14 research outputs found

    A joint multi user detection scheme for UWB sensor networks using waveform division multiple access

    Get PDF
    A joint multiuser detection (MUD) scheme for wireless sensor networks (WSNs) is proposed to suppress multiple access interference (MAI) caused by a large number of sensor nodes. In WSNs, waveform division multiple access ultra-wideband (WDMA-UWB) technology is well-suited for robust communications. Multiple sensor nodes are allowed to transmit modulated signals by sharing the same time periods and frequency bands using orthogonal pulse waveforms. This paper employs a mapping function based on the optimal multiuser detection (OMD) to map the received bits into the mapping space where error bits can be distinguished. In order to revise error bits caused by MAI, the proposed joint MUD scheme combines the mapping function with suboptimal algorithms. Numerical results demonstrate that the proposed MUD scheme provides good performances in terms of suppressing MAI and resisting near-far effect with low computational complexity

    Quantum search algorithms, quantum wireless, and a low-complexity maximum likelihood iterative quantum multi-user detector design

    No full text
    The high complexity of numerous optimal classic communication schemes, such as the maximum likelihood (ML) multiuser detector (MUD), often prevents their practical implementation. In this paper, we present an extensive review and tutorial on quantum search algorithms (QSA) and their potential applications, and we employ a QSA that finds the minimum of a function in order to perform optimal hard MUD with a quadratic reduction in the computational complexity when compared to that of the ML MUD. Furthermore, we follow a quantum approach to achieve the same performance as the optimal soft-input soft-output classic detectors by replacing them with a quantum algorithm, which estimates the weighted sum of a function’s evaluations. We propose a soft-input soft-output quantum-assisted MUD (QMUD) scheme, which is the quantum-domain equivalent of the ML MUD. We then demonstrate its application using the design example of a direct-sequence code division multiple access system employing bit-interleaved coded modulation relying on iterative decoding, and compare it with the optimal ML MUD in terms of its performance and complexity. Both our extrinsic information transfer charts and bit error ratio curves show that the performance of the proposed QMUD and that of the optimal classic MUD are equivalent, but the QMUD’s computational complexity is significantly lower

    Cognitive Security Framework For Heterogeneous Sensor Network Using Swarm Intelligence

    Get PDF
    Rapid development of sensor technology has led to applications ranging from academic to military in a short time span. These tiny sensors are deployed in environments where security for data or hardware cannot be guaranteed. Due to resource constraints, traditional security schemes cannot be directly applied. Unfortunately, due to minimal or no communication security schemes, the data, link and the sensor node can be easily tampered by intruder attacks. This dissertation presents a security framework applied to a sensor network that can be managed by a cohesive sensor manager. A simple framework that can support security based on situation assessment is best suited for chaotic and harsh environments. The objective of this research is designing an evolutionary algorithm with controllable parameters to solve existing and new security threats in a heterogeneous communication network. An in-depth analysis of the different threats and the security measures applied considering the resource constrained network is explored. Any framework works best, if the correlated or orthogonal performance parameters are carefully considered based on system goals and functions. Hence, a trade-off between the different performance parameters based on weights from partially ordered sets is applied to satisfy application specific requirements and security measures. The proposed novel framework controls heterogeneous sensor network requirements,and balance the resources optimally and efficiently while communicating securely using a multi-objection function. In addition, the framework can measure the affect of single or combined denial of service attacks and also predict new attacks under both cooperative and non-cooperative sensor nodes. The cognitive intuition of the framework is evaluated under different simulated real time scenarios such as Health-care monitoring, Emergency Responder, VANET, Biometric security access system, and Battlefield monitoring. The proposed three-tiered Cognitive Security Framework is capable of performing situation assessment and performs the appropriate security measures to maintain reliability and security of the system. The first tier of the proposed framework, a crosslayer cognitive security protocol defends the communication link between nodes during denial-of-Service attacks by re-routing data through secure nodes. The cognitive nature of the protocol balances resources and security making optimal decisions to obtain reachable and reliable solutions. The versatility and robustness of the protocol is justified by the results obtained in simulating health-care and emergency responder applications under Sybil and Wormhole attacks. The protocol considers metrics from each layer of the network model to obtain an optimal and feasible resource efficient solution. In the second tier, the emergent behavior of the protocol is further extended to mine information from the nodes to defend the network against denial-of-service attack using Bayesian models. The jammer attack is considered the most vulnerable attack, and therefore simulated vehicular ad-hoc network is experimented with varied types of jammer. Classification of the jammer under various attack scenarios is formulated to predict the genuineness of the attacks on the sensor nodes using receiver operating characteristics. In addition to detecting the jammer attack, a simple technique of locating the jammer under cooperative nodes is implemented. This feature enables the network in isolating the jammer or the reputation of node is affected, thus removing the malicious node from participating in future routes. Finally, a intrusion detection system using `bait\u27 architecture is analyzed where resources is traded-off for the sake of security due to sensitivity of the application. The architecture strategically enables ant agents to detect and track the intruders threateningthe network. The proposed framework is evaluated based on accuracy and speed of intrusion detection before the network is compromised. This process of detecting the intrusion earlier helps learn future attacks, but also serves as a defense countermeasure. The simulated scenarios of this dissertation show that Cognitive Security Framework isbest suited for both homogeneous and heterogeneous sensor networks

    Resource allocation technique for powerline network using a modified shuffled frog-leaping algorithm

    Get PDF
    Resource allocation (RA) techniques should be made efficient and optimized in order to enhance the QoS (power & bit, capacity, scalability) of high-speed networking data applications. This research attempts to further increase the efficiency towards near-optimal performance. RA’s problem involves assignment of subcarriers, power and bit amounts for each user efficiently. Several studies conducted by the Federal Communication Commission have proven that conventional RA approaches are becoming insufficient for rapid demand in networking resulted in spectrum underutilization, low capacity and convergence, also low performance of bit error rate, delay of channel feedback, weak scalability as well as computational complexity make real-time solutions intractable. Mainly due to sophisticated, restrictive constraints, multi-objectives, unfairness, channel noise, also unrealistic when assume perfect channel state is available. The main goal of this work is to develop a conceptual framework and mathematical model for resource allocation using Shuffled Frog-Leap Algorithm (SFLA). Thus, a modified SFLA is introduced and integrated in Orthogonal Frequency Division Multiplexing (OFDM) system. Then SFLA generated random population of solutions (power, bit), the fitness of each solution is calculated and improved for each subcarrier and user. The solution is numerically validated and verified by simulation-based powerline channel. The system performance was compared to similar research works in terms of the system’s capacity, scalability, allocated rate/power, and convergence. The resources allocated are constantly optimized and the capacity obtained is constantly higher as compared to Root-finding, Linear, and Hybrid evolutionary algorithms. The proposed algorithm managed to offer fastest convergence given that the number of iterations required to get to the 0.001% error of the global optimum is 75 compared to 92 in the conventional techniques. Finally, joint allocation models for selection of optima resource values are introduced; adaptive power and bit allocators in OFDM system-based Powerline and using modified SFLA-based TLBO and PSO are propose

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing

    JTIT

    Get PDF
    kwartalni

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of-the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: quality-of-service and video communication, routing protocol and cross-layer design. A few interesting problems about security and delay-tolerant networks are also discussed. This book is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms
    corecore