252 research outputs found

    GIMO : A multi-objective anytime rule mining system to ease iterative feedback from domain experts

    Get PDF
    Data extracted from software repositories is used intensively in Software Engineering research, for example, to predict defects in source code. In our research in this area, with data from open source projects as well as an industrial partner, we noticed several shortcomings of conventional data mining approaches for classification problems: (1) Domain experts’ acceptance is of critical importance, and domain experts can provide valuable input, but it is hard to use this feedback. (2) Evaluating the quality of the model is not a matter of calculating AUC or accuracy. Instead, there are multiple objectives of varying importance with hard to quantify trade-offs. Furthermore, the performance of the model cannot be evaluated on a per-instance level in our case, because it shares aspects with the set cover problem. To overcome these problems, we take a holistic approach and develop a rule mining system that simplifies iterative feedback from domain experts and can incorporate the domain-specific evaluation needs. A central part of the system is a novel multi-objective anytime rule mining algorithm. The algorithm is based on the GRASP-PR meta-heuristic but extends it with ideas from several other approaches. We successfully applied the system in the industrial context. In the current article, we focus on the description of the algorithm and the concepts of the system. We make an implementation of the system available. © 2020 The Author

    Um GRASP Híbrido com Reconexão por Caminhos e Mineração de Dados

    Get PDF
    A exploração de metaheurísticas híbridas – combinação de metaheurísticas com conceitos e processos de outras áreas – vem sendo uma importante linha de pesquisa em otimização combinatória. Neste trabalho, propõe-se uma versão híbrida da metaheurística GRASP que incorpora a técnica de reconexão por caminhos e um módulo de mineração de dados. Experimentos computacionais mostraram que a combinação da técnica de reconexão por caminhos com mineração de dados contribuiu para que o GRASP encontrasse soluções melhores em um menor tempo computacional. Outra contribuição deste trabalho é a aplicação dessa proposta híbrida ao problema de síntese de redes a 2-caminhos, que proporcionou encontrar melhores soluções para esse problema

    Meta-RaPS Hybridization with Machine Learning Algorithms

    Get PDF
    This dissertation focuses on advancing the Metaheuristic for Randomized Priority Search algorithm, known as Meta-RaPS, by integrating it with machine learning algorithms. Introducing a new metaheuristic algorithm starts with demonstrating its performance. This is accomplished by using the new algorithm to solve various combinatorial optimization problems in their basic form. The next stage focuses on advancing the new algorithm by strengthening its relatively weaker characteristics. In the third traditional stage, the algorithms are exercised in solving more complex optimization problems. In the case of effective algorithms, the second and third stages can occur in parallel as researchers are eager to employ good algorithms to solve complex problems. The third stage can inadvertently strengthen the original algorithm. The simplicity and effectiveness Meta-RaPS enjoys places it in both second and third research stages concurrently. This dissertation explores strengthening Meta-RaPS by incorporating memory and learning features. The major conceptual frameworks that guided this work are the Adaptive Memory Programming framework (or AMP) and the metaheuristic hybridization taxonomy. The concepts from both frameworks are followed when identifying useful information that Meta-RaPS can collect during execution. Hybridizing Meta-RaPS with machine learning algorithms helped in transforming the collected information into knowledge. The learning concepts selected are supervised and unsupervised learning. The algorithms selected to achieve both types of learning are the Inductive Decision Tree (supervised learning) and Association Rules (unsupervised learning). The objective behind hybridizing Meta-RaPS with an Inductive Decision Tree algorithm is to perform online control for Meta-RaPS\u27 parameters. This Inductive Decision Tree algorithm is used to find favorable parameter values using knowledge gained from previous Meta-RaPS iterations. The values selected are used in future Meta-RaPS iterations. The objective behind hybridizing Meta-RaPS with an Association Rules algorithm is to identify patterns associated with good solutions. These patterns are considered knowledge and are inherited as starting points for in future Meta-RaPS iteration. The performance of the hybrid Meta-RaPS algorithms is demonstrated by solving the capacitated Vehicle Routing Problem with and without time windows

    Hybrid Statistical Data Mining Framework for Multi-Commodity Fixed Charge Network Flow Problem

    Get PDF
    This paper presents a new approach to analyze the network structure in multi-commodity fixed charge network flow problems (MCFCNF). This methodology uses historical data produced from repeatedly solving the traditional MCFCNF mathematical model as input for the machine-learning framework. Further, we reshape the problem as a binary classification problem and employ machine-learning algorithms to predict network structure. This predicted network structure is further used as an initial solution for our mathematical model. The quality of the initial solution generated is judged on the basis of predictive accuracy, feasibility and reduction in solving time

    Logic learning and optimized drawing: two hard combinatorial problems

    Get PDF
    Nowadays, information extraction from large datasets is a recurring operation in countless fields of applications. The purpose leading this thesis is to ideally follow the data flow along its journey, describing some hard combinatorial problems that arise from two key processes, one consecutive to the other: information extraction and representation. The approaches here considered will focus mainly on metaheuristic algorithms, to address the need for fast and effective optimization methods. The problems studied include data extraction instances, as Supervised Learning in Logic Domains and the Max Cut-Clique Problem, as well as two different Graph Drawing Problems. Moreover, stemming from these main topics, other additional themes will be discussed, namely two different approaches to handle Information Variability in Combinatorial Optimization Problems (COPs), and Topology Optimization of lightweight concrete structures
    corecore