43,732 research outputs found

    Visual and geographical data fusion to classify landmarks in geo-tagged images

    Get PDF
    High level semantic image recognition and classification is a challenging task and currently is a very active research domain. Computers struggle with the high level task of identifying objects and scenes within digital images accurately in unconstrained environments. In this paper, we present experiments that aim to overcome the limitations of computer vision algorithms by combining them with novel contextual based features to describe geo-tagged imagery. We adopt a machine learning based algorithm with the aim of classifying classes of geographical landmarks within digital images. We use community contributed image sets downloaded from Flickr and provide a thorough investigation, the results of which are presented in an evaluation section

    Deep learning in remote sensing: a review

    Get PDF
    Standing at the paradigm shift towards data-intensive science, machine learning techniques are becoming increasingly important. In particular, as a major breakthrough in the field, deep learning has proven as an extremely powerful tool in many fields. Shall we embrace deep learning as the key to all? Or, should we resist a 'black-box' solution? There are controversial opinions in the remote sensing community. In this article, we analyze the challenges of using deep learning for remote sensing data analysis, review the recent advances, and provide resources to make deep learning in remote sensing ridiculously simple to start with. More importantly, we advocate remote sensing scientists to bring their expertise into deep learning, and use it as an implicit general model to tackle unprecedented large-scale influential challenges, such as climate change and urbanization.Comment: Accepted for publication IEEE Geoscience and Remote Sensing Magazin

    High-resolution optical and SAR image fusion for building database updating

    Get PDF
    This paper addresses the issue of cartographic database (DB) creation or updating using high-resolution synthetic aperture radar and optical images. In cartographic applications, objects of interest are mainly buildings and roads. This paper proposes a processing chain to create or update building DBs. The approach is composed of two steps. First, if a DB is available, the presence of each DB object is checked in the images. Then, we verify if objects coming from an image segmentation should be included in the DB. To do those two steps, relevant features are extracted from images in the neighborhood of the considered object. The object removal/inclusion in the DB is based on a score obtained by the fusion of features in the framework of Dempster–Shafer evidence theory
    corecore