4,112 research outputs found

    Automatic application object migration in sensor networks

    Get PDF
    Object migration in wireless sensor networks has the potential to reduce energy consumption for a wireless sensor network mesh. Automated migration reduces the need for the programmer to perform manual static analysis to find an efficient layout solution. Instead, the system can self-optimise and adjust to changing conditions. This paper describes an automated, transparent object migration system for wireless sensor networks, implemented on a micro Java virtual machine. The migration system moves objects at runtime around the sensor mesh to reduce communication overheads. The movement of objects is transparent to the application developer. Automated transparent object migration is a core component of Hydra, a distributed operating system for wireless sensor networks that is currently under development. Performance of the system under a complex performance test scenario using a real-world dataset of seismic events is described. The results show that under both simple and complex conditions the migration technique can result in lower data traffic and consequently lower overall energy cost

    Supporting Preemptive Multitasking in Wireless Sensor Networks

    Get PDF
    Supporting the concurrent execution of multiple tasks on lightweight sensor nodes could enable the deployment of independent applications on a shared wireless sensor network, thus saving cost and time by exploiting infrastructures which are typically underutilized if dedicated to a single task. Existing approaches to wireless sensor network programming provide limited support to concurrency at the cost of reducing the generality and the expressiveness of the language adopted. This paper presents a java-compatible platform for wireless sensor networks which provides a thorough support to preemptive multitasking while allowing the programmers to write their applications in java. The proposed approach has been implemented and tested on top of VirtualSense, an ultra-low-power wireless sensor mote providing a java-compatible runtime environment. Performance and scalability of the solution are discussed in light of extensive experiments performed on representative benchmarks

    An Energy Aware and Secure MAC Protocol for Tackling Denial of Sleep Attacks in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks which form part of the core for the Internet of Things consist of resource constrained sensors that are usually powered by batteries. Therefore, careful energy awareness is essential when working with these devices. Indeed,the introduction of security techniques such as authentication and encryption, to ensure confidentiality and integrity of data, can place higher energy load on the sensors. However, the absence of security protection c ould give room for energy drain attacks such as denial of sleep attacks which have a higher negative impact on the life span ( of the sensors than the presence of security features. This thesis, therefore, focuses on tackling denial of sleep attacks from two perspectives A security perspective and an energy efficiency perspective. The security perspective involves evaluating and ranking a number of security based techniques to curbing denial of sleep attacks. The energy efficiency perspective, on the other hand, involves exploring duty cycling and simulating three Media Access Control ( protocols Sensor MAC, Timeout MAC andTunableMAC under different network sizes and measuring different parameters such as the Received Signal Strength RSSI) and Link Quality Indicator ( Transmit power, throughput and energy efficiency Duty cycling happens to be one of the major techniques for conserving energy in wireless sensor networks and this research aims to answer questions with regards to the effect of duty cycles on the energy efficiency as well as the throughput of three duty cycle protocols Sensor MAC ( Timeout MAC ( and TunableMAC in addition to creating a novel MAC protocol that is also more resilient to denial of sleep a ttacks than existing protocols. The main contributions to knowledge from this thesis are the developed framework used for evaluation of existing denial of sleep attack solutions and the algorithms which fuel the other contribution to knowledge a newly developed protocol tested on the Castalia Simulator on the OMNET++ platform. The new protocol has been compared with existing protocols and has been found to have significant improvement in energy efficiency and also better resilience to denial of sleep at tacks Part of this research has been published Two conference publications in IEEE Explore and one workshop paper

    uDDS: A Middleware for Real-time Wireless Embedded Systems

    Full text link
    [EN] A Real-Time Wireless Distributed Embedded System (RTWDES) is formed by a large quantity of small devices with certain computing power, wireless communication and sensing/actuators capabilities. These types of networks have become popular as they have been developed for applications which can carry out a vast quantity of tasks, including home and building monitoring, object tracking, precision agriculture, military applications, disaster recovery, industry applications, among others. For this type of applications a middleware is used in software systems to bridge the gap between the application and the underlying operating system and networks. As a result, a middleware system can facilitate the development of applications and is designed to provide common services to the applications. The development of a middleware for sensor networks presents several challenges due to the limited computational resources and energy of the different nodes. This work is related with the design, implementation and test of a micro middleware for RTWDES; the proposal incorporates characteristics of a message oriented middleware thus allowing the applications to communicate by employing the publish/subscribe model. Experimental evaluation shows that the proposed middleware provides a stable and timely service to support different Quality of Service (QoS) levels. © 2011 Springer Science+Business Media B.V.This work was developed as a part of the D2ARS Project supported by CYTED. UNESCO code 120325;330417;120314;120305.González, A.; Mata, W.; Villaseñor, L.; Aquino, R.; Simó Ten, JE.; Chávez, M.; Crespo Lorente, A. (2011). uDDS: A Middleware for Real-time Wireless Embedded Systems. Journal of Intelligent and Robotic Systems. 64(3-4):489-503. https://doi.org/10.1007/s10846-011-9550-zS489503643-4Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: A survey on sensor networks. IEEE Commun. Mag. 40, 102–114 (2002)Aquino, R., González, A., Rangel, V., García, M. Villaseñor, L.A., Edwards-Block, A.: Wireless communication protocol based on EDF for wireless body sensor networks, k. Journal of Applied Sciences and Technology 6(2), 104–114 (2008)Bonnet, P., Gehrke, J.E., Seshadri, P.: Querying the physical world. IEEE Pers. Commun. 7(5), 10–15 (2000)Boonma, P., Suzuki, J.: TinyDDS: an interoperable and configurable publish/subscribe middleware for wireless sensor networks. In: Hinze, A., Buchmann, A. (eds.) Handbook of Research on Advanced Distributed Event-based Systems. Publish/Subscribe and Message Filtering Technologies, IGI Global (2009)Cerpa, A., Elson, J., Hamilton, M., Zhao, J.: Habitat monitoring: application driver for wireless communications technology. ACM SIGCOMM Workshop on Data Communications in Latin America and the Caribbean, Costa Rica (2002)Corsaro, A., Schmidt, D.C.: The design and performace of real-time java middleware. IEEE Trans. Parallel Distrib. Syst. 14(11), issn 1045–9219, 1155–1167 (2003)Culler, D.E., Hong, W.: Wireless sensor networks introduction. Commun. ACM 47(6), 30–33 (2004)Estrin, D., Govindan, R., Heidemann, J.S., Kumar, S.: Next century challenges: scalable coordination in sensor networks. In: Mobile Computing and Networking, pp. 263–270 (1999)Heinzelman, W.B., Murphy, A.L., Carvalho, H.S.: Middleware to support sensor network applications. IEEE Netw. 18, 6–14 (2004)Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., Pister, K.: System architecture directions for networked sensors. ACM SIGOPS Oper. Syst. Rev. 34(5), 93–104 (2000)Levis, P., Culler, D.: Mate: a tiny virtual machine for sensor networks. In: Proceedings of the 10th International Conference on Achitectural Support for Programming Languages and Operating Systems. San Jose, CA (2002)Liu, T., Martonosi, M.: Impala: a middleware system for managing autonomic, parallel sensor systems. In: Proceedings of the Ninth ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming. San Diego, CA (2003)Mata, W., González, A., Aquino, R., Crespo, A., Ripoll, I., Capel, M.: A wireless networked embedded sistem with a new real-time Kernel PaRTiKle. Electronics, Robotics and Automotive Mechanics Conference, CERMA 2007. ISBN 0-7695-2974-7. Cuernavaca, México (2007)Mata, W., González, A., Crespo, A.: A proposal for real-time middleware for wireless sensor networks. Workshop on Sensor Networks and Applications (WseNA’08). Gramado, Brasil (2008)Mata, W., González, A., Fuentes, G., Fuentes, R., Crespo, A., Carr, D.: Porting jRate(RT-Java) to a POSIX real-time Linux Kernel. Tenth Real-Time Linux Workshop. Colotlán, Jalisco México (2008)MiLAN Project: Available: http://www.futurehealth.rochester.edu/milan (2008)OMG, Data Distribution Service for Real-Time Systems Version 1.2. OMG Technical Document (2007)OMG, Model Driven Architecture (MDA), Document Number ormsc/2001-07-01. Technical report, OMG (2001)OMG, Overview and guide to OMGs architecture, OMG Technical Document formal/03-06-01 (2003)Pardo-Castellote, G., Farabaugh, B., Warren, R.: An Introduction to DDS and Data-centric Communications. Available: http://www.omg.org/news/whitepapers/Intro_To_DDS.pdf (2005)Peiro, S., Masmano, M., Ripoll, I., Crespo, A.: PaRTiKle OS, a replacement of the core of RTLinux. In: 9th Real-Time Linux Workshop (2007)Peiro, S., Masmano, M., Ripoll, I., Crespo, A.: PaRTiKle LPC, port to the LPC2000. Tehth Real-Time Linux Workshop. Colotlán, Jalisco M’exico (2008)Pottie, G.J., Kaiser, W.J.: Wireless integrated networks sensors. Commun. ACM 43(5), 52–58 (2000)Souto, E., Guimaraes, G., Vasconcelos, G., Vieira, M., Rosa, N., Ferraz, C., Kelner, J.: Mires: a publish/subscribe middleware for sensor networks. Pers Ubiquit Comput 10(1), 37–44 (2006)St Ville, L., Dickman, P.: Garnet: a middleware architecture for distributing data streams originating in wireless sensor networks. In: Proceedings. 23rd International Conference on Distributed Computing Systems Workshops (2003
    corecore