5,562 research outputs found

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Automated Mixed Traffic Vehicle (AMTV) technology and safety study

    Get PDF
    Technology and safety related to the implementation of an Automated Mixed Traffic Vehicle (AMTV) system are discussed. System concepts and technology status were reviewed and areas where further development is needed are identified. Failure and hazard modes were also analyzed and methods for prevention were suggested. The results presented are intended as a guide for further efforts in AMTV system design and technology development for both near term and long term applications. The AMTV systems discussed include a low speed system, and a hybrid system consisting of low speed sections and high speed sections operating in a semi-guideway. The safety analysis identified hazards that may arise in a properly functioning AMTV system, as well as hardware failure modes. Safety related failure modes were emphasized. A risk assessment was performed in order to create a priority order and significant hazards and failure modes were summarized. Corrective measures were proposed for each hazard

    Stochastic Tools for Network Security: Anonymity Protocol Analysis and Network Intrusion Detection

    Get PDF
    With the rapid development of Internet and the sharp increase of network crime, network security has become very important and received a lot of attention. In this dissertation, we model security issues as stochastic systems. This allows us to find weaknesses in existing security systems and propose new solutions. Exploring the vulnerabilities of existing security tools can prevent cyber-attacks from taking advantages of the system weaknesses. We consider The Onion Router (Tor), which is one of the most popular anonymity systems in use today, and show how to detect a protocol tunnelled through Tor. A hidden Markov model (HMM) is used to represent the protocol. Hidden Markov models are statistical models of sequential data like network traffic, and are an effective tool for pattern analysis. New, flexible and adaptive security schemes are needed to cope with emerging security threats. We propose a hybrid network security scheme including intrusion detection systems (IDSs) and honeypots scattered throughout the network. This combines the advantages of two security technologies. A honeypot is an activity-based network security system, which could be the logical supplement of the passive detection policies used by IDSs. This integration forces us to balance security performance versus cost by scheduling device activities for the proposed system. By formulating the scheduling problem as a decentralized partially observable Markov decision process (DEC-POMDP), decisions are made in a distributed manner at each device without requiring centralized control. When using a HMM, it is important to ensure that it accurately represents both the data used to train the model and the underlying process. Current methods assume that observations used to construct a HMM completely represent the underlying process. It is often the case that the training data size is not large enough to adequately capture all statistical dependencies in the system. It is therefore important to know the statistical significance level that the constructed model represents the underlying process, not only the training set. We present a method to determine if the observation data and constructed model fully express the underlying process with a given level of statistical significance. We apply this approach to detecting the existence of protocols tunnelled through Tor. While HMMs are a powerful tool for representing patterns allowing for uncertainties, they cannot be used for system control. The partially observable Markov decision process (POMDP) is a useful choice for controlling stochastic systems. As a combination of two Markov models, POMDPs combine the strength of HMM (capturing dynamics that depend on unobserved states) and that of Markov decision process (MDP) (taking the decision aspect into account). Decision making under uncertainty is used in many parts of business and science. We use here for security tools. We propose three approximation methods for discrete-time infinite-horizon POMDPs. One of the main contributions of our work is high-quality approximation solution for finite-space POMDPs with the average cost criterion, and their extension to DEC-POMDPs. The solution of the first algorithm is built out of the observable portion when the underlying MDP operates optimally. The other two methods presented here can be classified as the policy-based approximation schemes, in which we formulate the POMDP planning as a quadratically constrained linear program (QCLP), which defines an optimal controller of a desired size. This representation allows a wide range of powerful nonlinear programming (NLP) algorithms to be used to solve POMDPs. Simulation results for a set of benchmark problems illustrate the effectiveness of the proposed method. We show how this tool could be used to design a network security framework

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    6G White Paper on Machine Learning in Wireless Communication Networks

    Full text link
    The focus of this white paper is on machine learning (ML) in wireless communications. 6G wireless communication networks will be the backbone of the digital transformation of societies by providing ubiquitous, reliable, and near-instant wireless connectivity for humans and machines. Recent advances in ML research has led enable a wide range of novel technologies such as self-driving vehicles and voice assistants. Such innovation is possible as a result of the availability of advanced ML models, large datasets, and high computational power. On the other hand, the ever-increasing demand for connectivity will require a lot of innovation in 6G wireless networks, and ML tools will play a major role in solving problems in the wireless domain. In this paper, we provide an overview of the vision of how ML will impact the wireless communication systems. We first give an overview of the ML methods that have the highest potential to be used in wireless networks. Then, we discuss the problems that can be solved by using ML in various layers of the network such as the physical layer, medium access layer, and application layer. Zero-touch optimization of wireless networks using ML is another interesting aspect that is discussed in this paper. Finally, at the end of each section, important research questions that the section aims to answer are presented

    A Multi Agent System for Flow-Based Intrusion Detection

    Get PDF
    The detection and elimination of threats to cyber security is essential for system functionality, protection of valuable information, and preventing costly destruction of assets. This thesis presents a Mobile Multi-Agent Flow-Based IDS called MFIREv3 that provides network anomaly detection of intrusions and automated defense. This version of the MFIRE system includes the development and testing of a Multi-Objective Evolutionary Algorithm (MOEA) for feature selection that provides agents with the optimal set of features for classifying the state of the network. Feature selection provides separable data points for the selected attacks: Worm, Distributed Denial of Service, Man-in-the-Middle, Scan, and Trojan. This investigation develops three techniques of self-organization for multiple distributed agents in an intrusion detection system: Reputation, Stochastic, and Maximum Cover. These three movement models are tested for effectiveness in locating good agent vantage points within the network to classify the state of the network. MFIREv3 also introduces the design of defensive measures to limit the effects of network attacks. Defensive measures included in this research are rate-limiting and elimination of infected nodes. The results of this research provide an optimistic outlook for flow-based multi-agent systems for cyber security. The impact of this research illustrates how feature selection in cooperation with movement models for multi agent systems provides excellent attack detection and classification
    corecore