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Backbone Guided Local Search for the 
Weighted Maximum Satisfiability Problem 

He Jiang and Jifeng Xuan 
School of Software, Dalian University of Technology 

P.R. China 

1. Introduction  

The Satisfiability problem (SAT) is a famous NP-Complete problem, which consists of an 
assignment of Boolean variables (true or false) and some clauses formed of these variables. 
A clause is a disjunction of some Boolean literals and can be true if and only if any of them is 
true. A SAT instance is satisfied if and only if all the clauses are simultaneously true. As a 
generalization of SAT, the Maximum Satisfiability problem (MAX-SAT) aims to maximize 
the number of satisfied clauses. When every clause is associated with some weight, the 
MAX-SAT turns to the weighted Maximum Satisfiability problem (weighted MAX-SAT) 
with numerous applications arising in artificial intelligence, such as scheduling, data 
mining, pattern recognition, and automatic reasoning. According to the computational 
complexity theory, there’s no polynomial time algorithm for solving weighted MAX-SAT 
unless P NP= . Hence, many heuristic algorithms capable of finding near optimal solutions in 

reasonable time have been proposed for weighted MAX-SAT, including GSAT, GLS, Taboo 
Scatter Search, ACO, and GRASP/GRASP with path-relinking.  
As an efficient tool for heuristic design, the backbone has attracted great attention from the 
society of artificial intelligence in recent years. The backbone is defined as the common parts 
of all optimal solutions for an instance. Since it’s usually intractable to obtain the exact 
backbone, many approximate backbone guided heuristics have been developed for NP-
Complete problems, including 3-SAT, TSP, QAP, et al. For SAT or MAX-SAT, some 
character and algorithms of backbone are in research. And a BGWalksat (backbone guided 
local search algorithm with Walksat operator) has been developed for MAX-SAT and 
achieves better performance than existing heuristics. However, as to our knowledge, there is 
no theoretical result or backbone guided heuristics reported in the literature for weighted 
MAX-SAT.  
In this chapter we investigated the computational complexity of the backbone for weighted 

MAX-SAT and developed a backbone guided local search (BGLS) algorithm. Firstly, we 

proved that there’s no polynomial time algorithm to retrieve the full backbone under the 

assumption that P NP≠ . In the proof, we mapped any weighted MAX-SAT instance to a 

biased weighted MAX-SAT instance with a unique optimal solution by slightly perturbing, 

which is also optimal to the original instance. Based on this proof, we indicated that it’s also 

intractable to retrieve a fixed fraction of the backbone, by reducing any weighted MAX-SAT 

instance to a series of weighted MAX-SAT instances with smaller scale. Secondly, we O
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developed a backbone guided local search algorithm with pseudo-backbone frequencies. It 

consists of two phases: the sampling phase records local optima to compute pseudo-

backbone frequencies and the backbone phase uses such information to guide the following 

local search. Experimental results demonstrated that BGLS obtained better solutions than 

GRASP/ GRASP with path-relinking in far less time. 

2. Preliminaries 

In this section, we shall give some definitions and related properties. 

Definition 1. Given a set of Boolean variables 
1 2

{ , . , }
n

V x x x= A , a propositional formula φ  is 

a conjunction on a set of m  clauses 
1 2

{ , . , }
m

C C C C= A . Each clause 
i
C  is a disjunction of 

i
C  

literals, where each literal 
ij
l  is either a variable or its negation. A clause is satisfied if at least 

one of its literals evaluates to true, and the propositional formula φ  is said to be satisfied if 

all of its clauses are satisfied. The satisfiability problem (SAT) aims to find an assignment of 

values to the variables such that a given propositional formula φ  is satisfied. Formally, a 

SAT instance on the set of Boolean variables V  and the set of clauses C  can be denoted as 

( , )SAT V C . 

Definition 2. Given a set of Boolean variables 
1 2

{ , . , }
n

V x x x= A , a propositional weighted 

formula φ  is a conjunction on a set of m  weighted clauses 
1 2

{ , . , }
m

C C C C= A . Each 

weighted clause is associated with a positive weight ( )
i

w C# . The weighted maximum 

satisfiability problem (weighted MAX-SAT) consists of finding an assignment of values to 

the variables such that the sum of the weights of the satisfied clauses is maximized. Similar 

to the SAT, a weighted MAX-SAT instance can be denoted as ( , )wMAX SAT V C−  and a 

solution (assignment) can be denoted as 

 
{  is assigned true} {  is assigned false}i i i is x x x x= ¬∪

 

 with cost function ( , , ) ( )[  is satified by s]
i

i iC C
w V C s w C C

∈
= ∑ # #

# # # , where [ ]• =1 (0) for •  being true 

(false). 

Without loss of generality, we shall assume in the following part of this paper, that the 

weight ( )
i

w C#  is a positive integer for each clause i
C# .  

Definition 3. Given a weighted MAX-SAT instance ( , )wMAX SAT V C− , let * * * *

1 2
{ , ,..., }qs s sΠ =  

be the set of all optimal solutions to it, where *q = Π  represents the number of optimal 

solutions. Backbone in weighted MAX-SAT instance ( , )wMAX SAT V C−  is defined as 
* * *

1 2
( , )

q
bone V C s s s=# ∩ ∩A∩ . 

The backbone ( , )bone V C#  is essential for heuristic algorithms design, since a heuristic cannot 

obtain an optimal solution to a weighted MAX-SAT instance unless it retrieves the full 

backbone. In contrast, if the backbone ( , )bone V C#  is retrieved, the search space could then be 

effectively reduced by assigning literals in the backbone to true.  
In Definition 4, we shall introduce the definition of the biased weighted MAX-SAT instance, 
which will be used in the following proof. 

Definition 4. Given a weighted MAX-SAT instance ( , )wMAX SAT V C− # , the biased weighted 

MAX-SAT instance is defined as ( , )wMAX SAT V C− , where { , }
i i i

C C x x x V= ¬ ∈# ∪  and the 

weight associated with every clause iC C∈  is defined as follows. 
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1. ( ) ( )
i i

w C w C= , if  
i
C C∈ #  and { , }

i j j j
C x x x V∉ ¬ ∈ ; 

2. 2( ) ( ) 1 2 j

i i
w C w C= + , if  ,

i j j
C x C x V= ∈ ∈# ; 

3. 2 1( ) ( ) 1 2 j

i i
w C w C += + , if  ,

i j j
C x C x V= ¬ ∈ ∈# ; 

4. 2( ) 1 2 j

i
w C = , if  ,

i j j
C x C x V= ∉ ∈# ; 

5. 2 1( ) 1 2 j

i
w C += , if  ,

i j j
C x C x V= ¬ ∉ ∈# . 

Given a weighted MAX-SAT instance, it is easy to verify that the following property holds:  
2 3 2 1 2 1( ) ( ) 1 2 1 2 1 2 ( ) 1 2 1 2

i i i

n n

i i iC C C C C C
w C w C w C+ +

∈ ∈ ∈
∑ = ∑ + + + + = ∑ + −# # # #

# #A . 

3. Computational complexity for backbone 

3.1 Weighted MAX-SAT and biased weighted MAX-SAT 

In this section, we shall investigate the relationship between the solution of a weighted 
MAX-SAT instance and that of the biased weighted MAX-SAT instance in Lemma 1 and 
Lemma 2. 

Lemma 1. Given the set of Boolean variables V  and the set of weighted clauses C# , there 

exists a unique optimal solution to the biased weighted MAX-SAT instance 

( , )wMAX SAT V C− . 

Proof. Given any two distinct solutions 
1
s , 

2
s  to the biased weighted MAX-SAT instance 

( , )wMAX SAT V C− , we will show that 
1 2

( , , ) ( , , )w V C s w V C s≠ . 

Firstly, we construct a weighted MAX-SAT instance ( ,{ , })
i i i

wMAX SAT V x x x V− ¬ ∈  where 
2 2 1( ) 1 2 , ( ) 1 2i i

i i
w x w x += ¬ = for 

i
x V∈ . We have that  

1 1 1
( , , ) ( , , ) ( ,{ , }, )

i i i
wV C s wV C s wV x x x V s= + ¬ ∈# . 

Since the weight ( )
i

w C#  is a positive integer for each clause 
i
C C∈# # , thus 

1
( , , )w V C s#  must be 

the integer part of 
1

( , , )w V C s  and  
1

( ,{ , }, )
i i i

w V x x x V s¬ ∈  must be the fractional part 

of
1

( , , )w V C s . Similarly, 
2

( ,{ , }, )
i i i

w V x x x V s¬ ∈  must be also the fractional part of 
2

( , , )w V C s . 

By assumption that 
1 2
s s≠ , there must exist a variable 

j
x V∈  such that 

1 2j
x s s∈ ∪  and 

1 2j
x s s∉ ∩ . In the following proof, we only consider the case that 

1j
x s∈ , 

2j
x s¬ ∈ . For the 

case that 
1j

x s¬ ∈  and 
2j

x s∈ , it can be proved in a similar way. 

Obviously, the clause 
j
x  can be satisfied by 

1
s , while it cannot be satisfied by 

2
s . When 

viewed as binary encoded strings, the 2 j th bit of the fractional part of 
1

( , , )w V C s  will be 1, 

however the same bit of 
2

( , , )w V C s  will be 0. Hence, we have that 
1 2

( , , ) ( , , )w V C s w V C s≠ . 
Thus, this lemma is proved.                                                                                                               � 

Lemma 2. Given the set of Boolean variables V and the set of weighted clauses C# , if s∗  is 

the unique optimal solution to the biased weighted MAX-SAT instance ( , )wMAX SAT V C− , 

then s∗  is also optimal to weighted MAX-SAT instance ( , )wMAX SAT V C− . 

Proof. Otherwise, there must exist a solution s  to the ( , )wMAX SAT V C− #  such that 
*( , , ) ( , , )w V C s w V C s># # . By assumption that the weight ( )

i
w C#  is a positive integer for each 

clause 
i
C C∈# # , thus we have *( , , ) ( , , ) 1w V C s w V C s≥ +# # . Since 

( , , ) ( , , ) ( ,{ , }, )
i i i

wV C s wV C s wV x x x V s= + ¬ ∈# , we have that 2 1( , , ) ( , , ) 1 2 1 2 nwV C s wV C s +< + −# . 

Similarly, * * 2 1( , , ) ( , , ) 1 2 1 2 nwV C s wV C s +< + −# . It implies that 
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* *( , , ) ( , , ) ( , , ) 1 ( , , )wV C s wV C s wV C s wV C s> ≥ + ># # , which contradicts with the assumption that s∗  is 

the unique optimal solution to the ( , )wMAX SAT V C− . Thus, this lemma is proved.              �  

3.2 Computational complexity for retrieving backbone 

In Theorem 1, we shall show the intractability for retrieving the full backbone in weighted 
MAX-SAT. In addition, we shall present a stronger analytical result in Theorem 2 that it’s 
NP-hard to retrieve a fixed fraction of the backbone. 
Theorem 1. There exists no polynomial time algorithm to retrieve the backbone in weighted 

MAX-SAT unless P NP= . 

Proof. Otherwise, there must exist an algorithm denoted by Λ  which is able to retrieve the 
backbone in weighted MAX-SAT in polynomial time. 

Given any arbitrary weighted MAX-SAT instance ( , )wMAX SAT V C− , the biased weighted 

MAX-SAT instance ( , )wMAX SAT V C−  can be constructed by an algorithm denoted by Γ  in 

( )nΟ  time.  

Since the ( , )wMAX SAT V C−  is also a weighted MAX-SAT instance, its backbone 
( , )bone V C

 can be computed by Λ  in polynomial time (denoted by 
)(•Ο ). By Lemma 1, 

the backbone is the unique optimal solution to the ( , )wMAX SAT V C− . By Lemm2, the 

( , )bone V C  is an optimal solution to the ( , )wMAX SAT V C− #  as well. 

Hence, any weighted MAX-SAT instance can be exactly solved in ( ) ( )nΟ +Ο •  time by Γ  

and Λ . Obviously, such conclusion contradicts with the result that weighted MAX-SAT is 

NP-hard. Thus, this theorem is proved.                                                                                           � 

Theorem 2. There exists no polynomial time algorithm to retrieve a fixed fraction of the 

backbone in weighted MAX-SAT unless P NP= . 

Proof. Otherwise, given any weighted MAX-SAT instance ( , )wMAX SAT V C− # , we can 

always construct a biased weighted MAX-SAT instance ( , )wMAX SAT V C−  according to 

Definition 4. As proven in Theorem 1, the backbone ( , )bone V C  is an optimal solution to the 

( , )wMAX SAT V C− # . 

If there exists a polynomial time algorithm Λ  to retrieve a fixed fraction of the backbone, we 

can acquire at least one literal `  in the ( , )bone V C . In the following proof, we only consider 

the case that 
j
x=` (

j
x V∈ ). For the case that 

j
x= ¬` (

j
x V∈ ), it can be proved in a similar 

way. 

Let Ĉ  be the set of those clauses containing 
j
x¬ , let Ĉ′  be the set of the remaining parts of 

the clauses from Ĉ  after deleting 
j
x¬ . Since 

j
x=` , we can construct a new smaller 

weighted MAX-SAT instance ( \ { }, )
j

wMAX SAT V x C′− # , where 
ˆ{ ,  contains no   }

i i i j j
C C C C C x or x C′ ′= ∈ ¬# # # # # ∪ .  

By repeating such procedures, an optimal solution to ( , )wMAX SAT V C− #  can be finally 

obtained literal by literal in polynomial time, a contradiction. Hence, this theorem is proven.  

             � 

4. Backbone guided local search 

4.1 Framework of backbone guided local search  

In this section, we shall present the framework of backbone guided local search (BGLS) for 
weighted MAX-SAT. In BGSL, the local search process is guided by the backbone frequency, 
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a group of probabilities representing the times of solution elements appearing in global 
optima. Since it’s NP-hard to retrieve the exact backbone, we shall use the pseudo-backbone 
frequency instead, which can be computed by the approximate backbone (the common parts 
of local optima).    
The framework of BGLS consists of two phases. The first phase (sampling phase) collects the 
pseudo-backbone frequencies with traditional local search and the second one (backbone 
phase) obtains a solution with a backbone guided local search. Every run of local search is 
called a try. Each of two phases uses an input parameter to control the maximum tries of 
local search (see Algorithm 1).  
 

 
 

Both of the two phases use the same local search algorithm. However, in the sampling 
phase, a particular step is used to sample backbone information from local optima. And the 
backbone phase uses this sampling to guide the following local search. Although many local 
search algorithms can be used as the algorithm H  in Algorithm 1, we proposed an 
improved Walksat in practice which is originally designed for MAX-SAT. Thus, some 
necessary modifications should be conducted for adapting it to weighted MAX-SAT. 

4.2 Walksat for weighted MAX-SAT 

In Algorithm 2, we shall present the Walksat for weighted MAX-SAT. In contrast to Walksat 
for MAX-SAT, some greedy strategies have been added to Algorithm 2 to fit weighted 
MAX-SAT. A try of Walksat needs two parameters. One is maximum number of flips that 

Algorithm 1: BGLS for weighted MAX-SAT 

Input: weighted MAX-SAT instance ( , )wMAX SAT V C− # , 
1
n , 

2
n , a 

local search algorithm H  

Output: solution *s  

Begin 

  //sampling phase 

1. *w =−∞  

2. for 1i=  to 
1
n  do  

2.1 obtain a solution 
i
s  with H ; 

       2.2 sample backbone from 
i
s ; 

2.3 if 
~

*( , , )
i

w V C s w>  then 
~

* *( , , ),
i i

w w V C s s s= = ; 

//backbone phase 

3. for 1i =  to 
2
n  do  

  3.1 obtain a solution 
i
s  with backbone guided H ; 

  3.2 if 
~

*( , , )
i

w V C s w>  then 
~

* *( , , ),
i i

w w V C s s s= = ; 

4. return *s ; 

End 
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change the value of variables from true to false or inversely. The process of Walksat seeks 
repeatedly for a variable and flips it. When a variable is flipped, its break-count is defined as 
the number of satisfied clauses becoming unsatisfied. Obviously, the value of break-count 
will be nonnegative. And a variable with a zero break-count means the solution will be no 
worse than that before flipping. The other parameter is the probability for noise pick, which 
is used for determining when to use noise pick.      
The Walksat for weighted MAX-SAT works as follows. After an initial assignment is 
generated by random values, Walksat picks a clause (clause pick) from one of the 
unsatisfied clauses with maximum weight randomly. Then the algorithm flips one of 
variables of this clause under the following rules: if there’re more than one variable of zero 
break-count, then flip one of them randomly, otherwise flip any of variables randomly with 
the probability parameter (noise pick). For the case that the probability is not satisfied, pick 
one variable with least break-count randomly (greedy pick). Because the diversity of 
solutions depends on the parameter for noise pick and the static setting of it cannot react to 
the solving process. So we choose a dynamic noise setting strategy (step 2.6) to set the 
parameter for noise pick: if the solution quality decreases, the noise parameter p will 

increase to (1 )p p ϕ+ − ⋅ , otherwise p will decrease to / 2p p ϕ− ⋅ , where ϕ  is a predefined 

constant number.  
In summary, there’re five random actions (in step 1, 2.1, 2.3, respectively) during the whole 
process of the Walksat for weighted MAX-SAT. And we’ll modify them in the backbone 
phase of BGLS (see Section 4.4).  
 

 

Algorithm 2: Walksat for weighted MAX-SAT 

Input: weighted MAX-SAT instance ( , )wMAX SAT V C− # , num , a probability for noise pick p  

Output: solution s  

Begin 

1. let s  be a random assignment of variables of V , 
~

( , , )w w V C s′ = ; 

2. for 1i =  to 1num −  do   

  2.1 pick c , as one of the unsatisfied clauses with maximal weight, randomly;  

  2.2 compute the break-count of all variables in c ; 

  2.3 if a zero break-count exists 

then pick one variable of zero break-count in c , randomly; 

        else with a probability p , pick one of all variables in c , randomly; 

                and with a probability 1 p− , pick one variable of least break-count ones in c , 

randomly; 

2.4 flip this variable and obtain solution s′ ; 

   2.5 if 
~

( , , )w V C s w′ ′>  then 
~

' ( , , ),w w V C s s s′ ′= = ; 

2.6 adjust the value of p ; 

3. return s ; 
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4.3 Pseudo-backbone frequencies sampling 

Given a particular problem instance, the exact difference between local optima and global 
optima cannot be exactly predicted unless those solutions are found, due to the diversity of 
instances. In this subsection, we analyze some typical instances to investigate the difference. 
The distance between local optima and global optima is defined as the number of different 
value of variables. For comparison among different instances, this distance is normalized by 
the total number of variables. 
The sampling algorithm for local optima is Walksat for weighted MAX-SAT, where 

maximum of flips num  is set to be 200 and the noise probability p  is set to be 0. For every 

instance, the sampling algorithm was run for 50 times and 50 local optima were generated. 

Fig. 1 shows the distances between local optima and global optima for four instances. The 

weight of solutions is plotted against the normalized distances to global optima. From Fig. 1, 

we can draw the conclusion that all the normalized distances between local optima and the 

global optimum are between 0.4 and 0.8. It implies that local optima and global optima have 

common values for most of variables. Thus, some approximate backbone can be retrieved to 

guide local search to find better solutions. 
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c. jnh209 d. jnh210 

Fig. 1. Relationship between local optima and global optima for 4 typical instances 

Furthermore, we recorded the number of every variable value in local optima and a 
probability of true or false being chosen for every variable can be computed. For every 
instance, we tested whether the variables in global optima tend to take the value with higher 
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probability. And we found that more than 70% (74% for jnh1, 70% for jnh7, 73% for jnh209, 
and 73% for jnh210, respectively) of all variables in global optima take the values (true or 
false) with higher probabilities appearing in the local optima. It implies that a priority set of 
values can be made of those values with higher probability. 
To guide the Walksat for weighted MAX-SAT, two forms of information should be recorded 
to construct the pseudo-backbone frequencies: the frequencies of variables and the 
frequencies of clauses. After obtaining any local optimum, the pseudo-backbone frequencies 
are updated. On one hand, the frequencies of variables record the times of the variable value 
appearing in local optima. On the other hand, the frequencies of clauses record the times of 
clauses being satisfied. The pseudo-backbone frequencies will be computed in the sampling 
phase (see Step 2.2 of Algorithm 1).   

4.4  Backbone guided walksat for weighted MAX-SAT 

As discussed in Section 3.2, there’re five random actions in the Walksat. Instead of the 
traditional random choosing, we shall determine the variable values by the pseudo-
backbone frequencies (see Algorithm 3).  
 

 
 

The first random action is an initial assignment generation in Step 1 of Algorithm 3. An 
initial value of a variable can be guided by the frequencies of the values. The second random 
is in Step 2.1. In pseudo-backbone, the frequencies of clauses satisfied in local optima have 
been recorded. According to this, the probability of each clause being satisfied can be 
computed to direct which clause should be firstly satisfied. And then Step 2.3 includes three 

Algorithm 3: Backbone guided Walksat for weighted MAX-SAT 

Input: weighted MAX-SAT instance ( , )wMAX SAT V C− # , num , a probability for noise pick 

p , pseudo-backbone frequencies F  

Output: solution s  

Begin 

1. let s  be a random assignment of variables of V , guided by F , 
~

( , , )w w V C s′ = ; 

2. for 1i=  to 1num −  do 

 2.1 pick c  from s as one of the unsatisfied clauses with maximum weight, guided 

by F ;  
 2.2 compute the break-count of all variables in c ; 

 2.3 if a zero break-count exists 

 then pick one variable of zero break-count ones in c randomly, guided by F ; 

        else with a probability p , pick one of all variables in c randomly, guided by 

F ; and with a probability 1 p− , pick one variable of least break-count ones in c , 

guided by F ; 
  2.4 flip this variable and obtain solution s′ ;      

  2.5 if 
~

( , , )w V C s w′ ′>  then 
~

( , , ),w w V C s s s′ ′ ′= = ; 

2.6 adjust the value of p ; 

3. return s ; 

End 
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remaining random choices. These three choices are similarly guided by the same 
approximate backbone as the first random and the probabilities will be computed under the 
same method as the second random.  

5. Experimental results 

In this section, we presented the experimental results for BGLS over weighted MAX-SAT 
benchmark. All the codes are implemented and compiled in C++ under a Pentium IV D 
2.8GHz with 1GB memory. In the algorithm 1, 2 and 3, we have indicated 4 input 
parameters (the tries and maximum flips of two phases, respectively). In this experiment, 
we use identical parameters for both phases with 50 tries and 400 flips. 
Since the best heuristics (GRASP/GRASP with path-relinking) for weighted MAX-SAT  are 
tested on distinct experimental platforms, we conducted a system performance conversion 
according to SPEC. The system of GRASP with path-relinking is more than 15.69 times faster 
than ours (see Appendix) and only some of the instances’ running time is available. Since 
there’s no platform of R4400 in SPEC, we give no running time of GRASP on PD2.8G. 
The problem instances of weighted MAX-SAT in the experiments include 44 instances, each 

of which has 100 variables and 800, 850 or 900 clauses, respectively. Tab. 1 shows the results 

of our experiments and the comparison with other algorithms. The column “Instance” 

indicates the input instances of benchmark and the column “Optima” shows the weight of 

global optima of instances. The following three columns “GRASP”, “GRASP with path-

relinking” and “BGLS” show the performance and results of the three algorithms, 

respectively. Each of them has sub-columns “weight” (the maximum weight obtained) and 

“time” (the time of running) for reporting the details. And the last column “Improvement” 

means the improvement of BGLS over GRASP, which is computed through dividing 

difference between the weight of BGLS and GRASP by the weight of global optima. A 

positive value means BGLS can obtain a better solution than GRASP, and vice verse.  

From Tab.2, BGLS is more efficient than GRASP for nearly all the instances except instance 
“jnh208”. The average of improvement is 0.0369%. For 19 instances out of 44, BGLS can 
always get global optima, however GRASP can get global optima for only 4 instances. And 
BGLS uses far less time than GRASP with path-relinking. 

6. Conclusions 

In this chapter, analytical results on the backbone in weighted MAX-SAT were presented in 

this paper. We showed that it is intractable to retrieve the backbone in weighted MAX-SAT 

with any performance guarantee under the assumption that P NP≠ . And a backbone 

guided local search algorithm was proposed for weighted MAX-SAT. 

Results of this paper imply a new way to incorporate the backbone in heuristics. The 

approximate backbone used to guide the flipping of literals in those local search based 

heuristics. However, a multilevel strategy was introduced in the proof of Theorem 2. 

According to the proof, a new smaller weighted MAX-SAT instance could be constructed 

after a literal being fixed. By such a way, we can gradually reduce the original weighted 

MAX-SAT instance to a series of weighted MAX-SAT instances with less variables and 

clauses. Conversely, the solution to the original instance could be reconstructed with 

solutions of those reduced weighted MAX-SAT instances and fixed literals. 
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Instance Optima GRASP GRASP with path-relinking BGLS Improvement 

 weight weight time (seconds) weight time (seconds) weight time (seconds)  

   R4400 PD2.8G  Altix3700 PD2.8G  PD2.8G  

jnh1 420925 420737 192.1 - 420739 350 5491 420925 13 0.0447% 
jnh4 420830 420615 467.9 - - - - 420813 27 0.0470% 
jnh5 420742 420488 30.9 - - - - 420679 27 0.0454% 
jnh6 420826 420816 504.2 - - - - 420826 26 0.0024% 
jnh7 420925 420925 188.1 - - - - 420925 5 0.0000% 
jnh8 420463 419885 546.4 - - - - 420138 27 0.0602% 
jnh9 420592 420078 41.2 - - - - 420289 26 0.0502% 
jnh10 420840 420565 591.1 - 420357 300 4707 420828 27 0.0625% 
jnh11 420753 420642 757.4 - 420516 - - 420672 26 0.0071% 
jnh12 420925 420737 679.2 - 420871 - - 420925 14 0.0447% 
jnh13 420816 420533 12.9 - - - - 420816 26 0.0673% 
jnh14 420824 420510 197.7 - - - - 420824 26 0.0746% 
jnh15 420719 420360 424.6 - - - - 420719 26 0.0853% 
jnh16 420919 420851 392.8 - - - - 420919 26 0.0162% 
jnh17 420925 420807 448.0 - - - - 420925 2 0.0280% 
jnh18 420795 420372 142.9 - - - - 420525 26 0.0364% 
jnh19 420759 420323 611.3 - - - - 420584 26 0.0620% 

jnh201 394238 394238 604.3 - 394222 400 6276 394238 0 0.0000% 
jnh202 394170 393983 348.7 - 393870 - - 394029 25 0.0117% 
jnh203 394199 393889 265.3 - - - - 394135 25 0.0624% 
jnh205 394238 394224 227.6 - - - - 394238 4 0.0036% 
jnh207 394238 394101 460.8 - - - - 394238 4 0.0348% 
jnh208 394159 393987 335.1 - - - - 393819 25 -0.0426% 
jnh209 394238 394031 170.1 - - - - 394238 7 0.0525% 
jnh210 394238 394238 130.7 - - - - 394238 4 0.0000% 
jnh211 393979 393739 270.0 - - - - 393979 24 0.0609% 
jnh212 394238 394043 244.1 - 394006 - - 394227 25 0.0467% 
jnh214 394163 393701 486.4 - - - - 394124 24 0.1073% 
jnh215 394150 393858 601.8 - - - - 394066 24 0.0528% 
jnh216 394226 394029 441.1 - - - - 394176 25 0.0373% 
jnh217 394238 394232 125.4 - - - - 394238 0 0.0015% 
jnh218 394238 394099 155.7 - - - - 394238 1 0.0353% 
jnh219 394156 393720 502.8 - - - - 393993 25 0.0693% 
jnh220 394238 394053 513.5 - - - - 394205 24 0.0386% 
jnh301 444854 444670 522.1 - - - - 444842 31 0.0387% 
jnh302 444459 444248 493.9 - - - - 444459 28 0.0475% 
jnh303 444503 444244 416.1 - - - - 444296 28 0.0117% 
jnh304 444533 444214 96.7 - 444125 450 7060 444318 27 0.0234% 
jnh305 444112 443503 424.9 - 443815 3500 54915 443533 29 0.0068% 
jnh306 444838 444658 567.8 - 444692 2000 31380 444838 28 0.0405% 
jnh307 444314 444159 353.5 - - - - 444314 27 0.0349% 
jnh308 444724 444222 50.2 - - - - 444568 28 0.0778% 
jnh309 444578 444349 86.8 - - - - 444488 28 0.0313% 
jnh310 444391 444282 44.7 - - - - 444307 28 0.0056% 

Table 1. Experimental Results for Instances 

Many local search operators can apply on the BGLS for adapting with different problems. 
For weighted MAX-SAT, we used an improved Walksat to obtain local optima. Related to 
the common local search, BGLS heavily depends on the backbone sampled to simplify the 
scale of problems and to intensify local search. The process of retrieving backbone is to 
collect the feature from local optima. A note to design the similar algorithm is that a 
backbone guided algorithm can work well if and only if the local optima and the global 
optimum have the certain common parts.  
In the future work, some interesting things remain to be investigated. Firstly, it needs 
further work on computational complexity for retrieving the backbone in the SAT. Although 
weighted MAX-SAT is a generalization of the SAT, it is not straightforward to prove the NP-
hardness of retrieving the backbone in the SAT. The difficulty lies on the fact that the SAT 
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isn’t an optimization problem like weighted MAX-SAT but a typical combinatorial problem 
instead. For weighted MAX-SAT, we can always construct a weighted MAX-SAT instance 
with a unique optimal solution (i.e., the backbone) by slightly perturbing. However, such a 
method could not be directly applied to the SAT. Secondly, the ways for approximating the 
backbone are to be further explored. The backbone was approximated by the common parts 
of local optimal solutions. However, we argue that there may exist better ways for 
approximating the backbone in weighted MAX-SAT. A good example of approximating the 
backbone by novel ways can be found in the traveling salesman problem (TSP). They 
proposed four strategies for approximating the backbone other than by the common parts of 
local optimal solutions: Minimum Spanning Tree, Nearest Neighbor, Lighter Than Median, 
and Close Pairs. By those new strategies, they claimed that very large TSP instances can be 
tackled with current state-of-the-art evolutionary local search heuristics. Inspired by their 
work, we shall approximate the backbone in weighted MAX-SAT in the future, by some 
similar methods which are generally exploited by exact algorithms. 

Appendix 

According to Tab. 2, the performance conversion from SPEC shows as follows: SGI Altix 
3700: Intel 865P = 510/32.5 = 15.6923 > 15.69. 
 

 
SGI Altix 3700 Bx2  

(1600 MHz 6M L3 Itaninum 2) 
Intel 865P  

(2.8 GHz Pentium D) 

CINT 2000 Rates 510 32.5 

Table 2. Benchmark from SPEC 
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