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ABSTRACT

High level semantic image recognition and classification is a
challenging task and currently is a very active research do-
main. Computers struggle with the high level task of identi-
fying objects and scenes within digital images accurately in
unconstrained environments. In this paper, we present experi-
ments that aim to overcome the limitations of computer vision
algorithms by combining them with novel contextual based
features to describe geo-tagged imagery. We adopt a machine
learning based algorithm with the aim of classifying classes of
geographical landmarks within digital images. We use com-
munity contributed image sets downloaded from Flickr and
provide a thorough investigation, the results of which are pre-
sented in an evaluation section.

1. INTRODUCTION

Creating an algorithm to automatically recognise high-level
semantic concepts, scenes or objects within digital imagery
based on image content alone is a very challenging task and
currently one of the most sought after goals in image retrieval.
Computers excel at low-level processing of image data such
that a query in an image retrieval system like ’retrieve all im-
ages within an image collection containing 30% blue pixels,
40% red pixels and 30% green pixels’ is a trivial task. Hu-
mans rarely, if ever carry out search queries in this manner.
A human is far more likely to provide a high level semantic
query like ’retrieve all images of Paris Hilton’s dog’ or ’Eif-
fel Tower on Sunny Day’. These types of high level semantic
queries are more challenging for a computer algorithm based
on analysing pixels alone.

There is currently a limitation in the ability of computer
algorithms to achieve this goal, a phenomenon known in the
literature as ’The Semantic Gap’ [1]. To circumvent the con-
straints of the semantic gap, we combine state of the art com-
puter vision techniques with novel geographical contextual
features with the aim of creating a machine learning based
approach to high level semantic image classification. We fo-
cus on the classification of images containing commonly pho-
tographed landmarks.

The focus is on landmarks due to the significant contri-
bution that they make to a large scale public photo reposi-
tory such as Flickr (eg. Flickr search for Eiffel Tower re-
turns over 450,000 images, Flickr search for Empire State re-
turns over 370,000 images (June 2011)). Geographical fea-
tures and landmarks have long been one of the most com-
monly photographed objects that tourists capture and com-
monly search for in image retrieval systems. Sanderson and
Kohler [2] claim that almost one fifth of all web search engine
queries had some geographical relationship, while Gan et al.
[3] claimed that one in eight web queries contained the actual
name of a specific location. For this study, we specifically
focus on landmarks located within the Paris metropolitan re-
gion.

In recent years, as the extraction and representation of im-
age features became more reliable, several techniques were
developed to classify low-level semantic information from an
image. Combinations of global low-level image features can
be combined with classification techniques to infer basic in-
formation about the content of an image. For example, in the
absence of EXIF information, colour based image features
can be useful to determine whether an image was taken dur-
ing the day or at night [4]. Successful low-level classification
of semantics allowed for image retrieval systems to organ-
ise and return images based on more humanistic queries. For
example, instead of returning images consisting of 30% red
pixels and 70% blue pixels, a system could now be queried to
retrieve images containing a sunset, snow covered landscape
or perhaps a seascape scene. These types of semantics are
getting closer to the types of queries that humans might make
to a retrieval system.

Several successful classification methods have also been
developed to recognise a variety of other low-level semantics
such as the recognition of a cityscape (urban) or landscape
(rural) scene [5]. Szummer and Picard [6] combined colour
histograms with texture features to train a nearest neighbour
classifier to recognise whether an image was taken indoors or
outdoors. Vailaya et al. [7] trained a k-Nearest Neighbour
classifier to group images cityscape, landscape, forest, moun-
tain and sunset classes among others.
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While low-level semantic classfiers have been shown to
work well, there still is a significant gap when it comes to
automatic high level semantic understanding of an image. In
this paper, we aim to address this gap through the use of ma-
chine learning algorithms and additional contextual informa-
tion that is available within geo-tagged images.

We hypothesise that it is possible to improve upon visual
features alone to classify landmarks by combining them with
geographical features extracted from associated geo-tags and
publicly available geographical datasets. Accurate semantic
classification can benefit image retrieval systems, particularly
those based on tag based approaches, such as Flickr, due to
issues with noisy human defined metadata [8].

2. LANDMARK CLASS CLASSIFICATION

Understanding the content of a scene depicted within an im-
age is one of the core goals of computer vision. The aim is
to convert the pixel data contained within an image into one
or more high level semantic descriptions of the scene or event
that is displayed in an image. A high level semantic descrip-
tion could be described as a detailed and meaningful repre-
sentation of the content of an image, which would be relevant
to a human observer (or perhaps a description that could be
converted by a computer so that it would be relevant to a hu-
man observer). High-level semantic image classification is
still a very open problem in the computer vision community,
particularly in unconstrained environments. In recent years
however, much progress has been made in image classifica-
tion at a lower semantic level, such as the ability to classify
images into different categories of scenes.

Following a machine learning approach, it was hypoth-
esised that it would be possible to classify an image of a
landmark into one of a finite number of visually distinct cat-
egories. The motivation behind this is that if accurate se-
mantically relevant groupings of landmark images could be
achieved, it would be possible more accurately annotate land-
mark images in a text based image retrieval system such as
Flickr. Eight different classes of landmarks were chosen that
had a high representation within the corpus, and could be
suitable for classification using machine learning algorithms.
These were:

• Artwork The artwork class is defined as images (that
contain a painting or drawing) taken inside an art gallery
or museum. From an informal empirical study of the
Paris corpus, it is evident that many Flickr users com-
monly photograph paintings, and several well known
pieces of art could be considered landmarks.

• Bridge Another very commonly photographed landmark
is a bridge. Many iconic bridges span the river Seine
and many of the canals that flow through the Parisian
region, and due to their unique visual appearance and

photogenicity, large numbers appear in the training cor-
pus. In this work, a bridge is defined as a man-made
object that spans across a body of water, a road or a
railway track.

• Building Facade A building facade is a category con-
taining the main facade of a large building. If there is
no notable facade, for example in the case of an office
block or a skyscraper, the facade is considered to be any
side of the building.

• Fountain A fountain is defined as a man made object
that sprays or pours water either into the air or into a
man made reservoir. Although originally used for hu-
man water consumption purposes, today fountains are
mainly used for ornamental purposes.

• Monument The category of monument is quite nebu-
lous and can refer to a large number of objects. In this
work, a monument is considered a man-made structure
that does not have a use as a dwelling place (such as a
building) and does not contain a large statue or sculp-
ture. Some examples of monuments in the image cor-
pus are; the ’Eiffel Tower’ and the ’Arc de Triomphe’.

• Church: A Church is defined as a place where a Chris-
tian might practice their religion, such as a church, cathe-
dral or a chapel. This category is concerned solely with
images that were taken outside of the structure.

• Church(Indoor): The church indoor is defined as an
image that was photographed inside a Christian place
of worship. These commonly include close up images
of stained glass windows, church ornaments and altars.

• Statue A statue is defined as a sculpture that usually
represents a person or historical event. Additionally, a
sculpture within an art gallery or museum will fall into
this category.

• Other Any landmark that does not fall into one of the
above categories is defined in this class.

Although there is a large amount of variance in intra class
visual similarity within each of these categories, many dif-
ferent landmarks within a class share some basic characteris-
tics. Take, for example, the class ’Church’, which includes
churches and cathedrals, among others. In many cases, a
human observer could quickly recognise a church as being
a church irrespective of the size of the landmark or the ar-
chitecture style, as illustrated in Figure 1. Whether a church
was built in the Gothic style, such as the famous Notre Dame
Cathedral, or in a more modern style such as the Sagrada Fa-
milia in Barcelona, many humans could identify from visual
recognition that these structures are places of worship. This
recognition could be based on knowledge obtained in their
lifetime using the visual style of other visually similar places



Fig. 1. An example illustrating many different examples in a
landmark category ’Church’. Although there is a lot of vi-
sual intra class variation, it will still be possible, based on vi-
sual information alone for many human observers to quickly
classify all of these images as either being churches, chapels,
cathedrals or mosques.

of worship, which could be considered analogous to super-
vised learning. It is logical, therefore, to assume that these
two structures share enough characteristics visually, for a hu-
man observer to predict the category of both structures with-
out heterogeneous knowledge. It is based on this premise, that
a suite of classification models was implemented with the aim
of grouping landmarks into a finite set of categories.

3. VISUAL SEMANTIC CLASSIFIER

We determine landmark classification as a pattern recognition
problem and adopt a supervised learning approach. Given
pattern x extracted from an image i, the aim is to obtain
a probability measure, which indicates whether a semantic
landmark class is present in image i. We use Support Vector
Machines (SVM) to obtain this probability measure based on
the RBF kernel function.

3.1. Support Vector Machines

A SVM is a learning algorithm originally developed by Vap-
nik [9] that can perform input/output mappings from labelled
examples and can choose a balanced capacity for each deci-
sion function. SVMs have been widely used in many different
research genres and are highly regarded for scaling well with
high dimensional data [10].

3.1.1. Linear Classification

The main aim of an SVM is to seperate classes of data with the
use of a hyperplane. The general equation for a hyperplane H
is

H = w · xi + b >= 1 where yi = +1

and

H = w · xi + b <= −1 where yi = −1

where x is an input point (a vector) lying on the hyperplane,
w is a set of weights (also a vector) and b is a constant. H1

and H2 are two hyperplanes, that are parellel to H where

H1 = w · x+ b = 1

and

H2 = w · x+ b = −1

The points that lie along the hyperplanes H1 and H2 are the
closest points to the the hyperplane H and are called the sup-
port vectors. The support vectors are the critical elements
of the training set as they are the input features that would
influence the position of the dividing hyperplane decision if
removed from the dataset. Distance d+ is defined as the dis-
tance from H to the closest positive point, while distance d−
is defined as the distance from H to the closest negative point.
The margin of the separating hyperplane is defined as d− +
d+. This margin can be calculated as 2/||w||.

The main aim of SVMs is to create a hyperplane with
as large a margin as possible, i.e. optimise w and b so that
2/||w|| is maximised, which is the equivalent to minimising
1
2 ||w||

2. A maximum margin hyperplane ensures a higher cer-
tainty level of correct classification, as points located near
the decision plane represent unpredictable classification de-
cisions. A classifier with a maximum margin will make much
fewer of these low certainty decisions. This provides a slight
margin of error within the classification procedure. A noisy
variable will not cause a classification error.

In this work, a multi-class SVM model, based on the one
versus all paradigm, was trained to classify images into one
of these nine categories.

3.1.2. Radial Basis Function Kernel

In situations where complex data is not linearly separable,
it might be possible that a transformation of this data into a
higher dimensional space could result in a linearly separa-
ble model, where the linear based SVM approach described
above could then be applied. The function behind this trans-
formation is referred to in the literature as the kernel function.
Several different kernel functions were evaluated but it was
the RBF kernel that performed best for this task. This function
takes a parameter called gamma (g) that defines how the influ-
ence of each support vector. A large gamma value will enable
a support vector to have a stronger influence over a larger area,
which in turn can lead to a smaller number of support vectors
in each classifier. With stronger influence over larger areas,
fewer support vectors are required to define a boundary. In
this work, optimal values for g were defined through k-fold
cross validation. The RBF kernel is formally defined as:



K(x, y) = exp(−g||x− y||2)

4. IMAGE FEATURES

As inputs into our SVM model, we use a two of state of the
art computer vision features:

4.1. Edge Histogram Descriptor

One of the most commonly used texture features in the MPEG7
standard is the Edge Histogram Descriptor (EHD). The EHD
is a global based feature vector containing spatially organised
histograms of edge orientations detected within an image. It
is based on the measurements of four directional edges (verti-
cal, horizontal, 45◦ and 135◦ ) and one non directional edge.

When extracting image features to represent objects/landmarks
within an image, it is preferable to have some division of the
image into meaningful regions that are relevant to the actual
objects/landmarks depicted. Once this division has been cal-
culated, features can be calculated for each region, which al-
lows for the inclusion of local information to be embedded
into these features.

Traditionally, global based features were calculated based
on the whole content of an image. The main disadvantage of
this is that all geometrical information is disregarded regard-
ing the layout of the extracted features.

Block based segmentation, is the process of partitioning
the image into blocks or regions, each one a predetermined
size, and calculated in a defined manner. Each of these blocks
is then treated as separate entity for the purposes of feature ex-
traction and the geometrical information regarding the regions
location and relationship to other regions can be preserved in
the feature descriptor. This information can provide a weak
form of geometric consistency when comparing and matching
features from multiple images. The MPEG7 edge histogram
feature utilises a block based segmentation scheme.

To calculate the feature, firstly the image is partitioned
into 4 × 4 (16) equal sized sub images, the width and height
of each block is W/4 and H/4 respectively, where W and H
represent the overall width and height of the image. Each of
these sub images is then treated as a separate entity. Irrespec-
tive of the size of the image, each of these blocks are further
divided into 1100 smaller block. Each of these smaller sub
blocks are then processed with a suite of 5 oriented edge de-
tectors (0, 45, 90, 145 and non-directional). The sub block
is then marked as the orientation that had the maximum edge
strength outputted from these edge detectors, if above a thresh-
old, if not, the block is disregarded. For each original larger
sub block (16 in total) the average numbers of edges in each
orientation is histogramed into 5 features. As this process is
repeated for each larger sub block, this gives a total of 80 val-
ues, to create the global EHD (see Figure 2 for example).

Fig. 2. An illustration displaying the process of extracting
an edge histogram feature from an image. Firstly the image is
split into 16 sub images (1), followed by the further block seg-
mentation of each of these sub blocks to 1100 much smaller
blocks (2). A histogram is created for each large sub block,
containing 5 values (3). All of these smaller histograms are
merged into one global histogram (4).

4.2. Visual Bag Of Words

Bag of words (BOW) models have been used in document
classification successfully in the past [11]. A BOW model is
a technique where a document is represented as an unordered
collection of words that are then used to classify a document
based on these representations. Visual bag of words (VBOW)
features are based upon the same basic premise, however the
bag of words is replaced by a bag of descriptions of image
patches. These image patches can be identified from a sam-
ple set of images using a variety of approaches such as dense
sampling, random sampling or using an interest point detec-
tion algorithm, in this work we use the SURF algorithm [12].
Descriptor vectors are then processed for each of these image
patches. A collection of these descriptors is referred to as a
visual vocabulary or a codebook.

Once a codebook is created, the VBOW approach pro-
vides an efficient method to quantise large numbers of im-
age descriptors. Each image is represented as a bag of vi-
sual words that are created based on the presence of visually
similar image descriptions of salient regions in an image and
contained within the visual vocabulary [13].

There are several steps involved in creating a VBOW model:

• Local image feature descriptions are extracted from each
image or from a subset of images within the dataset.

• These image features are then quantised into a visual
vocabulary using a k-means clustering algorithm with
k being the vocabulary size of the dictionary.

• Using this vocabulary each image can then be repre-
sented by a global histogram value that is calculated by



comparing each image feature to every feature in the
dictionary and a vote is counted for the entry in the dic-
tionary that has the smallest distance from the image
feature. The histogram forms a vector where the num-
ber of possible words is the length of the feature vector.

This VBOW model effectively quantises large numbers
of image features into a single feature vector while retaining
a high level of discrimination. A VBOW histogram is an or-
derless image feature, in that the order of feature values is not
determined in advance and has little or no impact of classifi-
cation/matching accuracy. We experiment with three values
for k, 1024, 2048 and 4096.

4.2.1. Soft Assignmentof Visual Word Features

Traditionally in the VBOW model, image features are as-
signed to their closest neighbour in the vocabulary and only
their closest neighbour. This assignment process is referred
to as ’hard assignment’ and can be formally defined as:

Hist(i) =
1

n

n∑
i=1

{
1, if i = argmin(Dist(v, pj)

0, otherwise

where n is the number of interest points extracted from an im-
age, pj represents an interest point j extracted from an image,
and Dist(v, pj) represents the distance between a vocabulary
word i and an interest point j. This hard assignment model has
many disadvantages in that for each input feature, it’s simi-
larity is only considered for the closest neighbour in feature
space. This model disregards all other features that could be
also quite similar, some of these might only be marginally fur-
ther away in feature space than the nearest neighbour. Clearly
this approach is not ideal as relevant information that can aid
discrimination of each feature is simply disregarded (see Fig-
ure 3).

One method to atone for this shortcoming, is to utilise an
approach to feature assignment based on the similarity of fea-
tures to each vocabulary word, called soft assignment. This
is where each input can be assigned to k bins in a histogram,
where k that represent it’s nearest neighbours in feature space.
Usually it is desirable to set the amount of the value assigned
to each to be directly proportional to how close the input fea-
ture is to each of its neighbours. This ranking based feature
essentially calculates the proportionality of the score assigned
to the k nearest neighbour bins, by using the position of each
bin in a ranked list (of length k) of nearest neighbours to des-
ignate the score. The ranking based function that we use in
this work can be formally defined as:

Hist(k)+ =
1

2i − 1

where i is the position of the bin k in the ranked list of nearest
neighbours.

Fig. 3. An illustration outlining the advantages of the soft
assignment of visual word features. This diagram presents a
hypothetical partition of a visual word vocabulary containing
5 visual word features A-E, and four feature points to be as-
signed to a visual word cluster center, P1-P4. It can be clearly
seen that points P1, P2 and P3 are quite close together in fea-
ture space, however, using a hard assignment approach would
not take into account the similarity between these features and
they would never be matched. P1 would only be associated
with the visual word B, while points P2 and P3 would only be
associated with the visual words A and E respectively. Using
hard assignment the only point to be matched to P1 would in
fact be P4, even though P2 and P3 are closer in feature space.
Using soft assignment the points P1, P2 and P3 would be as-
signed to each the visual words A, B and E albeit with differ-
ent weights, which are calculated based on the distance from
the visual words. This would allow these features to matched
as they are closer in feature space.

5. DATASETS

A collection of training and testing images was collected for
this purpose. The training collection was gathered from two
sources. The first source was the SUN image dataset [14],
which is a large scale collection of images categorised into
899 scene categories. Of these 899 scenes, 7 were deemed
useful for the purposes of this work. These included: bridge,
building facade, church (outdoor), church (indoor), fountain
and statue.

The other source used to gather data for the training set
was the Flickr API. For 8 of the 9 semantic categories, the
Flickr API was queried using the category name as the query
text. All retrieved images were manually analysed and if they
conformed to the category class, they were added to the train-
ing data. In total the training collection consisted of 3886
images:

• Artwork - 246 images



• Bridge - 562 images

• Building - 625 images

• Church - 480 images

• Church (Indoor) - 616 images

• Fountain - 709 images

• Monument - 185 images

• Other - 155 images

• Statue - 308 images

6. LANDMARK CLASS CLASSIFICATION WITH
COMMUNITY CREATED GEOGRAPHICAL DATA

Visual information can be useful when classifying low-level
semantic information from digital images [6], however it is
more difficult to infer high level semantics. From results in
Figure 4, it is evident that global based image features alone
are insufficient for accurate classification across all semantic
classes. To overcome this, it is hypothesised that utilising ge-
ographical contextual information will help to bridge this ’Se-
mantic Gap’. There now exist rich geographical databases,
accessible online, that contain high level semantic informa-
tion describing a specific region. In this section, it is proposed
that by fusing visual and geographical information, it would
be possible to classify an image into a high level semantic
landmark category with a higher degree of accuracy than if
using visual information alone.

In recent years, there has been a surge in the creation and
dissemination of information on-line by large communities
of contributors. One particular type of information accessible
online includes geographical data. Large numbers of websites
have recently been created that enable for the creation of large
scale semantic databases describing geographical locations.

In this work, a database containing geographical points
of interest (POI) was created. This consisted of a number
of objects referenced by geographical location, which were
harvested from two online sources. A technique was proposed
to classify an image into one of the 9 landmark categories
based on the objects stored in this POI dataset.

6.1. Open Street Map

One example of an online geographical community is Open
Street Map. Open Street Map is an online repository where
community contributors upload the spatial coordinates of a
wide range of geographical entities, along with semantic data
describing these entities. With a large community of users,
these present a very valuable resource for research communi-
ties across several fields.

Human contributors can upload map data which is repre-
sented by lists of waypoints. Each waypoint contains latitude

and longitude coordinates. Users can also upload geograph-
ical objects, otherwise known as ’Points of Interest’ (POI),
and assign them a location. OpenStreetMap has a strict set of
guidelines to ensure that uploaded data is accurate. Each up-
loaded POI can be assigned one of a finite number of feature
classes dependent on the use and attributes of the feature. In
this work 8 different feature classes were selected to coincide
with the set of semantic classes desired to be classified in this
work. These feature classes were:

• Bridge

• Building

• Fountain

• Gallery

• Monument

• Museum

• Place of Worship

• Statue

All of these feature classes located in the Paris region
were downloaded and stored in the POI dataset.

6.2. GeoNames

Another online resource that contains accessible geographi-
cal data is the GeoNames repository located at geonames.org.
GeoNames is an online geographical repository that contains
over 10 million geographically mapped location names, along
with 7.5 million geographical features. These features are
split into 9 feature classes, which are then split into 645 fea-
ture types. Of these feature types, 5 were deemed relevant to
the set of landmark classes outlined in section 6.3. Each fea-
ture type is associated with a set of metadata, including ge-
ographical coordinates, a code representing the country, and
the name of the geographical feature. Each of these feature
types is considered to be a POI. GeoNames data has been
gathered from many reputable sources, including the United
States Geological Survey, Netherlands Statistics Office, and
the French National Institute of Statistics and Economic Stud-
ies, it is therefore expected that this data is quite accurate.

Using the publicly available API, all geographical fea-
tures located within Paris associated with a set of feature classes
was retrieved and stored in a database. This set of feature
classes included:

• Bridge

• Building

• Church

• Monument



• Museum

It must be noted that the GeoNames data collection is by
no means a comprehensive list for each geographical feature.
For several of the features retrieved, the data was quite sparse.
For example, for the class Church, only 15 geographical fea-
tures were found. It must be noted that the majority of ge-
ographical features that populate the dataset tend to be well
known landmarks, which could be beneficial for this work as
these are the objects that users are most likely to visit and pho-
tograph. All of these feature classes located in the Paris region
were downloaded and stored in the POI dataset. In total, the
OpenStreetMap and GeoNames data combined comprised of
1235 POIs.

7. CLASSIFICATION USING GEOGRAPHICAL
DATA

To analyse the effectiveness of community geographical data
to classify landmark classes, the test collection of images was
processed based on a nearest neighbour scheme. Each test
image within our collection was gathered from Flickr and was
geo-tagged within the Paris metropolitan region. The location
information from each test image was extracted and all POIs
within a radius of 250 metres were retrieved from the POI
database. Retrieved features were then ranked according to
geographical distance, using the Haversine formula, with the
shortest distance ranked at the top. This top ranked feature
was then assigned to the test image.

It is assumed that the POIs ’Gallery’ and ’Museum’ might
be useful to classify the semantic class ’Artwork’, due to the
likelihood of pieces of art appearing in both of these locations.
If the closest POI to an ’Artwork’ test image is ’Museum’ or
’Gallery’ then this images is marked as being correctly clas-
sified. Similarly for the semantic class ’Statue’, it is assumed
that there is a correlation with the POI class ’Museum’.

7.1. Fusion of Visual and Geographical Features for Se-
mantic Classification

In this section, experiments were carried out that fused the vi-
sual and geographical data. Two fusion approaches were im-
plemented, one based on the presence of a POI in the vicinity
of a test image and the other based on the distance between a
test image and nearby associated POIs.

7.1.1. Presence of POI Approach

The first fusion technique was based on combining the output
values from the SVM classifier with a static value to represent
whether a landmark class was present in the POI database.
There was no weighted measure applied to this value, and
all landmark classes detected within a spatial radius had this
value added to its corresponding output from the classifier.

A minor change was made to the libSVM library to output
an array of confidence measures C, with a value representing
each landmark class C1....Cn (where n is the number of land-
mark classes). If the presence of a landmark class was found
in the database within a spatial radius of a test image (defined
to be 250 metres), a value v was added to ci, where i is the
associated landmark class. Therefore if a POI was discovered
in the database associated with the landmark class i then Ci

becomes Ci + v.
The values in C are normalised into the range 0-1. A value

for v is selected based on the maximum value in C, ie. v =
argmax(C). Several variations of this calculation were eval-
uated, some providing a weighted bias towards the visual data
and others providing a weighted bias towards the geographi-
cal data. Three weighted variations of v = w × argmax(C)
were evaluated, where w is equal to:

• 2 (denoted as weight 1 in the evaluation)

• 1

2
(denoted as weight 2 in the evaluation)

• 1

4
(denoted as weight 3 in the evaluation)

A value of 2 for w weights the metric in favour of the geo-

graphical data. Values of
1

2
and

1

4
for w weight the metric in

favour of the visual data.

7.1.2. Weighted Distance Approach

Similarly to the first approach, the second method added a
value to relevant confidence measures outputted by the SVM
model. The weight of these values was determined by the
distance from a POI to the test image. Landmark classes that
were nearby had a higher weight assigned to them than those
they were located further away. As with above, an array of
confidence measures C with a value representing each land-
mark class C1....Cn was output from the SVM model.

If the presence of a landmark class i was found in the
database within a spatial radius of a test image, a value v was
added to Ci. The value v is determined by calculating the
distance, denoted as dist, between i and a test image t, that
was calculated using the Haversine formula. Therefore for
each POI class that was located within the geographical radius
Ci becomes Ci+(1−dist(t, i)) where dist(t, i) is normalised
into the range 0 - 1. Four weighted variations of the metric
Ci = Ci+w(1−dist(t, i)) were evaluated, where w is equal
to

• 1 (denoted as weight 1 in the evaluation)

• 1

2
(denoted as weight 2 in the evaluation)

• 1

4
(denoted as weight 3 in the evaluation)



• 1

8
(denoted as weight 4 in the evaluation)

8. EVALUATION

8.1. Visual Semantic Classification Evaluation

To evaluate the classifier, a test collection of images was col-
lected. All of these images were retrieved from Flickr using
their corresponding landmark class as the query text. In total
for each landmark class 100 images was collected. Each of
these images contained geographical data and had been pho-
tographed in the Paris region.

All of the test images were processed through the multi-
class semantic classifier with a variety of different input fea-
tures:

• MPEG7 Edge Histogram

• Visual Bag of Words (Hard Assignment) k = 1024,
k = 2048, k = 4096

• Visual Bag of Words (Soft Assignment) k = 1024, k =
2048, k = 4096

The results of this evaluation can be seen in Figures 4 and 5.
If selecting a baseline classification score based on random
selection, it would be expected that a correct selection could
be achieved around 11% of the time. Therefore, on average
the visual classifiers performed significantly better than the
baseline.

As expected, some landmark classes could be classified
more successfully than others. The highest performing class
was ’Church (Indoor)’, which achieved an accuracy score of
88% correct. From informal inspection, the intra class visual
variation in this class was deemed to be the lowest across all
the classes. The class with the highest level of intra class
visual variation, ’Monument’ performed very poorly.

A vocabulary size of 2048 performed best for this task.
Interestingly, there was a large improvement when using soft
assignment as opposed to hard assignment. From these re-
sults, it is evident that visual information alone does not allow
for an acceptable classification accuracy across all classes.

8.2. Geographical Fusion Evaluation

Experiments were carried out to ascertain how accurately a
fusion approach (visual and geographical) would perform, us-
ing the same test collection outlined in 8.1. From the results in
Figure 5, it would seem that the fusion of geographical and vi-
sual data for classifying images into semantic landmark cate-
gories improves performance slightly over using either visual
or geographical features alone for a subset of the landmark
classes. On average however, the fusion of visual data with

geographical data hinders performance over using visual fea-
tures alone. The main reason behind this is the sparsity of
the geographical database. For many of the landmark classes,
there was insufficient data and visual confidence measures
were being decreased to the extent that other landmark fea-
tures that populated the dataset were being incorrectly classi-
fied.

To illustrate this point with an example, it can be seen
in Figure 5, geographical data alone works well for the con-
cept class ’Artwork’ but performs very poorly for other con-
cepts, such as ’Building’ for example. It would appear that
the general poor performance of geographical data is down
to the sparsity of the datasets. In the example of the con-
cept ’Artwork’, there are very few locations within the city
where one would expect to find geo-tagged community im-
ages of this concept, possibly less than a dozen (restricted to
museums and art galleries). From the geographical data, it
can be seen that the largest museum and largest art gallery
in Paris(La Louvre and the Musee D’Orsay) are included in
the geographical dataset. For the concept ’Building’, how-
ever, one would expect to find images in a wide variety of
locations across the city. It is logical to assume that the ma-
jority of images within the test set of ’Artwork’ were geo-
tagged at one of these locations. Additionally, the significant
improvement in accuracy that is garnered from the fusion ap-
proach over visual features alone for the concept ’Artwork’
would imply that with a comprehensive, accurate geographi-
cal dataset, it might be possible to classify all well represented
concepts with a high degree of accuracy.

Overall, while the geographical fusion approach hindered
classification accuracy, we believe that this was down to the
sparsity of the geographical datasets being used. In situa-
tions where the visual feature alone performed poorly and
there was sufficient data available, the geographical fusion
approach could be used to improve performance significantly.
We believe that these experiments demonstrate promising re-
sults and are encouraged that as the density of the online com-
munity contributed datasets increases, the fusion based ap-
proach would increase in classification performance in paral-
lel.
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Fig. 5. A chart comparing the classification accuracy of geographical information and visual information when classifying
images into semantic landmark classes. Both are compared against the expected baseline.

Fig. 6. A chart comparing the classification accuracy of hybrid approaches to landmark classification against approaches
based on geographical and visual information


