446 research outputs found

    Performance-based health monitoring, diagnostics and prognostics for condition-based maintenance of gas turbines: A review

    Get PDF
    With the privatization and intense competition that characterize the volatile energy sector, the gas turbine industry currently faces new challenges of increasing operational flexibility, reducing operating costs, improving reliability and availability while mitigating the environmental impact. In this complex, changing sector, the gas turbine community could address a set of these challenges by further development of high fidelity, more accurate and computationally efficient engine health assessment, diagnostic and prognostic systems. Recent studies have shown that engine gas-path performance monitoring still remains the cornerstone for making informed decisions in operation and maintenance of gas turbines. This paper offers a systematic review of recently developed engine performance monitoring, diagnostic and prognostic techniques. The inception of performance monitoring and its evolution over time, techniques used to establish a high-quality dataset using engine model performance adaptation, and effects of computationally intelligent techniques on promoting the implementation of engine fault diagnosis are reviewed. Moreover, recent developments in prognostics techniques designed to enhance the maintenance decision-making scheme and main causes of gas turbine performance deterioration are discussed to facilitate the fault identification module. The article aims to organize, evaluate and identify patterns and trends in the literature as well as recognize research gaps and recommend new research areas in the field of gas turbine performance-based monitoring. The presented insightful concepts provide experts, students or novice researchers and decision-makers working in the area of gas turbine engines with the state of the art for performance-based condition monitoring

    Aircraft Exhaust Gas Temperature Value Mining with Rough Set Method

    Get PDF
    Aircrafts are one of the most important means of transportation today. For aircrafts to be able to serve safely, their maintenance must be done in a timely and complete manner. In addition to regular maintenance, it may appear suddenly; there is also irregular maintenance performed in cases such as lightning strikes, bird strikes, and hard landings. Engine failures and maintenance has great importance in aircraft maintenance. Using the data recorded during the flight by flight data recorder, the engine health condition is monitored and the necessary maintenance procedures are carried out. In this study, the exhaust gas temperature was estimated using various data mining algorithms. Because exhaust gas temperature is one of the important parameters used to monitor the aircraft engine health condition. The obtained mining results show the Random Forest Algorithm has best estimation performance. With mining of exhaust gas temperature value, faults can be detected before costly maintenance and accidents. So preventive maintenance methods will be applied, aircraft engines will remain healthy, a significant reduction in the maintenance cost of the operator will be achieved, as well as flight safety and environmental protection

    Machine-learning-based condition assessment of gas turbine: a review

    Get PDF
    Condition monitoring, diagnostics, and prognostics are key factors in today’s competitive industrial sector. Equipment digitalisation has increased the amount of available data throughout the industrial process, and the development of new and more advanced techniques has significantly improved the performance of industrial machines. This publication focuses on surveying the last decade of evolution of condition monitoring, diagnostic, and prognostic techniques using machinelearning (ML)-based models for the improvement of the operational performance of gas turbines. A comprehensive review of the literature led to a performance assessment of ML models and their applications to gas turbines, as well as a discussion of the major challenges and opportunities for the research on these kind of engines. This paper further concludes that the combination of the available information captured through the collectors and the ML techniques shows promising results in increasing the accuracy, robustness, precision, and generalisation of industrial gas turbine equipment.This research was funded by Siemens Energy.Peer ReviewedPostprint (published version

    Derivative-driven window-based regression method for gas turbine performance prognostics

    Get PDF
    The domination of gas turbines in the energy arena is facing many challenges from environmental regulations and the plethora of renewable energy sources. The gas turbine has to operate under demand-driven modes and its components consume their useful life faster than the engines of the base-load operation era. As a result the diagnostics and prognostics tools should be further developed to cope with the above operation modes and improve the condition based maintenance (CBM). In this study, we present a derivative-driven diagnostic pattern analysis method for estimating the performance of gas turbines under dynamic conditions. A real time model-based tuner is implemented through a dynamic engine model built in Matlab/Simulink for diagnostics. The nonlinear diagnostic pattern is then partitioned into data-windows. These are the outcome of a data analysis based on the second order derivative which corresponds to the acceleration of degradation. Linear regression is implemented to locally fit the detected deviations and predict the engine behavior. The accuracy of the proposed method is assessed through comparison between the predicted and actual degradation by the remaining useful life (RUL) metric. The results demonstrate and illustrate an improved accuracy of our proposed methodology for prognostics of gas turbines under dynamic modes. © 2017 Elsevier Lt

    Health Monitoring of Nonlinear Systems with Application to Gas Turbine Engines

    Get PDF
    Health monitoring and prognosis of nonlinear systems is mainly concerned with system health tracking and its evolution prediction to future time horizons. Estimation and prediction schemes constitute as principal components of any health monitoring framework. In this thesis, the main focus is on development of novel health monitoring techniques for nonlinear dynamical systems by utilizing model-based and hybrid prognosis and health monitoring approaches. First, given the fact that particle filters (PF) are known as a powerful tool for performing state and parameter estimation of nonlinear dynamical systems, a novel dual estimation methodology is developed for both time-varying parameters and states of a nonlinear stochastic system based on the prediction error (PE) concept and the particle filtering scheme. Estimation of system parameters along with the states generate an updated model that can be used for a long-term prediction problem. Next, an improved particle filtering-based methodology is developed to address the prediction step within the developed health monitoring framework. In this method, an observation forecasting scheme is developed to extend the system observation profiles (as time-series) to future time horizons. Particles are then propagated to future time instants according to a resampling algorithm in the prediction step. The uncertainty in the long-term prediction of the system states and parameters are managed by utilizing dynamic linear models (DLM) for development of an observation forecasting scheme. A novel hybrid architecture is then proposed to develop prognosis and health monitoring methodologies for nonlinear systems by integration of model-based and computationally intelligent-based techniques. Our proposed hybrid health monitoring methodology is constructed based on a framework that is not dependent on the structure of the neural network model utilized in the implementation of the observation forecasting scheme. Moreover, changing the neural network model structure in this framework does not significantly affect the prediction accuracy of the entire health prediction algorithm. Finally, a method for formulation of health monitoring problems of dynamical systems through a two-time scale decomposition is introduced. For this methodology the system dynamical equations as well as the affected damage model, are investigated in the two-time scale system health estimation and prediction steps. A two-time scale filtering approach is developed based on the ensemble Kalman filtering (EnKF) methodology by taking advantage of the model reduction concept. The performance of the proposed two-time scale ensemble Kalman filters is shown to be more accurate and less computationally intensive as compared to the well-known particle filtering approach for this class of nonlinear systems. All of our developed methods have been applied for health monitoring and prognosis of a gas turbine engine when it is affected by various degradation damages. Extensive comparative studies are also conducted to validate and demonstrate the advantages and capabilities of our proposed frameworks and methodologies

    Rotating machine prognostics using system-level models

    Get PDF
    The prognostics of rotating machines is crucial for the reliable and safe operation as well as maximizing usage time. Many reliability studies focus on component-level prognostics. However, in many cases, the desired information is the residual life of the system, rather than the lifetimes of its constituent components. This review paper focuses on system-level prognostic techniques that can be applied to rotating machinery. These approaches use multi-dimensional condition monitoring data collected from different parts of the system of interest to predict the remaining useful life at the system level. The working principles, merits and drawbacks as well as field of applications of these techniques are summarized

    A Review: Prognostics and Health Management in Automotive and Aerospace

    Get PDF
    Prognostics and Health Management (PHM) attracts increasing interest of many researchers due to its potentially important applications in diverse disciplines and industries. In general, PHM systems use real-time and historical state information of subsystems and components of the operating systems to provide actionable information, enabling intelligent decision-making for improved performance, safety, reliability, and maintainability. Every year, a substantial number of papers in this area including theory and practical applications, appear in academic journals, conference proceedings and technical reports. This paper aims to summarize and review researches, developments and recent contributions in PHM for automotive- and aerospace industries. It can also be considered as the starting point for researchers and practitioners in general to assist them through PHM implementation and help them to accomplish their work more easily.Algorithms and the Foundations of Software technolog

    A Field Programmable Gate Array (FPGA) Based Non-Linear Filters for Gas Turbine Prognostics

    Get PDF
    The removal of noise from signals obtained through the health monitoring systems in gas turbines is an important consideration for accurate prognostics. Several filters have been designed and tested for this purpose, and their performance analysis has been conducted. Linear filters are inefficient in the removal of outliers and noise because they cause smoothening of the sharp features in the signal which can indicate the onset of a fault event. On the other hand, non-linear filters based on image processing methods can provide more precise results for gas turbine health signals. Among others, the weighted recursive median (WRM) filter has been shown to provide greater accuracy due to its weight adaptability depending on the signal type. However, sampling data at high rates is possible which needs hardware implementation of the filter. In this paper, the design, simulation and implementation of WRM filters on the FPGA (Field Programmable Gate Arrays) platforms Vivado Design Suite by Xilinx and Quartus Pro Lite Edition 19.3 has been performed. The architectural detail and performance result with the FPGA filters when subjected to abrupt and gradual fault signal is presented

    Robust sensor fault detection and isolation of gas turbine engines

    Get PDF
    An effective fault detection and isolation (FDI) technology can play a crucial role in improving the system availability, safety and reliability as well as reducing the risks of catastrophic failures. In this thesis, the robust sensor FDI problem of gas turbine engines is investigated and different novel techniques are developed to address the effects of parameter uncertainties, disturbances as well as process and measurement noise on the performance of FDI strategies. The efficiencies of proposed techniques are investigated through extensive simulation studies for the single spool gas turbine engine that is previously developed and validated using the GSP software. The gas turbine engine health degradation is considered in various forms in this thesis. First, it is considered as a part of the engine dynamics that is estimated off-line and updated periodically for the on-board engine model. Second, it is modeled as the time-varying norm-bounded parameter uncertainty that affects all the system state-space matrices and third as an unknown nonlinear dynamic that is approximated by the use of a dynamic recurrent neural network. In the first part of the thesis, we propose a hybrid Kalman filter (HKF) scheme that consists of a single nonlinear on-board engine model (OBEM) augmented with piecewise linear (PWL) models constituting as the multiple model (MM) based estimators to cover the entire engine operating regime. We have integrated the generalized likelihood ratio (GLR)-based method with our MM-based scheme to estimate the sensor fault severity under various single and concurrent fault scenarios. In order to ensure the reliability of our proposed HKF-based FDI scheme during the engine life cycle, it is assumed that the reference baselines are periodically updated for the OBEM health parameters. In the second part of the thesis, a novel robust sensor FDI strategy using the MM-based approach is proposed that remains robust with respect to both time-varying parameter uncertainties and process and measurement noise. The scheme is composed of robust Kalman filters (RKF) that are constructed for multiple PWL models. The parameter uncertainty is modeled by using a time-varying norm bounded admissible structure that affects all the PWL state space matrices. The robust Kalman filter gain matrices are designed by solving two algebraic Riccati equations (ARE) that are expressed as two linear matrix inequality (LMI) feasibility conditions. The main objective is to propose a robust filter that satisfies the overall performance requirements and is not affected by system perturbations. The requirements include a quadratically stable filter that ensures bounded estimation error variances having predefined values. In the third part of the thesis, a novel hybrid approach is proposed to improve the robustness of FDI scheme with respect to different sources of uncertainties. For this purpose, a dynamic recurrent neural network (DRNN) is designed to approximate the gas turbine engine uncertainty due to the health degradations. The proposed DRNN is trained offline by using the extended Kalman filter (EKF) algorithm for an engine with different levels of uncertainty, but with healthy sensors. The convergence of EKF-based DRNN training algorithm is also investigated. Then, the trained DRNN with the fixed parameters and topology is integrated with our online model-based FDI algorithm to approximate the uncertainty terms of the real engine. In this part, the previously proposed HKF and RKF are integrated with the trained DRNN to construct the hybrid FDI structure

    Degradation Modeling and Remaining Useful Life Estimation: From Statistical Signal Processing to Deep Learning Models

    Get PDF
    Aging critical infrastructures and valuable machineries together with recent catastrophic incidents such as the collapse of Morandi bridge, or the Gulf of Mexico oil spill disaster, call for an urgent quest to design advanced and innovative prognostic solutions, and efficiently incorporate multi-sensor streaming data sources for industrial development. Prognostic health management (PHM) is among the most critical disciplines that employs the advancement of the great interdependency between signal processing and machine learning techniques to form a key enabling technology to cope with maintenance development tasks of complex industrial and safety-critical systems. Recent advancements in predictive analytics have empowered the PHM paradigm to move from the traditional condition-based monitoring solutions and preventive maintenance programs to predictive maintenance to provide an early warning of failure, in several domains ranging from manufacturing and industrial systems to transportation and aerospace. The focus of the PHM is centered on two core dimensions; the first is taking into account the behavior and the evolution over time of a fault once it occurs, while the second one aims at estimating/predicting the remaining useful life (RUL) during which a device can perform its intended function. The first dimension is the degradation that is usually determined by a degradation model derived from measurements of critical parameters of relevance to the system. Developing an accurate model for the degradation process is a primary objective in prognosis and health management. Extensive research has been conducted to develop new theories and methodologies for degradation modeling and to accurately capture the degradation dynamics of a system. However, a unified degradation framework has yet not been developed due to: (i) structural uncertainties in the state dynamics of the system and (ii) the complex nature of the degradation process that is often non-linear and difficult to model statistically. Thus even for a single system, there is no consensus on the best degradation model. In this regard, this thesis tries to bridge this gap by proposing a general model that able to model the true degradation path without having any prior knowledge of the true degradation model of the system. Modeling and analysis of degradation behavior lead us to RUL estimation, which is the second dimension of the PHM and the second part of the thesis. The RUL is the main pillar of preventive maintenance, which is the time a machine is expected to work before requiring repair or replacement. Effective and accurate RUL estimation can avoid catastrophic failures, maximize operational availability, and consequently reduce maintenance costs. The RUL estimation is, therefore, of paramount importance and has gained significant attention for its importance to improve systems health management in complex fields including automotive, nuclear, chemical, and aerospace industries to name but a few. A vast number of researches related to different approaches to the concept of remaining useful life have been proposed, and they can be divided into three broad categories: (i) Physics-based; (ii) Data-driven, and; (iii) Hybrid approaches (multiple-model). Each category has its own limitations and issues, such as, hardly adapt to different prognostic applications, in the first one, and accuracy degradation issues, in the second one, because of the deviation of the learned models from the real behavior of the system. In addition to hardly sustain good generalization. Our thesis belongs to the third category, as it is the most promising category, in particular, the new hybrid models, on basis of two different architectures of deep neural networks, which have great potentials to tackle complex prognostic issues associated with systems with complex and unknown degradation processes
    corecore