision and recall in current stage. 

2.1.2 Video Segmentation and Feature Extraction 

This module is the main part of the whole video search system. Lots of research work 

has been done for this module [48]. Figure 2.2 shows how to extract features to repre-

sent a video clip. Video has both spatial and temporal dimensions and hence a good 

video index should capture the spatiotemporal contents of the scene. Normally, a video 

is first segmented into elemental video segments (scenes or shots). For some video da-

tabases which only comprise short video clips (e.g. task 1 in section 1.3), this step may 
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be skipped and the whole video clip is treated as one video segment. These video seg-

ments are regarded as the basic units for indexing and search. Next, the module ex-

tracts feature vectors for every video segment. These feature vectors may be spatial 

features such as color, texture, sketch and shape from key frames, or temporal features 

such as object motion and camera operation, or some features based on the video seg-

ment itself, like the length of the video segment. For all these features, some are on 

semantical level and often used for video retrieval applications like camera operation, 

objection motion, spatial relation, etc., while other low level features are more suitable 

for video identification applications. 
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Figure 2.2 Structure of video segmentation and feature extraction module 

Color histogram is often used for video identification because its simplicity and 

relatively good robustness and discriminability.  Cheung et al. [15] used HSV color 

histogram of the key frames to represent a short video clip. Naphade et al. [22] applied 

color histogram intersection to compute the similarity between two clips. They verified 

that color histogram intersection is an effective and fast method for video sequence 
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matching. Ferman et al. [39] used robust color histogram descriptors called alpha-

trimmed average histogram to represent a group of frames (GoF). This is a generalized 

version of the average histogram and the median histogram. Unless strong luminance 

and/or chrominance variations are observed throughout a GoF, the average histogram 

(i.e. α = 0) can be used to provide a reliable representation of the GoF color content, 

with minimal computational overhead. Otherwise, a non-zero value for the trimming 

parameter will be adopted to reduce or eliminate the effects of these variations. 

Color (brightness) ordinal feature is also applied for video identification [28, 33, 

37]. Since ordinal measure is non-sensitive to uniform color shifting, which is a kind 

of typical color distortions in TV program, the formed ordinal representation can rep-

resent key frames robustly. 

Texture-based methods are similar to the color histogram methods. Instead of using 

a feature vector based on color, similarity is computed based on a feature vector that 

represents the contrast, grain, and direction properties of the image [49]. This method 

has the efficiency performance problems, as texture histograms are generally more ex-

pensive to produce than color histograms. This method would also be sensitive to en-

coding artifacts and changes in encoding bit-rate, as texture information is often lost at 

low bit-rate. That is to say, texture-based features are not quite robust to transcodings 

on bit-rate. 

Timothy C. Hoad et al. [14] presented the shot-length comparison method for video 

identification. This method is found to be extremely robust to changes in the video, 

including alterations to the colors as well as changes in frame size, frame rate, bit-rate, 

and introduction of analogue interference, because the feature is not related to the con-

tent of a single frame. However, there are some limitations when it is applied to certain 

content. Queries that contain only a small number of shots could not be reliably identi-
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fied. Similarly, errors in cut-detection lead, in some case, to considerable reduction in 

query effectiveness. 

Arun Hampapur et al. [50] compared the performance of a number of image dis-

tance measures (color histogram intersection, image difference, edge matching, edge 

orientation histogram intersection, invariant moments and Hausdorff distance) for 

comparing video frames for the purpose of video copy detection. In their experimental 

results, the local edge measure proposed in [10] has good performance. However, the 

number of bits of indexing information required for one frame is quite large, and the 

computational complexity is heavy to compute local edge representation for each 

frame in a video clip. 

2.1.3 Similarity Measuring 

After effectively represent the given query clip and the clips in video database by fea-

tures, the next step is similarity measuring. Current video searching methods based on 

representative images matching can be summarized into three main categories: frame 

sequence matching [21, 37, 22, 31], key-frame based shot matching [24, 14] and sub-

sampled frame matching [5, 38, 26]. 

Although frame sequence matching attained certain level of success in [21, 37, 22], 

the common drawback of these techniques is the heavy computational cost of exhaus-

tive search. [31] improved on this by skipping unnecessary steps during the search, 

while guaranteeing exactly the same search result as exhaustive search. 

Key-frame based shot matching is another popular method [24, 14] for video iden-

tification and retrieval. When applied to short video clip searching, this method, how-

ever, has some drawbacks. First, the performance of shot representation strongly de-

pends on the accuracy of shot segmentation and characteristics of the video content. 

For example, if the given clip has blurry shot boundaries or very limited number of 
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shots, shot-based searching will not produce good results. Second, shot resolution, 

which could be a few seconds in duration, is usually too coarse to accurately locate the 

instances in the video stream. 

Some other methods [5, 38, 26] consider sub-sampled frame matching for video 

stream searching. Although search speed can be accelerated by using coarser temporal 

resolution, these methods may suffer from inaccurate localization. When the sub-

sampled frames of the given clip and that of the matching window are not well aligned 

in temporal axis, it will affect the matching result. [26] partially overcomes this sub-

sampled frame shifting problem and is robust to video frame rate change. However, 

feature extraction in [26] is time consuming, therefore not suitable for on-line process-

ing and large video database search. 

2.1.4 Feature Vectors Indexing 

In the above research work, they try different kinds of content-based features and simi-

larity measuring methods to achieve better performance on precision and recall. 

Among all these methods for video identification applications, only a few concerned 

the speed performance and have been tested on a large video database: 

Cheung et al. [15] summarized each video with a small set of sampled frames, 

called the Video Signature, and then extracted the HSV color histograms of these 

frames as the features. They tested their method on a collection of 46,356 video se-

quences. However, their method can only judge if two short video clips are identical or 

not, that is to say, their method cannot detect and locate the short query video in a large 

video database. 

Oostveen et al. [17] proposed the concept of video fingerprinting and a database 

index strategy for video identification. Fingerprints, also named as perceptual/robust 

hashes, are defined as follows: a fingerprint function is the function that (i) maps (usu-
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ally bitwise large) audiovisual objects to (usually bitwise small) bitstrings (fingerprints) 

such that perceptual small changes lead to small differences in the fingerprints and (ii) 

such that perceptually very different objects lead with very high probability to very 

different fingerprints. With fingerprints, an index structure can be constructed to 

achieve efficient video identification. Unfortunately their hash table will be not effi-

cient if the entries are not evenly distributed which is just the case for most videos. 

Kok Meng Pua et al. [29] presented a real time repeated video sequence identifica-

tion system based on video sequence hashing. Color moments are used to extract the 

hash bitstring. They evaluated their system on a 32h video continuous stream and get 

real time performance, but they also face the problem of non-uniform distribution for 

the hash table. Moreover, since the hash table is not robust enough, their method is 

only limited to search repeated video segments inside a large video database, where the 

query videos have no distortions like changes on frame size, frame rate and compres-

sion bit-rate for a normal video identification application. 

Kunio Kashino et al. [31] proposed a quick search method for audio and video sig-

nals based on histogram pruning. They used the histogram of a set of consecutive 

frames’ color distribution as the feature, and gave an “active search” algorithm to skip 

the redundant match operations, where a match operation is a computation on the dis-

tance between two feature points and the number of total match operations (CPU time) 

is used to measure the performance. They tested their algorithm on a 48h video data-

base and get good performance. However, their feature dataset may be too large to be 

fit in the main memory, which introduces additional I/O cost, and the efficiency could 

be further increased by applying some index structure. 

2.1.5 Some Well-known Video Search Systems 

We will introduce some well-known video search systems in this subsection: 
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Figure 2.3 Architectural diagram of a video retrieval system 

(Figure is adapted from “S. W. Smoliar, H. J. Zhang, “Content-based video indexing 

and retrieval,” in IEEE Multimedia, vol.2, no.1, pp.63-75, Summer 1994”) 

Stephen W. Smoliar et al. [51, 4] presented a content-based video indexing and re-

trieval system. Figure 2.3 summarizes this system in an architectural diagram. The 

heart of the system is a database management system containing the video and audio 

data from video source material that has been compressed wherever possible. The 

DBMS defines attributes and relations among these entities in terms of a frame-based 

approach to knowledge representation. This representation approach, in turn, drives the 

indexing of entities as they are added to the database. Those entities are initially ex-

tracted by tools that support the parsing task. In the opposite direction, the database 

contents are made available by tools that support the processing of both specific que-

ries and the more general needs of casual browsing. 

Myron Flickner et al. [3] presented the famous QBIC (query by image and video 

content) system. QBIC allows queries on large image and video database based on 

• example images, 

• user-constructed sketches and drawings, 

• selected color and texture patterns, 
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• camera and object motion, 

• other graphical information. 

Two key properties of QBIC are (i) its use of image and video content – comput-

able properties of color, texture, shape, and motion images, videos, and their objects – 

in the queries, and (ii) its graphical query language in which queries are posed by 

drawing selecting and other graphical means. QBIC has two main components: data-

base population (the process of creating an image database) and database query. Dur-

ing the population, images and videos are processed to extract features describing their 

content – colors, textures, shapes, and camera and object motion – and the features are 

stored in a database. During the query, the user composes a query graphically. Features 

are generated from the graphical query and then input to a matching engine that finds 

images or videos from the database with similar features. 

Howard D. Wactlar et al. [2] presented the Informedia digital video library project. 

The Informedia system provides “full-content” search and retrieval of current and past 

TV and radio news and documentary broadcasts. The system implements a fully auto-

matic intelligent process to enable daily content capture, analysis and storage in on-line 

archives. The library consists of approximately 2,000 hours, 1.5 terabyte library of 

daily CNN news captured over the last 3 years and documentaries from public televi-

sion and government agencies. This database allows for rapid retrieval of individual 

“video paragraphs” which satisfy an arbitrary spoken or typed subject area query based 

on a combination of the words in the soundtrack, images recognized in the video, plus 

closed-captioning when available and informational text overlaid on the screen images. 

There are also capabilities for matching of similar faces and images, generation of re-

lated map-based displays. Figure 2.4 shows an interface of Informedia system. 
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Figure 2.4 Interface of Informedia system 

(Figure is adapted from “H. D. Wactlar, T. Kanade, M. A. Smith and S. M. Stevens, 

“Intelligent access to digital video: Informedia project,” in IEEE Computer, vol.29, 

no.3, pp.46-52, May 1996”) 

2.2 Similarity Search via Database Index Structure 

For large video database applications, the system efficiency (e.g. search time, database 

size, etc.) could be a big issue. Just as high-speed and high-volume text search engines 

have been widely used, we believe that the quick search algorithms on large video 

dataset may soon become the basic technologies for handling large volume video data. 

Thus, besides “Feature Extraction” and “Similarity Measuring”, “Feature Vector In-

dexing” is an important module for a video identification system on a large video data-

base, since it can significantly reduce the search space to improve the search speed. 
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There are mainly two kinds of similarity search problems in database indexing area, 

i.e. nearest neighbor search and ε -range search. Here are the definitions: 

Definition: Nearest Neighbor Search 

Given a set P of n objects represented as points in a normed space d
pl , preprocess P so 

as to efficiently answer queries by finding the point in P closest to the query point q . 

Definition: ε -Range Search 

Given a set P of n objects represented as points in a normed space d
pl , preprocess P so 

as to efficiently answer queries by finding all the points in P that the distances between 

these points and the query point q  is lower than the threshold ε . 

There are many well-known index structures which support the above similarity 

search problems, such as K-D-B tree [52], R*-tree [53, 54], TV-tree [55], X-tree [56], 

SS-tree [57], SR-tree [58], etc. Some researchers in database fields have started study-

ing how to efficiently and accurately index multimedia such as image, video database. 

However, these index structures do not work well for high-dimensional multimedia 

data. Roger Weber [59] showed in theory and in practice that all above space- and 

data-partitioning methods will suffer from the dimensional curse, which means their 

performance will degrade to linear search as the number of dimensions increases 

(above 20 dimensions). In fact, these index structures insist too much on the indexing 

accuracy (e.g., finding the exactly nearest feature point to locate to the single video 

frame) by assuming that an accurate and robust feature set can be obtained by means of 

some multimedia analysis tools. Such assumption is very hard or even impossible to be 

realized in practice because hundreds of consecutive video frames may look very simi-

lar in a video. On the other hand, exactly locating to a single frame may not be neces-

sary for most video-related applications, since in multimedia applications, the meaning 

of “exact” is highly subjective. Because of the nature of these applications it is usually 
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not very meaningful to pursue exact answers in such applications. Moreover, the fea-

tures themselves are approximate representations of the real world entities. They 

model the real data, but not always with 100% accuracy. Therefore, some researchers 

think about time-quality tradeoff. They apply approximate similarity search to achieve 

better performance with a little cost of accuracy. Locality sensitive hashing (LSH, see 

next subsection) [60] is one of such methods. 

Hash table is a highly efficient index structure for large database. While traditional 

hashing methods are not robust to some kinds of noise which is common in video-

related applications, researchers try to find the robust video hashing solutions [17, 29]. 

A general way to generate the hash index bitstring from features is quantization. How-

ever, the hash bitstring generated from the feature point is not robust if this feature 

point is near to the quantization threshold. A little noise may make the point cross the 

threshold and generate different hash bitstring. Locality sensitive hashing is more ro-

bust because it uses the random quantization thresholds and multiple hash func-

tions/tables, and the robustness will be increased as we increase the number of hash 

functions/tables. Therefore, LSH is suitable for video hashing to achieve efficient 

video identification. We will give more details about LSH in next subsection. 

2.3 Introduction to Locality Sensitive Hashing 

Aristides Gionis, Piotr Indyk and Rajeev Motwani [60] proposed locality sensitive 

hashing (LSH) for highly efficient approximate similarity search. Traditional hashing 

functions are used to build several hash tables as the index structure. The principle is 

that the probability of collision of two points p  and q  is closely related to the distance 

between them. Specifically, the larger the distance, the smaller the collision probability. 

For one hash table, they first partition the space randomly into high-dimensional cubes. 
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Then, they use bitstrings to represent every cube, and all the points in the same cube 

have the same bitstring. Finally, they apply traditional hashing function to map all 

these points (bitstrings) into a hash table, so the points in the same cube are mapped 

into the same bucket in the hash table. Several hash tables are used to prevent missing 

the near neighbors. Figure 2.5 illustrates LSH more clearly. 

+ + +

+
+ + Query Point

Data Point
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Query Range

Result Point

(a)

(b) (c)

 

Figure 2.5 A 2D example of merging the results from multiple hash tables 

Figure 2.5 shows a 2D example of hash tables in LSH. In this example, we have 3 

hash tables. We build these hash tables by randomly partitioning the space into cubes 

and mapping all the points into hash tables. For a query point, we also map it into all 

hash tables and return all the buckets in which it is located. In Figure 2.5(b) we merge 

the points in these returned buckets to build the candidate set. In Figure 2.5(c) we 

search the candidate set linearly to find the near neighbors that satisfied the condition. 

With LSH, we can reduce the query time significantly. The query time is increased 

sub-linearly with the size of the database )( )1/(1 ε+dnO  and the preprocessing cost poly-
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nomial in n  and d , i.e. )( )1/(11 dnnO +++ ε . Figure 2.6 is a disk accesses comparison 

between LSH and SR-tree, another well-known similarity search index structure. 

 

Figure 2.6 Disk accesses comparison between LSH and SR-tree 

(Dimension  , dataset size from 10,000 to 200,000) 

(Figure is adapted from “A. Gionis, P. Indyk and R. Motwani, “Similarity search in 

high dimensions via hashing,” in Proceedings of International Conference on Very 

Large Data Bases, pp.518-529, Sep 1999, Edinburgh, Scotland”) 
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Chapter 3 

Efficient Video Identification 

Based on Locality Sensitive Hash-

ing and Triangle Inequality 
In this section, we present an efficient video identification system for a large video da-

tabase by systematically taking “feature extraction”, “feature indexing” and “video da-

tabase construction” together into consideration. The selected feature is robust to the 

changes on frame size, frame rate and compression bit-rate. Principal components 

analysis (PCA) and improved locality sensitive hashing (LSH) are then used to reduce 

the dimensions of feature space and generate the index code. Considering that the 

original LSH is only good for indexing uniformly distributed high-dimensional data 

points and can be improved for video identification where data points may be clustered. 

We therefore give two improvements to LSH to distribute the points more evenly. First, 

by building a hierarchical hash table, we adapt the number of hashed dimensions to the 

density of the data points. Second, we choose the hashed dimensions carefully in such 

a way that the points are more evenly hashed, thus making the hash table more uni-

formly distributed and reducing the miss rate. We further apply triangle inequality on 

the resulted buckets by LSH to skip some redundant match operations. In terms of sys-
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tem design, to save the storage of the video database’s feature dataset, we slide the 

search window on the query video rather than the videos in database. 

The rest of this section is organized as follows. Section 3.1 presents the system 

overview. Section 3.2 explains how to slide the search window on the query video to 

reduce the feature dataset size and formulates the video identification problem as a ε -

range search problem in the high-dimensional space. Section 3.3 describes the LSH 

and our improvements. Section 3.4 introduces employing triangle inequality on the re-

sulted buckets by LSH to skip some redundant match operations. Section 3.5 focuses 

on selecting and extracting the robust features for video identification. 

3.1 System Overview 
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Figure 3.1 System overview 
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Figure 3.1 gives a brief overview of our system.1 During the database construction pe-

riod, we first extract the average color histogram feature for each l -second video seg-

ment of the video in database (stored video), and then we apply principal components 

analysis (PCA) to reduce the dimensions of the extracted features. After we obtained a 

size and dimension reduced feature points dataset, we use locality sensitive hashing 

(LSH) to generate the index hash code for this dataset. For the query operation (given a 

short query video clip), we extract similar features from l -second length overlapping 

video segments. Then, we generate the hash index code via LSH and get the resulted 

buckets. We further employ triangle inequality on the resulted buckets by LSH to re-

duce some redundant match operations during the final linear search within these 

buckets. 

3.2 Slide Search Window on Query Video 

l

Query Video

Stored Video

l

Slide search window on
stored video one step

forward per comparison

 

Figure 3.2 A usual video search algorithm 

Figure 3.2 gives a framework for a usual video search algorithm. Firstly, it cuts the 

query video into l -second length segments and extracts the feature vector for each 

                                                 
1 We cut the stored (database) video and the query video by different ways to reduce the stored 
video’s feature dataset size (see section 3.2). 
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segment. Here we use the l  seconds instead of frames as the length of each video seg-

ment because the query video and the video in database may be differ in frame rate, 

result in different number of frames in one segment. Then we use one of these query 

features to search in the same type of features of the video in database (stored video), 

which can be computed offline. Once a candidate position found, the whole query 

video will be compared to the same length video segment of the stored video at this 

position to decide whether it is a duplicated version. The moving step of the stored 

video’s compare window can be adjusted to do trade-off between robustness and speed. 

To reduce the temporal frame shift noise, we set the step to 1 frame, which is the 

minimal value. 

A problem of this algorithm is that the size of the stored video’s feature dataset 

may be too large to fit in the main memory, so additional I/O cost will be introduced. 

For example, we use 96-hour videos as the stored video for experiments. 96-hour vid-

eos with the frame rate of 29.97 fps have 10,357,632 frames and we have one feature 

point per frame. Suppose we use 120-dimension feature vectors and each dimension 

takes 4 bytes, thus the whole feature set size is 4,971,663,360 = 4.9G bytes. 

l

Stored Video

Query Video

l

Slide search window on query video
one step forward per comparison

l l

Repeat until search window slide over
an entire l-second length segment

 

Figure 3.3 Slide search window on query video 
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To reduce the size of the feature dataset, we cut the stored video into the non-

overlapping segments with fixed l -second length and then extract the feature points 

from these segments to build the feature dataset, i.e. one feature point per l -second 

video ( *l frate  frames). This is shown in Figure 3.3. Furthermore, instead of sliding 

the search window on the stored video we slide it on the query video for the compari-

son. Note that to maintain the nearly same accuracy as the previous method, we have 

to slide the search window over an entire l -second length segment on query video be-

cause definitely there is a l -second length overlapping segment in any continuous 2l -

second length query video which is exactly aligned to one segment in the stored video. 

These two aligned video segments may have little temporal frame shift if the query 

video and the stored video are differ in frame rate. Finally, we get a size reduced fea-

ture dataset which is 1 ( * )l frate  of the original dataset size, and *l frate′  more queries 

which the adjacent queries are very similar. The similarity of these queries will benefit 

the system performance by employing triangle inequality. Here frate  and frate′  are 

the frame rates of the stored video and the query video respectively. These two advan-

tages also bring us an additional constraint on the length of the query video clip, i.e. 

the query video has to be longer than 2 segments (i.e. 2l  seconds) while the previous 

method only requires 1 segment. Actually such constraint can be easily met by care-

fully selecting l  (e.g. l = 4s) for the tasks such as searching news and commercial vid-

eos because a typical length of news and commercial videos is usually longer than 8s. 

In this case, the feature dataset size of the 96-hour videos is reduce to 1/120 of the 

original size, i.e. 40M bytes compared to 4.9G bytes and we have 120 similar queries if 

the query video and the stored video have the same frame rates. 

We use the average color histogram [39] as the features, i.e. averaging the color 

histogram of every frame in one segment. We employ histogram intersection to meas-
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ure the similarity [22], which is equivalent to the 1L  distance measure [61]. Finally, we 

formulate the problem as a ε -range search problem in high-dimensional space: 

We have a list of query points 1 2, ,... mq q q  searched on the points dataset 

{ }1 2, ,..., nP p p p= , where iq , jp  are D -dimension feature points in a norm space 1
DL . 

We wish to find all points in P  for every iq , that the 1L  norm distance is lower than 

the threshold ε , i.e. 

( , )      1,2,...,
j

i jp P
Dis q p i mε
∈

< =      (3.1) 

We count one computation for the distance between two points as one match op-

eration and use the number of total match operations to measure the cost of the algo-

rithm. Here, the adjacent queries iq  are similar. Dimension D  is large for the features 

of video application. Threshold ε  is small because for duplicated version video search, 

the difference is low. Therefore, we can apply locality sensitive hashing (LSH) to in-

dex this high-dimensional dataset with the low miss rate because of the small threshold 

ε . 

3.3 Improvements to Locality Sensitive Hashing 

3.3.1 Description of Locality Sensitive Hashing 

In section 2.3, we have introduced locality sensitive hashing (LSH). The idea behind 

LSH is rather simple. It randomly partitions a high-dimensional space into high-

dimensional cubes. Each cube is a hash bucket.2 A point is likely to be located in the 

same bucket as its near neighbors. Given a query point, we determine which bucket the 

point is located in, and perform linear search within this bucket to check the distances 
                                                 
2 In practice, we may hash the bitstring representing the cube using traditional hash functions, 
resulting in multiple cubes in a bucket. 
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of these candidate points. The hash function is therefore a mapping from the high-

dimensional point to the bitstring representing the bucket the point is in. It is possible 

that we may miss some points whose distances are lower than the threshold ε  if these 

points have been hashed to a different bucket than the query point (e.g. point A in Fig-

ure 3.4, left). To reduce the likelihood of this, LSH maintains multiple hash tables, 

hashing a point multiple times using different hash functions. The probability that a 

query point and its near neighbors are hashed into different buckets by these hash func-

tions can be reduced by reducing the number of buckets or increasing the number of 

hash tables. In theory, the miss probability will be reduced exponentially as the number 

of hash tables increasing because the hash tables are independent. We will show this 

result in our experiments. Finally, the buckets that the query point is hashed into for all 

hash tables will be merged together to build the candidate set C  for the final linear 

search. 

A A

L0 U0

U1

L1
L0 U0

U1

L1

 

Figure 3.4 Locality sensitive hashing 

We can now describe LSH more formally. Let D  be the dimension of the vector 

space, and [ ],i iL U  be the range of possible values for dimension i . Each hash table in 

LSH is parameterized by k , the number of hashed dimensions; 0 1 1, ,..., kd d d d −= , the 

hashed dimensions; and 0 1 1, ,..., kt t t t −= , a quantization threshold vector. id  is chosen 

uniformly at random from [ ]0, 1D −  while it  is randomly chosen from ,
i id dL U⎡ ⎤⎣ ⎦ . 
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Given a point 0 1 1, ,..., dp p p p −= , we hash it into a k -bit bitstring 0 1 1, ,..., kb b b b −= , 

representing the bucket, where 

  
1   

     0,1,..., 1
0   

i i

i i

d d
i

d d

p t
b i k

p t
>⎧⎪= = −⎨ ≤⎪⎩

     (3.2) 

LSH builds N  such hash tables, each with different d  and t . The values of N  and 

k  can be tuned to change the probability that we miss the points whose distances are 

lower than threshold ε . Figure 3.4 illustrates LSH in 2-dimensional space with 4k =  

and 2N = . 

3.3.2 Improvements to Locality Sensitive Hashing 

The major factor that determines the efficiency of LSH is the size of the bucket the 

query points hashed to. Since for each query point, we need to check through all points 

in the same bucket to find if their distances are lower than threshold ε  or not. We 

would like the points to be evenly distributed among the buckets. However, LSH does 

not always give such distribution, especially for multimedia dataset. In this subsection, 

we illustrate two such problems with LSH and propose two improvements to it. 

a) Hierarchical LSH 

Currently, LSH partitions the space without considering the distribution of points. In 

most cases, the image/video dataset is not uniformly distributed [58, 62]. For example, 

in Figure 3.5(a), we see that the number of points in the middle bucket is large. Check 

the near neighbors of point A will involve many match operations, thus reducing the 

efficiency of LSH. One way to solve this problem is to increase k , the number of 

hashed dimensions. The resulting partitions are shown in Figure 3.5(b). While this re-

duces the number of points in each bucket, it reduces the accuracy as well since some 

query points in sparse area such as point B will miss the near neighbors. Another prob-
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lem for the fixed bucket size is that buckets according to cubes in sparse area may be 

nearly empty while buckets according to cubes in dense area are already full and can 

not accept new points. Thus, the hash table is inefficient and hard to expand. 

A

(a) (b)

A

B

(c)

A

B

A  Query point in dense area Not match point

B  Query point in sparse area Match point of  B

Match point of  A
Match point of  A for 1st level hashing

but not for 2nd level hashing  

Figure 3.5 Hierarchical partitioning in locality sensitive hashing 

Our solution to this problem is illustrated in Figure 3.5(c). When the number of 

points hashed to a bucket exceeds a threshold, we repartition the bucket, and rehash all 

points in this bucket. This scheme establishes a hierarchy of hash tables in dense area. 

It reduces the size of the candidate set C  for linear search while keeping the miss 

probability low. 

b) LSH with Non-uniform Partition 

Another problem of LSH is that the space is partitioned randomly using uniform distri-

bution. This works well when the values of each dimension are evenly distributed. In 
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image/video dataset, points may be denser in one dimension compared to another. For 

example, in the case of video identification, some features may be more sensitive than 

others in differentiating videos. Figure 3.6(left) illustrates the problem. 

* *

 

Figure 3.6 Non-uniform selection of partitioned dimensions in locality sensitive 

hashing 

To solve the second problem, we should choose the partition dimensions id  ac-

cording to the distribution of values in that dimension. Densely distributed dimensions 

should be chosen with lower probability while dimensions with uniformly distributed 

values should be chosen with higher probability. In the example shown in Figure 3.6, it 

is better to partition the horizontal dimension compared to the vertical dimension. 

 

Figure 3.7 PDF of Gaussian distributions for different variances 
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We can prove that to reduce the probability that we miss the points whose distance 

is lower than the threshold ε , we should partition the dimensions whose values’ distri-

bution is closer to uniform distribution with higher probability. However, maintaining 

the distribution of every dimension is too costly. We choose to use the standard devia-

tion σ  as a criterion. Normally, for nearly unimodally distributed dataset, if the distri-

bution of one dimension is close to uniform distribution, its variance is large. We give 

an example of Gaussian distributions for different variances in Figure 3.7. Therefore, 

we set the probability of selecting dimension j  in proportion to the standard deviation 

σ  of its distribution, i.e. 

{ } 1

0

 j
d

i
i

p choose j
σ

σ
−

=

=
∑

      (3.3) 

where the denominator is the sum of the standard deviation for all D  dimensions, i.e. 

( )22

1

1 n

j j ij j
i

p m
n

σ σ
=

= = −∑     (3.4) 

where jm  is the mean of values for all points on dimension j . 

We can easily calculate the new standard deviation jσ  after the dataset is updated 

based on some statistical results from the old dataset. Firstly, we calculate and save 3 

results for the old dataset: (i) Dataset size ( )size P ; (ii) Sum of the values for every di-

mension j , i.e. jpsum )( ; (iii) Sum of the square of the values for every dimension j , 

i.e. jpsum )( 2 . So 

2 2 2 2 21 1( ) ( ) ( ) ( ( ) )j j j j j jE p E p sum p sum p
N N

σ σ= = − = −    (3.5) 
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After we add or remove some video clips (denoted as the changing dataset U ) into 

or from the original dataset (denoted as the original dataset V ), we get the new dataset 

W . We first calculate the above 3 results for the changing dataset U , then the 3 results 

for the new dataset W  are just sums or differences of the 3 results for the original data-

set V  and the changing dataset U , i.e. 

(i) )()()( UsizeVsizeWsize ±=       (3.6) 

(ii) jUjVjW psumpsumpsum )()()( ±=      (3.7) 

(iii) jUjVjW psumpsumpsum )()()( 222 ±=      (3.8) 

Thus, we can easily calculate the new standard deviation jσ  (via Equation 3.5) and the 

probabilities { }choose jP  for the new dataset W . 

If the probabilities { }choose jP  of the new dataset W  do not change much from the 

original dataset V , we can keep our hash tables; otherwise, we need to update the hash 

tables to keep the high accuracy and efficiency. However, it is difficult to dynamically 

update one hash table according to the changing part of the dataset, and it costs too 

much to rebuild all the hash tables. Thus, we should rebuild some hash tables while 

keep the other hash tables to maintain an acceptable performance. The number of the 

hash tables to be rebuilt is determined by the changing scale of the probabilities 

{ }choose jP . 

We call our improved LSH, “hierarchical, non-uniform locality sensitive hashing”, 

or HNLSH. With this index structure, we can greatly reduce the search space and de-

crease the number of match operations for one query feature point. In Figure 3.8, we 

give an example to illustrate how to apply HNLSH for video identification. The 6th 

query feature point of the query clip (with bitstring HEX 774A3458) is mapped into 
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bucket C342 in the first level hash table. Since the bucket C342 is full, it is rehashed to 

bucket 0010 in the second level hash table and we find 3 points in this bucket. We 

linearly check these 3 candidate points and the first candidate point satisfies the condi-

tion, i.e. the distance is lower than ε . Finally, we get a candidate position located in 

clip 2. 

35677532
35677532
35677572

4324FD45

CC355678

4632D3C5
4632D4C5
4632D3C5

774A3458

B3470125

910834D1
910834D1
910834D1

7634A123

0F3217FC

(1) 35677532
(2) 35677532
(3) 35677572

(6) 774A3458

(9) 43235778

Query Clip
Clip 1 Clip 2 Clip n

0000
0001
0010

C342

FFFF

Hash Table  Level 1

0000
0001
0010

65D3

FFFF

Hierarchical Hash Table

Hash Table  Level 2

A full bucket, will
be rehashed

 

Figure 3.8 Illustration of HNLSH for video identification 

3.4 Skip Redundant Match Operations by Triangle 

Inequality 

From the above discussion, we can reduce search space for one query via HNLSH. In 

our problem formulation (see section 3.2), we have *l frate′  query points and the adja-

cent queries are similar, triangle inequality therefore can be employed to skip redun-

dant match operations while keep the exactly same search result. 



 

 39

qi-1 qi

pj

Candidate Set C  for Query qi

 

Figure 3.9 Skip redundant match operations by triangle inequality 

To make it clear, we give an example in Figure 3.9. Suppose 1iq −  and iq  are two 

adjacent queries searched on the points dataset { }1 2, ,..., nP p p p= . We get the candidate 

search sets for 1iq −  and iq  via HNLSH. Since 1iq −  and iq  are similar, they are likely to 

be located in the same hashing bucket, resulted in the same points in their candidate 

search sets. That is to say, the dataset point jp  which needs to be checked for query iq  

likely has already been checked by query 1iq − . Therefore, we compute the distance be-

tween 1iq −  and iq  first, if the lower bound of the distance between 1iq −  and jp  subtract 

the distance between 1iq −  and iq  is still larger than the threshold ε , i.e. the lower 

bound of the distance between iq  and jp  is larger than the threshold ε , we need not to 

check the distance between iq  and jp  any more. Here is the mathematical verification: 

(from triangle inequality) 

1 1( , ) ( , ) ( , ) ( , )i j Low i j Low i j i iDis q p Dis q p Dis q p Dis q q ε− −≥ − ≥  (3.9) 

We record the lower bounds of the previous query 1iq − , and update the lower 

bounds of the current query iq , then iterate these operations for all queries. Here is a 

brief description for the algorithm: 
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for query iq  

1. ( , ) 0Low i jDis q p ← ,   1,2,...,j n= ; 

2. compute 1( , )i iDis q q− ; 

3. get the candidate set C  of query iq  via HNLSH; 

4. for any jp C∈  

if 1 1( , ) ( , )Low i j i iDis q p Dis q q ε− −− ≥  

then 1 1( , ) ( ( , ) ( , ))Low i j Low i j i iDis q p Dis q p Dis q q− −← − ; 

// no need to compute ( , )i jDis q p ; 

else compute ( , )i jDis q p , if ( , )i jDis q p ε≥    

then ( , ) ( , )Low i j i jDis q p Dis q p← ; 

    else output one answer jp  for query iq ; 

5. repeat step 4 for all points in the candidate set C  

 

Since 1iq −  and iq  are similar, i.e. 1( , )i iDis q q−  is small, most of match operations are 

redundant and can be skipped. Therefore, triangle inequality can significantly reduce 

the number of total match operations for a batch of similar queries. This will be further 

proven in our tests. 
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3.5 Feature Extraction 

Hue

Value

Saturation

Hue

Saturation

 

Figure 3.10 Quantization of the HSV color space 

Color histogram is widely used in image/video retrieval applications. Color histogram 

intersection, which is equivalent to the 1L  distance [61], is proven to be an effective 

measurement for video identification [22]. We use the average color histogram as the 

feature for each l -second length video segment [39], i.e. the average of all the frames’ 

histograms in one video segment. We represent each frame by three 178-bin color his-

tograms on the Hue-Saturation-Value (HSV) color space. The quantization of the color 

space used in the histogram is shown in Figure 3.10, which is similar to the one used in 

[63, 15] with a slight change. The saturation (radial) dimension is uniformly quantized 

into 3.5 bins, with the half bin at the origin. The hue (angular) dimension is uniformly 

quantized at 20o-step size, resulting in 18 sectors. The quantization for the value di-

mension (vertical) is a bit more complicated. In fact, the saturation and the hue dimen-

sions do not make sense when the value dimension is very small. That is to say, the 

color is always black no matter what hue and saturation are. Similarly, the color is in 

gray-scale when saturation is small, i.e. hue is useless in this case. Therefore, when 
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value dimension is small (<1/16) we will regard it as one bin for black color. For those 

colors with the saturation values near zero, a finer quantizer of 15 bins is used to better 

differentiate between gray-scale colors. For the rest of the color space, the value di-

mension is uniformly quantized into 3 bins. So the number of total bins for this quanti-

zation is 3 * 3 * 18 + 16 = 178. The histogram is normalized such that the sum of all 

the bins equals one. In order to incorporate spatial information into the frame feature, 

each frame is partitioned into three horizontal stripes, and each stripe has its own color 

histogram (shown in Figure 3.11). As a result, the number of total dimensions of one 

single feature vector becomes 178 * 3 = 534. 

3 stripes 4 quadrants  

Figure 3.11 Frame partition 

The reason we partition each frame into three horizontal stripes instead of four 

quadrants like in [15] is that we believe in image or video, the color information is 

more symmetric and homogenous on horizontal dimension than vertical dimension, i.e. 

the color variance on vertical dimension is larger than horizontal dimension. Incorpo-

rate spatial information in vertical dimension will make the features more discrimina-

tive. Another reason is that, in video, usually two consecutive frames have more 

changes on horizontal dimension than vertical dimension because there are far more 

pan operations than tilt operations in video recording. This may cause more temporal 

frame shift noise on horizontal dimension. Therefore, our histograms do not embed the 
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spatial information on this dimension. The distance between two feature points is 1L  

norm distance: 

   
534

1

( , ) i i
i

Dis x y x y
=

= −∑      (3.10) 
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Chapter 4 

Experimental Results and Discus-

sion 
In this chapter, we will first compare our improved LSH (HNLSH) with the original 

LSH. Then we will show promising system performance of our video identification 

scheme based on HNLSH and triangle inequality, and compare our method with 

NTT’s “active search” [31]. 

4.1 Feature Dataset of the Video Database 

We use 192 TREC2003 ABC and CNN news video clips to construct our video data-

base, which are recorded from Feb.7, 1998 to Jun.25, 1998. Each video clip is about 30 

minutes. So the total video length is 96 hours. All these video clips are in MPEG for-

mat, with frame size 352 * 264, frame rate 29.97 fps and bit-rate 1600k bps. We set the 

video segment length l = 4s, and therefore we need the query video clips to be longer 

than 2l =8s, which can be easily satisfied for ABC and CNN news and commercial 

video clips. Each video segment has 120 frames. We use the average of these 120 

frames’ HSV color histograms as the feature for this segment. The raw feature is 178 * 

3 = 534-bin color histogram. We apply PCA on each 178-bin histogram to do dimen-

sion reduction respectively and keep 85% energy of the original data after we reduce 
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the number of dimensions to 40 * 3 = 120. Finally, we get 81992 feature points with 

dimension 120 for this 96-hour video database. 

4.2 Query Video Datasets 

We randomly extract 40 video segments (including news and commercial videos, 20 

from ABC and 20 from CNN) from the video database as the raw query video clips 

and all are equal or longer than 8s. We do some transformations and use these edited 

versions as our queries for the experiments. 

Query dataset 1: We use this query dataset to compare our performance with 

NTT’s “active search” algorithm [31], which is a quick search method searched for a 

large video database (48 hours). NTT’s query videos are directly captured from real-

time TV broadcasting using other TV recordings (in same conditions) which are dif-

ferent from their stored video. To simulate this, we generate our query videos by ap-

plying linear interpolation with random weights on the raw query videos, i.e. 

( ) ( ) (1 ) ( 1)edt raw rawF n F n F nα α= + − +     (4.1) 

where, [0,1]α ∈  is a random factor, ( )rawF n  is the n th frame of the raw query video, 

( )edtF n  is the n th frame of the edited version. 

Query dataset 2: We constructed the second query dataset using 3 kinds of 

transcodings, i.e. changes on frame size, frame rate and compression bit-rate. We use 

“Ulead VideoStudio 7” [64] to transcode the raw query videos from frame size 352 * 

264, frame rate 29.97 fps, bit-rate 1600k bps to 320 * 240, 24 fps, 1200k bps to build 

this query dataset. We then use this query dataset to test the robustness of our system 

for different types of transcodings. 
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Figure 4.1 A distance pattern between the query video and the videos in database 

(Note that there is a duplicated version located around 3*106) 

 

Figure 4.2 Distance distribution of the query video and the videos in database 

Figure 4.1 gives a typical distance pattern between the query video in query dataset 

1 and the videos in video database. The query dataset 2 has the similar distance pattern. 

In this figure, the horizontal axis is the time and the vertical axis is the distance. In the 

left figure of Figure 4.2, we present the distance distribution of the query videos and 

the duplicated version video segments in video database, i.e. the distance distribution 

of matched points; in the right figure, we present the distance distribution of the query 

videos and all the video segments in video database. We can see that the distances of 

matched points are all lower than 40 and nearly all the distances of unmatched points 
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are larger than 200. The gap can be set the threshold ε  is quite large, which means our 

feature is robust and discriminative. 

The threshold ε  should be larger than all the distances of the duplicated version 

videos to avoid missing the correct detection. However, the speed performance of 

HNLSH and triangle inequality will be decreased if we choose a too large threshold. 

To get a reasonable choice for the threshold ε , we suppose the distances between the 

query videos and the duplicated version videos have Gaussian distribution (left figure 

in Figure 4.2) and let the threshold 3ε µ σ> +  based on the 3σ  rule. Therefore, we set 

27ε =  for the query dataset 1 and 38ε =  for the query dataset 2. 

4.3 Performance of HNLSH 

In [20], we have tested that HNLSH works better than original LSH on approximate 

nearest neighbor search problem for a video dataset. To evaluate the performance of 

HNLSH on ε -range search, we randomly create 200 queries that for any query q , 

there is a point p  in the dataset whose distance from q  is ε , i.e. ( , )Dis q p ε= . We get 

the candidate set C  of query q , if p  is not in this candidate set, i.e. p C∉ , we regard 

it as a miss. Here, we choose 38ε =  for the case of query dataset 2. The size of candi-

date set C , i.e. the number of points to be searched, is used as a measurement for effi-

ciency. We apply the original LSH plus the improvements on the above 81992 points 

feature dataset, each indexing structure consists of 4 hash tables ( 4N = ). For original 

LSH, the number of hashed dimensions k  is varied from 10 to 30. For hierarchical 

LSH, the maximum hashing level is 4, and the number of hashed dimensions for each 

level k  is varied from 6 to 15. The rehash threshold is decided by the maximum hash-

ing level and hashed dimensions for each level k  to let the LSH can hold the whole 
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dataset. We build each kind of hash tables 200 times and the performance is measured 

by average. 

 

Figure 4.3 Performance of HNLSH 

We compare the candidate set size (i.e. number of match operations) and the miss 

rate for 4 different implementations of LSH: the original, LSH with non-uniform selec-

tion of partitioned dimensions, LSH with hierarchical partitioning, and LSH with both 

improvements combined (HNLSH). Figure 4.3 shows our results. Compared with LSH, 

HNLSH is much better in terms of both performance and accuracy. 

Although our feature dataset is only 40M bytes and can be fit in the main memory, 

someone may still interested in the I/O cost, i.e. number of page access. In fact, for one 

hash table of HNLSH, the number of points in the return bucket is always less than the 

rehash threshold. Therefore the I/O cost is predictable even for the worst case. For ex-

ample, in the above experiment, if the maximum hashing level is 4 and the number of 

hashed dimensions for each level 10k = , then the rehash threshold is 320. So the return 

bucket size of one hash table is less than 320 for any query points. Suppose each page 

contains 40 points, the page access for this hash table will be 8 pages. Therefore the 

total page access will not exceed 32 pages for 4 hash tables. 
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Now we wish to get a suitable choice for the number of hash tables N  for HNLSH. 

We fix the number of hashed dimensions for each level 10k =  in hierarchical hashing 

and vary N  to get the miss rate. In theory, the miss rate will be dropped exponentially 

with the increase of the number of hash tables N , i.e. the miss rate is Nr  for N  hash 

tables. Therefore, when the threshold ε  changed, we can use fewer hash tables to in-

crease the performance or build more hash tables to maintain the low miss rate without 

changing the existent hash tables. Table 4.1 shows the miss rate in experiment and the-

ory for both query datasets. The results of simulation verified that the miss rate will be 

dropped exponentially. However, the simulation consistently gives higher miss rate 

than the theoretical analysis, because we can not get the miss rate in theory for 1 table, 

so we use the simulation value instead. Therefore, the error of the miss rate will be ac-

cumulated for the cases of 2 tables, 4 tables, 6 tables, etc.  

Table 4.1 Number of hash tables N vs. miss rate 

 Query dataset 1 ( 27ε =  ) Query dataset 2 ( 38ε =  ) 
Tables N  Miss Rate 

(Experiment) 
Miss Rate 
(Theory) 

Miss Rate 
(Experiment) 

Miss Rate 
(Theory) 

1 table* 31.8628%     r  ------             r  41.3857%     r  ------             r  
2 tables 10.5925% 10.152%      2r  18.1075% 17.1278%    2r  
4 tables 1.2775% 1.0307%      4r  3.44% 2.9336%      4r  
6 tables 0.19% 0.10464%    6r  0.76% 0.50246%    6r  
8 tables 0.025% 0.010624%  8r  0.17% 0.08606%    8r  
10 tables 0.0025% 0.001079% 10r  0.035% 0.01474%   10r  
12 tables 0 0.000110% 12r  0.0075% 0.002525% 12r  

*For the case of 1 hash table, we build HNLSH 2000 times to get more reliable result 
(represented by r ) and use it for theory analysis. For the other cases, we build HNLSH 
200 times. 
 

The miss rate for the points within the distance ε  from the query is definitely less 

than the miss rate listed in Table 4.1. Therefore, we can get very low miss rate for ε -

range search both in query dataset 1 ( 27ε =  10N = ) and query dataset 2 ( 38ε =  

12N = ). We will present this result in the next experiment. 
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4.4 Performance of Video Identification 

We will test the performance of HNLSH for the real query dataset, i.e. query dataset 1 

and query dataset 2 created above, which totally including 40 query clips. We also em-

ploy triangle inequality on the return candidate set C  of HNLSH, to skip redundant 

match operations. The maximum hashing level is 4; the number of hashed dimensions 

for each level 10k =  and the rehash threshold is 320. We vary the number of hash ta-

bles N  and show the total number of match operations for one query video clip vs. 

miss rate in Figure 4.4. Each set of hash tables are built 200 times and the performance 

is measured by average. 

 

Figure 4.4 Performance of video identification 

For the real query video dataset, the miss rate is much lower than the miss rate of 

randomly created query dataset which listed in Table 4.1, because the distances of the 

real query points are much lower than the threshold ε . In fact, the miss rate of 

HNLSH dropped to 0 when we use more than 6 hash tables ( 6N = ) for query dataset 1 

and 7 hash tables ( 7N = ) for query dataset 2. Compared the left figure and right figure 

in Figure 4.4, we can see that triangle inequality significantly reduces lots of redundant 
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match operations. The number of total match operations is reduced to 4% with triangle 

inequality. 

Table 4.2 Summary of the performance for video identification 

Query 
Dataset 

Th 
ε  

Tables 
N  

Miss Rate Before Trian-
gle Inequality 

Total Match 
Operations 

Reduction 
Ratio 

Time 
(s) 

1 27 10 <0.0025% 83240 2970 1/3312 0.158
2 38 12 <0.0075% 78803 3434 1/2292 0.170

 

In Table 4.2, we give a summary of the system performance for video identifica-

tion. To be conservative, we still use 10 hash tables for query dataset 1 ( 10N = ) and 12 

hash tables for query dataset 2 ( 12N = ). The miss rate of HNLSH is low enough and 

can be ignored in practice, because in theory we always have miss probability for 

video identification if we set a high threshold ε . Refer to Table 4.2, the number of to-

tal match operations of a linear search algorithm for query dataset 1 and query dataset 

2 are 4s * 30fps * 81992 = 9839040 and 4s * 24fps * 81992 = 7871232 respectively. 

Compared with those linear search algorithms, the reduction ratios of total match op-

erations of our algorithm are 2970/9839040 = 1/3312 and 3434/7871232 = 1/2292 re-

spectively. Note that, besides HNLSH, triangle inequality also plays an important role 

in our system. For example, for query dataset 1, HNLSH reduce the number of total 

match operations from 9839040 to 83240, where the reduction ratio is 1/118, and tri-

angle inequality further reduce the number of total match operations from 83240 to 

2970, where the reduction ratio is 1/28. We run these experiments on the Pentium 4, 

1.7GHz machine with 384MB memory. We build the HNLSH for the feature dataset 

and extract features from the query video offline. Once the features of the query video 

extracted, the total running time is 0.158s for query dataset 1 and 0.170s for query 

dataset 2. 
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4.5 Comparison with NTT’s “Active Search” 

We compare our algorithm with NTT’s “active search” algorithm [31], which is a 

quick search method for video signals. The query dataset 1 is a simulation for NTT’s 

query dataset. The comparison results are shown in Table 4.3. Our video database is 

twice as large as NTT’s database, which is 96 hours. Since we move the compare win-

dow on the query, the query video clip has to be longer than 2 segments, i.e. 2l =8s. 

For accuracy, NTT’s “active search” insures the exactly same search result as the lin-

ear search, whereas HNLSH is an approximate search method with the miss rate near 

to 0, and its miss rate can be decreased exponentially with more hash tables. In fact, all 

the hash tables can be implemented in a parallel way on distributed systems because 

they are independent. On the other hand, we gain 11 times improvement on the speed 

performance. Note that the running time they reported is only the CPU time (i.e., ex-

cluding I/O time) while ours is the total time because our dataset can be fit in the main 

memory. 

Table 4.3 Comparison of our algorithm and NTT's "active search" 

Methods Database 
Size 

Query 
Length 

Miss Rate Total Match 
Operations 

Reduction 
Ratio 

Time (s) 

NTT’s 48h ≥ 4s 0 17793 1/291 0.17 (CPU) 
Ours 96h ≥ 8s <0.0025% 2970 1/3312 0.158 (total) 
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Chapter 5 

Conclusions and Future Work 

5.1 Conclusions 

The problem of content-based video identification concerns identifying the duplicated 

version of a given short query video clip in a large video database based on content 

similarity. In this thesis we first divide video identification problems into 6 levels 

based on the noise between the original and the duplicated version video clips. High 

level (semantical level) and low level (exact match level) video identification systems 

have different concerns on search speed. Our task is to build a highly efficient video 

identification system which is robust to transcoding level noise, i.e. different frame 

size, frame rate and compression bit-rate. 

In our video identification system, to save the storage of the video database’s fea-

ture dataset, we slide the search window on the query video rather than the videos in 

the database. Thus, we can fit the whole feature dataset into the main memory to save 

additional I/O cost. We introduce locality sensitive hashing (LSH), and explain why it 

is suitable for video hashing to achieve highly efficient video identification. We im-

prove the original version of LSH on two weaknesses to make it more suitable for 

video datasets. Triangle inequality is employed on the resulted buckets by improved 

LSH to further enhance the system efficiency. 
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Experimental results verify that our improved LSH is much better than original 

LSH in terms of both efficiency and accuracy when applied on the video feature data-

set for similarity search. For video identification, we greatly reduce the search space 

and redundant match operations by incorporating improved LSH with triangle inequal-

ity to improve the efficiency. We further demonstrate the promising system perform-

ance by comparing our algorithm with NTT’s “active search” algorithm. The use of 

LSH with triangle inequality and sliding search window on the query video are two 

main contributions of this research work. 

5.2 Future Work 

Our video identification system represents the query video and the videos in database 

as feature vector sequence, and then does feature vectors matching. We use the average 

color histogram as the feature vector. To build the hierarchical hash tables, we choose 

some bins of the color histogram for the first level hashing and then some other bins 

for the second level hashing. We believe that more improvements could be achieved if 

we can find some hierarchical features to incorporate with our hierarchical hash tables. 

Hierarchical features are the feature vectors whose first dimensions stand for high 

level features for coarse matching and last dimensions stand for low level features for 

fine matching. Incorporating hierarchical features with hierarchical hash tables, we 

can do first level hashing using high level features and second level hashing using low 

level features accordingly. Thus, we do coarse search first to greatly reduce the search 

space and then do fine search if necessary. Figure 5.1 gives an example. 
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Figure 5.1 Incorporate hierarchical feature vectors with hierarchical hash tables 

As mentioned before, how to dynamically update one hash table in the HNLSH is 

another problem for the future research. Since the performance of HNLSH will be de-

creased with the changes of the dataset distribution, while it cost too much to rebuild a 

hash table, therefore, how to maintain an acceptable high performance of the hash table 

for the new dataset without rebuilding it will be an interesting problem. 

For special domain video search, such as news video search, “abstraction” and 

“structure analysis” are helpful for video indexing. Some domain knowledge (e.g. sub-

title, anchor person, lead-in for news video) will benefit every process in the system. 

Figure 5.2 shows the overall system. 

Feature
extraction Features Abstraction Summary/

skimmed video

Structure
analysisVideo streams

Retrieval &
browsing Metadata Clustering &

Indexing

Domain
knowledge

 

Figure 5.2 Process diagram for special domain video indexing 
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