202 research outputs found

    A Guided Neighborhood Search Applied to the Split Delivery Vehicle Routing Problem

    Get PDF
    The classic vehicle routing problem considers the distribution of goods to geographically scattered customers from a central depot using a homogeneous fleet of vehicles with finite capacity. Each customer has a known demand and can be visited by exactly one vehicle. Each vehicle services the assigned customers in such a way that all customers are fully supplied and the total service does not exceed the vehicle capacity. In the split delivery vehicle routing problem, a customer can be visited by more than one vehicle, i.e., a customer demand can be split between various vehicles. Allowing split deliveries has been proven to potentially reduce the operational costs of the fleet. This study efficiently solves the split delivery vehicle routing problem using three new approaches. In the first approach, the problem is solved in two stages. During the first stage, an initial solution is found by means of a greedy approach that can produce high quality solutions comparable to those obtained with existing sophisticated approaches. The greedy approach is based on a novel concept called the route angle control measure that helps to produce spatially thin routes and avoids crossing routes. In the second stage, this constructive approach is extended to an iterative approach using adaptive memory concepts, and then a variable neighborhood descent process is added to improve the solution obtained. A new solution diversification scheme is presented in the second approach based on concentric rings centered at the depot that partitions the original problem. The resulting sub-problems are then solved using the greedy approach with route angle control measures. Different ring settings produce varied partitions and thus different solutions to the original problem are obtained and improved via a variable neighborhood descent. The third approach is a learning procedure based on a set or population of solutions. Those solutions are used to find attractive attributes and construct new solutions within a tabu search framework. As the search progresses, the existing population evolves, better solutions are included in it whereas bad solutions are removed from it. The initial set is constructed using the greedy approach with the route angle control measure whereas new solutions are created using an adaptation of the well known savings algorithm of Clarke and Wright (1964) and improved by means of an enhanced version of the variable neighborhood descent process. The proposed approaches are tested on benchmark instances and results are compared with existing implementations

    Tabu search heuristic for inventory routing problem with stochastic demand and time windows

    Get PDF
    This study proposes the hybridization of tabu search (TS) and variable neighbourhood descent (VND) for solving the Inventory Routing Problems with Stochastic Demand and Time Windows (IRPSDTW). Vendor Managed Inventory (VMI) is among the most used approaches for managing supply chains comprising multiple stakeholders, and implementing VMI require addressing the Inventory Routing Problem (IRP). Considering practical constraints related to demand uncertainty and time constraint, the proposed model combines multi-item replenishment schedules with unknown demand to arrange delivery paths, where the actual demand amount is only known upon arrival at a customer location with a time limit. The proposed method starts from the initial solution that considers the time windows and uses the TS method to solve the problem. As an extension, the VND is conducted to jump the solution from its local optimal. The results show that the proposed method can solve the IRPSDTW, especially for uniformly distributed customer locations

    Low Carbon Logistics Optimization for Multi-depot CVRP with Backhauls - Model and Solution

    Get PDF
    CVRP (Capacitated Vehicle Routing Problems) is the integrated optimization of VRP and Bin Packing Problem (BPP), which has far-reaching practical significance, because only by taking both loading and routing into consideration can we make sure the delivery route is the most economic and the items are completely and reasonably loaded into the vehicles. In this paper, the CVRP with backhauls from multiple depots is addressed from the low carbon perspective. The problem calls for the minimization of the carbon emissions of a fleet of vehicles needed for the delivery of the items demanded by the clients. The overall problem, denoted as 2L-MDCVRPB, is NP-hard and it is very difficult to get a good performance solution in practice. We propose a quantum-behaved particle swarm optimization (QPSO) and exploration heuristic local search algorithm (EHLSA) in order to solve this model. In addition, three groups of computational experiments based on well-known benchmark instances are carried out to test the efficiency and effectiveness of the proposed model and algorithm, thereby demonstrating that the proposed method takes a short computing time to generate high quality solutions. For some instances, our algorithm can obtain new better solutions

    A Hybrid GRASP+VND Heuristic for the Two-Echelon Vehicle Routing Problem Arising in City Logistics

    Get PDF
    The two-echelon vehicle routing problem (2E-VRP) is a variant of the classical vehicle routing problem (VRP) arising in twolevel transportation systems such as those encountered in the context of city logistics. In the 2E-VRP, freight from a depot is compulsorily delivered through intermediate depots, named satellites. The first echelons are routes that distribute freight from depot to satellites, and the second are those from satellites to customers. This problem is solved by a hybrid heuristic which is composed of a greedy randomized adaptive search procedure (GRASP) with a route-first cluster-second procedure embedded and a variable neighborhood descent (VND), called GRASP+VND hereafter. Firstly, an extended split algorithm in the GRASP continuously splits randomly generated permutations of all customers and assigns customers to satellites reasonably until a feasible assignment appears, and a complete 2E-VRP feasible solution is obtained by solving the first echelon problem subsequently and, secondly, a VND phase attempts to improve this solution until no more improvements can be found. The process above is iterated until the maximum number of iterations is reached. Computational tests conducted on three sets of benchmark instances from the literature show that our algorithm is both effective and efficient and outperforms the best existing heuristics for the 2E-VRP

    A large neighbourhood based heuristic for two-echelon routing problems

    Full text link
    In this paper, we address two optimisation problems arising in the context of city logistics and two-level transportation systems. The two-echelon vehicle routing problem and the two-echelon location routing problem seek to produce vehicle itineraries to deliver goods to customers, with transits through intermediate facilities. To efficiently solve these problems, we propose a hybrid metaheuristic which combines enumerative local searches with destroy-and-repair principles, as well as some tailored operators to optimise the selections of intermediate facilities. We conduct extensive computational experiments to investigate the contribution of these operators to the search performance, and measure the performance of the method on both problem classes. The proposed algorithm finds the current best known solutions, or better ones, for 95% of the two-echelon vehicle routing problem benchmark instances. Overall, for both problems, it achieves high-quality solutions within short computing times. Finally, for future reference, we resolve inconsistencies between different versions of benchmark instances, document their differences, and provide them all online in a unified format

    An artificial bee colony-based hybrid approach for waste collection problem with midway disposal pattern

    Get PDF
    This paper investigates a waste collection problem with the consideration of midway disposal pattern. An artificial bee colony (ABC)-based hybrid approach is developed to handle this problem, in which the hybrid ABC algorithm is proposed to generate the better optimum-seeking performance while a heuristic procedure is proposed to select the disposal trip dynamically and calculate the carbon emissions in waste collection process. The effectiveness of the proposed approach is validated by numerical experiments. Experimental results show that the proposed hybrid approach can solve the investigated problem effectively. The proposed hybrid ABC algorithm exhibits a better optimum-seeking performance than four popular metaheuristics, namely a genetic algorithm, a particle swarm optimization algorithm, an enhanced ABC algorithm and a hybrid particle swarm optimization algorithm. It is also found that the midway disposal pattern should be used in practice because it reduces the carbon emission at most 7.16% for the investigated instances

    Задачи построения комбинированных и раздельных маршрутов перевозки мелкопартионных грузов во внутренних зонах иерархической автотранспортной сети

    No full text
    В работе предложены математические формулировки задач построения комбинированных и раздельных маршрутов для перевозки мелкопартионных грузов во внутренних зонах обслуживания магистральных узлов иерархической транспортной сети. Проведен обзор методов и алгоритмов решения подобных задач. Отмечается возможность решения сформулированных задач с помощью известных пакетов смешанного и целочисленного линейного программирования.В роботі запропоновані математичні формулювання задач побудови комбінованих і роздільних маршрутів для перевезення дрібнопартіонних вантажів у внутрішніх зонах обслуговування магістральних вузлів ієрархічної транспортної мережі. Проведено огляд методів і алгоритмів розв’язання подібних задач. Відзначається можливість розв’язання сформульованих задач за допомогою відомих пакетів змішаного і цілочисельного лінійного програмування.The paper presents mathematical formulations of the vehicle routing problems with simultaneous and split delivery and pickup of small-lot cargo in the internal service areas of trunk nodes of hierarchical transport network. A review of methods and algorithms for solving such problems is conducted. It is marked the possibility of solving the formulated problems by known packages of mixed and integer linear programming
    corecore