737 research outputs found

    Mobile support in CSCW applications and groupware development frameworks

    No full text
    Computer Supported Cooperative Work (CSCW) is an established subset of the field of Human Computer Interaction that deals with the how people use computing technology to enhance group interaction and collaboration. Mobile CSCW has emerged as a result of the progression from personal desktop computing to the mobile device platforms that are ubiquitous today. CSCW aims to not only connect people and facilitate communication through using computers; it aims to provide conceptual models coupled with technology to manage, mediate, and assist collaborative processes. Mobile CSCW research looks to fulfil these aims through the adoption of mobile technology and consideration for the mobile user. Facilitating collaboration using mobile devices brings new challenges. Some of these challenges are inherent to the nature of the device hardware, while others focus on the understanding of how to engineer software to maximize effectiveness for the end-users. This paper reviews seminal and state-of-the-art cooperative software applications and development frameworks, and their support for mobile devices

    Rethinking Consistency Management in Real-time Collaborative Editing Systems

    Get PDF
    Networked computer systems offer much to support collaborative editing of shared documents among users. Increasing concurrent access to shared documents by allowing multiple users to contribute to and/or track changes to these shared documents is the goal of real-time collaborative editing systems (RTCES); yet concurrent access is either limited in existing systems that employ exclusive locking or concurrency control algorithms such as operational transformation (OT) may be employed to enable concurrent access. Unfortunately, such OT based schemes are costly with respect to communication and computation. Further, existing systems are often specialized in their functionality and require users to adopt new, unfamiliar software to enable collaboration. This research discusses our work in improving consistency management in RTCES. We have developed a set of deadlock-free multi-granular dynamic locking algorithms and data structures that maximize concurrent access to shared documents while minimizing communication cost. These algorithms provide a high level of service for concurrent access to the shared document and integrate merge-based or OT-based consistency maintenance policies locally among a subset of the users within a subsection of the document – thus reducing the communication costs in maintaining consistency. Additionally, we have developed client-server and P2P implementations of our hierarchical document management algorithms. Simulations results indicate that our approach achieves significant communication and computation cost savings. We have also developed a hierarchical reduction algorithm that can minimize the space required of RTCES, and this algorithm may be pipelined through our document tree. Further, we have developed an architecture that allows for a heterogeneous set of client editing software to connect with a heterogeneous set of server document repositories via Web services. This architecture supports our algorithms and does not require client or server technologies to be modified – thus it is able to accommodate existing, favored editing and repository tools. Finally, we have developed a prototype benchmark system of our architecture that is responsive to users’ actions and minimizes communication costs

    04441 Abstracts Collection -- Mobile Information Management

    Get PDF
    From 24.10.04 to 29.10.04, the Dagstuhl Seminar 04441 ``Mobile Information Management\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    P2P InterCoop: P2P-based Decentralised Inter-organizational Cooperation - Motivations and Requirements

    Get PDF
    As the global marketplace becomes more and more competitive, corporations often need to cooperate in order to utilize the best of their resources for achieving their common business goals. This kind of collaboration gives a corporation a possibility to use the capabilities of their business partners that they do not currently have. In addition, mergers, acquisitions, alliances, and market demands are some of the reasons why companies have distributed work across geographically separated sites. Although P2P systems are emerging as a new form of distributed architecture, the centralized architecture of the existing collaborative environments has major drawbacks. This paper presents a new architecture called P2P InterCoop for supporting distributed cooperative work; it identifies basic requirements, advantages and limitations

    Distributed game

    Get PDF
    Dissertação de mestrado em Engenharia InformáticaThe demand for online games has risen over the years, expanding multiplayer support for new and different game genres. Among them are Massively Multiplayer Online games, one of the most popular and successful game types in the industry. Nowadays, this industry is thriving, evolving alongside technological advancements and producing billions in revenue, making it an economic importance. However, as the complexity of these games grows, so do the challenges they face when constructing them. This dissertation aims to implement a distributed game, through a proof of concept or an existing game, using a distributed architecture to acquire knowledge in the construction of such complex systems and the effort involved in dealing with consistency, maintaining communication infrastructure, and managing data in a distributed way. It is also intended that this project implements multiple mechanisms capable of autonomously helping manage and maintain the correct state of the system. To evaluate the proposed solution, a detailed analysis is carried out with performance benchmark analysis, stress testing, followed by an examination of its security, scalability, and distribution’s resilience. Overall, the present research work allowed for a greater understanding of the technologies and approaches used in constructing a gaming system, establishing a new set of development opportunities to be further investi gated upon the constructed solution.A procura por jogos online aumentou ao longo dos anos, expandindo o suporte multiplayer para novos e diferentes géneros. Entre estes estão os jogos Massively Multiplayer Online, um dos tipos de jogos mais populares e bem-sucedidos na indústria. Atualmente, esta indústria está a prosperar, evoluindo com os avanços tecnológicos e gerando milhares de milhões em receita, tornando-se uma importância económica. Porém, à medida que a complexidade destes jogos aumenta, também aumenta os problemas encontrados durante a sua construção. Esta dissertação tem como objetivo implementar um jogo distribuído, através de uma prova de conceito ou um jogo existente, usando uma arquitetura distribuída a fim de adquirir conhecimento na construção destes sistemas complexos e o esforço envolvido em lidar com consistência, manter a infraestrutura de comunicação e gerir dados de maneira distribuída. Para isto, é pretendido que este projeto também implemente vários mecanismos capazes de, forma autônoma, ajudar a gerir e manter o correto estado do sistema. Para avaliar o solução proposta, uma análise detalhada é realizada sobre o desempenho, segurança, escalabilidade e resiliência da distribuição do sistema. De forma geral, o presente trabalho de pesquisa permitiu uma maior compreensão das tecnologias e abordagens utilizadas na construção de um sistema de jogos, estabelecendo um novo conjunto de oportunidades de desenvolvimento a serem investigadas sobre a solução construída

    Hybrid client-server and P2P network for web-based collaborative 3D design

    Get PDF
    National audienceOur proposed research project is to enable 3D distributed visualization and manipulation involving collaborative effort through the use of web-based technologies. Our project resulted from a wide collaborative application research fields: Computer Aided Design (CAD), Building Information Modeling (BIM) or Product Life Cycle Management (PLM) where design tasks are often performed in teams and need a fluent communication system. The system allows distributed remote assembling in 3D scenes with real-time updates for the users. This paper covers this feature using hybrid networking solution: a client-server architecture (REST) for 3D rendering (WebGL) and data persistence (NoSQL) associated to an automatically built peer-to-peer (P2P) mesh for real-time communication between the clients (WebRTC). The approach is demonstrated through the development of a web-platform prototype focusing on the easy manipulation, fine rendering and light update messages for all participating users. We provide an architecture and a prototype to enable users to design in 3D together in real time with the benefits of web based online collaboration

    Exploring heterogeneity of unreliable machines for p2p backup

    Full text link
    P2P architecture is a viable option for enterprise backup. In contrast to dedicated backup servers, nowadays a standard solution, making backups directly on organization's workstations should be cheaper (as existing hardware is used), more efficient (as there is no single bottleneck server) and more reliable (as the machines are geographically dispersed). We present the architecture of a p2p backup system that uses pairwise replication contracts between a data owner and a replicator. In contrast to standard p2p storage systems using directly a DHT, the contracts allow our system to optimize replicas' placement depending on a specific optimization strategy, and so to take advantage of the heterogeneity of the machines and the network. Such optimization is particularly appealing in the context of backup: replicas can be geographically dispersed, the load sent over the network can be minimized, or the optimization goal can be to minimize the backup/restore time. However, managing the contracts, keeping them consistent and adjusting them in response to dynamically changing environment is challenging. We built a scientific prototype and ran the experiments on 150 workstations in the university's computer laboratories and, separately, on 50 PlanetLab nodes. We found out that the main factor affecting the quality of the system is the availability of the machines. Yet, our main conclusion is that it is possible to build an efficient and reliable backup system on highly unreliable machines (our computers had just 13% average availability)
    • …
    corecore