25,677 research outputs found

    Transforming the Axiomisation of Ontologies: The Ontology Pre-Processor Language

    Get PDF
    As ontologies are developed there is a common need to transform them, especially from those that are axiomatically lean to those that are axiomatically rich. Such transformations often require large numbers of axioms to be generated that affect many different parts of the ontology. This paper describes the Ontology Pre-Processor Language (OPPL), a domain-specific macro language, based in the Manchester OWL Syntax, for manipulating ontologies written in OWL. OPPL instructions can add/remove entities, and add/remove axioms (semantics or annotations) to/from entities in an OWL ontology. OPPL is suitable for applying the same change to different ontologies or at different development stages, and for keeping track of the changes made (e.g. in pipelines). It is also suitable for defining independent modelling macros (e.g. Ontology Design Patterns) that can be applied at will and systematically across an ontology. The presented OPPL Instruction Manager is a Java library that processes OPPL instructions making the changes to an OWL ontology. A reference implementation that uses the OPPL Instruction Manager is also presented. The use of OPPL has been demonstrated in the Cell Cycle Ontolog

    Approaches the Marking Electronic Texts

    Get PDF

    Concurrent extensions to the FORTRAN language for parallel programming of computational fluid dynamics algorithms

    Get PDF
    Experiments were conducted at NASA Ames Research Center to define multi-tasking software requirements for multiple-instruction, multiple-data stream (MIMD) computer architectures. The focus was on specifying solutions for algorithms in the field of computational fluid dynamics (CFD). The program objectives were to allow researchers to produce usable parallel application software as soon as possible after acquiring MIMD computer equipment, to provide researchers with an easy-to-learn and easy-to-use parallel software language which could be implemented on several different MIMD machines, and to enable researchers to list preferred design specifications for future MIMD computer architectures. Analysis of CFD algorithms indicated that extensions of an existing programming language, adaptable to new computer architectures, provided the best solution to meeting program objectives. The CoFORTRAN Language was written in response to these objectives and to provide researchers a means to experiment with parallel software solutions to CFD algorithms on machines with parallel architectures

    A fault-tolerant multiprocessor architecture for aircraft, volume 1

    Get PDF
    A fault-tolerant multiprocessor architecture is reported. This architecture, together with a comprehensive information system architecture, has important potential for future aircraft applications. A preliminary definition and assessment of a suitable multiprocessor architecture for such applications is developed

    The force on the flex: Global parallelism and portability

    Get PDF
    A parallel programming methodology, called the force, supports the construction of programs to be executed in parallel by an unspecified, but potentially large, number of processes. The methodology was originally developed on a pipelined, shared memory multiprocessor, the Denelcor HEP, and embodies the primitive operations of the force in a set of macros which expand into multiprocessor Fortran code. A small set of primitives is sufficient to write large parallel programs, and the system has been used to produce 10,000 line programs in computational fluid dynamics. The level of complexity of the force primitives is intermediate. It is high enough to mask detailed architectural differences between multiprocessors but low enough to give the user control over performance. The system is being ported to a medium scale multiprocessor, the Flex/32, which is a 20 processor system with a mixture of shared and local memory. Memory organization and the type of processor synchronization supported by the hardware on the two machines lead to some differences in efficient implementations of the force primitives, but the user interface remains the same. An initial implementation was done by retargeting the macros to Flexible Computer Corporation's ConCurrent C language. Subsequently, the macros were caused to directly produce the system calls which form the basis for ConCurrent C. The implementation of the Fortran based system is in step with Flexible Computer Corporations's implementation of a Fortran system in the parallel environment

    Simulation of mixed bond graphs and block diagrams on personal computers using TUTSIM

    Get PDF
    The TUTSIM simulation program for continuous dynamic systems accepts (nonlinear) block diagrams, bond graphs or a free mix of both. The simulation is “hands on” interactive, providing a direct contact with the model. The implementation of the program on existing personal computers (Apple II, IBM PC) requires small memory size and has a high computational speed, due to its assembler source code. A slower FORTRAN CP/M version is available. It is shown how bond graphs can be used as an input language. An example using bond graphs as a modelling tool is presented
    • …
    corecore