
Research Article
Supporting Preemptive Multitasking in
Wireless Sensor Networks

Emanuele Lattanzi, Valerio Freschi, and Alessandro Bogliolo

Department of Basic Sciences and Foundations, University of Urbino, Piazza della Repubblica 13, 61029 Urbino, Italy

Correspondence should be addressed to Emanuele Lattanzi; emanuele.lattanzi@uniurb.it

Received 12 April 2013; Revised 19 December 2013; Accepted 20 December 2013; Published 6 February 2014

Academic Editor: Frank Ehlers

Copyright © 2014 Emanuele Lattanzi et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Supporting the concurrent execution of multiple tasks on lightweight sensor nodes could enable the deployment of independent
applications on a shared wireless sensor network, thus saving cost and time by exploiting infrastructures which are typically
underutilized if dedicated to a single task. Existing approaches to wireless sensor network programming provide limited support
to concurrency at the cost of reducing the generality and the expressiveness of the language adopted. This paper presents a java-
compatible platform for wireless sensor networks which provides a thorough support to preemptivemultitasking while allowing the
programmers to write their applications in java. The proposed approach has been implemented and tested on top of VirtualSense,
an ultra-low-power wireless sensor mote providing a java-compatible runtime environment. Performance and scalability of the
solution are discussed in light of extensive experiments performed on representative benchmarks.

1. Introduction

Multitasking is a method which allows multiple tasks to be
concurrently performed in the same time period by a shared
processing unit. In microprocessor systems, the scheduler of
the operating system (OS) decides to which task the shared
resources have to be assigned at any given time in order
to maximize the overall throughput and meet the perfor-
mance constraints of the applications. While multitasking
is common practice in general-purpose computer systems,
it is not commonly supported in wireless sensor networks
(WSNs)made of lightweight nodes subject to tight power and
resource constraints.

On the other hand, the growing need for context aware-
ness and ambient intelligence is rapidly pushing the deploy-
ment of WSNs and the development of applications designed
to run on top of them. Supporting the concurrent execution
of multiple applications on a shared WSN is an attractive
perspective in terms of cost sharing, deployment time, and
sustainability. In principle, a multitasking WSN could be
deployed once and for all in a given place and then made
available to end users and software developers as a common

platform to run any kind of context-aware applications,
possibly focused on different physical quantities, targeting
different portions of the network, and belonging to different
users. This can be useful not only to deploy shared test
beds allowing different research groups to run comparative
experiments, but also to enable a thorough sharing of real
world sensor networks among different users independently
running their own tasks. For instance, a WSN equipped
with CO

2
sensors could concurrently execute tasks to collect

data about air quality, control HVAC equipment, trigger fire
alarms, and estimate the number of people in a room. The
applications could be independently developed by different
users and dispatched to the same nodes.

Such a scenario requires a specific support both at
network level (dynamic code deployment) and at node level
(dynamic application management and concurrent execu-
tion). Dynamic code deployment in WSNs has been an
active research topic for many years, leading to several
suitable solutions that are currently available in the market
[1]. Node-level concurrency, on the contrary, has received
much less attention so far and no ultimate solutions have
been proposed. Existing approaches can be classified into two

Hindawi Publishing Corporation
International Journal of Distributed Sensor Networks
Volume 2014, Article ID 814510, 9 pages
http://dx.doi.org/10.1155/2014/814510

2 International Journal of Distributed Sensor Networks

main categories: WSNs managed as acquisitional distributed
databases [2, 3] and WSNs based on scripting languages [4–
7]. Both of them provide some form of concurrency at the
cost of reducing the flexibility and the expressiveness of the
query/scripting language adopted.

This paper presents a java-compatible WSN platform
providing a thorough support to node-level multitasking
without asking the programmers to relinquish the benefits
(in terms of usability, portability, and expressiveness) of high-
level object-oriented programming. The platform has been
implemented as an extension of VirtualSense [8], an ultra-
low-power wireless sensor mote featuring a java-compatible
runtime environment.

The rest of the paper is organized as follows: Section 2
provides a survey of existing approaches to multitasking
in WSNs; Section 3 provides a minimum background on
VirtualSense and on the components of its software stack;
Section 4 presents the programming model; Section 5 out-
lines the proposed architecture; Section 6 reports and dis-
cusses experimental results; Section 7 concludes the work.

2. Related Work

The state of the art of multitaskingWSNs can be illustrated by
referring to the broader research area ofWSN programming,
where existing approaches can be classified into three main
categories, depending on their granularity: (i) node-level
approaches, (ii) group-level approaches, and (iii) network-
level approaches [9].

Group-level and network-level programming models
provide a set of programming primitives to handle either a
group of nodes or the entire network as a single abstract
programmable machine. Acquisitional distributed database
systems, such as Cougar and TinyDB, fall in this category
[2, 3]. The WSN is seen at application level as a database
managed by a distributed query processor which runs on
the nodes. The sensing/monitoring tasks are expressed as
acquisitional queries that have to be written in a declarative
SQL-like language. In this scenario, concurrency is provided
to some extent by the gateway, which combines the queries
possibly coming from different users before launching them
on the network.

Node-level programming models are mainly based on
ad hoc abstractions of the underlying hardware, conceived
to grant to the programmer a suitable control of it. Repre-
sentative examples of this kind of platforms are provided by
TinyOS [10] and Contiki [11], programmed, respectively, in
nesC and C, which have become de facto standards for sensor
network programming. Both of them support multithreaded
applications, but they do not provide specific support to
interapplication concurrency.

Themost common approaches to node-level concurrency
are based on context-specific execution environments with
their own scripting languages for application programming.
In particular, SensorWare, Agilla, and Servilla are agent-
based platforms which support the concurrent execution of
scripting-defined agents [4, 6, 7]. Similarly, concurrency is
supported by Melete [5], an extension of the Maté project

which provides a Virtual Machine (VM) capable of executing
TinyScript applications.

All the above-mentioned solutions suffer from several
limitations which prompt further research efforts in the field
of multitasking WSN: (i) they make use of domain-specific
programming languages with limited expressiveness, (ii) they
provide limited degrees of freedom in terms of commu-
nication protocols, (iii) they do not support multithreaded
services/applications, and (iv) they do not guarantee cross-
platform portability of the code.

A significant step towards the preemptive multitasking
support for WSNs has been recently made by SenSmart [12],
a multitasking operating system for sensor networks which
rewrites and recompiles in a single binary all the NesC appli-
cations to be executed concurrently with the patches needed
to guarantee appropriate preemptive multitasking semantics.
Binary rewriting is performed on the base station and the
executable file is then dispatched to the sensor nodes for
execution. SenSmart eludes classification into node-/group-
level approaches in that it performs group-level preliminary
operations to prepare the executable to be run on each node.

This paper makes a step forward towards node-level
multitasking by providing a thorough support to preemption
on top of a java-compatible virtual machine, thus mak-
ing concurrency completely transparent to the programmer
without any code patching or rewriting.

3. Background

This section provides a minimum background on Virtu-
alSense [8], the HW/SW platform adopted in this paper, and
on the two main components of its software stack, namely,
Contiki [11] and Darjeeling [13].

3.1. VirtualSense. VirtualSense is an open-hardware ultra-
low-power sensormodule featuring a java-compatible virtual
runtime environment. VirtualSense is based on Contiki OS
[11] and on theDarjeelingVM [13], suitablymodified in order
to make it possible for a java programmer to fully exploit the
low-power states of the underlying microcontroller unit, a
Texas Instruments’ MSP430F5418a in the latest version [8].

There are four categories of power states made available
by VirtualSense: active, which is the only state in which the
CPU is running; standby, where the CPU is not powered, but
the clock system is running and the unit is able to wake up
itself bymeans of timer interrupts; sleep, where both the CPU
and the clock system are turned off, so that the unit wakes up
only upon external interrupts; and hibernation, where even
the memory system is switched off, so that there is no data
retention and a complete reboot of theOS is required at wake-
up together with a restore of the VM heap.

The average power consumption of VirtualSense is of
about 13mW in processing mode and 66mW in transmit
mode, while the consumption reduces to 14.67 𝜇Win standby
mode, 1.32𝜇W in sleep mode, and 0.36 𝜇W in hibernation,
with wake-up times ranging from 25ms (from standby and
sleep) to about 500ms (from hibernation). VirtualSense

International Journal of Distributed Sensor Networks 3

motes can execute typical WSN tasks with an average power
consumption of a few micro Watts.

VirtualSense provides an API, made available by the
PowerManager class, which makes it possible for java pro-
grammers to control the power states of the MCU and of
all the power manageable peripherals (refer to Section 5.5 for
details).

3.2. Contiki. Contiki is a real-time embeddedOS particularly
suited for sensor nodes [11]. It provides an inherent event-
driven structure which reduces the overhead of periodic
wake-ups by making the interrupt handler aware of the
next time at which a process has to be resumed by a timer
interrupt. This allows the MCU to go back to sleep without
invoking the scheduler in case of premature wake-up.

The only inefficiency of this reactive behavior is repre-
sented by processes waiting for external events, which need
to be resumedwhenever an interrupt arrives, regardless of the
nature of the event, in order to be possibly ready to process it.

The Contiki programming model is based on pro-
tothreads. A protothread is a memory-efficient programming
abstraction that combines features of both multithreading
and event-driven programming to attain a low memory
overhead. The kernel invokes the protothread of a process
in response to an internal or external event. Contiki does
not enforce preemption; rather, it assumes protothreads to be
cooperatively scheduled. This means that a Contiki process
must always explicitly yield control back to the kernel at reg-
ular intervals by invoking either PROCESS WAIT EVENT ()
or PROCESS YIELD().

3.3. Darjeeling. Darjeeling is a VM for wireless sensor net-
works which supports a significant subset of the java libraries
with minimum hardware requirements: 8 bit/16 bit MCUs
with at least 10 kbytes of RAM [13].

The VM supports execution of a single java application at
a time, which can instantiatemultiple threads. DarjeelingVM
is implemented as a single Contiki process equipped with its
own scheduler, switching among the active threads according
to a time-sliced Round-Robin policy. In particular, whenever
the running thread exhausts its time quantum it is suspended
to allow the scheduler to resume execution and to grant the
resources to another thread.

4. Programming Model

Sensor nodes are usually devoted to run one application
at a time. Sensor nodes which provide a built-in runtime
environment execute a script taken either from the executable
nonvolatile memory or from an external eeprom, while
platform-centric nodes [9] require the application to be stored
on the executable nonvolatile memory and linked (either
statically or dynamically) to the firmware. In both cases,
over-the-air (OTA) programming allows the application to be
replaced whenever needed [1].

In VirtualSense, an application consists of one or
more java files containing at least a class implementing

(1) import javax.virtualsense.actuators.Leds;

(2)
(3) public class Blink

(4) {

(5)
(6) public static void motemain()

(7) {

(8) boolean state=true;

(9) while(true)

(10) {

(11) for (int i=0; i<3; i++)

(12) {

(13) Leds.setLed(i,state);

(14) Thread.sleep(1000);

(15) }

(16) state=!state;

(17) }

(18) }

(19) }

Algorithm 1: Java code of a simple blink application.

the entry-point method signature which is public static
void motemain(). Byte code verification and transforma-
tion are done off-line by a tool called Infuser, which takes in
input multiple class files and statically links them in loadable
modules called infusions. VirtualSense exploits this paradigm
to compile into a single infusion file the entire application,
which can be made of several class files and possibly contains
several threads. The infusion file is ready to be transferred,
installed, and executed on the target nodes.

The java code of a simple led-blinking application is
reported in Algorithm 1. Compared to a standard java appli-
cation the only change concerns the signature of the main()
method that must be motemain().

Multiple applications (i.e., infusion files) can be simul-
taneously installed and executed on the same node. Any
application instance running on top of the VirtualSense
VM is called Task. The multitasking support provided by
VirtualSense allows multiple tasks to execute concurrently
and share the CPU time. In particular, each java thread
belonging to a task is mapped into a native thread following
the one-to-one mapping model. Each native thread is then
scheduled by the VM as a single entity which competes for
taking theCPU according to a typical system contention scope.
This results in a general concurrency among all java threads
belonging to all tasks.

The programming model is schematically shown in
Figure 1, where tasks are represented on top of a layered
architecture composed of (i) the VirtualSense Hardware, (ii)
the Contiki OS, (iii) the VirtualSense runtime, including
the Darjeeling VM and all the core libraries of VirtualSense
which are not part of the API, and (iv) the VirtualSense
libraries, made available to the applications through specific
APIs.

Arrows represent applications and commands which can
be received and possibly forwarded at each node. Although

4 International Journal of Distributed Sensor Networks

Applications

Applications Applications

Commands Commands

Sensors
Actuators

Power manager Utils
Storage

Network
VirtualSense libs

VirtualSense hardware

Contiki OS

Core libs

Darjeeling VM

VirtualSense runtime

Figure 1: Schematic representation of the programming model of VirtualSense.

over-the-air programming is out of the scope of this work, the
programming model is general enough to support both the
viral diffusion of the same application across theWSNand the
selective installation on target nodes. Once the applications
are installed on the target nodes, the commands provide
a remote interface to load, launch, stop, and unload them,
as detailed in the following section. It is worth noting that
commands can be issued either by the user (through the
gateway) or by another application possibly running on a
different node.

5. Architecture Design and Implementation

The isolation and protection needs of the concurrent tasks
running on the same node require the platform to provide to
each task a dedicated execution space, a dedicated network
interface, and a preemptive task scheduler. The multitasking
support of VirtualSense provides

(1) an application manager able to install and remove
applications from a nonvolatile memory space,

(2) a taskmanager which can load, start, stop, and unload
a task,

(3) a network dispatcher which manages network con-
nections and dispatches network data to/from the
appropriate thread belonging to a particular task,

(4) a preemptive task scheduler capable to interrupt
running tasks and implementing a CPU-time sharing
policy.

Figures 2, 3, and 4 provide a schematic representation of
the VirtualSense architecture, where Contiki processes are
represented as circles, VirtualSense tasks are represented as
dashed rectangles, and java threads are represented as dark
rectangles. Four Contiki processes are shown in the figures:
the application manager, the task manager, the network
dispatcher, and the Darjeeling process, with four user-level
tasks running on top of it: Task 0, Task 1, and Task n
together with the VirtualSense Main Task. For the sake
of explanation, the three figures report the same scheme
with different highlights, corresponding to the focus of the
following subsections.

5.1. ApplicationManager. TheVirtualSense application man-
ager is highlighted in Figure 2. It is a Contiki process which
receives through the network the applications (i.e., infusion
files) to be installed or upgraded on the node and stores
them in the application memory. A table is used to maintain
application data, including ID, name, version, state, and
address of the infusion file. In current implementation both
the infusion files and the application table are stored in the
flash memory of the MCU.

5.2. Task Manager. Once an application has been installed
on the node, the task manager is responsible for loading
it into the VM (LOAD), starting (START) and stopping
(STOP) execution, and unloading (UNLOAD) it from the VM.
The task manager is implemented as a separate Contiki
process which is listening to the network for incoming
commands. Whenever a command is received, it is notified
to the VirtualSense Main Task which executes it, while
an execution response is sent back by the task manager.
The task management chain is highlighted in Figure 3. In
case of a LOAD command, the VirtualSense Main Task
reads from the application table the memory address of
the corresponding infusion file. If a valid entry is found,
the application is loaded in main memory and a new task
is created (create task). A START command causes the
execution of the motemain() method of the corresponding
task, while a STOP command breaks the execution of the task.
Since each task can have more than one children thread, the
stop command is forwarded to all of them. Once a task has
been stopped, it can be either unloaded from main memory
by means of an UNLOAD command or restarted from scratch
by issuing of a new START command.

5.3. Network Dispatcher. The VirtualSense network dis-
patcher, shown in Figure 4, is responsible for managing com-
munication between the tasks running on top of the VM and
the underlying network interface. In particular, each user-
level thread which needs to send or receive a packet through
the network has to ask the network dispatcher to initialize
the connection (network init). Network initialization is
nothing but a dynamic allocation of a network port to

International Journal of Distributed Sensor Networks 5

application

Applications memory

Create task

Notify command

Task managerBroadcast
command

Receive data

Send data

Storage
Applications

table

Network init

Network init

Network init

Notify packet

Notify dispatcher

task
VirtualSense main

Unload

application

Response

Receive

Send

Notify packet

Start

Stop

Load

Wait for command

Darjeeling

Start

Application manager

Network dispatcher

Task 0

Task 1 Task n

Figure 2: Abstract representation of the VirtualSense architecture highlighting the applicationmanager interacting with the application table
and memory.

application

Applications memoryApplication manager

Create task

Notify command

Task manager
Broadcast
command

Receive data

Send data

Storage

Applications
table

Network init

Network init

Network init

Notify packet

Notify packet
Network dispatcher

task
VirtualSense main

Unload

application

Response

Receive

Send

Notify packet

Start
Stop

Load

Wait for command

Darjeeling

Task 0

Task 1 Task n

Figure 3: Abstract representation of the VirtualSense architecture highlighting the task manager and several running tasks.

a given thread in order to provide a private communication
channel on top of a shared interface. The network dispatcher
maintains a port assignment table and notifies the target
thread (notify packet) whenever a network packet is
received on the port assigned to it.

5.4. Preemptive Scheduler. VirtualSense schedules its run-
ning tasks by means of a preemptive time-sliced Round-
Robin policy (RR). Preemption is performed by the VM by
interrupting the execution of a task after a fixed number of
bytecodes. The number of bytecodes determines the average

6 International Journal of Distributed Sensor Networks

application

Application manager Applications memory

Create task

Notify command

Task manager
Broadcast
command

Receive data

Send data

Storage

Applications
table

Network init

Network init

Network init

Notify packet

Notify packet
Network dispatcher

task
VirtualSense main

Unload

application

Response

Receive

Send

Notify packet

Start

Stop

Load

Wait for command

Darjeeling

Task 0

Task 1 Task n

Figure 4: Abstract representation of the VirtualSense architecture highlighting the network dispatcher.

frequency of preemption points. Due to the variable time
required to execute each bytecode, the corresponding time
slice is not a constant. In traditional desktop systems, this
is overcome by rigidly defining the time slice by means of a
timer interrupt which, in case of VirtualSense, would cause a
higher overhead. At each preemption point, the state of the
current task is saved and a new scheduling decision is taken
which can lead to a context switch.

5.5. Exploitability of Low-Power Modes. As described in
Section 3.1, VirtualSense provides several low-power modes
enabling the full exploitation of the MCU low-power states.
To make it possible to develop advanced DPM algorithms
while working on top of the VM, VirtualSense provides a
PowerManager class which exports methods for changing
the MCU frequency and for triggering transitions to any
low-power state, possibly specifying the wake-up time and
setting an external RTC to issue self-wake-ups. In the same
way, VirtualSense provides java methods to control the wire-
less communication interface and all the power-manageable
modules of the MCU, namely, the serial peripheral interface
(SPI), the interintegrated circuit (I2C), the universal asyn-
chronous receiver/transmitter (UART), and the analog-to-
digital converter (ADC).

In a traditional mote without multitasking support, the
running task is allowed to manage the entire platform by
choosing the appropriate power mode and by turning on

and off the modules according to its needs. In order to
support multitasking, power management in VirtualSense
has been deeply modified in order to grant to all running
tasks concurrent access to the power-manageable resources.
In particular, each power-manageable resource is assigned
with a power-state counting lock which has to be acquired
by each task before it starts to use it and released as soon
as it does not need it any more. The VM scheduler, at each
invocation, launches a software routine which tries to put
each power manageable resource into its deepest low-power
state compatible with the counting locks. In particular, it
is possible for a resource to enter a low-power state only
if there are no higher power states with nonnull counting
locks. The counting lock acquisition/release mechanisms are
embedded into the native methods used to handle power-
manageable resources, so that they are transparent to the java
programmer.

Current implementation supports the following locks:
ACTIVE lock, STANDBY lock, SLEEP lock, RADIO lock,
ADC lock,UART lock,MAC lock,I2C lock, andSPI lock.
Each native thread in its running state automatically locks
the active state in order to prevent the scheduler fron putting
the MCU in any low-power mode. Whenever a running
thread suspends its execution bymeans of a Thread. sleep
invocation, it automatically releases the ACTIVE lock, which
is decremented. If the ACTIVE lock reaches zero, the VM
scheduler is allowed to test the lock of next low power state,
namely, STANDBY lock, and so on.

International Journal of Distributed Sensor Networks 7

6. Experimental Results

This section describes the benchmarks used to characterize
the VirtualSense platform and discusses the results of perfor-
mancemeasurements made on an instrumented prototype of
the VirtualSense mote.

The experiments were designed to demonstrate the
capability of VirtualSense to support concurrent execution
of multiple tasks on top of ultra-low-power sensor nodes.
Experimental results show that the behaviour of the proposed
platform is consistent with that of typical general-purpose
concurrent systems. In the context of WSNs, although
expected, results are not obvious because of the tight energy
and computational constraints of the motes. Remarkably, the
experiments reported in the following subsections provide
evidence that Virtualsense motes make it possible to simul-
taneously share computational and sensing resources among
multiple tasks as it usually happens in multitasking computer
systems.

6.1. Benchmarks. The performance of the multitasking sup-
port provided by VirtualSense was evaluated on a set of syn-
thetic benchmarks representative of three classes of typical
WSN applications: (i) periodic tasks; (ii) CPU-bound tasks;
(iii) reactive tasks.

Periodic tasks are common monitoring tasks which sam-
ple a physical quantity of interest by periodically reading a
value from a sensor. The java code of the monitoring task
is reported in Algorithm 2. The executeMonitor method
which is called the motemain of the benchmark is param-
eterized in the sampling period and in the number of total
samples to read. The execution of the corresponding task
completes when the executeMonitormethod returns. This
task makes use of the CPU at every period just for the
time required to perform the read and then schedules an
autowake-up after periodmilliseconds and goes to sleep.

CPU-bound tasks are computation intensive tasks the
performance of which is mainly affected by the performance
of the CPU. In our benchmark suite CPU-bound tasks are
represented by an implementation of the MD5 message-
digest algorithm, a cryptographic hash function that takes
in input a string and returns a 128 bit hash [14]. Each task
computes the MD5 hash function of a given set of strings.
Without a preemptive scheduler each task, once started,
would keep the CPU busy until the end of its execution.

Reactive tasks spend most of the time waiting for incom-
ing events without keeping the CPU busy. In our benchmark
suite, reactive tasks are represented by a single thread task
waiting for incoming network packets. Each thread of a task
is assigned with a port and it does nothing but notifying the
reception of a packet on its port by blinking a led.

6.2. Performance Measurements. The performance achieved
by a multitasking system in the execution of a task is usually
expressed in terms of turnaround time, which takes into
account both the time in which the task is running (process-
ing time) and the time in which it is waiting to be executed

(1) public int executeMonitor(int samples,

(2) int period)

(3) {
(4) int avg = 0;

(5) for(int i = 0; i < samples; i++){

(6) avg+=Temperature.getValue();

(7) Thread.sleep(period);

(8) }

(9) return avg/samples;

(10) }

Algorithm 2: Java code of the monitor task used in the case study.

10 100 1000 10000

Time quantum (number of byte codes)

0

1

2

3

4

5

6

7

Tu
rn

ar
ou

nd
 ti

m
e r

at
io

M1

M2

M3

MD5

Figure 5: Turnaround time versus the size of the time quantum.

(waiting time). In the instrumented prototype of Virtu-
alSense, turnaround measurements are directly computed by
the scheduler of the Darjeeling virtual machine as the time
interval between task submission and task completion.

Since the turnaround time of a task is affected by the
concurrent execution of other tasks on the same node, the
relative impact of multitasking on the performance of a
WSN application can be expressed in terms of turnaround
time ratio. For a given benchmark, composed of a pool of
concurrent tasks, the turnaround time ratio of a specific task
is the ratio between two measurements of its turnaround
time, measured with and without the concurrent tasks.

Figure 5 reports the turnaround time ratio as a function
of the scheduler time quantum, expressed as the number of
bytecodes to be executed before preempting a task. Data refer
to a pool of 6 tasks: three monitoring tasks with sampling
periods of 200ms (M1), 50ms (M2), and 10ms (M3) and
three instances of an MD5 task.

As expected, the turnaround time of the CPU-bound
tasks decreases for increasing values of the time quantum
because of the reduced number of context switches they are
subject to. At the contrary, monitoring tasks are negatively
affected by the size of the time quantum, since the reduced

8 International Journal of Distributed Sensor Networks

0 20 25 30
Number of tasks

0

50

100

150

200

Re
sp

on
se

 ti
m

e (
m

s)

RR (a) RR (b)

5 10 15
−50

 RR (b) need reschedRR (a) need resched

Figure 6: Response time versus number of running tasks.

density of preemption points makes it hard for the tasks
to take the CPU exactly when needed to sample the target
sensor. As a result, monitoring tasks fail to meet their
sampling deadlines and they complete their execution in
a longer time. This effect gets worse as the sampling rate
increases, so that M3 is the task with the worst performance.

In order to test the impact of multitasking on the
responsiveness of a sensor node, a reactive task was installed
and run on the mote together with an increasing number
of concurrent CPU-bound tasks. The VirtualSense VM was
instrumented to measure the response time of the task as
the difference between the time at which it obtains the CPU
and the timestamp of the triggering event (i.e., an incoming
network packet). Figure 6 plots the response time of the
reactive task as a function of the number of concurrent CPU-
bound tasks. Each point represents the sample average of 10
repeated measures, the standard deviation of which is also
reported in the graph.The experiments were repeated for two
different values of the time quantum: (a) 1024 bytecodes and
(b) 256 bytecodes. Solid lines refer to the results achieved on a
VM implementing a pure Round-Robin scheduling policy. As
expected, the greater the number of the concurrent tasks, the
greater the response time of the reactive task. Moreover, for a
given number of concurrent tasks the impact of multitasking
on the response time is proportional to the size of time
quantum.

Dashed lines report the results of the same experiments
repeated by using the need resched flag to tell the scheduler
that the task has received an asynchronous event, so that
it needs to be rescheduled as soon as possible to process
it, in spite of the RR policy. The use of the need resched
flag significantly reduces the response time, making it almost
independent of the number of concurrent CPU-bound tasks.
In fact, the delay incurred by the reactive task in this case
depends only on the time quantum, which is the time interval
between preemption points.

0
2
4
6
8

H
ea

p
siz

e (
KB

)

6 8 10
Time (s)

0 2 4

(a)

0
2
4
6
8

H
ea

p
siz

e (
KB

)

6 8 10
Time (s)

0 2 4

(b)

6 8 10
Time (s)

0
2
4
6
8

H
ea

p
siz

e (
KB

)
0 2 4

(c)

Figure 7:Heap size plotted during tasks executionwhile varying the
number of running tasks: (a) 3 running tasks; (b) 6 running tasks;
(c) 12 running tasks.

The size of the heap of the VM was monitored during
the experiments to evaluate the scalability of the proposed
approach in terms of system requirements. Figure 7 shows
how the size of the heap varies over time in case of (a) 3
running tasks, (b) 6 running tasks, and (c) 12 running tasks.
When there are more concurrent tasks, the heap size grows
faster and the garbage collector intervenesmore often to clean
up thememory. It is alsoworth noting that the total amount of
space which can be freed by the garbage collector depends on
the number and size of the running tasks, so that the baseline
of Figure 7(c) is significantly higher than that of Figures 7(a)
and 7(b).

7. Conclusion

This paper has presented a modified version of the Virtu-
alSense [8] software stack which provides a thorough support
to preemptive multitasking in ultra-low-power wireless sen-
sor networks. VirtualSense features a java-compatible virtual
machine which allows the programmer to write applications
in java, taking advantage of a specific API which grants full
control of the power management features of the underlying
hardware.Themultitasking support presented in this paper is
completely transparent to the programmer, thus maintaining
full compatibility with existing VirtualSense applications and
with the multitasking nature of the Darjeeling VM. Tasks
can be dispatched to the target nodes over the air as infusion

International Journal of Distributed Sensor Networks 9

files and then remotely controlled by issuing across the net-
work LOAD, RUN, STOP, and UNLOAD commands which
are executed by the task manager running on each node.
Preemption is transparently managed by a modified version
of the scheduler of the Darjeeling VM, which executed the
task for a given number of bytecodes (time quantum) before
granting the CPU to another task. A special component,
called network dispatcher, creates private communication
channels for each thread of each task on top of a shared
network interface, thus granting complete independence to
the applications, which could even implement their own
routing protocols.

Performance and scalability have been tested by running
synthetic benchmarks on VirtualSense motes instrumented
in order to measure the turnaround time and the time to
completion of each task, while also monitoring the size of the
VM heap. Both the time quantum and the number of con-
current tasks have been used as sweep parameters during the
experiments to provide to the reader the elements required to
evaluate the applicability of the proposed approach.

In summary, the experimental results show that the
preemptive multitasking support provided by VirtualSense
has a limited impact on performance, which scales smoothly
and can be tuned by setting the time quantum used for
preemption. Moreover, a need resched flag can be asso-
ciated with reactive tasks in order to schedule them as
soon as their triggering events occur, without waiting for
their RR turn. This makes the time to completion of time-
critical applications almost independent on the number of
concurrent tasks.

Current work is focused on the implementation of a
message-passing mechanism providing intertask communi-
cation among concurrent applications running on the same
mote.

Acknowledgments

Theauthorswould like to thankAndrea Seraghiti andNeuNet
Cultural Association (http://www.neunet.it/) for their funda-
mental contribution to the development of the VirtualSense
prototype.

Conflict of Interests

The authors declare no conflict of interests.

References

[1] C.-C. Han, R. Kumar, R. Shea, and M. Srivastava, “Sensor
network software update management: a survey,” International
Journal of Network Management, vol. 15, no. 4, pp. 283–294,
2005.

[2] W. F. Fung, D. Sun, and J. Gehrke, “COUGAR: the network is
the database,” in Proceedings of the ACM SIGMOD International
Conference on Managment of Data, p. 621, Association for
Computing Machinery Press, 2002.

[3] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong,
“Tag: a tiny aggregation service for ad-hoc sensor networks,” in
Proceedings of the 5th Symposium on Operating Systems Design

and Implementation, ACM SIGOPS Operating Systems Review
(OSDI ’02), vol. 36, no. 1, pp. 131–146, 2002.

[4] A. Boulis, C.-C. Han, and M. B. Srivastava, “Design and
implementation of a framework for efficient and programmable
sensor networks,” in Proceedings of the 1st International Confer-
ence onMobile Systems, Applications and Services (MobiSys ’03),
pp. 187–200, Association for Computing Machinery, New York,
NY, USA, 2003.

[5] Y. Yu, L. J. Rittle, V. Bhandari, and J. B. Lebrun, “Supporting con-
current applications inwireless sensor networks,” inProceedings
of the 4th International Conference on Embedded Networked
Sensor Systems (SenSys ’06), pp. 139–152, New York, NY, USA,
2006.

[6] C.-L. Fok, G.-C. Roman, and C. Lu, “Agilla: a mobile agent
middleware for self-adaptive wireless sensor networks,” ACM
Transactions on Autonomous and Adaptive Systems, vol. 4, no.
3, article 16, 2009.

[7] C.-L. Fok, G.-C. Roman, and C. Lu, “Servilla: a flexible service
provisioning middleware for heterogeneous sensor networks,”
Science of Computer Programming, vol. 77, no. 6, pp. 663–684,
2012.

[8] E. Lattanzi and A. Bogliolo, “Virtualsense: a java-based open
platform for ultra-low-power wireless sensor nodes,” Interna-
tional Journal of Distributed Sensor Networks, vol. 2012, Article
ID 154737, 16 pages, 2012.

[9] R. Sugihara and R. K. Gupta, “Programming models for sensor
networks: a survey,”ACMTransactions on Sensor Networks, vol.
4, no. 2, article 8, 2008.

[10] P. Levis, S. Madden, J. Polastre et al., “Tinyos: an operating
system for sensor networks,” in Ambient Intelligence, pp. 115–
148, Springer, 2004.

[11] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki—a lightweight
and flexible operating system for tiny networked sensors,” in
Proceedings of the 29th Annual IEEE International Conference
on Local Computer Networks (LCN ’04), pp. 455–462, IEEE
Computer Society, 2004.

[12] R. Chu, L. Gu, Y. Liu, M. Li, and X. Lu, “Sensmart: adaptive
stack management for multitasking sensor networks,” IEEE
Transactions on Computers, vol. 62, no. 1, pp. 137–150, 2013.

[13] N. Brouwers, K. Langendoen, and P. Corke, “Darjeeling, a
feature-rich VM for the resource poor,” in Proceedings of the
7th ACM Conference on Embedded Networked Sensor Systems
(SenSys ’09), pp. 169–182, Association for Computing Machin-
ery, New York, NY, USA, 2009.

[14] R. Rivest, “The md5 message-digest algorithm,” United States,
1992.

Copyright of International Journal of Distributed Sensor Networks is the property of Hindawi
Publishing Corporation and its content may not be copied or emailed to multiple sites or
posted to a listserv without the copyright holder's express written permission. However, users
may print, download, or email articles for individual use.

