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ABSTRACT 

The prognostics of rotating machines is crucial for the 
reliable and safe operation as well as maximizing usage 
time. Many reliability studies focus on component-level 
prognostics. However, in many cases, the desired 
information is the residual life of the system, rather than 
the lifetimes of its constituent components. This review 
paper focuses on system-level prognostic techniques that 
can be applied to rotating machinery. These approaches 
use multi-dimensional condition monitoring data collected 
from different parts of the system of interest to predict the 
remaining useful life at the system level. The working 
principles, merits and drawbacks as well as field of 
applications of these techniques are summarized. 
KEYWORDS: System-level prognostics; rotating 
machines; condition monitoring; remaining useful life 

1 INTRODUCTION 
 Rotating systems such as gas turbines and 

compressors are widely used due to their high 
performance and robustness. However, many kinds of 
failures may occur during the operation of the machine. 
Those failures will cause unplanned downtime and 
economic losses as well as reduced reliability. One way to 
minimize the negative influence of these failures is to 
make maintenance strategies more predictive by using 
automated condition monitoring. Condition-based 
maintenance (CBM) is a preventive maintenance strategy 
that seeks to improve the reliability of engineering 
systems based on condition monitoring information [1][2]. 
CBM enables the diagnosis of impending failures and the 
prognosis of the future health state and remaining useful 
life (RUL) of a system [3]. Prognostic programs based on 
condition monitoring data provide a potent tool for 
practitioners in making appropriate maintenance decisions 
by estimating the future degradation trends and 
anticipating the failure time [4]. Suspensions or overhauls 
could be carried out before the estimated failure time, 
which allows for improved machine availability and 
reliability and reduced the overall operating cost. 

Many condition-based reliability studies have 
focused on component-level prognostics, which enable 
the failure of critical rotating components to be predicted. 
However, in many cases, the desired information is the 
residual life of the system, rather than the lifetimes of its 
constituent components [5]. This necessitates the 
development of robust system-level prognostic techniques 
for rotating machines.  

Due to the progress of sensing technology, condition 
monitoring data such as the oil debris, pressure values, 
temperature values and vibration is available at different 
parts of the rotating system [6]. The availability of data 
from multiple sensors has provided the possibility of 
developing multidimensional prognostic techniques. Since 
the RUL of a system is dependent upon its constituent 
components and how they interact [7], one could make 
use of the data collected from sensors distributed over the 
machine and multi-dimensional techniques to predict 
failure times. Subsequently, system maintenance 
schedules can be made based on the estimated failure.  

Several review papers on prognostic techniques for 
engineering systems have been published [8] [9] [10] [11] 
[12] [13]. However, limited numbers of these papers have 
highlighted the system-level prognostic options for 
complex rotating machines. This paper reviews prognostic 
techniques that can be applied to predict rotating 
machinery failures at the system level.           

2 DISCUSSIONS ON SYSTEM-LEVEL 
PROGNOSTIC MODELS FOR ROTATING 
MACHINERY 

2.1 Characteristics of rotating machinery 
prognostics 

Compared with general industrial applications, 
rotating systems have several unique characteristics that 
should be considered when developing prognostic 
methods. First, various sources of nonlinearities can be 
present in complex rotating machines, such as 
nonlinearities in the bearings, aerodynamic effects and 
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friction in rotating assemblies and seals [14]. The presence 
of these nonlinear elements can lead to nonlinear system 
dynamic characteristics. Moreover, most real-world 
rotating machinery works in non-stationary operating 
conditions, which can have profound effects on both 
diagnostic and prognostic signals. The non-stationary 
operations are generated by load/speed variations, system 
parameter adjustments, strong nonlinearities in the 
components, etc. [15, 16]. Moreover, rotating systems are 
composed of multiple sub-systems and components with 
various failure modes, which further introduce a degree of 
complexity in prognostic modelling. In addition to non-
linearity, non-stationary and multiple failure modes, 
modelers should also consider the possible synergy among 
the different sensor signals collected from the machine. 
Therefore, the multidimensional prognostic techniques are 
commonly used when developing an appropriate system-
level method for rotating machinery. 

2.2 Prognostic techniques categorization 
 The prognostic approaches reviewed in this paper can 

be divided into three categories: (1) statistical methods, (2) 
artificial intelligence methods, and (3) similarity-based 
methods (see Figure 1). 

For statistical methods, we review models based on 
Bayesian theory and proportional hazard models. These 
models predict the RUL based on past observed 

information and statistical models in a probabilistic 
manner. Therefore, a probability density function (PDF) 
of the RUL is formulated for uncertainty management. 
Moreover, in statistical methods, machine lifetime data 
might be required in addition to monitoring data for 
failure prediction.  

When lifetime data is scarce or non-existent, artificial 
intelligence methods that make predictions using only 
monitoring data can be considered. These models can be 
treated as a nonlinear function approximator, which aims 
to determine dependencies in a training data set such that 
predictions of the outputs (e.g., RUL) can be made when 
new inputs are available. Unlike statistical methods, most 
artificial intelligence methods do not provide a PDF of the 
RUL. For artificial intelligence methods, we review 
models based on neural networks and support vector 
machines (SVMs). 

Similarity-based methods are fundamentally different 
from the techniques in the first two categories because 
they do not perform trending or extrapolation of the 
degradation process. Instead, they construct a probabilistic 
health indicator, which characterizes the system health 
state via trajectories. Then, predictions are made based on 
evaluating similarities between the trajectories. 

The working principles, merits, drawbacks and the 
applications of these techniques are discussed in the 
following sections. 

. 
                                                                   Figure 2 Models categories for RUL prediction 

2.3 Bayesian theory based models 
We assume the system model based on Bayesian 

theory can be defined as: 
                               p(𝑥𝑥𝑡𝑡|𝑥𝑥𝑡𝑡−1) ,                               (1) 
                               p(𝑦𝑦𝑡𝑡|𝑥𝑥𝑡𝑡)                            (2)             
Where 𝑥𝑥𝑡𝑡  refers to the unobservable health state of 

the system under study at time t, 𝑦𝑦𝑡𝑡 refers to the observed 
information at time t. p(𝑥𝑥𝑡𝑡|𝑥𝑥𝑡𝑡−1)  is the state equation, 
and  p(𝑦𝑦𝑡𝑡|𝑥𝑥𝑡𝑡)  is the observation equation. Then, the 

prognostic tasks can be divided into two sequential stages: 
the estimation stage and the prediction stage. The purpose 
of the estimation stage is to find a state estimate p(𝑥𝑥𝑡𝑡|𝑌𝑌𝑡𝑡) 
given the observation history up to time t, where Yt 
denotes the observation history up to time t. The 
prediction problem is to predict the health state 
p(𝑥𝑥𝑡𝑡+𝑘𝑘|𝑌𝑌𝑡𝑡) at a given prediction time t + k. The RUL can 
be computed by extrapolating the predicted health state to 
a pre-set failure threshold [5]. 
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Because most engineering facilities in practice 
undergo a non-linear and time-varying deterioration 
process, the parameters of the prediction model cannot 
remain constant over the entire prediction process 
(otherwise the predictions might be not accurate). 
Therefore, Bayesian updating methods are often adopted 
to jointly update the model parameters and the system 
health state when new observations are available. Three 
widely used Bayesian updating tools are particle filtering 
[17] [5], semi-stochastic filtering [18] and dynamic 
Bayesian updating [19]. To address systems with multiple 
sensory inputs, sensor fusion techniques, such as principal 
component analysis [20], independent component analysis 
(ICA) [21], linear regression [5] and path model [19] are 
often employed to merge the multivariate measurements 
into a one-dimensional variable - the system health 
indicator. Then the equations defined in the first paragraph 
can be used to map health indicator values to the RUL. 
Some common Bayesian theory techniques will be 
discussed below. 

a) Particle filtering: The main concept of particle 
filtering is to represent the required posterior distribution 
of the state variables, such as  p(𝑥𝑥𝑡𝑡|𝑌𝑌𝑡𝑡) , using a set of 
particles with associated weightings. These particles 
evolve and adapt recursively when new information 
becomes available [22]. Then, the unobserved health state 
is estimated based on these weighted samples.  

In health state prediction, particle filter has three 
advantages: a) it can be applied to nonlinear process with 
non-Gaussian noise; b) it provides probabilistic results 
which is helpful to manage the prognostic uncertainties; c) 
it allows information fusion such that data from 
multidimensional sensors could be employed collectively 
[23] [24]. 

However, one limitation of particle filtering is that a 
large number of samples might be required to accurately 
approximate the future state distributions, which may 
cause the filtering system to collapse. A good solution to 
this problem is to adopt the efficiency monitoring method 
of filtering proposed by Carpenter [22]. 
         Wang [17] presented an engine wear estimation 
model base on particle filtering. In his work, the 
relationship between condition monitoring measurements 
and system wear was modelled using the concept of a 
floating scale parameter. In this approach, the scale 
parameter of the observations is a function of both system 
degradation and time. The PCA was employed to produce 
a one-dimension representation of the metal concentration 
data, which were then processed by particle filtering to 
obtain the density function of system wear. Recently, Sun 
et al. [5] applied a state space model embedded with 
particle filtering to a gas turbine degradation data set 
obtained via simulation. A health indicator inferred using a 
linear regression method was used to represent the latent 
degradation state of the engine given multivariate sensory 
measurements. The authors combined the state estimation 
with model parameter estimation to reduce the prognostic 
uncertainty.  

  b) Semi-stochastic filtering: Wang and Christer 
[25] firstly developed a state space prognostic model 
embedded with a semi-stochastic filtering technique. 
Based on the authors assumption, two relationships should 
be determined to model the probability density of a 
system’s state given all of the observations: the 
relationship between 𝑥𝑥𝑡𝑡  and 𝑥𝑥𝑡𝑡−𝑖𝑖  and the relationship 
between 𝑦𝑦𝑡𝑡 and 𝑥𝑥𝑡𝑡. 𝑥𝑥𝑡𝑡 is the residual life at time t, and 𝑦𝑦𝑡𝑡 
denotes the observation at time t. The two relationships 
could be described by 𝑥𝑥𝑡𝑡 = 𝑥𝑥𝑡𝑡−𝑖𝑖 − (𝑡𝑡 − 𝑖𝑖)  and 𝑦𝑦𝑡𝑡 =
𝑔𝑔(𝑥𝑥𝑡𝑡 ,𝛿𝛿𝑡𝑡) , where 𝛿𝛿𝑡𝑡  denotes a noise term and 𝑔𝑔  is a 
function to be determined. Then, the posterior distribution 
of the residual life given all past observation history can 
be estimated based on the obtained conditional 
probabilities. Various extensions have been developed and 
applied to rotating system prognostics based on the above 
framework. A revision of this semi-stochastic filtering 
technique was applied to the lifetime data and monitored 
oil analysis data collected from an aircraft engine [20]. 
The predicted RUL is assumed to be proportional to the 
wear increment measured by the monitored 
measurements. PCA was employed to obtain a weighted 
average of the original monitored data. A similar model 
was given in [26]. The authors combined lifetime data and 
accumulative metal concentration data to estimate the 
remaining useful life of a diesel engine. Similarly, Wang 
and Hussin [21] developed a stochastic filtering-based 
prognostic model and applied it to two data sets: engine 
lubricant and contaminant analysis data and metal 
concentration data. Instead of the commonly used PCA, 
they employed ICA to merge the latter. The results 
indicated that a higher accuracy was achieved based on 
the data lubricant and contaminant sets. Another extension 
of Wang’s semi-stochastic filtering was given in [27]. 
This model extends the original filtering with respect to 
two aspects: the concept of a two-stage life model was 
introduced to achieve both fault detection and prediction, 
and a combination of categorical and continuous hidden 
Markov chain was used to model the underlying health 
state transitions. The authors suggested the use of a PCA 
algorithm in combination with the proposed model to 
address multidimensional data in complex rotating 
systems. 

c) General path model with dynamic Bayesian 
updating: Coble and Hines [19] developed a prognostic 
model, called the general path model (GPM), to predict 
the RUL of aircraft engines. First a deterioration measure 
is identified to represent the failure evolution. Then a 
linear regression fit of the measure is extrapolated to a 
preset failure threshold to predict the RUL. The results 
indicated that the dynamic Bayesian updating method 
greatly improved the prediction accuracy. 

These approaches are based on the same assumption 
that there are no maintenance actions during two 
condition check points or that the actions do not affect the 
system degradation pattern. However, this may not be the 
case in reality. Moreover, failure lifetime data may be 
required for parameter estimation for most models 
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mentioned above. But this type of data might be scarce in 
reality. 

2.4 Proportional Hazard Models 
Machine failures can be predicted by analyzing either 

condition monitoring data or historical service lifetime 
data [28] [29]. Condition monitoring data, which are 
obtained continuously, have been widely used to predict 
fault evolutions and system RUL. The lifetime data, which 
indicate how long the machine has been operating since 
the last failure (or suspension), also provide 
supplementary information for RUL prediction [30]. 
Hence, it would be wise to develop proper prognostic 
models with a combination of condition monitoring data 
and lifetime data. The proportional hazard model (PHM), 
proposed by Cox [31], attempts to utilize both types of 
information for RUL prediction. The basic assumption of 
this method is that the failure rate of a machine depends 
on two factors: the baseline hazard rate and the effects of 
covariates (condition monitoring sensory variables). 
Hence, the hazard rate of a system at service time t can be 
written as  λ(t; z) = λ0(𝑡𝑡)exp (𝑧𝑧𝑧𝑧) , where λ0(𝑡𝑡)  denotes 
the base line hazard, which is determined by the system 
lifetime data. exp (𝑧𝑧𝑧𝑧)  denotes the covariate function, 
which describes the effect of the sensory variables on the 
degradation process [28]. Applying PHMs requires that 
the baseline hazard function λ0(𝑡𝑡) and covariate function 
exp (𝑧𝑧𝑧𝑧) be identified. 

Methods that have been used to estimate the exp (𝑧𝑧𝑧𝑧) 
including the maximum likelihood algorithm [31] [4] and 
Wald statistic [30]. The relative influences of sensory 
signals on the system hazard rate are first determined. 
Then, key variables with close correlation to the system 
failure are retained and employed to estimate the system 
failure probability density [32]. Once the covariate 
function has been determined, the baseline function 
parameters can be estimated. The PHM provides a 
distribution-free estimate of the baseline function λ0(𝑡𝑡)  
[32], which means that a specific distribution for λ0(𝑡𝑡)  is 
not needed to fit the lifetime data. Researchers prefer this 
type of estimate because it can avoid the loss of accuracy 
caused by the assumption of a parametric distribution [33]. 
However, in practice, the baseline hazard function is often 
assumed to be a parametric distribution, such as the 
Weibull or exponential distribution [12]. Such 
assumptions might not be reasonable in many cases 
because of the confusing effects of different covariates 
[32].  
        To apply the PHMs, the sensory measurements and 
lifetime data are combined to fit the model. The PHM can 
identify the important risk factors from all input variables 
and their relative influence on the failure of the equipment 
[30]. Then, the system failure distribution at time service t 
can be estimated. Finally, the failure time at time t can be 
predicted according to the estimated probability 
distribution. 

 PHMs have been applied to many non-linear and 
non-stationary machinery prognostic problems. Jardine et 

al. [34] developed a PHM and employed it to estimate the 
remaining useful life of aircraft engines and marine gas 
turbines. The baseline hazard function was assumed to be 
a Weibull distribution and was estimated using lifetime 
data. The levels of various metal particles (such as Fe, Cu 
and Mg) in the oil were used as the covariates in both 
cases. The influence of the condition monitoring variables 
on the equipment RUL has been properly interpreted by 
the developed PHM. The authors also applied the PHM to 
estimate the RUL and optimize the maintenance decisions 
of haul truck wheel motors in [30]. The key covariates 
related to failures were identified from 21 monitored oil 
analysis variables using the developed PHM. The results 
showed that significant savings in maintenance costs 
could be achieved by optimizing the overhaul time as a 
function of lifetime data and oil analysis variables. 

The above models are based on the assumption that 
the system under study is subject to a single failure mode. 
However, in practice, most complex mechanical systems 
consist of multiple sub-systems with various failure 
modes [28]. Therefore, prognostic models for determining 
only one type of failure mode cannot properly estimate 
the overall system failure time. Recently, Zhang et al. [28] 
proposed a mixed Weibull proportional hazard model 
(MWPHM) for complex mechanical system reliability 
assessment. In this model, the overall system failure 
probability density is determined by a mixture of failure 
densities of various failure modes. The influences of 
multiple monitoring signals on different failure modes are 
integrated using the maximum likelihood estimation 
algorithm. Real data from a centrifugal water pump were 
combined with lifetime data to test the robustness of the 
model.  

The main problem with applying PHMs for failure 
prediction is that they require a large amount of lifetime 
data to determine the parameters of the baseline hazard 
function and the weighting of covariates [29], which may 
limit the applications of PHMs because the amount of 
lifetime data might be insufficient in many cases due to 
various reasons, such as missing or no records or 
transcription mistakes [35]. Another drawback of PHMs is 
that they rely on the choice of the failure threshold for 
RUL prediction. The threshold must be continuously 
updated when system maintenance is conducted [28].  

2.5 Neural network based models 
 Artificial neural networks (ANNs) have recently 

been widely used in modelling degradation processes. An 
ANN is a computing system that is able to capture, 
represent and compute mapping from the input multi-
variable space to the output space [36]. ANNs have three 
layers: an input layer, one or more hidden layers and an 
output layer. ANNs are comprised of a large number of 
processing elements (known as neurons) that are 
connected to each other by weighted interconnections 
[37]. These neurons are organized into distinct layers, and 
their interconnections are determined through a training 
process. The network training involves presenting data 
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sets collected from the degradation process. Then the 
network parameters are adjusted to minimize the errors 
between the model output and desired output [36]. Once 
the training is finished, ANNs process new input data to 
make predictions about the outputs (RUL). 
         Network architectures that have been used for 
prognostics can be classified into two types: feed-forward 
and recurrent networks [38]. In feed-forward networks, the 
signals flow in one direction; therefore, the inputs to each 
layer depend only on the outputs of the previous layer. 
However, applications in signal processing and 
prognostics should consider the system dynamics. 
Recurrent networks provide an explicit dynamic 
representation by allowing for local feedbacks [39]. Two 
types of networks: multi-layer perceptron (MLP) and 
recurrent neural networks (RNNs) (Figure 2 shows the 
architecture of a simple RNN), which have been applied 
extensively by researchers, will be discussed below [36] 
[40]. 
         a) Multi-Layer Perceptron (MLP): MLPs are one 
of the most popular feed-forward neural networks used for 
prognosis [12]. MLPs utilize back-propagation (BP) 
learning technology for training. After the training, the 
MLP is capable of classifying the fault and predicting the 
RUL based on new measurements collected from 
machines [41]. The benefit of back-propagation (BP) 
training is that it does not require knowledge of the precise 
form of the input-output mapping functions (e.g., function 
type, number of model parameters) of the model to be 
built, which makes it suitable for the analysis of 
multivariate complex systems [40]. 
        b) Recurrent neural network (RNN): Feed-forward 
neural networks have limitations in identifying temporal 
dependences in time series signals [42]. RNNs solve this 
problem by including local or global feedback between 
neurons. Thus, they are suitable for a wide range of 
dynamic systems [42], such as time-varying and non-
linear systems. However, the drawback of RNNs is the 
limitations in accurate long-term predictions arising from 
the frequently used gradient descent training algorithm 
[42]. 

 
Figure 2 Architecture of a simple RNN 

         ANNs can represent and build mappings from 
experience and history measurements to predict the RUL 

and then adapt it to unobserved situations. The strong 
learning and generalization capabilities of ANNs render 
them suitable for modelling complex processes [37], 
particularly systems with nonlinear and time-varying 
dynamics [41] [43] - [45]. ANNs are superior in capturing 
and depicting relationships between many variables in 
high-dimensional data space [40] [45] [46] [37]. RNNs 
are suitable for approximating dynamic dependencies 
[42]. These distinct characteristics make ANNs promising 
candidates for modelling degradation processes in rotating 
machinery. 
        Xu et al. [47] successfully employed RNNs, support 
vector machines (SVMs) and Dempster-Shafer regression 
to estimate the RUL of an aircraft gas turbine. Echo state 
network (ESN), which is a variant of the RNNs, was 
employed by Peng et al. [48] to predict the RUL of 
engines using NASA repository data. The results indicated 
that the ESN significantly reduced the computing load of 
the traditional RNNs. ANNs have also been used in 
combination with Kalman filters and Extended Kalman 
filters in [49] and [50] to perform failure predictions of 
aircraft engines. 
          Although ANNs have been shown the superior 
power in addressing complex prognostic problems which 
have multivariate inputs, there are some limitations. For 
example, the majority of the ANN prognostic models aim 
to assume a single failure mode and do not relate lifetime 
data with the machine RUL. Moreover, the models rely on 
a large amount of data for training. The prognostic 
accuracy is closely dependent on the quality of the 
training data [47]. Furthermore, ANNs allow for few 
explanatory insights into how the decisions are reached 
(also known as the black box problem), which has become 
a concern to modelers because the causal relationship 
between the model variables is essential for explaining the 
fault evolution [51]. Attempts to solve the black box 
problem can be found in [52]. Moreover, ANNs lack a 
systematic approach to determine the optimal structure 
and parameters of the network to be established [40]. 

2.6 Support vector machine based models 
Previously, SVMs were mainly used for pattern 

recognition problems and have not been used for time 
series forecasting until the introduction of the Vapniks 
insensitive loss function [9]. SVM-based machine 
learning starts with a number of input variables x(i), i =
1,2,3, … , N, and the corresponding target values y(i), i =
1,2,3, … , N. The idea is to learn the dependency of y(i) on 
x(i)  and to define a function over the input variables. 
Then, predictions of y(i)  can be made given unseen 
x(i) [53]. When applying SVMs to nonlinear prognostics, 
model inputs are first mapped onto a higher dimensional 
feature space by using a kernel function. The most 
commonly employed kernel function is the radial-based 
function (RBF) [54]. Then a linear model is constructed in 
the feature space to make estimation. Figure 3 shows the 
architecture of a simple SVM based prognostic model. 
SVMs are excellent in addressing prognostic problems 
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regarding complex rotating machinery because they have 
no limitations on the dimensionality of the input vectors 
and have relatively a low computational burden [13]. 
Besides, SVMs can achieve highly accurate results with 
nonlinear inputs [54].  
 

 
Figure 3 Architecture of a simple SVM based prognostic 

model 

Several different prognostic models based on SVMs 
have been used in modelling nonlinear and non-stationary 
dynamic systems. 

a) Relevance vector machine (RVM): RVM has an 
identical function form as a SVM. Hu and Tse [55] 
proposed a model based on RVM for RUL prediction of a 
pump. This model was proved to be accurate when dealing 
with non-stationary vibration signals. 

b) Particle swarm optimization and SVM (PSO-
SVM): Garcia Nieto et al. [56] developed an RUL 
framework based on the PSO-RBF-SVM technique. This 
model combines a SVM with particle swarm optimization 
(PSO) to enable the parameter adjustment of the RBF 
kernel function. The results show that the proposed 
prognostic model accurately predicts the RUL of engines 
based on a simulation data set (collected from the 
MAPSS). 

c) Least squares support vector regression and 
hidden Markov model (LSSVR and HMM): Compared 
with the traditional SVM, LSSVR can lead to better 
performance in addressing non-linear, small sample 
problems. Li et al. [57] proposed a hybrid model of the 
LSSVR and the HMM for RUL prediction. The RUL was 
calculated by the LSSVR model built on the health 
indexes obtained from HMM. 

d) SVM and RNN: In [47], a SVM approach based 
on the RBF kernel function was employed together with a 
RNN and Dempster-Shafer regression to predict the RUL 
of engines. The integrated prognostic method 
demonstrated superior capacity in providing accurate 
predictions.  

However, the problem with using SVM is that a 
standard method of choosing an appropriate kernel 
function for SVMs does not exist [9]. In addition, 
parameters should be specifically tuned for the case of 
interest and this might be challenging. Efforts should be 

made to choose the appropriate kernel functions and 
estimate the appropriate parameters. 

2.7 Similarity based models 
Similarity-based prognostic models are particular 

cases of data-driven models and have only recently been 
applied to complex rotating machinery. These models are 
essentially pattern matching approaches [58]. Similarity-
based prognostic models are suitable for situations in 
which abundant run-to-failure data of a mechanical 
system are available [59]. Multivariate monitoring data 
collected from various failure modes and operating 
conditions [58] of the system are first processed to 
produce a health indicator (HI). The indicator represents 
the fault evolution of the system by trajectories. The 
methods to obtain the health indicator trajectories include 
logistic regression [59], weighted averaging methods [60], 
and flux-based methods [61]. If the un-processed data 
already capture the progression of the degradation 
process, the data can remain multi-dimensional [62]. 
Then, the monitoring data are converted into instances. An 
instance can be either a segment of the HI trajectories or a 
complete degradation trajectory. Therefore, a library of 
instances can be created from these run-to-failure data and 
then stored in the memory. If one wishes to predict the 
RUL using a new run-to-failure dataset, the same 
operations are applied to the new data to produce a new 
instance. Instead of extrapolating, the instance is 
compared with the stored instances to determine and 
select the instances with the best matching scores (i.e., the 
most similar ones) [59]. Then, the best matching instance 
is used to extrapolate the RUL or the weighted multiple 
instances are added together to calculate the RUL [58]. 

Figure 4 shows the general framework of similarity-
based prognostic models. Because the similarity-based 
approaches use training data to construct instances (health 
indicator trajectories or multidimensional monitoring 
variables), they are compatible with algorithms that 
extract health indicators for RUL prediction [62]. The 
advantage of similarity-based approaches is that they can 
achieve satisfactory and accurate predictions when 
abundant data are collected from a variety of failure 
modes. However, the run-to-failure data are scarce in 
many cases [58]. Hence, efforts should be made to extend 
this type of approach to situations in which limited 
training data are available. Additionally, many similarity-
based prognostic techniques suffer from computational 
inefficiency in terms of sorting a large amount of training 
data [63]. 

The ability to accommodate multidimensional 
sensory measurements collected from various failure 
patterns makes similarity-based methods suitable for the 
prognostics of complex rotating machinery. Examples are 
given below to set out how various similarity based 
models have been used for RUL prediction. 
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Figure 4 General framework of similarity-based 

prognostic models 

 

 
Figure 5 Type of data used in studies regarding (a) 

Gas turbine engines only (blue), and (b) All kinds of 
reviewed rotating machines (orange) 

 

a) Similarity model based on shapelet extraction: 
Malinowski et al. [62] developed an RUL prediction 
technique that employs the Shapelet extraction process to 
extract failure patterns from multivariate sensory data 
obtained from a turbofan engine simulation program, C-
MAPSS. The RUL was calculated as the weighted sum of 
the failure patterns that are highly corrected with the 
residual life.  

b) Similarity model based on normalized cross 
correlation: Zhang et al. [64] applied a prognostic 
method based on the similarity of phase space trajectory 
to the monitoring data collected from a pump with six 
distinct degradation modes. The normalized cross 
correlation was employed to determine the optimal 
matching trajectory segments, which were then used to 
estimate the RUL. 

c) Similarity model based on PCA and K-NN: 
Mosallam et al. [65] employed principle component 
analysis (PCA) and an empirical mode decomposition 
(EMD) algorithm to construct health indicators from 
turbofan engine deterioration simulation data. Then, the k-
nearest neighbor (K-NN) classifiers were used to 
determine the most similar HIs for RUL prediction. 

d) Similarity model based on belief functions: An 
improved technique based on belief functions was 
proposed by Ramasso and Gouriveau [63] and Ramasso 
[66]. In this method, the authors only match the last points 
of the trajectories in the library with tested ones because 
the last points are more likely to be closely related to the 
degradation state. One of the main contributions of this 
method is its ability to manage labels (indicating 
degradation states) that would have been incorrectly 
assigned to the sensory data. 

e) Similarity model based on linear regression and 
kernel smoothing: Wang et al. [59] proposed a 
prognostic model in which the health indicator is 
constructed from multiple sensors using linear regression. 
The best matching instances were selected by examining 
the Euclidean distance between the test and stored 
instances. This method was applied to data provided by 
the 2008 PHM Data Challenge Competition to predict the 
RUL of an unspecified system. 

f) Similarity model based on regression vector 
machine (RVM): Wang et al. [67] improved the previous 
model by incorporating the uncertainty information into 
the RUL estimation. The degradation curves of health 
indexes were estimated using RVM. The Challenge data 
was employed again to test the effectiveness of this 
method. 

g) Hybrid similarity model: Hu et al. [68] proposed 
an ensemble prognostic model which combines five 
individual algorithms (i.e. similarity-based approach with 
the SVM, RVM and Exponential fitting, a Bayesian linear 
regression with the quadratic fitting and a RNN) with a 
weighted sum formulation. The integrated model shows 
higher accuracy in RUL prediction compared to any 
single algorithm. 
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Table 1 Applications of RUL prediction models  
Rotating machine 
type 

RUL prediction models Common available data types 

 
 
 
 
 
 
 
 
 
Gas turbine engines 
 

 
Similarity model based on shapelet extraction (Malinowski et al.  [62]) 
Similarity model based on linear regression and kernel smoothing (Wang et al. [59]) 
Similarity model based on PCA and K-NN (Mosallam et al. [65]) 
Similarity model based on belief functions (Ramasso et al. [66]) 
Similarity model based on RVM (Wang et al.   [67]) 
Hybrid similarity model based on SVM, RVM, Exponential fitting, Quadratic fitting and 
RNN (Hu et al. [68]) 
Echo state network (Peng et al.  [48]) 
Multi-layer perceptron and kalman filter (Peel et al. [49]) 
Recurrent neural network and extended kalman filter (Heimes [50]) 
Recurrent neural network and support vector machine (Xu et al. [47])  
Particle filtering and linear regression (Wang [17], Sun et al. [5])  
Semi-stochastic filtering and PCA (Wang [20], Wang and Hussin [21]) 
Linear regression and dynamic Bayesian updating (Coble and Hines [19])  
Weibull proportional hazard model (Jardine et al.   [34]) 
PSO-SVM (Garcia Nieto et al.  [56]) 
Least squares support vector regression and HMM (Li et al. [57]) 

1. Condition monitoring data: 
Vibration, 
metal concentration, acoustic 
emission, ratio of fuel flow, 
temperature of Fan, low/high 
pressure compressor and low/high 
pressure turbine, 
pressure, 
fan speed, etc. 
2. Lifetime data 
 

 
 
Pumps 

 
Similarity model based on normalized cross correlation (Zhang et   al. [64])  
Mixture of Weibull proportional hazard model (Zhang et al. [28]) 
Relevance vector machine (Hu and Tse [55]) 

1. Condition monitoring data: 
Mainly vibration, can involve 
pressure, temperature, etc. 
2. Lifetime data 
 

 
Diesel engines 

 
Semi-stochastic filtering and PCA (Wang [26]) 
 

1. Condition monitoring data: 
Metal concentration, etc. 
2. Lifetime data 
 

 
Haul truck wheel 
motors 

 
 
Weibull proportional hazard model (Jardine et al.   [30]) 

1. Condition monitoring data: 
sediment, viscosity, voltage, load, 
vibration, etc. 
2. Lifetime data 
 

 
3 SUMMARIES OF PROGNOSTIC 
TECHNIQUES OF ROTATING MACHINES 

Table 1 summarizes the application of different 
RUL prediction models to various industrial rotating 
machines and the machines’ common available data 
types. 

Furthermore, the reviewed manuscripts (those in 
Table1) are classified based on the type of data used 
in the article. There are two types of data, namely, 
simulated data collected from simulation programs, 
such as C-MAPSS, and field data (real-world 
condition monitoring data). Fig.5 compares the type 
of data being used in studies regarding a) gas turbine 
engines only and (b) all types of reviewed rotating 
machines (including gas turbine engines, diesel 
engines, haul truck wheel motors and pumps).  
     According to the reviewed articles, the RUL 
estimate of gas turbine engines is the main 
application field. However, the proportion of studies 
using simulation data is higher than those using field 
data. The reason for this is the simplicity of using 
simulation programs and the difficulty of obtaining 
sufficient field data from operating machines. 

 
 
 

 
4 DISCUSSIONS ON RELIABILITY ANALYSIS 
OF SYSTEM WITH MULTIPLE FAILURE 
MODES 

Most existing prognostic techniques were 
originally developed for a single failure mode. To 
predict RUL for systems with multiple failure modes, 
several models must be separately constructed for 
each failure mode. For example, Daigle et al. [69] 
developed a distributed method for failure prediction 
of a four-wheel rover. This method first decomposes 
the system-level prognostic problem into independent 
sub-failure problems through structural model 
decomposition. Thereafter, the Kalman filter and 
physical model are used to perform individual failure 
prognostics. Finally, the local prognostic results are 
merged to form a system-level result. However, the 
correlation between different failures may be 
overlooked via this approach. To solve this problem, 
several frameworks for reliability analysis in general 
engineering systems with competitive multiple 
failures have been proposed. Ahmad et al. [70] 
developed a failure analysis approach by integrating 
the failure mode effect and criticality analysis 
(FMECA) and PHM. This method was validated in a 
cutting process system with two failure modes. 
FMECA was applied to classify the censored and 
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uncensored data based on the severity of the different 
failure modes. The FMECA output was then used in 
PHM to determine the reliability of the system. 
Huang and Askin [71] proposed a method to analyze 
the reliability of an electronic device with two types 
of competing failure modes. Based on the competing 
failure rule, the mean time-to-failure of the device 
was estimated by jointly considering the failure rate 
of both failure modes. Bichon et al. [72] proposed a 
surrogate-based approach based on the Gaussian 
process model and physical laws. This method was 
used to analyze the failure probability of a liquid 
hydrogen tank with three failure modes. However, 
most of the frameworks discussed above have not yet 
been used to predict the RUL for rotating machinery. 
Therefore, efforts can be made to extend them to 
rotating machine prognostics. 

 
5 CONCLUSIONS 

This paper has explored prognostic models for 
predicting the remaining useful life of rotating 
machines at the system level. The reviewed 
prognostic models make predictions based on the 
multi-dimensional condition monitoring signals 
collected from the sensors distributed over the 
studied system. The relevant theories were discussed, 
and the advantages and disadvantages of the main 
prognostic model classes were explored. Examples 
were given to explain how these approaches have 
been applied to predict the RUL of rotating systems. 
The reviewed approaches generally require a large 
amount of historical data (condition monitoring data 
or lifetime data) to obtain accurate estimates. In 
addition, the implementation of the reviewed models 
in industry is still in the nascent stage and more work 
should be conducted to apply them in real-world 
operating machines. Moreover, most of the reviewed 
techniques were originally designed for a signal 
failure mode. Therefore. several frameworks for 
reliability analysis of general engineering systems 
with multiple failure modes were examined. In the 
future, more work should be conducted to apply these 
frameworks to rotating machinery prognostics. 
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