1,421 research outputs found

    HZSM-5/SAPO-34 based catalysts for the transformation of dimethyl ether into olefins

    Get PDF
    [EN] The catalytic transformation of dimethyl ether with HZSM-5/SAPO-34 based catalysts has been studied. The process aims to selectively produce light olefins and propylene in particular, attending to their higher market demand, while using a fixed bed reactor and a microporous acid HZSM-5 zeolite, SAPO-34 catalyst and a composite catalyst obtained by physical blending of the previous acid phases. This Bachelor Thesis focuses on exploring the effect of process conditions (including the catalyst) on the reaction indexes (conversion, yield and selectivity). Besides, it will open new research frontiers for the student in terms of catalyst synthesis and characterization, laboratory methods and spectroscopy, among others

    Best Available Techniques (BAT) Reference Document for the Production of Large Volume Organic Chemicals. Industrial Emissions Directive 2010/75/EU (Integrated Pollution Prevention and Control)

    Get PDF
    The Best Available Techniques (BAT) Reference Document (BREF) for the Production of Large Volume Organic Chemicals is part of series of documents presenting the results of an exchange of information between EU Member States, the industries concerned, non-governmental organisations promoting environmental protection, and the Commission, to draw up, review and – where necessary – update BAT reference documents as required by Article 13(1) of Directive 2010/78/EU on Industrial Emissions (the Directive). This document is published by the European Commission pursuant to Article 13(6) of the Directive. The BREF for the production of Large Volume Organic Chemicals concerns the production of the following organic chemicals, as specified in Section 4.1 of Annex I to Directive 2010/75/EU: a. simple hydrocarbons (linear or cyclic, saturated or unsaturated, aliphatic or aromatic); b. oxygen-containing hydrocarbons such as alcohols, aldehydes, ketones, carboxylic acids, esters and mixtures of esters, acetates, ethers, peroxides and epoxy resins; c. sulphurous hydrocarbons; d. nitrogenous hydrocarbons such as amines, amides, nitrous compounds, nitro compounds or nitrate compounds, nitriles, cyanates, isocyanates; e. phosphorus-containing hydrocarbons; f. halogenic hydrocarbons; g. organometallic compounds; k. surface-active agents and surfactants. This document also covers the production of hydrogen peroxide as specified in Section 4.2 (e) of Annex I to Directive 2010/75/EU; and the combustion of fuels in process furnaces/heaters, where this is part of the abovementioned activities. The production of the aforementioned chemicals is covered by this document when it is done in continuous processes where the total production capacity of those chemicals exceeds 20 kt/yr. While the main aim of the LVOC BREF is to facilitate reduction of emissions from chemical processes, other environmental issues - like energy efficiency, resource efficiency, wastes and residues - are also covered. This BREF contains 14 Chapters. Chapters 1 and 2 provide general information on the Large Volume Organics industrial sector and on generic industrial production processes used in this sector. Chapters 3 to 12 provide general information , applied processes and techniques, current emission and consumption levels, techniques to consider in determination of BAT and emerging techniques for various illustrative processes: lower olefins, aromatics, ethylbenzene and styrene, formaldehyde, ethylene oxide and ethylene glycols, phenol, ethanolamines, toluene diisocyanate and methylene diphenyl diisocyanate, ethylene dichloride and vinyl chloride monomer and hydrogen peroxide. Chapter 13 presents BAT conclusions as defined in Article 3(12) of the Directive. Concluding remarks and recommendations for future work are presented in Chapter 14.JRC.B.5-Circular Economy and Industrial Leadershi

    Advanced pyrolysis of plastic waste for chemicals, fuel and materials

    Get PDF
    PhD ThesisThe constant increasing generation of plastic waste, alongside the lack of plastic waste recycling capacity and the health and environmental risks from their disposal in landfills and incineration, have contributed to the search for versatile alternative management solutions e.g. pyrolysis. Thermal pyrolysis of plastic waste is a well-known and mature technology yielding very little gas and solid residue and high low quality wax (mixed C6 -C25 hydrocarbons) with limited direct application as transportation fuels. Zeolites are often introduced as catalysts for plastic waste pyrolysis to improve the quality of the wax and reduce operation temperature. However, they rapidly deactivate via coking and are expensive, opening up the search for alternative catalysts/technologies. In this thesis thermal, catalytic and cold plasma assisted pyrolysis, were evaluated in terms of the type of products obtained. Although scarcely used, sulphated zirconia, Ni/Al2O3 and char from waste biomass pyrolysis as catalysts and cold plasma proved to be potential improvements for plastic waste pyrolysis. A kinetic model of individual plastic waste, developed via iso-conversional methods and linear model fitting, showed their thermal decomposition was complex and allowed predictions for the design and operation of pyrolysis systems. The combination of waste high density polyehtylene and waste polypropylene pyrolysis with cold plasma yielded high-value chemicals e.g. ethylene (up to 55 times compared to thermal pyrolysis of waste high density polyethylene), hydrogen (40 times the H2 generation flow rate compared to waste polypropylene thermal pyrolysis) and carbon nanotubes (30-40 nm diameter from waste polypropylene), improving the overall profitability of pyrolysis. Cold plasma and catalysts (HZMS-5, sulphated zirconia and Ni/Al2O3 ) showed a synergistic effect promoting the recovery of ethylene and hydrogen from waste high density polyehtylene and waste polypropylene respectively. Sulphated zirconia catalyst (0-10 wt%) improved the recovery of up to 27-32 wt% of benzoic acid, a precursor in the food and beverage industry, alongside other high-value products recovered in the gas (CH4 and C2 -C3 hydrocarbons) from waste PET catalytic pyrolysis. Biochar, derived from waste biomass pyrolysis, as a catalysts for unsorted mixed plastic waste two-stage pyrolysis significantly enhanced the cracking process compared to non-catalytic thermal by increasing the gas (up to 85 wt%), hydrogen (up to 3.25 wt%) and methane yields (up to 55 wt%). Therefore, this thesis successfully proved the novel use of cold plasma and sulphated zirconia and biochar as catalysts to improve the value of plastic waste pyrolysis products, opening up opportunities to develop a sustainable and efficient process to re-engineer plastic wastes

    Advanced pyrolysis of plastic waste for chemicals, fuel and materials

    Get PDF
    PhD ThesisThe constant increasing generation of plastic waste, alongside the lack of plastic waste recycling capacity and the health and environmental risks from their disposal in landfills and incineration, have contributed to the search for versatile alternative management solutions e.g. pyrolysis. Thermal pyrolysis of plastic waste is a well-known and mature technology yielding very little gas and solid residue and high low quality wax (mixed C6 -C25 hydrocarbons) with limited direct application as transportation fuels. Zeolites are often introduced as catalysts for plastic waste pyrolysis to improve the quality of the wax and reduce operation temperature. However, they rapidly deactivate via coking and are expensive, opening up the search for alternative catalysts/technologies. In this thesis thermal, catalytic and cold plasma assisted pyrolysis, were evaluated in terms of the type of products obtained. Although scarcely used, sulphated zirconia, Ni/Al2O3 and char from waste biomass pyrolysis as catalysts and cold plasma proved to be potential improvements for plastic waste pyrolysis. A kinetic model of individual plastic waste, developed via iso-conversional methods and linear model fitting, showed their thermal decomposition was complex and allowed predictions for the design and operation of pyrolysis systems. The combination of waste high density polyehtylene and waste polypropylene pyrolysis with cold plasma yielded high-value chemicals e.g. ethylene (up to 55 times compared to thermal pyrolysis of waste high density polyethylene), hydrogen (40 times the H2 generation flow rate compared to waste polypropylene thermal pyrolysis) and carbon nanotubes (30-40 nm diameter from waste polypropylene), improving the overall profitability of pyrolysis. Cold plasma and catalysts (HZMS-5, sulphated zirconia and Ni/Al2O3 ) showed a synergistic effect promoting the recovery of ethylene and hydrogen from waste high density polyehtylene and waste polypropylene respectively. Sulphated zirconia catalyst (0-10 wt%) improved the recovery of up to 27-32 wt% of benzoic acid, a precursor in the food and beverage industry, alongside other high-value products recovered in the gas (CH4 and C2 -C3 hydrocarbons) from waste PET catalytic pyrolysis. Biochar, derived from waste biomass pyrolysis, as a catalysts for unsorted mixed plastic waste two-stage pyrolysis significantly enhanced the cracking process compared to non-catalytic thermal by increasing the gas (up to 85 wt%), hydrogen (up to 3.25 wt%) and methane yields (up to 55 wt%). Therefore, this thesis successfully proved the novel use of cold plasma and sulphated zirconia and biochar as catalysts to improve the value of plastic waste pyrolysis products, opening up opportunities to develop a sustainable and efficient process to re-engineer plastic wastes

    HZSM-5/SAPO-34 based catalysts for the transformation of dimethyl ether into olefins

    Get PDF
    [EN] The catalytic transformation of dimethyl ether with HZSM-5/SAPO-34 based catalysts has been studied. The process aims to selectively produce light olefins and propylene in particular, attending to their higher market demand, while using a fixed bed reactor and a microporous acid HZSM-5 zeolite, SAPO-34 catalyst and a composite catalyst obtained by physical blending of the previous acid phases. This Bachelor Thesis focuses on exploring the effect of process conditions (including the catalyst) on the reaction indexes (conversion, yield and selectivity). Besides, it will open new research frontiers for the student in terms of catalyst synthesis and characterization, laboratory methods and spectroscopy, among others

    Catalytic Reforming of Higher Hydrocarbon Fuels to Hydrogen: Process Investigations with Regard to Auxiliary Power Units

    Get PDF
    This thesis discusses the investigation of the catalytic partial oxidation on rhodium-coated honeycomb catalysts with respect to the conversion of a model surrogate fuel and commercial diesel fuel into hydrogen for the use in auxiliary power units. Furthermore, the influence of simulated tail-gas recycling was investigated

    Optimized CFD modelling and validation of radiation section of an industrial top-fired steam methane reforming furnace

    Get PDF
    [EN]The present study proposes an optimized computational fluid dynamics (CFD) modelling framework to provide a complete and accurate representation of combustion and heat transfer phenomena in the radiation section of an industrial top-fired steam methane reforming (SMR) furnace containing 64 reforming tubes, 30 burners and 3 flue-gas tunnels. The framework combines fully-coupled appropriate furnace-side models with a 1-D reforming process-side model. Experimental measurements are conducted in terms of outlet temperatures at the flue-gas tunnels, point-wise temperature distributions at the panel walls, and inside the reforming tube collectors which are placed at the refinery plant of Petronor. The final results are compared with the experimental data for validation purpose. The proposed fully coupled 3-D CFD modeling framework, which utilizes a detailed chemical-kinetic combustion mechanism, reproduces well basic flow features including pre-mixed combustion process, downward movement of flue-gas in association with large recirculation zones, radiative heat transfer to the reforming tubes, composition profiles along the reaction core of the reforming tubes, temperature non-uniformities, and fluctuating characteristics of heat flux. The reported non-uniform heat and temperature distributions might be optimized by means of the operating parameters in order to avoid a negative impact on furnace balancing and performance.This research is partially funded by Basque Industry 4.0 pro-gramme of Basque Government (BI00024/2019) and University-Company-Society 2019 call of UPV/EHU (US19/13) . Open access funding is provided by the University of the Basque Country (UPV/EHU)
    corecore