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ABSTRACT

Aleman, Rafael, Ph.D., Engineering Ph.D. Program, Department of Biomedical, Industrial and Hu-
man Factors Engineering, Wright State University, 208%uided Neighborhood Search Applied
to the Split Delivery Vehicle Routing Problem.

The classic vehicle routing problem considers the distribution of goods to geographically scat-
tered customers from a central depot using a homogeneous fleet of vehicles with finite capacity.
Each customer has a known demand and can be visited by exactly one vehicle. Each vehicle ser-
vices the assigned customers in such a way that all customers are fully supplied and the total service
does not exceed the vehicle capacity. In the split delivery vehicle routing problem, a customer can
be visited by more than one vehicle, i.e., a customer demand can be split between various vehicles.
Allowing split deliveries has been proven to potentially reduce the operational costs of the fleet.

This study efficiently solves the split delivery vehicle routing problem using three new ap-
proaches. In the first approach, the problem is solved in two stages. During the first stage, an initial
solution is found by means of a greedy approach that can produce high quality solutions comparable
to those obtained with existing sophisticated approaches. The greedy approach is based on a novel
concept called the route angle control measure that helps to produce spatially thin routes and avoids
crossing routes. In the second stage, this constructive approach is extended to an iterative approach
using adaptive memory concepts, and then a variable neighborhood descent process is added to
improve the solution obtained.

A new solution diversification scheme is presented in the second approach based on concentric
rings centered at the depot that partitions the original problem. The resulting sub-problems are then
solved using the greedy approach with route angle control measures. Different ring settings produce
varied partitions and thus different solutions to the original problem are obtained and improved via
a variable neighborhood descent.

The third approach is a learning procedure based on a set or population of solutions. Those
solutions are used to find attractive attributes and construct new solutions within a tabu search
framework. As the search progresses, the existing population evolves, better solutions are included

in it whereas bad solutions are removed from it. The initial set is constructed using the greedy ap-



proach with the route angle control measure whereas new solutions are created using an adaptation
of the well known savings algorithm &flarke and Wright (1964and improved by means of an en-
hanced version of the variable neighborhood descent process. The proposed approaches are tested

on benchmark instances and results are compared with existing implementations.
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Chapter 1

Introduction

The vehicle routing problem is a core problem in transportation, logistics, and supply chain man-
agement. Although it has been studied for almost 50 years, this problem is still under active inves-
tigation by practitioners and researchers. The optimization problem is to supply the demand of a
number of customers with a fleet of vehicles with finite capacity. Usually, goods are delivered from

a central depot to customers placing an order for those goods, while the operational cost of the fleet
is minimized. Typically, the objective function corresponds to the total travel distance or total travel
time. Sometimes, an additional set of constraints is used to establish an upper bound on the travel

time of routes to avoid drivers exceeding the assigned work shift.

Real world situations involve other complexities that the classical VRP does not consider.
Thus, various extensions to the VRP appear in the literature that try to incorporate more variables,
more constraints, and model more realistic conditions. These extensions include but are not limited
to: VRP with multiple depots (MDVRP) where a company can have several depots from which
customers are supplied; periodic VRP (PVRP) where the planning horizon is composed of several
periods, usually days, and customers have fixed daily demands; VRP with split deliveries (SDVRP)
where various vehicles can serve a customer; stochastic VRP (SVRP) where some elements in the
problem (including travel time, customer demand, customer presence) are stochastic; VRP with

pick-ups and deliveries (VRPPD) where vehicles can pick-up goods at the customers for return to

1



the depot; VRP with time windows (VRPTW) where a time interval is associated to each customer
wherein the delivery has to be made; and VRP with backhauls (VRPB) which is similar to the
VRPPD, but in the case of VRPB all deliveries in a route are made before the pick-ups in order to

avoid rearranging the loads.

The VRP has been studied both in a deterministic and stochastic version and a wide variety
of techniques have been used to solve each of them. These techniquees include exact algorithms,
classical heuristics, such as constructive and saving algorithms, single-route and multiple-route im-
provement algorithms, sweep algorithms, petal algorithms, sequential route-building algorithms,
cluster-first route-second algorithms, route-first cluster-second, and matching algorithms, and meta-

heuristics, such as simulated annealing, tabu search, genetic algorithms, and ant systems.

The SDVRP is an alternative to the classic VRP, which allows one to potentially reduce the
operational costs of the fleet of vehicles. However, there is not much in the literature on the SDVRP.
In fact, only a few heuristic algorithms have been developed to solve the problem. This dissertation
applies meta-heuristic methods to solve the SDVRP. In these methods, solutions are constructed
through a simple and effective greedy algorithm that assign customers to the routes under construc-
tion based on the route angles. This mechanism favors spatially thin routes. A motivation for this
angle evaluation can be found in commercial trucking where drivers from a common depot prefer

to not travel far among customers and dislike crossing routes with other drivers.

Constructed solutions are subsequently improved following the philosophy of the variable
neighborhood search proposediiadenovt and Hansen (1997The defining characteristic of a
variable neighborhood search is changing the neighborhood structure to avoid local optimum. Given
a set of pre-defined neighborhoods, the solution space is explored within a local search while sys-
tematically changing the neighborhood of the current solution. The search stops when the current

solution is a local optimum for all the pre-defined neighborhoods.

Some variable neighborhood searches have been applied to routing proBligysy (2003

proposes a reactive variable neighborhood search that modifies select parameters and changes the



objective function to avoid local optimality. The method is applied successfully to the VRPTW and
provided four new best-solution®olacek et al. (2004use variable neighborhood search to solve

the multi-depot VRPTW (MDVRPTW). The algorithm outperforms a tabu search, found 10 new
best-solutions, and demonstrates some superiority solving large real-world prokigiijski et al.

(2007 use a variable neighborhood descent to solve large-scale VRPs and accept non-improving
solutions by penalizing certain solution features. High quality solutions are found for problems

involving up to 20,000 customers.

Initial solutions are constructed with a greedy algorithm based on an insertion method. Cus-
tomers are added to a list and sorted according to their distance to the depot. They are then inserted
into the solution at the lowest possible cost. A customer can be inserted to initiate a new route or
to modify an existing route. In the latter case, a customer is inserted into the cheapest position in
the route. However, this insertion method produces poor solutions when the triangular inequality
favors the customer insertion into existing routes producing spread routes instead of initialization of
new routes. Thus, a new mechanism based on the spatial distribution of routes is used to penalize
the insertion of customers producing spread routes. This mechanism uses a fixed threshold value to
determine when a route is too wide and penalizes its insertion. The incorporation of this mechanism
provides high quality solutions compared to the best known SDVRP solutions in the literature at a

low computational time.

This dissertation presents new search techniques for practitioners and researchers solving SD-
VRPs. For practitioners, using simple yet effective solution techniques allow operators and man-
agers to efficiently use the fleet of vehicles. The quality of solutions obtained is comparable to the
quality of those obtained with existing sophisticated techniques. Computational times are substan-
tially lower than those of existing techniques. For researchers, the development of meta-heuristics
based on new diversification and vocabulary building techniques represents an advance in variable

neighborhood searches.

This dissertation provides multiple contributions. Rgstovides a focused yet thorough liter-



ature review on the VRP, SDVRP, and VRPSC. The review includes problem properties, models,
and solution algorithms. A new problem classification scheme is also presented lirugefil for
categorizing modern routing problems. This classification scheme is based on three criteria: stati-
cism/dynamism of the problem parameters, the knowledge of the information relevant to the design
of its solution, and the method to model the unknown data. IP@resents new algorithmic con-
tributions, including: 1) a novel constructive approach, an iterative constructive approach that uses
adaptive memory concepts, and a variable neighborhood descent fodhehiian et al. (2007)

2) a new solution diversification scheme foundAleman et al. (2008pased on concentric rings
centered at the depot that partitions the original problem and solves the resulting problems using a
constructive approach; and 3) a population-based search approach, called tabu search with vocab-
ulary building approach, that constructs an initial solution set and then uses the set of solutions to

find attractive solution attributes with which to construct new solutions and evolve the set.

This document is organized as follows. First, a literature review relevant to this research is
found in Chapterg to 4. Chapter2 contains a review on representative existing techniques to solve
the classic VRP. Chapt&reviews existing research and search methods to solve the SDVRP, the
primary focus of this research. Chaptecontains concepts and existing studies on routing prob-
lems with stochastic customers. Second, the proposed approaches to efficiently solve the SDVRP
are presented in Chaptesgo 7. Chapter5 describes a greedy approach with a novel route angle
control measure, an iterative approach using adaptive memory concepts, a variable neighborhood
descent process based on the standard customer shift and swap adapted to handle split deliveries
plus a new operator that introduces split deliveries into the solution in order to reduce the objective
function value. Chaptes provides a new solution diversification scheme based on concentric rings
centered at the depot to partition the original problem, solve the resulting-subproblems indepen-
dently, produce a complete solution, and then improve it using the variable neighborhood descent
described in Chaptds. Chapter7 outlines a learning procedure that uses a population of solutions
to derive information used to find attractive attributes and a tabu search framework to generate new

solutions. Finally, a summary of this dissertation is provided in Chapter
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Chapter 2

Vehicle Routing Problem (VRP):

Solution Techniques

2.1 Problem Definition

The vehicle routing problem (VRP) was first formulated Dgntzig and Ramser (19h@nd is a

core problem in transportation, logistics, and supply chain management. It is also sometimes called
the capacited vehicle routing problem (CVRP) or truck dispatching problem. The VRP involves a
fleet of vehicles with fixed characteristics (i.e., speed, capacity, etc.) and a set of geographically
scattered delivery points (i.e., cities, warehouses, schools, customers, etc.) with fixed demands for
transporting goods between a unique depot and specified delivery points. The VRP is defined on
an undirected grapty = (V, E) whereV = {0,1,...,n} is the set ofn + 1 nodes of the graph,

andE = {(i,j) : i,j € V, i < j} is the set of edges. Node 0 represents a depot where a fleet
M = {1,...,m} of identical vehicles with capacit§ are stationed, while the remaining node set

V' = {1,...,n} is the set ofn customers. A non-negative cost —or distance, or travel timeis
associated to every edge j). Each customer € V' has a demand af; units. The optimization
problem is to determine which customers are served by each vehicle and what route the vehicle

follows to serve those assigned customers, while minimizing the operational costs of the fleet, such



as travel distance, gas consumption, and vehicle depreciation. Traditionally, routes are designed to
start and end at the depot, every customer is visited exactly once by exactly one vehicle, and the

total demand of any route cannot exceed the available vehicle capacity.

This chapter provides background on the vehicle routing problem. It is organized as follows.
Section2.2 reviews some of the mathematical formulations employed. Each formulation below is
provided in complete form to promote readability. Sectidrito 2.5review the most representative
techniques used to solve the VRBodin and Golden (1981classify these techniques whereas
a full complete survey and description is foundLiaporte et al. (2000 Toth and Vigo (200},
Cordeau et al. (20Q02Cordeau et al. (2005andLaporte (200}. These techniques include exact
algorithms, classical heuristic algorithms (i.e., constructive, saving, improvement, sweep, petal, and
matching algorithms), and metaheuristic algorithms. Sediéndiscusses the dynamic aspects
appearing in the vehicle routing problem and presents a classification scheme for the VRP based on
the staticism/dynamism of the problem parameters, the availability of information relevant to solve

the problem, and the method used to model the unknown information.

2.2 Models for the VRP

Although different authors have implemented various formulations of the vehicle routing problem,

this section presents some VRP models based on the waldcci et al. (2004



2.2.1 A Two-Index Vehicle Flow Formulation

Notation

E Set of edges

¢;;  Nonnegative cost of eddg, j} € E

Demand of client

Vehicle capacity

Fleet size

{0,1,...,n}is the set of nodes. Node O represents the depot

V' = V\{0} is the set o, customers

Subset of customers C V'

Complementary set of nodé&5\ S

Set of customers/ = {S: S C V' |S| > 2}

Minimum number of vehicles of capacity Q needed to satisfy the demand of custongérs in

&;  0,ifedge{s, j} € Eis notin the solution; 1, if the edge is in the solution; and 2, if a route
including the single customeris selected in the solution

QU SIzZOR

=
—

2!
~—

Minimize ;& (2.1)
{i,j}€FE
Subject to:
i+ Gi=uvieV (2.2)
jev jev
1<J 1>)

SN G +> D Gi=2(S)VS e T (2.3)

i€S jeS i€S jeS

1<j 1<j
> &y =2M (2.4)
Jjev’
&j €{0,1};{i,j} € E\{{0,j}:j € V'} (2.5)
&j €1{0,1,2};v{0,j} e E,j e V' (2.6)

Constraints 2.2) are the degree constraints for each customer. Constr&irgsafe the subtour
elimination constraints which, for any sub$eof customers that does not include the depot, impose
thatr(.S) vehicles enter and leave ConstraintsZ.4) state that\/ vehicles must leave and return

to the depot. Constraint®.6) and @.6) are the integrality constraints.



2.2.2 A Multicommodity Flow Formulation

Notation
¢;;  Nonnegative cost of eddg, j} € E
qi Demand of clien
Q Vehicle capacity
M  Fleetsize
14 {0,1,...,n} is the set of nodes. Node O represents the depot
V' V'=V\{0} is the set of» customers
&;  1,ifarc(i, ) is in the optimal solution. O otherwise
ygj Amount of demand destined to custonier V' that is transported on af¢, ;)
Minimize Z Cijfij
ijeV
i#]
Subject to:
Z&j = 1,V] S V/

eV

Y Gi=1vieV

JjEV

ZijZM

jev’

Zijon

JjeV’

q,j=1 VeV,

Duli =) uhi=10#1  VileV
eV icV —q,j =0 vie V!

b < @éijsVi,j Vi # VeV

Yo v <Q-asvieV

JEV! eV’

Y > 0:Vi,j € Vii# jivle V!

2.7)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)



ij €{0, 1 Vi,jeVii#j (2.16)

Constraints 2.8) and @.9) ensure that each customer is visited exactly once. Constr&irit§ (
and @.11) ensure allM vehicles in the fleet leave from and return to the depot. Constrairitg (
and Q.13 are the commodity flow constraints to guarantee that each demand is satisfied. Con-
straints .14) ensure that vehicle capacity is not exceeded. Finally, constr&iits @nd .16 are

the integrality and binary conditions, respectively.

2.2.3 A Set-Partitioning Formulation

Notation
|4 {0,1,...,n} is the set of nodes. Node O represents the depot
V' V! =V\{0} is the set o, customers
R Index set of all feasible routes
Fleet size
¢;  Costofroutej € R
a;;  Binary coefficient equal to 1 if customébelongs to routg € R. 0, otherwise
¢ 1, ifroutej € R isin the optimal solution. O, otherwise

Minimize " &¢; (2.17)
JER
Subject to:
Z aijCj =1;Vi € %4 (218)
JER
Y G=M (2.19)
JER
¢ e{0,11VjeR (2.20)

Constraints 2.18 ensure that each customer is visited exactly once. Constraiiid ensure all

M vehicles are in the solution. Finally, Constrair®s2Q) are the binary conditions.
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2.2.4 A Two-Commodity Flow Formulation

Notation

174 {0,1,...,n} is the set of nodes. Node O represents the depot
E Set of edges

G Undirected graplis = (V, E)

vV V=VUu{n+1}

v Vi=V\{0,n+1}

G Extended graply = (V, E)

S Complementary set of nod&s\ S

M  Fleetsize

Q Vehicle capacity

c;j  Costof edggi,j}

i Demand of clieng

q(V'") Sum of demands of customers in $&t

& 1,ifedge{s,j} € Fisinthe solution. 0, otherwise

zj;  Load of vehicle associated with ed§e j }

xj  Empty space on the vehicle associated with edgg} (i.e.,z;; = Q — ;)

Minimize Z Cijfij
{ij}eE

Subiject to:

Z(I‘ji — -Tij) = 2qi;Vi eV’

JEV

Z Loj = q(V')

JeV?

> wjo=MQ - q(V')

jev’

> Ty = MQ

jeV’

zij +xj = Q& Vi, j} € E

Zfij—l-iji =2uVicV’

jev jev
i<j i>j
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(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)



zij > 0, x5 > 0;{i,j} € E (2.28)

fij S {0, 1};V{i,j} S E (2.29)

Constraints 2.22 ensure that the inflow minus the outflow at each customer is eq@a} tdCon-
straint .23 forces the outflow at the depot to equal the total customer demand. Cons2raéit (
defines the residual capacity of the vehicle fleet. Constrai@g(ensures the inflow at soureet 1

is the total capacity of the vehicle fleet. Constrair26 define the edges of a feasible solution.
Constraints2.27) force a customer to be connected to two edges. Constrai28 and .29 are

integrality and binary conditions, respectively.

2.3 Exact Algorithms for the VRP

2.3.1 Branch and Bound

Christofides and Eilon (1969resent an approach for solving the vehicle dispatching problem.
Their solution method is based on a branch-and-bound (B&B) algorithm designed to solve a travel-
ing salesman problem. Their VRP is formulated as a TSP by deleting the depot and replacing it with
as many artificial copies of the depot as there are vehicles in the fleet. Traveling from one artificial
depot to another is disabled by setting the distance between them to a large cost (i.e., infinity). The
number of artificial depot®/ (i.e., the number of vehicles required in the final solution) has a lower

bound determined by the vehicle capacity and the demand of all customers as:

n
N>> g/C
whereg; is the demand of customérn is the number of customers, antis the vehicle capacity.

12



Obviously, there may exist no feasible solution for this valu&/ofTherefore, the problem is solved

for several values oV, and the best solution among these is chosen as the final solution.

Before branching to a new node, the load capacity and distance limit of the vehicle in question
as well as the remaining fleet capacity are evaluated. If any constraints are violated, there is no need
to keep exploring the current branch. In order to reduce the search space, the bounds for nodes of
the decision tree are determined by computing a minimal spanning tree. The B&B algorithm was
tested on two instances with 6 and 13 customers. Another 8 problems, having 21 to 100 customers,
required excessive computation time and memory space requirements. The computation time for
the solved problems are 1.5 and 15 minutes, respectively, but keep in mind the work was conducted

in 1969

Miller (1995) describes a B&B algorithm where the lower bounds are computed by relaxing
the subtour elimination and vehicle capacity constraints to produce a b-matching problem. This
algorithm differs from others in that b-matching, instead of spanning trees, forms the kernel of
the relaxation. The algorithm is tested on 11 instances taken from the literature involving 7 to 61
customers. The optimal solution for the largest problem is obtained in about 16 minutes whereas

for a problem with 51 customers, it took about 4 hours.

2.3.2 Branch-and-cut

Baldacci et al. (2004describe a branch-and-cut procedure for the VRP based on an integer pro-
gramming formulation in the form of the two-commodity network flow problem presented in Sec-

tion 2.2 A lower bound is computed based on the linear relaxation of the formulation, strengthened
by a set of flow and capacity inequalities. The algorithm is tested on 19 problems taken from
the literature, involving 15 to 134 customers, and 8 randomly generated instances, involving 30
to 100 customers. The algorithm successfully solved problems involving up to 80 customers and
an instance involving 135 customers. It took about 2 hours and 30 minutes to optimally solve the

problem with 135 customers.
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Table 2.1:Representative Exact Algorithms for the VRP.

Algorithm Year Description & Remarks

Christofides and Eilon 1969 Branch and Bound
Miller 1995 Branch and Bound
Hadjiconstantinou et al. 1995 Set-partitioning

Baldacci et al. 2004 Branch and Cut

2.3.3 Set-partitioning

Hadjiconstantinou et al. (199®resent a tree-search procedure based on the use of lower bounds
that are derived from a combination of two different relaxations of the original probdepaths

(i.e., chains of customers whose weight is equaj)tand k-shortest paths. The algorithm is eval-
uated using 25 problem sets (involving 15 to 150 customers), 10 of themHilom et al. (197

and 15 randomly generated with customers distributed uniformly. The algorithm found an optimal
solution for problems with up to 50 customers but could not solve problems with 75 or more cus-
tomers within a 12 hour computational limit. The largest solvable problem, 50 customers, solved in

about 2 hours.

2.4 Classical Heuristic Algorithms for the VRP

In operations research, heuristics are generally simple search algorithms designed to find a solution
to an optimization problem. Heuristics are a set of rules logically designed to solve an optimization
problem based on a specific objective, such as minimizing costs or maximizing profits. In gen-
eral, the design of heuristics follows the common sense of the designer and his/her perception of
the problem. There is no a unique way to design, and of course implement, heuristics; the only
limitation is creativity. There are two aspects characterizing heuristics: quality of the solution and
computational time. Although heuristics can find good solutions without guaranteeing optimality,

these solutions can be found in reasonable computational time. Many heuristics have been invented
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to solve the VRP. Some of them present new thoughts and challenges, whereas others are not as cre-
ative or simply follow previous techniques. The next sections review some of the classical heuristics

used to solve the VRP.

2.4.1 Constructive Algorithms

In their route building heuristidpantzig and Ramser (1958se “stages of aggregation” and pair

customers whose combined demand does not exceed some fraction of the vehicle capacity. At every
stage, pairs of customers obtained in previous stages are combined so the capacity of a vehicle is
not exceeded. To calculate the number of stages of aggregation, they sort the customers based on

their demands and determine the maximum number of customers that a single vehicle can serve.

In the initial solution, a vehicle serves exactly one customer so the initial solution contains as
many routes as customers. These pairs are called the “basic set”. In the first stage, a smgids of
correctionsare executed by bringing into the solution non-basic pairs with the smallest inter-pair
distances whose combined demand does not exceed the fraction of the truck capacity established in

the stage. These rapid corrections are repeated as long as nhon-basic pairs are available.

The customer pairs obtained in the first stage are combined in the second stage to minimize
the distance traveled by all vehicles. A matrix containing the minimum distances between pairs and
the depot is created. This “distance matrix” is used in every stage. Subsequent stages repeat the
process until the vehicles are near capacity. The selection criterion for pairing customers is focused
on filling the vehicles and minimizing the sum of inter-pair distances within a route. Although
“rapid corrections” allow reducing the inter-pair distances, once customers are grouped they are not
separated in further stages. This myopic approach does not focus on minimizing the total distance

of all vehicles.
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2.4.2 Savings Algorithms

The calculation of the distance matrix Dantzig and Ramsisrmethod (959 can be tedious and
computationally demanding. The savings algorithnCtarke and Wright (1964does not calculate

this matrix, which reduces computational effoi®arke and Wrighalso remove the restriction that

only customers whose combined demand does not exceed a fraction of the vehicle capacity can be
grouped. Instead, they group any customers whose combined demand does not exceed the capacity
of a vehicle. There is both a concurrent and a sequential version of the algorithm. The concurrent
version creates routes simultaneously. Initially every customer is served by a separate vehicle. The
algorithm repeatedly takes a pair of customers from two different routes and calculates the distance
saving of the four possible ways in which the two customers can be linked and the routes split. The
two customers with the maximum savings are linked and new feasible routes are produced. This
procedure stops when no further savings are attainable. The sequential version creates one route
at a time by selecting a seed customer and iteratively linking that customer using the highest sav-
ings and the last linked customer. When no more customers can be linked, a new seed customer
is selected and the procedure continues until all the customers are served. Although routes are not
optimized in the final allocation, the computational results demonstrate better performance than
Dantzig and Ramsir(1959 in 17 of 31 different problem set€larke and Wrighsuggest, how-

ever, re-optimizing the routes as independent TSPs to obtain even better solutions. This “savings”

algorithm was developed as a greedy approach, but is really an improvement method.

2.4.3 Single-Route Improvement Algorithms

Single-route improvement algorithms try to improve an existing solution by rearranging the order
in which customers are served within the routes. In this sense, every route can be thought of as
an independent TSP. The most representative procedures are gitém doyd Kernighan (1973

Or (1979, Potvin and Rousseau (199andRenaud et al. (1996 These algorithms are iterative

procedures that improve the solution by relocating “customers” or “edges” within a route. The
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improvement search stops when no further cost reductions can be found.

Or (1979 proposes a “customer” exchange heuristic that tries to improve a route by relocating
sequences of one, two, or three adjacent customers within the route. For example, an Or-opt-1
exchange considers each customer in a route and tries to improve the tour by inserting that customer
at another location. The classicalopt is an “edge” exchange heuristic which deletesdges
from a route, temporarily reconnects the remaining portions of the route in all the possible ways
and selects the exchange providing the best cost for the rbim@nd Kernighan (1973discuss a
sequential exchangaethod based on a generalization of khept transformation. Their procedure
does not use a fixed value far but tries to identify the highest each iteration and, obviously,
the edges that can be exchanged to best improve the route cost. If a best improvement is found,
edges are exchanged and the process is repeated until no further improvement can be made by the
procedure. The algorithm produces optimal solutions for all problems tested including problems in

the literature for the TSP and randomly generated instances involving up to 110 cities.

The improvement algorithm d®otvin and Rousseau (199%Bansforms a VRP into an equiv-
alent TSP by creating copies of the depot. The idea of creating copies of the depot was previously
explored in other studie<hristofides and Eilon, 196%otvin et al., 198p Once the VRP solu-
tion is transformed into a TSP, a proposed 2-opt* exchange heuristic is applied where two links are
replaced by two new links in such a way that the TSP route is divided into two subroutes without
reversing any portion of the routes (as opposed to the 2-opt that can reverse a segment of the route).
The new solution is valid only if there is a copy of the depot in both subroutes. The 2-opt* exchange
is particularly well suited for problems with time windows because it preserves the orientation of the
routes by introducing the last customers in a given route at the end of another route. The algorithm
was tested on Solomon’s test problerS®lpmon, 198y and randomly generated problems with
100 customers. The results indicate that, even though the Or-opt dominates, the 2-opt* algorithm is
fast and effective on problems with tight time windows. A hybrid algorithm that merges 2-opt* and

Or-opt is tested and outperforms the classical 3-opt algorithm.
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Renaud et al. (1996describe a 3-phase algorithm that uses a route improvement heuristic
for the TSP based on a 4-opt* move. This move is similar to the classical 4-opt, but reduces the
number of possible reconnections to 8 (the standard 4-opt produces 48) by inserting the cheapest
of two predefined edges. The other three edges are selected from the remaining 8 neighbor tours.
The algorithm was tested on 100 randomly generated instances with customers ranging from 50 to
500. The improvement heuristic was compared with other improvement heuristics including 2-opt,
3-opt, and Or-opt. Results indicate that 4-opt* dominates Or-opt and considerably improves over

3-opt in terms of processing time.

2.4.4 Sweep Algorithms

Wren and Holliday (197@present an algorithm for the VRP which allows routes emanating from
several depots subject to a limited number of vehicles at each depot. The algorithm is composed
of a constructive method followed by an improvement process that moves customers either within
or between routes. The contribution of the proposed algorithm is the constructive procedure that
sorts the customers in a novel manner and assigns them sequentially to the nearest feasible route.
A feasible route is either an existing route with enough spare capacity or a new route. Customers
are first assigned to the nearest depot. The constructive algorithm is informally known as a sweep
algorithm because it sweeps a “ray” from each depot in a clockwise direction and determines a
bearing for customers assigned to that depot. Customers are then sorted by the bearings regardless
of the depots and assigned to the nearest feasible route. The algorithm (constructive plus refining
process) was tested on 9 problem sets. In the first 6 sets, ranging in size from 21 to 36 customers and
only one depot, the algorithm improved 2 solutions obtained from a version Glainke and Wright

method andChristofides and Eilon (1969In the last 3 sets, involving 50, 75 and 100 customers,

the algorithm provided solutions with fewer vehicles than @arke and Wrightmethod in two

cases and a significant reduction in traveled distance in the third case. The authors also provide a
case study where the algorithm outperformed a commercially available program to solve VRP with

multiple depots that first allocates the customers to depots and then appl@saitke and Wright
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method to each depot independently.

Gillett and Miller (1974 introduce a procedure that is officially called the sweep algorithm and
is quite similar to the algorithm presented Wren and Holliday (197Rbut with two differences.
The first difference is thabillett and Miller (1974 use a single depot, so the routes are made up
while the “ray” sweeps around. Thus, there is no further need for finding a nearest depot. The second
difference is thaGillett and Miller (1974 sweep the “ray” both clockwise and counterclockwise.
The best solution is then selected. These two versions are calléohtverd andbackwardsweep

algorithm, respectively.

The sweep algorithm ddillett and Miller (1974)s tested on 12 problem sets where the number
of customers ranges from 21 to 250. Of these problem sets, 7 are sol¢&urisyofides and Eilon
(1969 and 5 are new problems. In terms of total traveled distanceGthett and Miller (1974
algorithm outperforms th€hristofides and Eilon (19¢&lgorithm in 3 cases, matches the solution
in 2 cases, and provides a less attractive solution in the other 2 cases. With respect to the algorithm
of Wren and Holliday (197 4 of the problem sets are solved by both algorithms. From those,

Gillett and Miller's outperformsWren and Hollidais in 3 cases.

2.4.5 Petal Algorithms

The algorithm ofGillett and Miller (1974 produces routes with a petal-like structure. It seems
natural to expect that an optimal VRP solution, barring any unusual side constraints, includes routes
that do not cross each other. Based on this assumgfmster and Ryan (19F@&xplore a subset

of feasible VRP petal solutions, referred to as the “petal set”, and reduce the feasible region by
imposing the constraint that neither deliveries within a “petal” are bypassed nor adjacent routes
cross. They solve an over-constrained LP model of the VRP to optimality by producing a set of
feasible routes and then separately solving a traveling salesman problem for eachFaster.

and Ryars algorithm is evaluated using 13 problems from various authGtarke and Wright,

1964 Gaskell, 1967 Christofides and Eilon, 196%illett and Miller, 1973, involving 21 to 100
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customers. The algorithm provides 11 new best solutions and generally outperforms the solutions

obtained from the two sweep approachésé€n and Holliday, 1972Gillett and Miller, 1974.

The petal algorithm oRyan et al. (199Bis based on the work dgillett and Miller (1974
and Foster and Ryan (1976 A VRP optimal solution can include crossing routes if there are
restrictions on the structure of feasible routes, such as vehicle capacity, route distance limit, and
time restrictions. The distinction with this work is the use of a shortest path technique to produce
petals and their associated routes, rather than an LP. The performance of the shortest path method
for finding a shortest set of petals and the LP method for finding an equivalent optimal petal solution
have been compared by solving the problems definédtinkemer and Gavish (1991 The results
show that the shortest path method outperforms the LP method by two orders of magnitude, in terms

of the CPU time.

2.4.6 Sequential Route-Building Algorithm

All the existing sequential saving algorithms select a customer to insert based on the savings as-
sociated with the insertion. However, the customer is inserted into the route under construction
following the position of the last inserted custombftole and Jameson (19Y@escribe a savings
algorithm that sequentially constructs routes and inserts unserved customers into the route under
construction ;. The proposed method follows three steps to determine not only the next customer
to be inserted, but also where withi?, to place the customer. In the first step, the most advanta-
geous feasible position aRy, for each unserved customer is determined. In the second step, the next
unserved customer is identified and inserted ito In the third step, the possible resequencing of
customers orRy, is explored via a 2-opt operator. If the capacityR)f is exhausted, a new route

is started £ = k + 1). The process is repeated until all customers are in a route. Two parameters,
A andy, are used in the algorithm to vary the criteria used to choose the best unserved customer
to be inserted. A “refine” procedure, which transfers customers from one route to another, is used

to improve the routes. The algorithm is tested on 10 instances takenGloistofides and Eilon
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(1969 and clearly outperform€larke and Wrightbut does not provide better solutions th&nen

and Holliday

Christofides et al. (197%resent a sequential procedure that uses two phases. In the first phase,
routes are constructed quite similarNtwle and Jameson (19Y,6but the first unserved customer
x;, inserted into a new routly, is selected arbitrarily. In Phase 2, routes are constructed in parallel,
based on the routes from Phase 1. The algorithm is tested on 14 problem sets, with customers
ranging from 50 to 199, taken fro@hristofides and Eilon (19§%nd some structured problems.
Results are compared in terms of total traveled distance with those obtained from the implemented
versions of various algorithm<C{arke and Wright, 1964Mole and Jameson, 197&illett and
Miller, 1974). The comparison clearly reveals that the presented algorithm outperfdotesand

Jamesoiby finding better solutions on 12 of the tested problems.

2.4.7 Cluster-First Route-Second Algorithms

Cluster-first, route-second algorithms are two-phase methods that divide the VRP into two subprob-
lems. In phase 1, customers are assigned, or grouped/clustered, to vehicles without considering the
order of servicing the assigned demands. In phase 2, customers are rearranged to try and find an
optimal or near-optimal solution for each cluster. Different techniques are used to cluster the cus-
tomer, including the sweep and the petal algorithms. To design efficient routes for each cluster, any

TSP heuristic can be utilized including the single-route improvement algorithms cited previously.

Fisher and Jaikumar (198present a heuristic that solves an integer program for a general-
ized assignment problem to optimally assign customers to vehicles. Among the customers, “seed”
customers are selected either manually (via the user preferences, expertise, etc.) or heuristically.
Customers are then allocated to the selected “seed” customers at a minimum cost. The cost of al-
locating a customer to a “seed” customer is estimated by the route formed by the two customers
through the depot. This makes the objective function of the generalized assignment problem an ap-

proximation of the cost of the TSP. A complete solution is obtained by applying a TSP heuristic to
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each vehicle (i.e., each cluster). Computational tests are performed on 12 test problems taken from
the literature. The problems range in size from 50 to 199 customers, 5 to 19 vehicles, and a single
depot. In terms of total traveled distance, the algorithm provided 9 new best solutions to the VRP
and equaled 2 of the best existing solutions. In general, the generalized assignment based heuristic

outperforms both th€larke and Wright (196¢and theGillett and Miller (1974 algorithms.

Bramel and Simchi-Levi (199%resent a location based heuristic that clusters customers by
approximating the VRP with aapacitated concentrator location problef@CLP). The approxi-
mated solution to the CCLP specifies “seed” customers and the customers allocated to them without
violating capacity constraints. They use two ways to determine the cost of allocating a customer
to a “seed” customer. In the first implementation, the cost corresponds to the length of the route
through the two customers and the depot (similaFigher and Jaikumar, 1981In the second
implementation, the cost corresponds to the direct round-trip between the “seed” and the customer.
A computational experiment is conducted on 7 standard problem sets take@fnastofides et al.
(1979, ranging in size from 50 to 199 customers. In general, the two implementations improved
only two of the existing solutions on the test problems. The philosophy of the first implementa-
tion is similar toFisher and Jaikumar (1981ut provides better solutions in only 2 of the 7 cases.
However, the second implementation has the advantage of being asymptotically optimal, which
means that the deviation from the optimal solution tends towards zero as the number of customers

increases.

2.4.8 Route-First Cluster-Second Algorithm

Route-first, cluster-second algorithms are two phase methods that construct a TSP tour during phase
1 that connects all the customers and then divides them into segments in phase 2, subject to the
vehicle capacity constraints. Each segment is then serviced by a vabéelsley (198Bconsiders

a route-first cluster-second method for the VRP. Although the author cites similar approaches used

in the literature, this work appears to be the first attempt to evaluate this type of algorithm on
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standard VRPs. The algorithm randomly generates an initial “giant” tour visiting all the customers
and excluding the depot and improves the tour via a 2-opt operator. In order to reduce the fleet size
as much as possible, a large positive constant is added to the inter-customer distances. The “giant”
tour is then partitioned by means of a shortest path algorithm. The routes in the final partitions
are improved using a 3-opt operator. Computational results and a comparison with the savings
algorithm of Clarke and Wright (1964use the 10 problems taken frogilon et al. (197) For

each problem, 25 “giant” tours are generated and the best solution is kept. The developed algorithm
clearly outperforms the algorithm @fiarke and WrightHowever, no other existing results on VRP
instances are used for benchmarking. In the evolutionary algoritHpniia$ (2004) giant tours are
created with the ordered sequence of customers and a splitting procedure is utilized to determine

the best way to separate the routes in the giant tour.

2.4.9 Matching Algorithm

Altinkemer and Gavish (1991present a parallel savings based algorithm (PSA) which is an im-
provement of the saving algorithm @flarke and Wright (1964 In the algorithm ofClarke and

Wright only one pair of routes can be merged whereas multiple pairs of routes can be merged at
each iteration of the proposed PSA. The number of pairs of routes merged is determined by solving
a weighted matching problem (i.e., finding the largest size set of edges such that each customer is
linked to at most one route at the maximum saving possible). A&darke and Wrighs algorithm,

every customer is initially served by a separate vehicle. When two routes merge, the customers in
both routes are served by a single route. At each iteration, the exact savings obtained by merging
routesp andgq, S,q, is calculated for all possible pairs of routes without exceeding the vehicle ca-
pacity. New routes are formed by merging the matched routes. The procedure repeats until no more

routes can be merged.

One disadvantage of this PSA algorithm is that a TSP is solved at each iteration to calculate

the savingsS,, for every pair of routes considered for merging. Thus, two additional versions are
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proposed to estimate the savings instead of solving a TSP. One of them solves a TSP but only after
obtaining the final routes. The three algorithms are tested using 14 problem sets taken from the
literature. The problem size ranges from 50 to 200 customers, customer demands are not equal, and
the vehicle capacity is the same. The PSA improves 6 of the previously known best solutions for
the 14 problem sets. From those 6 improved solutions, 4 are obtained from PSA and the others from
the version that solves the TSP after the final routes. As expected, CPU times from PSA are larger
than from the two additional versions due to the solution of TSPs at each iteration. CPU times from
the two versions are quite similar, which reveals that most of the computing time is spent solving

the weighted matching problem.

2.4.10 Multiple-Route Improvement Algorithms

Multiple-route improvement algorithms improve an existing VRP solution by combining and mod-
ifying various routes. Most of these algorithms use the operatoianfBreedam (1995and
Kindervater and Savelsbergh (19®f more complex operators such as the ones us&dhbynpson

and Psaraftis (1993

Kindervater and Savelsbergh (199¥scribe three basic-exchange operators that relocate
customers between two routes: (&)ocation which movesk consecutive customers (usuaky<
3) from one route to another; (Bxchangewhich allows any two routes to exchangeonsecutive
customers; and (rossover which allows any two routes to exchangeconsecutive customers
in such a way that the last part of either route becomes the last part of the ¢limelervater
and Savelsbergh (199Teport finding no studies that compare these three operators with other

algorithms.

Thompson and Psaraftis (1998vestigate a neighborhood search basedyatic k-transfers
to solve the multi-vehicle routing problem. The procedure attempts to improve a solution by trans-
ferring K demands among a cyclic permutation of routes. They also study a speciab-aasdic

k-transfers which specifies the transfer amohgoutes. This search procedure is complex because
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a TSP is solved for each modified route in the permutation subset to evaluate the transfer cost and
the number ok demands that can be transferred is large. The cyclic transfer algorithms are tested
using 3 standard VRPs taken frogilon et al. (197) These problems have 50, 75, and 100
customers. The best solutions found are compared with solutions in the literature obtained with
various algorithms (includin@larke and Wright, 1964Gillett and Miller, 1974 Fisher and Jaiku-

mar, 198). The results reveal that the solution quality in terms of total distance is not better than
Fisher and Jaikumar (198but is quite close to it. The algorithms are also tested using six test sets
from Solomon (R1, C1, RC1, R2, C2, RC2) for the VRP with time windows, each set contain from
7-12 instances all with 100 customers. On average, the cyclic transfer algorithms provide a better

solution in 4 of the test sets.

Table2.2 provides a brief summary of the classical heuristic algorithms defined for and tested

on VRP-types of problems.

2.5 Metaheuristics for the VRP

Metaheuristics are solution methods that guide a subordinate heuristic algorithm to escape from
regions having local optimal solutions and thus perform a more effective search in the solution
space. These methods can use different techniques to avoid local optimum, including randomiza-
tion, population-based procedures, and memory-based techniques. This section overviews different
metaheuristic approaches used to solve the VRP, including simulated annealing, tabu search, genetic

algorithms, and ant colony optimization.

2.5.1 Simulated Annealing (SA)

This technique was first introduced Byrkpatrick et al. (1983 as an analogy between the anneal-
ing process of solids and the problem of solving combinatorial optimization with the objective of

converging to an optimal solution. The analogy provides a useful connection between the behavior
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Table 2.2:Representative Classical Heuristic Algorithms for the VRP.

Algorithm Year Description & Remarks

Dantzig and Ramser 1959 Constructive algorithm. First approach
Clarke and Wright 1964 Saving. Concurrent & sequential
Wren and Holliday 1972 Sweep Algorithm. Multiple depots

Lin and Kernighan 1973 Single-route improvement

Sequentiak-exchange
Gillett and Miller 1974 Sweep Algorithm. Single depot
Or 1976 Single-route improvement
Consecutive customers relocation
Foster and Ryan 1976 Petal algorithm. Optimal petal solution
Mole and Jameson 1976 Sequential Route-Building
Insertion position check
Christofides et al. 1979 Sequential Route-Building
Sequential & Parallel construction
Fisher and Jaikumar 1981 Cluster-First Route-Second

Generalized Assignment + TSP

Beasley 1983 Route-First Cluster-Second
Altinkemer and Gavish 1991 Matching Algorithm. Matching clusters
Ryan et al. 1993 Petal algorithm

Thompson and Psaraftis 1993 Multiple-Route Improvement
b-cyclic k-transfer
Potvin and Rousseau 1995 Single-route improvement. Based on 2-opt*
Bramel and Simchi-Levi 1995 Cluster-First Route-Second
Renaud et al. 1996 Single-route improvement

Kindervater and Savelsberghl997 Multiple-Route Improvement
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of systems in thermal equilibrium at a finite temperature and a combinatorial optimization, which

provides a new method to solve this type of problem.

To overcome local optimum in optimization applications, SA allows hill-climbing (non-improving)
moves with a probability that depends on the magnitude of the increase in the cost function and on
the search time to dat®sman (199Bdeveloped a SA algorithm where the local search approach
is based on a-interchange descent mechanism to explore new solutions. They &sg, so the
neighboring solutions can be obtained by exchanging a customer between any pair of routes. The
criterion to select the best neighbor solution uses two different strategies: the best-improvement
strategy, which examines all candidates in the neighborhood and selects the one with the best so-
lution costC'(S’") according to an acceptance criterion, and the first-improvement strategy, which
immediately accepts the first candidate satisfying the acceptance criterion. The algorithm uses: 1)
a starting and final temperaturé,(and7’), 2) a decrement rule (i.e., a temperature reduction fac-
tor «) to change the temperatufe after each iteratiort;, 3) an update rule for temperature reset
variablesT,. after the system freezes, and 4) a stopping criterion, which is the total number of tem-
perature resets performed since the best solution was found. The best solution found during the
search,S;, is kept instead of the one obtained in the last iteration. The algorithm performs a single

iteration at every temperature level.

To evaluate SA performance on 17 test proble@smnan (199Bused the algorithm oflarke
and Wrightand two hybrid approaches combining the SA approach with the tabu search (TS). The
hybrid approaches use the two selection strategies previously described: best-improvement and
first-improvement. The results of the experiment are summarized as:

e SA outperforms the existing heuristics and provides new best solutions.

e Both hybrid approaches with best-improve strategy and first-improve strategy outperformed

the SA method in both computational time and solution quality.

e SA reduced the total number of vehicles used with respect to the existing solutions.
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The OsmanSA method was implemented before the TS approadBesfdreau et al. (1994
However, the latter TS approach provided better solutions in terms of the objective value in three
of the problem sets, equal solutions for four problems, and worse solutions for six problems. In
other instances, TS provided better objective functions but used a higher number of vehicles. Better
results can be obtained with the SA approach by using a post-optimization procedure which was not

used byOsman

Van Breedam (1995describes the use of SA-based improvement methods for the VRP. Fea-
sible solutions are found by using three different multiple-route improvement heuristics and those
embedded in a SA metaheuristic. The descent implementationstrusg relocationto insert a
customer(s) from one route into anoth&rjng exchangéo exchange customer(s) between any two
routes, andtring mixto combine those into a single operator. Wan BreedanSA implementa-
tion uses a traditional scheme. A maximum number of feasible solutions are generated for every
temperature and the best one is kept. To offset the limitations of convergence to local optimum, a
non-improving neighbor solution is accepted with some probability. After a fixed number of itera-
tions, the SA algorithm stops. As a particular characteristic, they use a distance limit on potential

moves to restrict the neighborhood and thus improve computational times.

The descent algorithms and the same algorithms combined with the SA metaheuristic were
tested using the 14 test problemsGiiristofides et al. (1979p compare their results. To evaluate
the quality of the solutions obtained with the SA-based algorithm, a comparison was carried out
with existing TS solutions and the SA solutions@$man (1998 Results reveal that, as expected,
the SA-based versions of the three improvement methods gave better results in comparison with the
pure descent variants. The comparison v@$mars SA algorithm indicated that both implemen-
tations provide solutions with similar quality and neither one dominates the other. However, the TS
implementations clearly outperformed SA on the problem sets in terms of both solution quality and

computation time.
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2.5.2 Tabu Search (TS)

TS is a strategy that uses local search and flexible memory structures to learn from the search history
and overcome local optimun@{over, 1989. A local search is performed until a local optimum is
found. Systematic up-hill moves are used to escape regions of local optimum, explore the search
landscape and, hopefully, find a global optimum. Cycling moves are forbidden by the use of a
tabu list, or short-term memory, that records the recent history of the search. Promising solutions,
or attributes, are reinforced by the use of a recency memory, or intermediate-term memory, that
records the number of consecutive iterations that some attributes have been present in the current
solution. New solution regions are explored by diversifying the search using a frequency memory,
or long-term memory, that records the number of iterations that some attributes have been present in

a selected solution during the search and using that information to build new, more diverse solutions.

Taillard (1993 presents a parallel iterative search method for the VRP based on TS and two
partitioning methods. The algorithm partitions a full VRP into subproblems defined by sectors
and polar regions. Each subproblem is solved independently using TS. Once the subproblems are
solved, they are grouped together to construct a full solution to the original problem. This solution
is partitioned again and the process repeats. The TS is based on two neighborhoods created by
moving a customer from one route to another and by exchanging customers between routes. The
search is diversified by penalizing the moves that are frequently performed. The penalty value varies
with the frequency of moves and with a weight that is randomly generated at each iteration within
a range whose length depends on the move value and the problem size. Similarly, the tabu tenure
is determined randomly and is problem size dependent. Although a TSP is approximately solved
to determine the cost of a move, routes are exactly solved periodically during the search to produce
optimal routes. The algorithm partitions the problem differently when customers are uniformly
distributed around the depot and when they are not. The algorithm provides solutions with a quality
that is at least as good as the best published values on the 14 problems propGbedtafides

et al. (1979 and improves 5 of them.
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Gendreau et al. (1994ropose a TS approach, TABUROUTE, to solve the VRP with capacity
and length restrictions. In their approach, the neighborhood is built by removing a customer from
one route and reinserting it into another. The reinsertion method differs from a regular insertion in
the sense that, only routes containing nearby customers are considered for insertion. The current

route is optimized when the customer is reinserted into another route.

The procedure considers the set of all possible customers to reinsert. It randomly selects a
subset of customers. Then, for the selected candidates from the subset, all the potential moves are
evaluated moving the customer from the current route to another empty route or a route including
the closest customers. The insertion cost is then calculated. They use a simple aspiration criterion
where a tabu candidate is selected only if its value yields a solution better that the best found so far.
A penalty value is assigned based on any excess in the vehicle capacity and the number of times a
customer has been removed (this is to diversify the search). The candidate with the lowest value is
identified and selected. The current solution is updated with the best candidate unless the following
three conditions are true: a) the penalty value is greater than the current, b) the current solution is
feasible, and c) the current solution was not improved in the previous iteration by rearranging all
the routes independently. If the current solution is not updated, it is obtained just by rearranging the
routes. If no improvement has been obtained for a maximum number of iterations, the algorithm
stops. To intensify the search, the procedure is executed using the best feasible or infeasible solution

found so far.

Their results show that TS is a good alternative to solve VRPs, and typically outperforms the
existing heuristics. The implementation Gendreau et al. (1994utperforms the best known
solutions in 11 of 14 test problems. The authors conclude that the success of the procedure lies in
the fact that infeasible solutions are allowed through penalty terms and also the current solution is

perturbed periodically, so the risk of getting trapped in a local optimum is reduced.

Rochat and Taillard (199%resent a very interesting and novel probabilistic technique to di-

versify, intensify, and parallelize a local search for VRPs. This technique uses a local search which
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is based on the TS dhillard (1993, but improves the partitioning procedure and replaces the exact
algorithm for optimizing routes with a heuristic approach. The novelty of this technique relies on the
method used to exploit the concepts of diversification and intensification. The search is diversified
by generating with the local search a set of unique solutions. There is a random component in the
local search, so the algorithm produces different solutions each run. A peliteofoutess created

from these initial solutions. Thesdite routesare probabilistically extracted and used to generate a
partial solution,S. routes belonging to better solutions are more likely to be extracted. Customers
not included inS are allocated by solving an independent VRP, which produces a feasible solution
S’. Then, solutionss and.S’” are combined to create a feasible solution to the initial VRP. This so-
lution is then improved using a local search. The best routes of the improved solution are included
in the pool. Identical routes are not removed from the pool and, as the pool grows, there exist routes
that are not modified during the search. These routes contain strongly determined variables and are
more likely to be included in the final, hopefully optimal, solution. As far as the process goes, the
best routes are more frequently extracted from the pool and the search progressively changes from

a diversification to an intensification approach.

The behavior of the diversification and intensification technique is analyzed in terms of compu-
tation time with respect to the TS @aillard (1993 andGendreau et al. (1994The new technique
is much faster than the previous TS approaches to produce solutions at certain average levels of
quality above the best known solutions, especially on problems with more than 100 customers. The
proposed technique accompanied by a postoptimization procedure (based on a set partitioning prob-
lem) improves the quality of 4 of the best solutions reported in the literature for the VRP. The TS
used in the experiment (a modified versionTaillard, 1993 improves or reaches the quality of

about 27 out of 56 best solutions previously published for the VRP with time windows.

Xu and Kelly (1996 develop a TS approach composed of a network flow model, a direct cus-
tomer swap, and a TSP component to solve the classical VRP. This TS heuristic relaxes the capacity
constraints through the use of penalty parameters dynamically changed during the search. A net-

work flow model is used to optimally exchange a numbef customers (which is cyclicly changed
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during the search) between routes. Although the exchanges are made to local optimality, the ex-
change costs may only estimate the actual move costs as the least insertion positions need to be
found. This philosophy of optimally solving an approximate model is similar to the generalized
assignment heuristic dfisher and Jaikumar (1981mentioned previously. The direct customer
swap procedure simply exchanges two customers between two routes. The TSP component is em-
ployed as an improvement method that uses the 3-opt operator and a TS heuristic for the TSP. The
tabu tenure is randomly generated within a fixed interval. The diversification strategy relies on a
long-term, frequency-based memory that gives preference to those customers that appear less fre-
guently in a specific route. The search is intensified by restarting the search periodically from an

elite solution obtained from the repository.

An important characteristic of this TS implementation is that infeasible solutions are allowed
via penalty parameters. The search oscillates between feasibility and infeasibility. The network flow
moves dominate the search whereas direct customer swaps are executed periodically, or under some
specific conditions, to help produce feasible solutions of high quality when infeasible solutions
exhibit low capacity violation. If the capacity violation is high, the penalty parameters are modified
to drive the search back to feasibility. Computational tests are conducted on 7 benchmark problems.
The developed TS approach provides high quality solutions in reasonable times when compared
with the best solutions publishedigillard, 1993 Rochat and Taillard, 1995Compared to the TS
of Gendreau et al. (1994the proposed TS provides slightly better solutions on 3 out of 7 tested
problems. Another test conducted determined that the network flow moves seems to provide the

highest contribution to the solution quality.

Toth and Vigo (200Bpresent a variant of the traditional TS approach, called GTS, that uses
a candidate list strategy to drastically restrict the search neighborhoods. This approach uses four
neighborhoods based on the classica&ixchange (i.e4 < 4) and has similarities to the TS &fu
and Kelly. 1) infeasible solutions are allowed during the search by using penalty parameters; 2)
the penalty values are dynamically updated during the search; and 3) the tabu tenure is randomly

generated within a fixed interval. However, the characteristic that differentiates this TS from pre-
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vious approaches is the usegrinular neighborhoodthat discard a large number of unpromising
candidate moves and allow exploring only a small subset of them, containing the most promising
ones. This is accomplished by reducing the original complete gfaph (V, A) to a new sparse
graphG’ = (V, A’) containingshortarcs whose cost is not greater than gianularity threshold

value:

Z,

R

whereg is a positivesparsification parametet’ is the value of a heuristic solution provided by any
traditional heuristicp represents the number of customers, Ahdorresponds to the fleet size. The
sparse graph also contains all arcs incident to the depot, those belonging to the best solution found,
and to the current solution. The same graph is periodically rebuilt using an apprgpriatae

which computationally gives the best performance. Intensification and diversification strategies
are adopted by dynamically modifying the structure of the sparse graph. That is,&sr@dlles
produce an intensified search, whereas latgalues diversify the search. Whenever the current
best solution is not improved after certain iterations,th&lue is increased and a new sparse graph

is built.

The GTS algorithm was tested on instances from the literature with up to 500 customers. The
quality of the obtained solutions was compared with those obtaine@dndreau et al. (1994
and Xu and Kelly (1996. On problems with less than 200 customers, the solution quality was
comparable to or better than the solutions obtained by the others. In terms of computing time, the
GTS algorithm was on average five times faster than the other approaches. On problems with more
than 200 customers, however, the GTS algorithm was able to improve some of the best existing
solutions. Note thatoth and Vigo (2003provide a detailed summary of the commonly used VRP
instances for benchmarking including the number of customers and vehicles, vehicle capacities,
route maximum capacities and service times for some instances, the reference to the paper where

the instances are first described, the best solutions known, and the paper where the best solution is
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reported.

2.5.3 Genetic Algorithms (GAS)

Genetic algorithms are evolutionary algorithms that use a population of potential solutions, called
chromosomes, and analogies of genetic crossover and mutation to recombine chromosomes and
produce new solutions. The search is guided by evaluating the objective function of all the solutions
in the population. Solutions with a better value, or fitness, replace old solutions and “survive” into

subsequent generations.

Baker and Ayechew (2002pply a GA to the VRP. In their approach, giveustomers angh
vehicles, the chromosome for a solution is a string of sizénere each gene represents a customer
and has a decimal coded value in the rajige:| corresponding to the vehicle number to which the
customer is assigned. This means that the vehicle routes are not specified explicitly, but once we

know which vehicles visit the customers, it is possible to construct the routes.

They use two methods to generate an initial population of structured solutions. The first one is
based on the sweep algorithm@iilett and Miller (1974 and the second one uses the assignment
heuristic ofFisher and Jaikumar (1981The authors performed preliminary tests and realized that
using random solutions slowed the convergence of the GA; this method was not used in the final
version of the GA. Thus, each structured approach was used to generate half the initial population
while the individuals are ensured unique. The population size varies with the problem size. For

larger problems, it is 50 whereas for smaller problems the population size is 30.

Each generation parents are selected for reproduction by the binary tournament method. To
select each parent, two individuals are chosen at random and the one with the best fithess value is
selected. The offsprings are produced from the parents using a standard 2-point crossover procedure
in which the two points are selected randomly. Offsprings that duplicate existing members are dis-
carded. In addition to the crossover procedure, mutation was applied to the offspring. In mutation,

two genes (or customers) are selected at random and their values are exchanged whenever the two
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customers belong to two different vehicles. This procedure is equivalent to swapping two customers

from different routes, commonly used to solve the TSP.

To select the members of the population to be replaceahking replacemennethod is used.
In this method, the population is divided into four subsets according to the fithess and unfitness
value of the offspring and the members. The unfitness value is defined as the excess in capacity
and/or distance in the violated constraints. The member with the worst unfitness is selected for
replacement from the first non-empty subset. If the offspring does not duplicate another member, it
enters and the chosen member is removed from the population. The stopping criterion can be based
on the number of generations, number of generations with no improvements, or elapsed time. In

either case, no improvements were found in terms of solution quality.

The results did not demonstrate a benefit to using a random initial population. The GA con-
verges slower when a random initial population is generated instead of a structured start. Averaged
over 14 problems, the 2-point crossover produced lower total distances for the best population mem-
ber than the 1-point crossover; ttanking replacemennethod produced lower total distances than
the worst fitness/unfitness replacement method. “The best known results for VRP have been ob-
tained with tabu search and simulated annealing”, but “it appears that GAs have not yet made a

great impact on the VRP'Baker and Ayechew, 2003

2.5.4 Ant Colony Optimization (ACO)

Ant colony optimization metaheuristics intend to mimic the foraging behavior of real ants to solve
real-life path finding problems, such as the search for food. Ants secrete pheromone along the path
they use when traveling from the nest to the place where the food is located. This substance allows
the ants to communicate indirectly so other ants can follow the same path. As more ants follow the
path, the route becomes more attractive for subsequent ants. ACO is based on the interaction of a
colony of “artificial” ants using “artificial” pheromone trails. These trails provide numerical infor-

mation which is adapted during the algorithm run and used by the artificial ants to probabilistically
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construct a solution to the path-finding problem.

Scientists have explored different hard combinatorial optimization problems using this ant be-
havior analogyKawamura et al. (1998Bulinheimer et al. (1999 andMazzeo and Loiseau (204
consider the ACO applied to the VRIRawamura et al. (1998ropose a cooperative search algo-
rithm based on pheromone communication for solving the VRP. The algorithm consists of multi-
agents that provide a partial solution consisting of a single vehicle route. The initial solution for
each search agent is randomly generated. At each iteration, the route of each agent is modified by
replacing a customer at random and optimizing the resulting route by means of a classical 2-opt
operator. If an improvement is found, the partial solution of the agent is updated. Otherwise, it is
accepted with a probability that depends on the pheromone information associated to the replaced
customer and the search agent. The procedure is executed a fixed number of iterations. They gen-
erate two test problems with 60 and 30 customers and found the optimal solution in both cases.

However, no comparisons are made with other existing VRP solution methods.

Bullnheimer et al. (1990describe how to construct vehicle routes and how to update the
pheromone trails in a basic ant system for the VRP as well as their improved ant system algo-
rithm. First, for every ant, the construction of the routes is done by means of a local heuristic
function where ants successively choose customers to visit until all customers are visited. When-
ever a capacity constraint is violated, the ant returns to the central depot and starts a new route. The
information regarding how good was a customer in previous iterations is stored in the pheromone
trails 7;; associated with the arc connecting two customers, whereas the information of how good is
the next arc to take (i.e., the visibility, denoted+y) is used by the local heuristic function. In the
local heuristic, the next customer to visit depends on a probability distribution constructed using the
trail intensities, the visibility, and two other parametersand 3, to establish the relative influence
of the visibility versus the pheromone trails, respectively. After an artificial ant has constructed a
feasible solution, the pheromone trails are updaBadinheimer et alsuggest different techniques
for trails update, such as using only the contribution of the best ant or using an elite-list of artificial

ants.
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To improve the performance of the basic ant system, they solve the TSP for the routes generated
by the ants and use a candidate list sorted by the increasing distances for the selection of customers
in the local search. The performance of the ACO approach was compared to other heuristics in 14
test problems. Results conclude that, although the best known solutions could not be improved on
the problems tested, the proposed ant system approach is competitive in terms of processing time

and becomes a viable alternative to solve vehicle routing problems.

Mazzeo and Loiseau (20P#vestigated different alternatives for each component of the ACO
algorithm. For example, the route building can be sequential or parallel. Sequential means that each
ant constructs the route for a vehicle until the capacity is reached and then continues with other
vehicles until all customers are visited, as implemented@binheimer et al. (1999 In parallel
means that each ant constructs the routes for all vehicles at the same time. At each iteration, only
one customer is chosen, according to the transition rule. Then, the best route is extended. The
transition rule might beandom-proportionabr pseudo-random-proportionaln the former case,
the next customer is randomly selected based on a probability distribution. In the latter case, the
customer is selected based on the same probability distribution and also on the best option. The
pheromone update at the end of each iteration varies: use all the solutions, an elite-list of solutions,
only information of the best solution of the previous iteration, or locally each time an ant moves
from one customer to another. In addition, they use a reduced neighborhood list when the problem

is large and an improving heuristic to modify the ant solutions after each iteration.

Mazzeo and Loiseau (20p#&xperimented to determine the best alternatives: parallel route
building, best solution global pheromone update, a reduction of 25% of the candidate list, and ran-
domly located ants in a number lower than the number of customers. The results obtained are similar
to those ofBullnheimer et al. (1990in the sense that ACO does not clearly outperform existing
heuristics for the VRP, but is still a promising VRP technique. Tab&provides a summary of

metaheuristic algorithms defined for and tested on VRPs.
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Table 2.3:Representative Metaheuristic Algorithms for the VRP.

Algorithm Year Description
Osman 1993 SA
Taillard 1993 TS
Gendreau et al. 1994 TS
Van Breedam 1995 SA
Rochat and Taillard 1995 TS
Xu and Kelly 1996 TS

Kawamura et al. 1998 ACO
Bullnheimeretal. 1999 ACO
Toth and Vigo 2003 TS
Baker and Ayechew 2003 GA
Mazzeo and Loiseau 2004 ACO

2.6 Static and Dynamic VRPs

In more realistic applications, some parameters in the VRP vary as a function of other parameters.
Although any parameter may vary with others, such as weather and traffic conditions, they usu-
ally vary as a function of time. In the last decade, there has been increased interest in studying
dynamic VRPs as a consequence of the technological revolution and advances in communications.
Technology has yielded devices such as GPS and on-board computers that allow companies to con-
tinually update information and thus enhance the performance of decision systems. Although there
exist various classification schemes for vehicle routBgdin and Golden, 198 Desrochers et al.,

199Q Psaratftis, 1995Carlton, 199%, those schemes focus on problems where information relevant

to their solution is not updated in real-time. Terms ldggamic stochasticandreal-timeare com-

monly used in recent VRP publications, but it is still unclear what these articles mean by stochastic,
dynamic, or real-time VRPs. There does not seem to be any unified criteria to classify dynamic and

real-time VRPs; authors seem to use the terms interchangeably.
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In this section, a classification of VRPs is presented based on three criteria: staticism/dynamism
of the parameters of the problem, the knowledge of information relevant to the design of its solution,
and the method to model the unknown data (see Figii)e This new classification uses up-to-date
definitions to organize the different types of VRPs. See, for instance, the definitions and concepts
by Bertsimas and Van Ryzin (199&ndGhiani et al. (2008 Bertsimas and Van Ryzidefine the
probabilistic VRP as “inherently static and solved a priori using only probabilistic information”.
According toGhiani et al, “A VRP is said to bestaticif its input data (travel times, demands,...) do
not depend explicitly on time, otherwise itdgnamic Moreover, a VRP isleterministidf all input

data are known when designing vehicle routes, otherwisestbishastic

Currently, some authors agree about the definition of dynamic VRPs. Under this definition, a
problem is dynamic if the input data is unknown, or partially known, at the time an initial solution
is obtained; the unknown data is revealed as the current solution executes. This means that the
information can change after the initial routes have been designed (see for irRtamatis, 1995
Ichoua et al., 2000choua et al., 2007Larsen et al., 2007 The problem is static if the input data
is known before the routes are designed and does not change afterwards. Clearly, this does not align

with Bertsimas and Van Ryzin (199andGhiani et al. (2008

The concept of dynamism is broader. L€t,- ) be a solution to a combinatorial optimization
problemP(a) with set of parameters. Solutionz(t,-) is obtained at time = ¢,- based on the
known information [ (t,- ). Letty be the instant when the execution of solutigft,- ) begins and
At. > 0 be its execution time. The execution of the solution then entls-afy + At.. Clearly, the

problem is dynamic if there exists< At < At. such thatl (ty- ) # I(to- + At).

However, there are other instances where the problem is dynamic as well. Suppose some
problem parameters are time-dependent, i.e., the problem ita)). The problem is defined
asP(a(ty-)) att = to—, while itis defined ad(a(to- + At)) att = tg- + At. P(a(t)) is dynamic
if there exists0 < At < At. such thata(ty-) # a(to- + At). This means that, although the

input data is known before the initial routes are designed and executed, time is considered in the

39



problem. For example, in the PVRP customers have fixed, and probably different, daily demands.
Even if their demands are known before the routes are designed, days are considered a variable in

the problem in order to produce a solution.

In the classification scheme illustrated in Figré, three factors formally define a problem
type. The first factor defines the time-dependency of the problem parameters and/or the variability
of the input data. In the context of VRPs, these parameters include travel times, customer demands,
and customer presence. A problendigramicif: 1) some problem parameters are time-dependent,
or 2) the input data when the solution is obtained and executed differs from that at the moment its
execution ends; otherwise, itstatic. The first factor is coded usingandi. Thea defines whether
problem parameters are time dependent, or @otJhe 3 defines whether the input data changes
over time, or notj3. Under this notation, a problem is: 1) dynamic if the logical expresgion (3)

is true, or 2) static if it is false, i.e(ox + 3).

The second factor defines the availability, or knowledge, of the information relevant to solve
the problem. A problem isleterministicif all the information relevant to solve the problem is
available, or known. A problem is classified as deterministic if the logical value of paraméter

true. If a problem is not deterministic, its category depends on the third factor.

The third factor defines how the unknown information is modeled. A problestoshastidf
unknown information is forecasted or modeled probabilistically. In this case, unknown variables are
modeled as random variables and historical data, for example, are used to estimate their values. This
modeling method takes advantages of the potential benefits of considering the stochastic aspects of
the problemichoua et al., 2000 If no model can be used, the information remains unknown and the
problem is classified agal-time In such a case, an initial plan is based on the known information
and the solution is updated, or re-optimized, regularly as the unknown variables are revealed during
the operation. The third factor is coded with Using 7w and y, a problem is classified as: 1)
stochastic if the logical expressian i is true, or 2) real-time if the logical expressign is true.

Note that the method used to model the unknown information does not have anything to do with
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Figure 2.1:Classes of Dynamic VRP.

the solution method. A solution method utilizes the input data to produce a solution regardless of
the nature of the data, deterministic or stochastic. Some authors refer to dynamic non-deterministic
VRPs as real-time, avn-line problems and do not differentiate the probabilistic estimation of the
unknown problem information. This is the caseGifiani et al. (2008 who state that a plan is not
elaborated beforehand, but customer requests are assigned to vehicles in an on-going fashion as new

data arrive.

The classification scheme illustrated in Fig@r&shows a tree structure with blocks represent-
ing the nodes of the tree. Each block has a label and a logical expression in terms of the notation
previously described. Labels are used from top to bottom to construct the names of the problem
types whereas logical expressions are used to classify the problems. For example, a problem is
static stochastidf logical expressionga + 3) and#- . are both true. Similarly, a problem dy-
namic deterministié logical expressionga + 3) andr are both true. From the figure, we note that
a static problem can be either deterministic or stochastic while a dynamic one can be deterministic,
stochastic, or real-time. For simplicity, a dynamic real-time problem is simply called real-time.

Examples of some well-known routing problems are presented below to provide a guide to classify
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routing problems.

2.6.1 Static VRPs

Static Deterministic VRPs

In static deterministic routing problems there are no time-dependent parameters in the problem,
the input data does not change over time, and all the data is known. Within this category, we find
problems such as the capacited VRP, VRP with multiple depots, VRP with split deliveries, VRP
with pick-ups and deliveries, and VRP with backhauls. The static version of the dial-a-ride problem
(DARP) described irCordeau and Laporte (20p@here all requests are known in advance also

belongs to this category.

Static Stochastic VRPs

In static stochastic VRPs there are no time-dependent parameters in the problem and the input data
does not change over time. Although not all the data is known, unknown data can be modeled using
some probability distributions and random variables. These problems are solved in two stages. In
the first stage, aa priori solution is found which takes into account the possible realizations of the
problem. In the second stage, a recourse is applied to the solution found in the first stage according
to the actual problem realization. In stochastic programming, two versions of the problem can
be considered: 1) chance constrained programming (CCP) where the objective is to minimize the
planned route costs subject to a bound in the probability of violating a capacity constraint without
considering the costs of recourse, and 2) stochastic programming with recourse (SPR) where the
objective is to minimize the cost of the solution found in the first stage plus the expected cost of

recourse.

Within static stochastic problems, we find the VRP with stochastic demands, VRP with stochas-
tic customers, VRP with stochastic customers and demands, VRP with stochastic travel times, and

VRP with stochastic service times.
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VRP With Stochastic Demands (VRPSD) The Vehicle Routing Problem with Stochastic
Demandss probably the most studied of all the SVRPs. A good summary of contributions and
publications can be found iBendreau et al. (1996The VRPSD is defined on a graph= (V, A),
whereV' = {vg,v1,..., v, } represents the set of vertices with known and fixed locations4ard
{(vi,v5) - vi,v; € V,i # j} represents the set of arcs. Vertgxcorresponds to a central depot
wherem identical vehicles with capacit§) are located, whereas the other vertices correspond to
customers with a nonnegative demafyd Each arc(v;,v;) has an associated cast, usually
representing distances or travel times. The particular characteristic of the VRPSD is that customer
demandsyg;, are random variables;, usually but not necessarily assumed to be independent. The
value of¢; may become known upon arriving at the customer location or before leaving the previous

customer.

VRP With Stochastic Customers (VRPSC) The Vehicle Routing Problem with Stochastic
Customerscan be defined on the same gra@h= (V, A) where vertexy, defines a central depot
with some fleet of vehicles and the paramefgris used to represent the cost of &tg, v;). The
characteristic that differentiates this problem from other SVRPs is that each veitegresent in

the graph with probability;, whereas the customer demapademains deterministic.

VRP With Stochastic Customers and Demands (VRPSCD) TheVehicle Routing Problem

with Stochastic Customers and Demaisla combination of the VRPSC and the VRPSD. Absent
customers are represented by a set of customers with zero demand and present customers have
positive demands known only when the vehicle arrives at the customer location. Obviously, this
problem is more difficult than the previous SVRP because both customers and their demands are

uncertain when the solution is obtained.

VRP With Stochastic Travel Times (VRPST) TheVehicle Routing Problem with Stochastic

Travel Timess also defined on grapfi = (V, A). However, the cost;; of arc (v;, v;) specifically
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represents the travel time between the two vertices and is a random variable. Usually the fleet size
is a decision variable in this problem, which is solved to maximize the probability of completing

the tours within a given deadline.

VRP With Stochastic Service Time (VRPSST) TheVehicle Routing Problem with Stochas-
tic Service Timés also defined on the gragh = (V, A), but additional parameters are used. First,
arc (v;,v;) has an associated travel tirtye. Second, vehicles in the fleet have an operational time
restrictionr. Third, all customer demands are deterministic. And fourth, each vertex(i > 0)

has an associated random varial§lerepresenting the service time with meganand and variance
o2,

(2

2.6.2 Dynamic VRPs

Dynamic Deterministic VRPs

In dynamic deterministic problems, there either are time-dependent parameters in the problem or the
input data changes over time. However, any time-dependency or data variation is known. Within this
category, we find problems such as the VRP with time windows, and periodic VRP. The dynamic
version of the dial-a-ride problem describedMiadsen et al. (1995where customers provide time

windows on the origin, destination, or both, also belongs to this category.

The time-dependent vehicle routing problem (TDVRP) is another dynamic deterministic prob-
lem, where travel times depend on the distance between customers and the time of day. The TDVRP
accounts for variations in the travel time due to random events, such as traffic congestion, accidents,
and weather conditions, and temporal variations that result from seasonal, weekly, daily, or hourly
cycles. The assumption that the travel times are deterministically known and constant is an approx-
imation of actual conditionsMalandraki and Daskin, 1992 Although the TDVRP traditionally

assumes that only the travel times vary over time, there are a few recent studies that consider the
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Table 2.4:Available literature on TSP with moving-customers.

Author(s) Year Description & Remarks

Helvig et al. 1998 Moving-target TSP. Related problems
Helvig et al. 2003 Moving-target TSP
Bourjolly etal. 2006 Moving-target TSP

possibility of customers with dynamic locations. The literature on VRP with moving-customers is

very scarce. As far as we are aware, it can be summarized as shown ir2 Fable

Helvig et al. (1998andHelvig et al. (2003introduce a generalization of the TSP with moving
customers and propose the first heuristic for this type of problem. This research is motivated by
some applications that reveal customers moving, such as a supply ship supplying patrolling boats,
or an aircraft intercepting a number of mobile ground units. The moving-target TSP is formulated
as follows. Given a set = {sy, ..., s,,} of targets eachs; moving at constant velocity; from an
initial positionp;, and given gursuerstarting at the origin and having maximum speed |v;|,

find the fastest tour starting and ending at the origin, which intercepts all targets.

Bourjolly et al. (200$ show the On-Orbit Servicing problem (OOS) as another line of research
where moving-target TSP can be applied. The concept of OOS can be summarized as an orbital
“depot” full of consumables and spare parts for spacecraft, and a “servicing platform” (based at this
depot) to service a set of client spacecraft and then return to the depot to resupply. Their work is
motivated by the problem of maintaining and repairing satellites in orbit, which are continuously in

motion.

Dynamic Stochastic VRPs

In dynamic stochastic problems, there either are time-dependent parameters in the problem or the
input data changes over time. Although not all the data is known, any unknown time-dependency

or data variation is modeled using some probability distributions and random variables. Within this
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category, we find emergency response systems, automobile road service, inventory routing prob-
lems (IRP), and other problems, such as the dynamic stochastic VRP defirigertisimas and

Van Ryzin (199}, where demands vary over time, are stochastic, and follow a Poisson process.
Weintraub et al. (1999resent an emergency service where repair vehicles are dispatched to ser-
vice electrical breakdowns in a metropolitan area. Breakdowns can occur anywhere, but knowledge
of the probability of breakdowns in the electrical system is used to predict the service requests,
generate vehicle routes efficiently, and reduce the response time. In IRPs, a central supplier delivers
goods to retailers on a repeated basis. The customer’s consumption rate is unknown. If a reactive
strategy is adopted, deliveries are made based on the actual inventory levels of retailers at a high
cost due to potential stock-outs. However, if the customer’s consumption rate is represented by a
random variable with known probability distribution, a plan is made based on expected customer’s
consumption rate reducing the delivery costs of stock-outs. See the IRPs describeadrian and

Larson (200) andJaillet et al. (2002 In spite of the elaboration of a plan, it can be modified as
required. For exampldell et al. (1983 present an IRP where historical data on customer demands

is used to project the inventory level in each customer at any point in time. The problem is titled
on-line because a detailed schedule is produced for a short planning horizon, but it can be updated

when the actual inventory levels are disclosed.

Real-Time VRPs

In real-time problems, either there are time-dependent parameters in the problem or the input data
changes over time, and there is no way to forecast the future. An example of a problem within this
category is the classical dial-a-ride problem where customer requests are evaluated as they arrive.
A particular characteristic of real-time VRPs is that arriving requests can be accepted, postponed,
or rejected. Once a request is accepted, it must be serviced. Another example in this category is
the dynamic VRP described Bent and Van Hentenryck (20R4where requests have associated
service times and time windows. Requests are numbered and evaluated in the chronological order

of their arrival. The objective is to service as many customers as possible.
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Chapter 3

Split Delivery VRP (SDVRP)

3.1 Problem Definition

In the VRP defined in Chapt&, every customer is visited exactly once by exactly one vehicle,
and the total demand of any route cannot exceed the vehicle capacity available. In reality, however,
there may be cases where either a customer demand exceeds the vehicle capacity or a savings both
in terms of the total distance and the number of vehicles can be obtained by allowing customers to
be visited more than once. The split delivery vehicle routing problem (SDVRP) allows the use of
multiple vehicles to satisfy demand points and potentially reduce the total cost by splitting deliveries
(Dror and Trudeau, 1989 The computational complexity of this problem remains NP-h&ne(

and Trudeau, 1990In the literature, a variant of the SDVRP, theSDVRP, can be foundirchetti

et al. (200) andArchetti et al. (200bdefine thek-SDVRP as a special case of the SDVRP where
vehicles have a capacity éfunits,k € Z*. They show that the-SDVRP is solvable in polynomial

time when some specific conditions on the distances are satisfied, while the problein>withs
NP-hard, as proved kyror and Trudeau (1990They also show that tHe SDVRP may be reduced

to a problem of possibly smaller size, where each customer has unitary demand.

In any case, vehicle capacities are usually greater than two units. As such, large instances of

routing problems are commonly solved via heuristic algorithms so that good solutions are found in
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reasonable computational time and with reasonable use of computational resources.

3.2 Benefits of SDVRP

At first glance, one may believe that the benefits of allowing split deliveries are small when the
customer demands are either considerably small with respect to the vehicle capacity or close to the
vehicle capacity. In their experimental studor and Trudeau (198%howed that if customer
demands are low relative to the vehicle capacity and the triangular inequality hgles ¢, + cx;,

for all 4, 7, andk), the split demand benefits are actually small. In contrast, when the customer
demand is larger, at least 10% of the vehicle capacity, the cost of a SDVRP solution is considerably
lower than the cost of a VRP solution. FigilBd shows a simple example to illustrate the potential
benefits of allowing split deliveries in terms of the number of vehicles and the solution cost. In this
figure, there are 12 customers with demand= 60 symmetrically located on a circle of radius
centered at the depot, where a fleet of vehicles with cap@city100 is located. The optimal VRP
solution is illustrated in Figur8.1(a). It employs 12 vehicles with an average utilizatior66%

and has a value of = 240r distance units. If split deliveries are allowed, all customer demands
can be supplied as illustrated in Figugd(b) with only 8 vehicles, an average utilization @f%,

and a solution value of = 201.4r.

Gendreau (2006extends the scenario depicted in Fig@r& and makes a theoretical general-
ization. He considers a circle centered on the depot with ralliyus = 2k demand points with
demand of: units located equidistantly on the circle, and vehicle capagity 2k — 1. The optimal
VRP solution consists dik independent tours with a cost dhM. A feasible SDVRP solution
consists of: routes visiting two consecutive customers (and leaving a unit of demand at the second
customer) plus a last route visiting the theemaining unsatisfied unit demands.elélefines the
distance between two consecutive customers in the circle, each one of theduseés have a cost
of 2M + € and the last route has a cost less tha + 27 M. As the number of demand points

grows, the cost of the SDVRP solution converges to be 50% of that of the VRP solution.
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Figure 3.1:lllustration of savings by SDVRP: (a) VRP solution and (b) SDVRP solution.

Archetti et al. (200pprovide a worst-case analysis for the SDVRP and show that the savings in
delivery costs obtained by allowing split deliveries is at most 50% and that bound is tight (i.e., there
exist an example in which the value of the optimal VRP solution doubles the value of the optimal
SDVRP solution). This analysis, however, does not provide any insight into the relation between
the customer characteristics and the savings by allowing split delivefigzhetti et al. (2008
characterize distribution environments and conduct a very thorough study (the most detailed found
so far) of the value and benefits of allowing split deliveries. The focus of the study was to determine
the practical implications of split deliveries for different customer characteristics, particularly in
terms of geographic distributions of customers and demand distributions of customers. The benefits
are quantified in: 1) the reduction in the number of routes required to fully supply all customer

demands and 2) the reduction in delivery costs.

To quantify the reduction in the number of delivery routes, the ra ‘If;})) is studied,

where the numerator and denominator represent the number of routes required in a VRP and a

SDVRP solution to fully supply all demands, respectively. A mathematical analysis is used to
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prove that the maximum reduction in the number of routes that can be achieved by allowing split
deliveries is 50%. Moreover, the analysis confirms that the largest reduction is obtained when the
mean customer demand is between 50% and 70% of the vehicle capacity and the demand variances

are relatively small.

Regarding the reduction in delivery costs, they empirically study the 5@%% -where
the numerator and denominator represent the VRP and SDVRP solutions, respectively- through
the use of the granular TS heuristic for the VRI®th and Vigo, 200Band a TS for the SDVRP
(Archetti et al., 2005 which is described later in this chapter. To conduct the experiment, instances
are constructed from three instances of Solomon’s benchmark data for the VRP. To determine any
dependence of the ratio on the geographic distribution of customers, one instance from each problem
type (i.e., R101 for random locations, C101 for clustered locations, and RC101 for mixed locations)
was used. For each set of customer locations, instances for various combinations of mean demand
and demand variances are created. According to the results, there does not appear to be a depen-

dence on the geographic distribution of customers, but there does appear to exist a dependence on

the demand variance.

3.3 Various Models for the SDVRP

3.3.1 Formulation of Dror and Trudeau (1990)

Notation

C;;  The distance (“cost”) between demand poinéd;

d; The daily demand at point

Q, Capacity of vehicley

zi;  1ifvehiclev travels directly from point to j, andz}; = 0 otherwise

yiv  The fraction of point demanddelivered by vehicle

NV The number of vehicles in the fleet

S Set of all cycles on the sé&{ which include the depot. The point O denotes the depot

n n NV

Minimize z, = ZZZCWC% (3.1)

i=0 j=0 v=1
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Subject to:

NV n
sz3j21;forj:0,...,n (3.2)
v=1 i=0
Za:fp—szj:0;f0rp:0,...,n;v:1,...,NV (3.3)
i=0 =0
NV
S yw=1Lifori=1,....n (3.4)
v=1
> diyiy < Quiforv=1,...,NV (3.5)
i=1
yw§Zx}’i;forizl,...,n;vz1,...,NV (3.6)
=0
XeS (3.7)
zi; €{0,1};fori =0,...,n;5=0,...,n5v=1,...,NV (3.8)
Yio > 0;fori=1,...,n;v=1,...,NV (3.9)

Equation 8.1) denotes the objective function represented by the total distance traveled by the fleet
of vehicles. Constraints3(2) ensure that each customer is visited at least once. Constraififs (
stipulate that a vehicle visiting a customer has to leave the customer. ConstBadhenture that

all customers are fully supplied. Constraingsgj ensure that the total demand of any route cannot
exceed the vehicle capacity available. ConstraiBit§) Gctate that a customer is supplied only if it is
visited. Constraints3,7) ensure that the tours start and end at the depot. Constraiiad 3.9

represent binary and non-negativity conditions#frandy;,, respectively.
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3.3.2 Formulation of Frizzell and Giffin (1992)

Notation

d;;  Cost of traveling between customeasind customey
w; Demand of customar

my  Capacity of vehicle

z;, 1 ifthe vehiclek travels directly from customerto customerj, andz;;;, = 0 otherwise

fit  The fraction of demand of customedelivered by vehiclé:
v The number of vehicles in the fleet
n The total number of customers

Yi An arbitrary real number (i.e., usually taken to be the position number of cusiomer

in a TSP tour)
n n v
Minimize Z Z Z dijijk
i=0 j=0 k=1
Subject to:

Tijk > I;Vj:O,...,n

k=1 1i=0
n n
E Tink — E xh]k—07Vh_07 7n7k:17 » U
=0 7=0

n
Zwlfzk’ gmkaVk: L...,v

=1

n
ik SZ:}:ﬁk;W:1,...,n;k:1,...,v
=1

Yi—yjtnzygr <n—LV1<i#Aj<nl1<k<wv

xijr € {0,1};fori, j =0,...,nsk=1,...,v

fie=0fori=1,... . n;k=1,...,v
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(3.16)
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Equation 8.10 denotes the objective function minimizing the total distance traveled by the fleet of
vehicles. Constraints3(11) ensure that each customer is visited at least once. Constraihg (
force a vehicle visiting a customer to leave the customer. Constr8iit3 énsure that all customers
are fully supplied. Constraint8(14) ensure that the total demand of any route cannot exceed the
vehicle capacity available. Constraing&15 ensure that a customer is supplied only if it is visited.
Constraints .16 ensure that the tours start and end at the depot. Constraidf3 and 3.18

represent binary and non-negativity conditions#gy, and f;;,, respectively.

The subtour elimination constraint3.16 of the above formulation differs from the one by
Dror and Trudeau (1990constraints§.7). As stated byFrizzell and Giffin these constraints can

be replaced by any inequalities which prevent subtours.

3.3.3 Formulation of Dror et al. (1994)

Notation

¢;;  Nonnegative distance associated to(@rg)

i Nonnegative demand at vertéx

@, Capacity of vehicley

x5,  1ifvehiclev travels directly from point to j, andz;;, = 0 otherwise
Yiy ~ Proportion of theth customer demand delivered by vehicle

m The number of vehicles in the fleet

Minimize iiici]’xl‘jv (319)

i=0 j=0 v=1
Subject to:

Y ik — Y iy =0VE=0,... mv=1,...,m (3.20)

i=0 §j=0
yg=1LVi=1,...n (3.21)

v=1

D i < QuiVu=1,....m (3.22)

=1
injyzyiv <Vi=1,....n;v=1,...,m (3.23)

J=0
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Subtour elimination and connectivity constraints (3.24)

Zijo €4{0,1}1:Vi,j=0,...,nv=1,...,m (3.25)

0<yuw<LiVi=1,....,n;v=1,...,m (3.26)

Equation 8.19 denotes the objective function represented by the total distance traveled by the fleet
of vehicles. Constraints3(20 are flow conservation conditions. Constrair@2() ensure that all
customers are fully supplied. Constrain822 ensure that the total demand of any route cannot
exceed the vehicle capacity available. ConstraiBt&3 force that a customer is not supplied by

a vehicle if the vehicle does not visit the customer. ConstraBu@4) are initially relaxed and
successively introduced as part of the branch and bound exact algoritirookt al. (1994)
described later. Constraint8.25 and (.26 represent binary and non-negativity conditions for

zij, andy;,, respectively.

3.3.4 Formulation of Frizzell and Giffin (1995)

This mixed-integer programming formulation is basedDyor and Trudeas (1990. It includes

additional constraints for the time windows consideredrligzell and Giffin
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Notation

d;;  Cost of traveling between customesind customey
w; Demand of customer

my,  Capacity of vehicleé

xi;, - 1if the vehiclek travels directly from customerto customerj, andz;;;, = 0 otherwise

fir ~ The fraction of demand of customéedelivered by vehicle:
Vv {1,...,v} the set of all vehicles in the fleet

N {1,...,n} the set of all customers

Dy The departure time of vehiclefrom customet

€; The beginning of customeis time window

t;;  Thetime required to travel from custometio customery

l; The end of customaers time window

S Set of subtour breaking constraints

Minimize z”: z”: ZU: dijTijg

i=0 j=0 k=1
Subiject to:

Tijk >1;,Vj€eN
k=1 1=0

n n
> @ik — Y wnikr=0;VhE Nk eV
i=0 j=0

ifik =1;Vie N

k=1

Zwifik <my;Vk eV
=1

Tijk =1 = D +tij < Djp;V(i,j) €e NkeV
ei <Dy <Il;;Vie NkeV

n
fik < Zﬂﬁjik;w eEN,keV
=1

Tijk € S
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(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)



ziji € {0,1}1:V(i,5) € Nk eV (3.36)

fir>0:Vie NykeV (3.37)

Equation 8.27) denotes the objective function represented by the total distance traveled by the
fleet of vehicles. Constraint8.28 ensure that each customer is visited at least once. Constraints
(3.29 force a vehicle visiting a customer to leave the customer. Constrd86) (ensure that
each customer is fully supplied. Constrair@s3(l) ensure that the total demand of any route cannot
exceed the vehicle capacity available. Constra®itdd and 3.33 ensure time windows feasibility.
Constraints .34 ensure that a customer is supplied only if it is visited. ConstraB&5( ensure

that the tours start and end at the depot. Constrath&g(and @3.37) represent binary and non-

negativity conditions for;;; and f;;, respectively.

There is a small difference between the above mixed-integer programming formulation and
the one oDror and Trudeau (1990Frizzell and Giffin (199% consider the SDVRP with hard time
windows (SDVRPTW) where vehicles must arrive at the customers within the time wirjdpws
If the arrivals occur before;, vehicles wait at the customer. Dror and Trudeas formulation
there is no infeasibility due to arrival times so a customer can be visited anytime. To handle the time
windows,Frizzell and Giffinincorporate constraint8(32 and @.33. In addition, the parametey;
is used to set the travel time between two delivery points. This parameter does not explicitly appear

in the notation given by the authors, but it is very easy to imply its meaning from the formulation.

3.3.5 Formulation of Belenguer et al. (2000)

This integer programming formulation differs from those previously in the fact that all vehicles are

used, as explained below.
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Notation

c;j  The distance between clientand;
d; Demand of client
Q Vehicle capacity
K  Fleetsize
M A constant “big enough”
Vv {0,...,n} is the set of vertices. Vertex O represents the depot
E {(4,7),4,j € V,i < j} is the set of edges
S S C V is a subset of vertices
S Setof vertices i\ S
d(S) Sum of the demands of the verticesdn
§(S) Set of edges with an endpoint fhand the other irb
zf;  The number of times that vehicleuses edgéi, j), V(i, j) € E
yi;n,  1if vehiclesh visits clienti, and 0 otherwiseyi € V\{0}
d®  The portion of the demand of clieiserviced by vehiclé, Vi € V\{0}
Minimize Z > il (3.38)
=1(i,j)eE
Subiject to:
nyZl;izl,...,n (3.39)
oyt >Lh=1,....K (3.40)
Slabi>2uh=1,.. K (3.41)
> oalzwulh=1,... Ki=1,...,n (3.42)
(i.5)€6(4)
a:lhjSMylh;V(i,j)EE;hzl,...,K;izl,...,n (3.43)
Yoo alzlvs cV\{0h2< S| <n—LVue S;h=1,... K (3.44)
(1.4)€(S,5)
d(5)
Z > x.jzg[jwsgf\{omg S| <n—1 (3.45)
h=1 (i,j)€(S.5)
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d <dgyl:h=1,...,K;i=1,...,n (3.46)

K
ddl=dii=1,...,n (3.47)
h=1
dodr<Qih=1,....K (3.48)
i=1
afy € ZVh=1,...,K;Y(i,j) € E (3.49)
yhe{0,1};h=1,...,K;i=1,...,n (3.50)
dtezt:h=1,...,K;i=1,...,n (3.51)

Equation 8.38 denotes the objective function represented by the total distance traveled by the fleet
of vehicles. Constraints3(39 ensure that each customer is visited at least once. Constraits (

force that each vehicle visits at least one customer. Constr8idt§) ctipulate that all vehicles visit

the depot. Constraint8(42 ensure that tours start and end at the depot. Constr8idtd prevent

use of an edge if a vehicle does not visit a customer. Constrdird) force the use of an edge

if a vehicle does visit a customer. Constrair@sAf) ensure the capacity constraint is not violated
and prevent the existence of subtours. Constratg( stipulate that a vehicle does not supply an
unvisited customer. Constrain3.47) force supplying each customer’'s demand. Constrag 8
ensure the vehicle capacity is not exceeded. Constrddm84{(3.51) represent binary and integer

conditions forz"

h h ;
i Yi s andd;, respectively.
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3.4 Exact Algorithms for the SDVRP

Few algorithms are found in the literature to exactly solve the SDVRP. It is often impractical to look
for optimal solutions of routing problems as the needed computational resources can be enormous.

As far as we know, there exist only three exact approaches for the SDVRP.

3.4.1 Branch and Bound Algorithm of Dror et al. (1994)

Dror et al. (1994 propose an integer linear programming formulation and describe a B&B algo-
rithm based on new classes of valid inequalities for the SDVRP. The algorithm uses the formulation
described previously in Sectid3.3and the heuristic approach bfor and Trudeau (19890 cal-

culate an upper bound. The heuristic approach is described later in this chapter. A lower bound is
computed by relaxing the original formulation, adding new valid constraints, and using the simplex
method. Although a full implementation of the B&B algorithm would provide an optimal solution,
the relaxed problem is solved only at the root of the B&B tree as the objective of the study is to de-
termine the strength of the inequalities. The gap between the heuristic solution and the lower bound
is drastically reduced by the inclusion of various cuts in problems with 10, 15 and 20 customers.
A problem with 10 customers is solved to optimality. They point to the low gaps obtained with the

B&B algorithm to indicate the quality of their heuristic approach.

3.4.2 Column Generation Algorithm of Sierksma and Tijssen (1998)

Sierksma and Tijssen (19P8se a SDVRP applied to the transportation schedule of helicopters to
offshore platforms in the North Sea for crew exchange of people employed on those platforms. The
helicopters are based at an airport near Amsterdam. They propose a set-covering formulation for
the SDVRP and solve its relaxation using a simplex algorithm and a column generation technique
that includes a knapsack problem and several TSPs. The solution is a non-integer optimal schedule.

This linear solution is transformed into an integer, not necessarily optimal, solution by means of an
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iterative rounding procedure. Finding the exact solution takes a considerable amount of time and is
suitable for long-term planning. However, given the size of the problem (51 platforms or customers),

a Cluster-and-Route procedure is proposed that obtains an approximate solution much quicker. The
heuristic procedure clusters and routes the customers but differs from previous clustering procedures
in the fact that the clustering and routing are performed simultaneously. The farthest unserved
customer from the depot is selected as a seed and the closest unserved customers are routed with it.
When the tour capacity is reached, a new seed customer is selected and the procedure is repeated

until all demands are fully supplied.

The exact, rounding, and heuristic procedures are tested on the problem having 51 real plat-
forms with 11 different demand quantities. The results are compared to solutions obtained with
modified versions of the sweep algorithm@illett and Miller (1974 and the saving algorithm of
Clarke and Wright (196¢4 The gap between the lower non-integer bound and the solutions obtained
with both the rounding procedure and the cluster-and-route approach are less than 5%. Although
the developed heuristic approach improved over the other two modified algorithms, the two prior

algorithms were not intended for SDVRP instances, so it is difficult to make a fair comparison.

3.4.3 Dynamic Programming Formulation of Lee et al. (2006)

Lee et al. (200Bpropose an entirely new approach for the multiple-vehicle routing problem with
split pick-ups (MVRPSP) based on a deterministic dynamic program model and a shortest path
search algorithm. The mVRPSP is equivalent to the SDVRP, but vehicles are to pickup supplies
from different suppliers and then go back to the depot. Based on some properties of optimal solu-
tions of the mVRPSP, they reformulate the original dynamic program to find an equivalent model
with a finite action and state space without loss of optimality. The reduced model is associated with
a directed network, which is then solved as a shortest path problem. The authors claim that their
procedure is exact because thitalgorithm is used to solve the shortest path, which is an algorithm

known to find an optimal solution when it is accompanied with a guidance function. The algorithm
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is used to solve small instances with 4, 5, and 7 suppliers and the optimal solution is obtained in all

cases. The proposed shortest path approach takes significantly shorter time to solve all the instances.

3.5 Bounds for the SDVRP

3.5.1 Cutting-plane Algorithm of Belenguer et al. (2000)

Belenguer et al. (20QCcalculate lower bounds to optimal solutions of SDVRP instances based on
a linear program formulation P; and a cutting-plane algorithm. The cutting-plane algorithm starts
from an initial lower bound[ Fy, calculated by solving the initial formulation via a linear program-
ming code (CPLEX 3.0). Valid inequalities are developed and used to determine the feasibility of
the solutions obtained by the algorithm. Any violated inequality, if existing, is added to the initial
formulation and the process is repeated to calculate a better bound. If no inequality violation is
found in the new solution, the cutting-plane algorithm stops and provides a final lower baBnd,

The quality of boundL B is determined by comparing it with the optimal integer SDVRP solu-
tion value. This optimal value is obtained at a higher computational cost through the cutting-plane
algorithm, by solving at each iteration an integer program by adding the integrality constraint corre-
sponding to each variable. The cutting-plane algorithm is tested on 11 instances from the TSPLIB
and a set of 14 randomly generated instances. Optimal solutions are found for instances ranging

from 21 to 50 customers.

3.6 Classical Heuristics for the SDVRP

3.6.1 Algorithm of Dror and Trudeau (1989)

Dror and Trudeau (199%ropose a local search to solve the routing problem with split deliveries.
This is a two-stage algorithm that first constructs a feasible VRP solution and from this generates

a feasible SDVRP solution if split deliveries improve the initial VRP solution. The first stage uses
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three subroutines: (i) an initial route generator based on the algorititadée and Wright (1964

(ii) a node interchange based on a one-node and two-node swap; and (iii) a route improvement
based on a 2-opt procedure. The second stage use2-§plitinterchange and (ii) a route addition
routine. Given a demand point, tResplit creates a neighborhood with all the possible alternatives
that remove the demand point and insert it into two other routes whose combined spare capacity is
sufficient for the demand. At each iteration, the candidate with the highest saving is selected and
the search terminates when improvements cease. After this local search, a route addition routine
creates new routes to eliminate split deliveries as long as a reduction in the total routing cost is
obtained. From this search neighborhood, the candidate solution with the highest saving is selected.

The routine stops when no more improvements are found.

To test the potential savings associated with SDVRP, 180 problem sets are generated and solved
with the proposed local search and the solutions are compared to VRP solutions. The number
of customer varies from 75 to 150, the customer demands rangeOiraghand 0.9, where@
is the vehicle capacity fixed at 160 units. The customer locations are obtainedEfimmet al.

(1971 and modified in a systematic/random fashion. A paired one-taitedt comparison was
conducted, and the results show no significant difference between the SDVRP and VRP solutions for
small customer demands in the rafjg®1@), 0.1Q]. However, for all other problem sets, SDVRP

solutions significantly outperform VRP solutions in terms of travel distance.

3.6.2 Algorithm of Frizzell and Giffin (1992)

Frizzell and Giffin (1992 provide a construction heuristic to solve the SDVRP. They consider grid
network distances, lower and upper bounds to limit the ways to split deliveries, and splitting costs
in the objective function.Frizzell and Giffingroup, or cluster, the customers whose distances to
each other are lower than a predefined value. The mechanism to group customers is what they
call clustering of adjacent customers, CAC. Any customer which does not meet this condition is

clustered in another group. If the combined demand within a cluster exceeds the vehicle capacity,
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the algorithm sequentially allocates vehicles to another group until all demands are fully supplied.

Once the clusters are formed, nearest neighbor blocking, NNB, is used to decide the order in
which customer demands are assigned to vehicles in order to produce distance savings. This order
does not have anything to do with the sequence of customers within a tour. The NNB mechanism
takes the two nearest customers (idg;,= min[d;;]|k # 0,4) with unassigned demands and, from
those, assigns the one which is farthest from the depot (i.e., cusitiper- d;;) the maximum

possible demand in the route under consideration.

Since grid network instead of Euclidean distances are used, it is not possible to compare their
results with previous work. Therefore, 1050 problem sets are generated by assigning customer
locations randomly on the grid network, the number of customers ranges from 20 to 100, the vehicle
capacity is 100, and customer demand is uniformly distributed from 1 to 100. The results show
significant savings in 73.1% of the problem sets in terms of travel distance and number of vehicles

required with respect to a basic construction heuristic that does not use the NNB mechanism.

3.6.3 Algorithm of Frizzell and Giffin (1995)

Frizzell and Giffin (1995 propose a mixed-integer formulation and develop a construction heuris-

tic and two improvement methods to approximately solve the SDVRP with time windows (SD-
VRPTW). Their constructive procedure sorts the customers and sequentially assigns them to vehi-
cles until all demands are filled. Customers are sorted according to their distance from the depot
and their time windows. Vehicles are allocated to deliver the maximum possible demand to all cus-
tomers. However, a customer demand can be split when it exceeds the spare capacity of the assigned
vehicle. If the current vehicle fleet cannot service all customers, the fleet size is augmented. Im-
provements are obtained from the initial solution by moving a customer from one route to another
or by exchanging any two customers between two routes when a savings in the objective function

results.
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3.6.4 Algorithm of Mullaseril et al. (1997)

Mullaseril et al. (199Y describe a feed distribution problem encountered on a cattle ranch in Ari-
zona. They study the problem of scheduling a fleet of trucks for feed distribution in a large livestock
range. The characteristics of this problem are: 1) different feed types are required in each stage of
the growth of cattle; 2) the feed type, volume, and feeding time for each pen may vary from day to
day; 3) the fleet is composed of 5 trucks with different capacities; and 4) a pen may need to have
feed delivered from more than one route due to inaccuracies in the weight and loading of the trucks.
Since each vehicle delivers only one type of feed, the feed delivery problem is decomposed into
a different routing problem for each type of feed. Each subproblem is then modeled as a routing

problem with split deliveries and time windows (SDVRPTW).

Their solution strategy for this problem adapts the algorithnbodr and Trudeau (1989

Initially, a feasible VRP solution is generated and improved by an arc interchange adapted to include
time windows. Then, split deliveries are introduced via kheplit interchange if the total travel
distance can be reduced. Since the solution must consider time windows, the candidate list is pruned
to those routes respecting the time windows constraint. To mitigate a potential reduction in the
number of candidates, thesplit operator use < k < M, where)M is the number of candidate
routes generated usually less than 10. Finally, the route addition improvement approach is used,
but a check is done for capacity and time feasibility. The algorithm is run and the solutions, VRP
and SDVRP, are compared with the current practice at the ranch. Substantial reductions in the
total distance covered are obtained (from 25% to 40%). SDVRP solutions improve VRP solutions,

especially when time windows constraints are respected.

3.7 Metaheuristic Algorithms for the SDVRP

3.7.1 Tabu Search of Ho and Haugland (2004)

Ho and Haugland (20Q4leveloped a TS to solve instances of the SDVRPTW. They construct an
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initial solution by checking customers in sequence and appending the nearest un-routed customer
to the latest routed customer in feasible routes. If the customer demand exceeds the capacity, the
current route is deemed full loaded, the demand is split, and a new route is created to supply the
remaining demand. Once the route schedule is constructed, the TS commences. Each iteration, the
best feasible candidate among four neighborhoddgp Ny, is selected and the neighboring solu-

tion is evaluated for improvements. The neighborhoods examinedsiierélocating a customer
between routes;Ys) eliminating a split delivery between two routes and introducing a new delivery
between the same two routedjy) exchanging two customers between two routdg;) performing

a 2-opt operation between two routes. If the candidate move is tabu, a best so far aspiration criteria
overrides the tabu status. Once the neighboring solutions are chosen, routeswgtbmers or less

are eliminated by inserting those customers into non-empty routes via the same relocate operator
used forN;. This customer relocation is performed once ewvgliferations. In addition, a cus-

tomer can be relocated in a least cost position within a route aftensecutive iterations without
improvement. The repetitive procedure stops aftepnsecutive iterations with no improvement.

Finally, a post-optimization phase is applied to the best solution.

3.7.2 Tabu Search of Archetti et al. (2006)

Archetti et al. (200Bpropose a TS to solve the SDVRP where a customer is removed from a set of
routes serving it and inserted into a new route or into an existing route that has spare capacity. The
scheme of the procedure employs an initial solution, a TS, and an improvement phase. The TS uses
a list, O;, with all the routes visiting customeérin descending order based on the saving obtained
when removing from the route. A neighborhood is constructed by inserting a custonmto a

router and removing it from a subsét C O; — {r}. The neighbor yielding the best objective
function value is selected. Paramefethe tabu tenure, is a random number from an interval based

on the number of customers and the number of routes in the current solution. If a neighbor solution
yields a solution better than the best encountered so far, that solution is always accepted. The search

concludes aften,,.. iterations without improving the best solution found so far.
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Table 3.1:Existing literature on SDVRP.

Algorithm Year Description & Remarks

Dror and Trudeau 1989 SDVRP is proposed; introduce splits and local search
Dror and Trudeau 1990 Properties and complexity

Frizzell and Giffin 1992 Grid network distances; construction heuristic

Dror et al. 1994 Properties; branch and bound

Frizzell and Giffin 1995 Grid network; SDVRPTW, local search; shift and swap
Mullaseril et al. 1997 Application feed distribution; adapted to time windows
Sierksma and Tijssen 1998 Application crew exchange; column generation
Belenguer et al. 2000 Lower bounds

Archetti et al? 2001 SDVRP with small capacities

Ho and Haugland 2004 Time windows; split relocate and tabu search

Archetti et al. 2005 Complexity; vehicles with capacity @f units

Lee etal. 2006 Dynamic programming and shortest path

Archetti et al. 2006 Eliminate splits and tabu search

Archetti et al? 2008 Empirical analysis; benefits of allowing split deliveries
Archetti et al. 2006 Worst-case analysis and potential savings

2To appear

The algorithm was compared to the optimal solution in small instances (up to 15 customers)
providing the same optimal solution for these problems in less than one second. For larger problems
(between 50 and 199 customers), the problem is hard to solve to optimality so the performance of
the procedure was evaluated by comparing the results with those of another heDwigti@rid
Trudeau, 198P The comparison shows that the algorithmArghetti et al. (2006 aImost always

provides better solutions on the tested problems.

Table3.1 provides a brief summary of the solution approaches defined for and tested on SD-

VRP types of problems.
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Chapter 4

VRP With Stochastic Customers
(VRPSC)

The study of combinatorial problems with stochastic elements has received increasing attention
recently due to the uncertainties inherent in many real world applications. Technological develop-
ments, such as onboard computers and communication systems allow updates to problem informa-
tion and plan changes during the execution of a schedule. In addition, the desire to model problems
in a more realistic way and analyze the robustness of optimal solutions of deterministic problems
when instances are randomly changed motivate the incorporation of stochastic elements into the
problem (aillet, 1993. This chapter reviews literature on the VRP with stochastic customers, also
known as the probabilistic vehicle routing problem (PVRP). This review begins with the available
literature on problem instances where a single vehicle with infinite capacity is used to service the
customers. This problem is commonly known as the TSP with stochastic customers, or the prob-
abilistic traveling salesman problem (PTSP). Then, the literature on the relaxation of this problem

using multiple vehicles with finite capacity, which is the focus of this research, is reviewed.
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4.1 Solution Concepts

Stochastic optimization problems are usually solved using either of two strategies. One strategy is to
obtain the optimal solution to every realization of the problem each time a random variable becomes
known. This strategy is known as re-optimization. However, such a strategy can become undesirable
in certain occasions due to the lack of the required resources or to the high computational cost
of finding an optimal solution to every realization, even if the resources are available. Thus, a
second strategy looks for apriori solution, which minimizes the total expected cost based on the

probability distribution of the stochastic variables.

A stochastic problem is usually modeled in two stages. In the first stagepdari solution

is obtained with the information available at that time. When the values of certain random variables
are revealed, arecourse, or corrective action, occurs in a second stage in order to maintain feasibility
in the solution. Such a recourse usually generates a variation in the objective function value which
should be accounted for during the generation ofalpeiori solution. The problem is modeled as

a Chance Constrained Program (CCP) whenatipeiori solution is obtained without considering

the costs of the corrective actions. In such a case, if uncertainty affects feasibility and the objective
function is deterministic, it may be necessary to respect the constraints with certain probability. In

a more general approach, the problem is modeled as a Stochastic Program with Recourse (SPR)
when the expected cost of the corrective actions taken in the second stage is considered in the

priori solution Ghiani et al., 2008

4.2 TSP With Stochastic Customers

Just as the classical VRP is a generalization of the deterministic TSP, the VRPSC is a generalization
of the TSP with stochastic customers. The TSPSC first appears in the literature in the doctoral thesis
of Jaillet (1989 as a variant of the TSP where the presence of some customers is uncertain. This

means that, although the customer demands are known, the presence of a sub-@ettomers
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(0 < k < n) is uncertain when the tour is designed. While the presence of some customers
is known beforehand, other customers are present with some probability. Such probabilities are

assumed independent for theustomers.

The PTSP is solved finding anpriori tour which includes all the: potential customers, i.e.,
deterministic and stochastic, in such a way that, given any realization of the problem, the customers
are visited in the same order as they appear inatlpeiori tour and absent customers are simply
skipped. The design of the priori tour minimizes the total expected traveled distance, which is
calculated based on all the problem realizations. The reasons for not re-optimizing the tour in a
second stage can vary according to the policies of a company, for example the lack of resources, the
cost and effort to re-optimize, or simply the desire of establishing a regularBeuats{mas, 1988

Bertsimas, 1980

Let V' be the set of alh potential customers; be ana priori tour, S C V' be a realization of
the problem L, (S) be the length of tour to visit the subset of customess p(.5) the probability
that only customers i are present. The TSPSC seeksagpriori tour 7, visiting all » potential

customers while minimizing:

E[L;] =) p(S)L.(S) (4.1)

scv
In his doctoral thesis]aillet (1989 shows that tha priori solution to the deterministic version

of the TSP can be arbitrarily bad for the TSPS&&(dreau et al., 1996Berman and Simchi-Levi

(1988 examine finding the optimad priori tour and location for the TSP with non-homogeneous

customers. In contrast to other work where customers are homogededies, (1989, the probabil-

ities associated with customer presence vary. They find a lower bound on the value of the objective

function. This bound is used in a branch-and-bound algorithm to find the opgirpebri tour.

Given thea priori tour, the optimal home location for the service unit is found to minimize the

expected length of the tour. The solution to the problem serves as an upper bound for the problem

with different traveling salesman tour3aillet (1988 derives closed form expressions for comput-
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ing efficiently the expected length of any given tour when each customer has the same probability
of being present. The problem is represented as a Bernoulli process and it is shown that the optimal
TSP tour can be a very poor solution to the corresponding PTSP. However, under conditions speci-
fied in the study, an optimum TSP tour can optimally solve the PTSP for any instance and for any

probability distribution of uncertain customers.

Bertsimas and Howell (199&xamine the PTSP, derive some results, and consider its relation
with the TSP. They find upper and lower bounds and compare various TSP heuristics applied to
the PTSP with the re-optimization strateggertsimas and Howell (1993how that, in general,

a TSP solution through probabilistic points is potentially a very poor solution to the PTSP. The

difference between the expected lengths of the optimal PTSP tour and the optimal TSP tour can
be very large particularly when all customers have the same probability of being present and that
probability is small. Bertsimas and Howell (1993also show that a PTSP tour in the Euclidean

plane can cross itself. This aspect should be taken into account particularly when TSP algorithms
are used to solve the probabilistic counterpart. In addition, when the Euclidean metric is used and
the customers are uniformly distributed in the unit square, a PTSP heuristic is shown to be very

close to the re-optimization strategy.

Jaillet (1993 provides a probabilistic analysis of the PTSP and presents general finite-size
bounds and limit theorems for the objective function. He proves the asymptotic convergence for
the PTSP with respect to the re-optimization stratégporte et al. (1994formulate the PTSP as
a stochastic linear integer program and solve it with a branch-and-cut approach, which is the first
exact algorithm proposed. They solve to optimality problems with up to 50 customers and conclude
that problems are more difficult to solve when the number of uncertain customers grows or the

probability of being present reduces.

Table4.1summarizes the research on PTSP-types of problems.
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Table 4.1:Research conducted on the PTSP

Algorithm Year Remarks

Jaillet 1985 Ph.D. Thesis

Jezequel 1986 M.S. Thesis

Berman and Simchi-Levi 1988 Non-homogeneous customers

Bertsimas 1988 Bounds; algorithms to compute the expected length
Jaillet 1988 Closed form expressions for the expected length
Bertsimas 1989 Bounds; algorithms to compute the expected length
Bertsimas et al. 1990 Applications, deterministic algorithms

Bertsimas and Howell 1993 TSP vs PTSP, bounds, and TSP heuristics
Jaillet 1993 Probabilistic analysis and asymptotic convergence

Laporte et al. 1994 Stochastic program and first exact approach

4.3 VRP With Stochastic Customers

The VRPSC appears in the literature the first time in the master’s thedezetjuel (1986 This

variant of the classical vehicle routing problem includes customers whose presence is unknown
when the routes are designed. The presence of some customers is known beforehand, while a sub-
set ofk customers({ < k£ < n) are present with probability?;. Such probabilities are assumed
independent for thé customers. The optimization problem finds a fixed set of routes to satisfy

all customer demands while minimizing the total expected travel distance, which corresponds to
the total expected distance of the fixed set of routes plus the expected value of the extra distance

required in case the demand exceeds the vehicle capacity and the vehicle is forced back to the depot.

In the classical VRP, routes can be designed in advance because all the information is available
at the time of the routes design. This is not the case in the VRPSC because some of the customers
can be absent during the design of the routes. Whea phiori routes are executed, some customers
do not require any service. If this is known before the execution of the current plan, the plan can be

modified to avoid visiting customers not requiring serviBertsimas (198B8shows two strategies
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to perform thea priori routes,a andb, depending on the time the presence, or service, of uncertain
customers becomes known. When the customer service becomes known at the vehicle arrival, the
vehicle visits all the assigned customers in the same order as they appearipribg tour, but

serves only the customers requiring service (stra@gylf, on the other hand, the information

on demands is known before performing the routes, customers not requiring service are simply
skipped (strategh). Bertsimas (198gfinds algorithms to compute the expected length, examines
combinatorial properties of the problem and provides bounds for the PVRP and the re-optimization
strategy, makes worst-case analysis for some proposed heuristics, and proposes some asymptotically
optimal algorithmsBertsimasiemonstrates that the strategy of findingagpriori tour is a practical

alternative to the re-optimization strategy.

The two strategiea andb shown byBertsimas (198Buse fixed routes. These two strategies
are calledixed routesandsemi-fixed routeby Waters (198R The cost of the first strategy does not
change with the absence of customers, while the second strategy produces cumulative savings with
increasing number of absent customersiafiable routesstrategy to increase the savings considers
all the customers needing service and re-optimize the solution. Hglishows a comparison of
the three strategies when customer 1 is absent. In part a), customers are visited as in the initial
routes, but only the customers requiring service are serviced. In part b), customer 1 is simply
skipped from the priori solution, which produces a reduction in the total traveled distance. In part
c), the problem is resolved given that customer 1 is absent. When the number of absent customers
is small, the strategy of fixed routes might be acceptable. However, when this number gets larger,
fixed routes might yield a poor solution and the strategy of re-optimizing could provide valuable
savings. Although the third strategy is not always possible, the core question is: how large are
the potential savings from re-optimizing and using variable routes, and when is the re-optimization
strategy worthwhile?.Waters (1989 answers this question using an empirical analysis on 100
randomly generated problems with a total of 200 customers and randomly removing from 1 to 40
customers from the problem. The savings in distance are calculated with respect to the solution

with fixed routes and are found to increase linearly with the number of absent customers when this
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Figure 4.1:Comparison of fixed routes, semi-fixed routes, and variable routes strategies.

number is relatively small. With up to 20% of customers being absent, the results reveal that, on
average, skipping customers under the semi-fixed routes strategy reduces the distance by 2.60 units
per absent customer, while re-optimizing the routes provides a reduction of 5.65 units per absent
customer. There may also be a reduction in the number of vehicles used when the solution is re-
optimized. In the case of variable over fixed routes, a mathematical analysis finds an upper bound
on the reduction in the number of vehicles and a minimum number of absent customers required
to make the re-optimization strategy worthwhile. In the case of variable over semi-fixed routes, the
average number of absent customers before the first vehicle can be saved is about 30% and a second
vehicle is saved when approximately 37.5% of customers are absent. From a practical perspective,
using a real world scenario, the benefits of re-optimizing are too low and this strategy is not worth

the effort.

Bertsimas et al. (199Q@:haracterize the asymptotic behavior of the re-optimization and the
priori strategies and observe that both have close asymptotic performance. From a computational
complexity point of view,Bertsimas et al. (199Qorove that finding the optimal priori solution
is NP-hard. When uncertain customers have the same presence probability and this probability
is large, a heuristic for the deterministic VRP behaves well for the corresponding probabilistic
problem. If, however, the probability is small, the optimal deterministic solution is an arbitrarily

bad approximation to the optimalpriori solution.
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Table 4.2:Research conducted on the probabilistic VRP

Algorithm Year Remarks

Jezequel 1986 M.S. Thesis

Bertsimas 1988 Bounds; algorithms to compute the expected length
Waters 1989 Empirical analysis and potential savings

Bertsimas et al. 1990 Applications, deterministic algorithms

Bent and Van Hentenryck 2004 Non-unit demands, pool of solutions

Bent and Van Hentenryck (20p#troduce time windows to the PVRP and propose a multiple
scenario approach (MSA) to continuously generate and solve realizations of the problem. These
solutions include both known and unknown customer requests. Solutions in the pool are consistent
with the current solution and are used by a consensus function to choose a distinguished solution.
This distinguished solution is the solution most similar to the pool of solutions and is taken as the
new current solution. Since they generate new solutions continuously, a greedy approach is used to
generate the new solutions from the pool. The simple greedy approaches work better than sophis-
ticated algorithms —at least in the case with time windows— since more robust approaches tend to
produce tight solutions that do not accommodate future requests. The complexity of the problem
may vary greatly according to the degree of dynamism, i.e., theuatiertain customers/total cus-
tomers Bent and Van Hentenryakse chronological customer presence (i.e., customers appear any
time during the day), and probability distributions to model uncertainty of customer presence, and
non-unit customer demands. This differs from previous work where customer presence is known or

determined probabilistically before executing the routes and demands are assumed unitary.

Table4.2 summarizes research conducted on the PVRP.
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4.4 Summary

This chapter reviewed the existing literature on the vehicle routing problem with stochastic cus-
tomers. Although there exist various studies on this problem, it has not been extensively explored.
The existing literature shows theoretical analysis, properties of the problem, probabilistic analysis,
and description of some heuristic methods to solve the problem. Most of these methods are adapted
versions of existing algorithms to solve the deterministic problem. There is still a lot of work to do

in the design of search algorithms that would facilitate a better understanding of the problem, gain

more knowledge on it, and find new more effective solution techniques.

75



Part |l

Solution Approaches

76



Chapter 5

An Adaptive Memory Algorithm for the
SDVRP!

5.1 Introduction

The vehicle routing problem (VRP), or truck dispatching, was first formulate®agtzig and
Ramser (1959and is a core problem in transportation, logistics, and supply chain management.
The VRP involves a fleet of vehicles with fixed characteristics (i.e., speed, capacity, etc.) stationed
at a central depot and a set of geographically scattered points (i.e., cities, warehouses, schools,
customers, etc.) with fixed demands. Vehicles are used to visit and fully supply the demand of
these points. The optimization problem is to determine which customers are visited by each vehicle
and what route will the vehicle follow to serve those assigned customers, while minimizing the
operational costs of the fleet, such as travel distance, gas consumption, and vehicle depreciation.
Routes are designed to start and end at the depot, the demand of every customer is fully supplied by

exactly one vehicle, and the total demand met by any route cannot exceed the vehicle capacity.

In reality, however, there may be cases where either a customer demand exceeds the vehicle

capacity or a savings in terms of the total distance or the number of vehicles can be obtained by

1This chapter is found a&leman et al. (2007)
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serving customers with more than one vehicle. The split delivery vehicle routing problem (SDVRP)
relaxes the VRP restraints and allows the use of multiple vehicles to satisfy customer demand points
and potentially reduce the total delivery cost by splitting customer deliveries among vebicdes (

and Trudeau, 1989 The computational complexity of the SDVRP remains NP-h&tbK and
Trudeau, 199D Archetti et al. (2005)efine thek-SDVRP as a special case of the SDVRP where
vehicles have a capacity @funits, k¥ € Z*. TheArchetti et al. (2005%tudy shows that the-

SDVRP is solvable in polynomial time when some specific conditions on the distances are satisfied,
while the problem withk > 3 remains NP-hardArchetti et al. (2005also show that the-SDVRP

may be reduced to a problem of possibly smaller size, where each customer has unitary demand.

The SDVRP is defined on an undirected grapk= (V, E') whereV = {0, 1, ...,n} is the set
of n + 1 nodes of the graph, anfl = {(i,j) : i,7 € V, i < j} is the set of edges connecting
the nodes. Node O represents a depot where a fleet {1,...,m} of identical vehicles with
capacity@ are stationed, while the remaining node 8&t= {1, ...,n} represents the customers.
A non-negative cost, usually a function of distance or travel tiyes associated with every edge
(i,7). Each customei € N has a demand af; units. The optimization problem is to determine
which customers are served by each vehicle and what route will the vehicle follow to serve those
assigned customers, while minimizing the operational costs of the fleet, such as travel distance, gas

consumption, and vehicle depreciation.

In this chapter a solution method that uses a constructive heuristic approach and a fixed number
of vehicles is proposed to construct an initial solution by inserting unassigned customers sequen-
tially into the solution under construction. A sequence is a list of customers in a specific order.
When the solution is complete, the sequence of customers is modified based on the characteris-
tics of the constructed solution. Once a new sequence of customers is determined, the constructive
heuristic approach is executed again to find another solution. Again, the sequence of customers is
modified and the procedure is repeated until no better solutions can be found. The best solution
found during this iterative constructive approach is then improved using a variable neighborhood

descent (VND) procedure. This is the first time a variable neighborhood search is used to solve the
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SDVRP.

This chapter is organized as follows. Sectm@ provides a review of the existing literature
on SDVRP. The algorithms are described in Secbd®h Numerical experiments comparing the
proposed algorithms with other existing methods found in the literature are presented in S&ction

Conclusions and future directions are provided in Sedién

5.2 Literature Review

5.2.1 Benefits of SDVRP

At first glance, one may believe that the benefits of allowing split deliveries are small when the
customer demands are either considerably small with respect to the vehicle capacity or close to the
vehicle capacity. In their experimental stud@tor and Trudeau (198%howed that if customer
demands are low relative to the vehicle capacity and the triangular inequality hglds ¢;x. + cx;,

for all 4, 7, andk), the split demand benefits are actually very little. In contrast, when the customer
demand is larger, at least 10% of the vehicle capacity, the cost of a SDVRP solution is considerably
lower than the cost of a VRP solution. Figusd shows a simple example to illustrate the potential
benefits of allowing split deliveries in terms of the number of vehicles and the solution cost. In this
figure, there are 12 customers with same dengard 60 symmetrically located on a circle of radius

r centered at the depot, where a fleet of vehicles with cap@city100 is located. The optimal VRP
solution is illustrated in Figur&.1(a). It employs 12 vehicles with an average utilization66%o

and has a value af = 240r distance units. If split deliveries are allowed, all customer demands can
be supplied as illustrated in FiguBel(b) with only 8 vehicles with an average utilization @%

and a solution value of = 201.4r.

Archetti, Savelsbergh, and Speranza (20@@®yide a worst-case analysis for the SDVRP and
show that the savings in delivery costs that can be obtained by allowing split deliveries is at most

50% and that this bound is tight (i.e., there exists an example in which the value of the optimal
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Figure 5.1:Illustration of savings by SDVRP: (a) VRP solution and (b) SDVRP solution.

VRP solution doubles the value of the optimal SDVRP solution). This analysis, however, does not
provide insight into the relation between the customer characteristics and the savings attained by

allowing split deliveries.

Archetti et al. (2008)haracterize distribution environments and conduct a thorough study
(the most detailed found so far) of the value and benefits of allowing split deliveries. The focus
of their study is to determine the practical implications of split deliveries for different customer
characteristics, particularly in terms of the geographic and demand distribution of customers. The
benefits are in: 1) the reduction in the number of routes, and thus vehicles, required to fully supply

all customer demands and 2) the reduction in delivery costs.

Archetti et al. (2008use a mathematical analysis to prove that the maximum reduction in the
number of routes that can be achieved by allowing split deliveries is 50%. Moreover, their analysis
confirms that the largest reduction can be obtained when the mean customer demand is between
50% and 70% of the vehicle capacity and the demand variances are relatively small. However, while

there does not appear to be a dependence of delivery cost reductions on the geographic distribution
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of customers, there does appear to exist a dependence on the demand variance.

5.2.2 Existing SDVRP Algorithms

Both exact and heuristic algorithms have been used to solve the SDVRP. Although exact algorithms
solve instances to guaranteed optimality, they can be unpractical to use in solving large instances
due to the computational costs involved. The largest SDVRP instance solved to optimality includes

50 customersRelenguer et al., 2000

There are some exact approaches found in the SDVRP literduog.et al. (1994)propose
an integer linear programming formulation and describe a branch-and-bound algorithm based on
new classes of valid inequalities for the SDVFRerksma and Tijssen (1998pply the SDVRP to
building the transportation schedule of helicopters supporting offshore platforms in the North Sea
for crew exchange of people employed on those platforms. They propose a set-covering formulation
for the SDVRP and solve its relaxation using a simplex algorithm and a column generation technique

that includes a Knapsack Problem and several TSPs.

Lee et al. (2006propose a solution method for the multiple-vehicle routing problem with split
pick-ups (MVRPSP) based on a deterministic dynamic program model and a shortest path search
algorithm. Based on some properties of optimal solutions of the mVRPSP, they reformulate the
original dynamic program to find an equivalent model with a finite action and state space without
loss of optimality. The reduced model is associated with a directed network, which is then solved
as a shortest path problem. The algorithm is used to solve small instances with 4, 5, and 7 suppliers

and the optimal solution is obtained in all cases.

Jin et al. (2007)present an iterative exact method called two-stage approach with valid in-
equalities (TSVI) to find an optimal solution after a finite number of iterations for SDVRP instances
with average customer demands greater than 10% of the vehicle capacity. They divide the problem
into a clustering sub-problem and a traveling salesman problem for each vehicle. In a first stage,

the clustering sub-problem optimally assigns customer demands to the vehicles without considering
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distance costs. In a second stage, a traveling salesman problem is solved via a commercial opti-
mization solver to find the minimal distance traveled by each vehicle. Those distances are added
as cuts to the original clustering sub-problem. The process is repeated until no new clusters can be

found in the first stage.

Other studies have estimated problem bouidenguer et al. (200@alculate lower bounds
to optimal solutions of SDVRP instances based on a polyhedral study of the problem and a cutting-
plane algorithm. The cutting-plane algorithm starts with an initial lower bound, which is calculated
by solving the initial problem formulation via a linear programming code. Valid inequalities, or
cuts, are developed, added to the formulation, and used to determine the feasibility of the solutions
obtained by the algorithm. Any violated inequality is added to the initial formulation and the process
is repeated to calculate a better bound. If no inequality violation is found in the new solution, the
cutting-plane algorithm stops and provides a final lower bouidet al. (2008propose a column
generation to find lower bounds and an iterative approach to obtain upper bounds for the SDVRP.
The approaches are tested on 12 of the 25 instances ug=ldnguer et al. (200@ontaining large
customer demands as the algorithm is not efficient to solve problems with small average customer
demands. They suggest solving those instances as capacited vehicle routing problems (CVRPS)
rather than SDVRPs. The column generation improves some of the bouRearfguer et al.

(2000)

Heuristic algorithms are often desirable to solve larger SDVRP instances. Various approaches
found in the literature include local, tabu, and scatter search, hybrid approaches, and memetic al-
gorithms.Dror and Trudeau (1983roposed a local search to solve the routing problem with split
deliveries. Theirs is a two-stage algorithm that first constructs a feasible VRP solution and from
this generates a feasible SDVRP solution if split deliveries improve the initial VRP solution. Split
deliveries are incorporated into the solution by usirgsplitinterchange operator, which creates a
neighborhood with all the possible alternatives that remove a demand point from a route and insert
it into two other routes whose combined spare capacity is greater than or equal to the demand. A

route addition routine may create new routes to try eliminating split deliveries as long as a reduction
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in the total routing cost is obtained:rizzell and Giffin (1992use a grid network instead of eu-
clidean distances in the SDVRP. They use a constructive approach that clusters adjacent customers
and then allocates vehicles to the clusters until the unassigned demand of the cluster is less than the
vehicle capacity. For each cluster, a nearest neighbor blocking is used to first assign the demand of
the customers farther from the depot. In case the combined demands in the same cluster exceeds the
vehicle capacity, the blocking mechanism produces distance savings as the demands to be split are
the ones closer to the dep&ouzaiene-Ayari et al. (1993uggest an adaptation of tdarke and

Wright algorithm to solve the vehicle routing problem with stochastic demands and split deliveries.
This study is apparently the first attempt to solve a stochastic vehicle routing problem with split

deliveries.

In a second papeFrizzell and Giffin (1995)ncorporate time windows into the problem (SD-
VRPTW). The algorithm is similar to the one Krizzell and Giffin (1992)but now customers are
sorted according to the distance from the depot and their time windows. The initial solution is
changed by moving a customer to alternate routes or by exchanging any two customers between
their assigned routes when a saving in the objective function redulilaseril et al. (19973e-
scribe a feed distribution problem encountered on a cattle ranch in Arizona. They study the problem
of scheduling a fleet of trucks for the feed distribution in a large livestock range. The solution
strategy for this problem is an adaptation of the algorithrDadr and Trudeau (1989)Since the
solution must consider time windows, the candidate list is pruned to those routes respecting the
time windows constraint. To mitigate a potential reduction in the number of candidatdéssgie
interchange operator uses< k < M, whereM is the number of candidate routes generated,
usually less than 10. Finally, a route addition improvement approach is used, but a check is done

for capacity and time feasibility.

The tabu search bido and Haugland (2004)ses an operator called the relocate split oper-
ator. The algorithm starts with the construction of an initial solution by checking customers in a
pre-defined sequence and appending the nearest un-routed customer to the latest routed customer.

During the tabu search, the best candidate among four neighborhoods is selected at each iteration.
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They use standard operators (e.g., customer relocation, customer excharje, apd) adapted

to the SDVRP context to potentially eliminate split deliveries. They also use the relocate split oper-
ator, which uses two routes with a shared delivery and relocates the delivery within the two routes
subject to obtaining a reduction in the total distangechetti, Hertz, and Speranza (20Q@ppose

a tabu search where a customer is removed from a set of routes serving it and either inserted into
a new route or into an existing route that has spare capacity. The tabu search uses a random tabu
tenure selected from an interval defined by the number of customers and the number of routes in the
current solution. An improvement phase is used after the tabu search in order to elikagdite
cycles.Chen et al. (2007)levelop a heuristic that combines a mixed integer program and a record-
to-record travel algorithm that starts with an initial SDVRP solution based oBltHr&e and Wright
algorithm. For each route in the initial solution, a mixed integer program considers the endpoints
and the closest neighbors to each endpoint to reallocate the demand of the endpoints and maximize
the total savings. An endpoint is reallocated in three ways: 1) no change is made; 2) the endpoint
is totally removed from its current route(s) and all of its demand is moved to other route(s); and
3) the endpoint is partially removed from its current route(s) and part of its demand is moved to
other route(s). The heuristic is tested on the 49 problenfsrctietti, Hertz, and Speranza (2006)

5 random problems dBelenguer et al. (2000Q)ith large customer demands, and 21 new bench-
mark problems and is shown to clearly outperform the algorithnisrdfietti, Hertz, and Speranza

(2006)

Other studies covering the SDVRP include the workSmng et al. (2002)vho adopt a split
delivery scheme to find an allocation of newspaper agents and route vehicles to deliver newspapers
while minimizing the delivery costs and reducing the total delay time of the delivery. Various
algorithms were used and savings of 15% in the delivery costs and 40% in the delay time were
obtained. Nowak (2005)examines a pickup and delivery routing problem with split loads and
explores how costs can be reduced by eliminating the constraint that only one vehicle can service a
customer. The problem is modeled as a dynamic program and the results show that most benefits

with split loads occur when loads are at least half of vehicle capdadity(2005) proposes a two-
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stage algorithm with valid inequalitiedif et al., 200y and a branch-and-price approach to solve

the problemWilck and Cavalier (20073tudy a modified objective function to consider the impact

of the loads in the operational costs and potentially reduce thémet al. (2006)consider an
inventory routing problem with split delivery and solve it using lagrangian relaxation and linear
programming.Belfiore et al. (2006)mplemented a scatter search to solve the problem involving
other side constraints including heterogeneous vehicles, time windows, and accessibility constraints
applied to a retail market in Brazil. The algorithm was applied to solve real scenarios arising on
a daily basis and reduced the operational costs of the fleet compared to current practices in the
company.Ambrosino and Sciomachen (200d¢al with a real application for food distribution in

an Italian company. They model the problem as a generalization of the asymmetric VRP with split
deliveries to determine an efficient distribution plan of fresh/dry and frozen food along the country.
The solution algorithm includes a clustering procedure suitably tailored to the conditions of the real
problem and a local search to move customers between routes and to split customer demands to
improve the solutionMota et al. (2007)present a scatter search that uses the minimum possible
number of vehicles and performs favorably with respect to the tabu searcAeshetti, Hertz, and
Speranza (2006 the tested problems, particularly when the customer demands are below half the
vehicle capacityTavakkoli-Moghaddam et al. (200@jesent a simulated annealing method to solve

the problem with heterogeneous vehicles and use a new term in the objective function to maximize
the utilization of the vehicle capacity. The algorithm was tested on randomly generated instances
only and no benchmark problems were utilizeBoudia et al. (2007)mplemented a memetic
agorithm with population management that produces high quality solutions and low running times

relative to the Splitabu approach Afchetti, Hertz, and Speranza (2006)
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5.3 Proposed SDVRP Algorithm

5.3.1 Constructive Heuristic Approach (CA)

An initial SDVRP solution is obtained using a construction procedure that sorts the customers based
on the distance from the depat and then creates new routes or modifies existing routes to allocate
the customers. A listL, of customers is created and sorted in descending order basag.on
Customers are then analyzed in sequence to determine the best way to include them in the solution,
either by initiating a new route or by inserting them into existing routes. In the former case, new
routes are initialized until a maximum number of routes is reached. This approach utilizes the
minimum fleet size required to satisfy the demand constraints. In contrast to the classical VRP
where a bin packing problem is solved to find the number of vehicles required to supply all customer
demands, any SDVRP instance can be solved usirg [, - qx/Q] vehicles, whergz] is the

lowest integer greater than or equaktoCustomers are inserted into existing routes at the cheapest

insertion position.

During preliminary experiments, it was found that the insertion method can be improved by
using a new mechanism called route angle control (RAC). This mechanism uses the angle formed
by customers within routes to help determine the best way to allocate customers in the solution. The

polar angle of a customéy, relative to the depot is defined as:

0 = arctan Ik — 4o (5.1
Tl — X0

where (z, y) represents the location of custonmieand customer 0 represents the depot. The
angle of a routed,., is defined as the maximum angle formed by the customers in the route, i.e.,
0, = max{0; — 0;;V(i,7) € r}. Initially, an existing route has an associated angle formed by the
customers visited during the route. When a customer is inserted, this angle may either increase

or remain constant if the inserted customer is geographically located between the customers in the
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route. If the increased angle exceeds a threshold angle value, a penalty cost is incurred. The penalty

cost can be chosen arbitrarily as long as it makes the move prohibitive.

Inspired by the petal algorithm d¢foster and Ryan (1976)he problem is partitioned so that
routes serve sectors of the region centered at the depot. The region is partitioned as the number
of sectors equal to the fleet siz@, Thus, sectors are equally distributed with an angle of value
0* = %’T This angle is used as the threshold angle value to penalize insertions that spread routes. In
addition to the penalty cost, the RAC considers the route angle that results after inserting a customer
in the route. This means that when a customel ia evaluated for insertion in the solution, it may
be located between two existing routes that can serve it without excegding such a case, the

RAC mechanism favors the route closest to the customer for servicing the customer.

Figure5.2illustrates the RAC. For this example, assume= 8 so thatf* = 27/8 = /4.
This figure illustrates two cases. In the first case, the insertion of custgrimeo R3; would spread
the route giving an angle exceedifit), that insertion is penalized to favor the creation of a new
route or the insertion into another route, suctikasin the second case, customeican be inserted
either intoR; or R, without incurring a penalty because both routes would remain withinin
such a casej; is inserted into the narrower route amaoRg and R,. In any case, the insertion cost
is proportional to the angle of the route after the insertion of the customer. The evaluation of the

insertion candidates is described in the algorithm below.

The constructive procedure is summarized as follows.

Notation:

L List containing all customerse N

w; Unserved demand of custoner

qi Demand of customer

Sy Spare capacity of route » € M

0,  Angle of router after inserting customer

Step 1 (Sort the customers). Creafeand sort the customers to produkEe= {i1, i, ..., i, } With

Coiy > Coiy > *** > COiy, -

Step 2 Seti to the first customer i, andu; = ¢;
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Figure 5.2:Route angle control.

Step 3 (Insertion candidate). Find the cheapest way to insert custonvéhin existing feasible
routes. The cost of inserting customento router, ¢;., includes the distance cost and the
value obtained by the route angle mechanism.il.andi, be the preceding and succeeding

customers, respectively, in routafter inserting customer The insertion cost is then given
by:
’61'7"

— f*
Cir = Ciyi T+ Ciig — Ciyi, T @ X Oir + B X max{(), 9_9*‘} (5.2)

wherea represents a weight for the angle of routter inserting customeérandg represents
a penalty value incurred when the insertion of custohpeoduces a route anghe. exceeding

#*. The value ofg can be any value large enough to favor the insertion of the customer in
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other routes. Special care has to be taken in Equalid o avoid a division by zero when
0, = 6*. The router yielding the lowest insertion cost is selected as the best insertion

candidate.

Step 4 (Insert customer). If the cost of the candidate found in Step 3 is less than the cost of a
returning route (that is;;, < 2cg;), insert customer into the cheapest insertion position of

router. Otherwise, initiate a new route with customnier

Step 5 (Calculating the quantity). 1§, > u,, thens, = s, — u; andu; = 0. Otherwise,s, = 0

andu; = u; — s, (i.e., split delivery occurs).

Step 6 (Optimize route). Using a local search, optimize routey moving single customers to the

cheapest position in the route. If all customerd.iare fully supplied, go to Step 8.
Step 7 If u; = 0, go to the next customéiin L and set:; = g;. Go to Step 3.

Step 8 Stop.

5.3.2 Iterative Constructive Approach (ICA)

A big advantage of constructive procedures is their ease of implementation. However, the initial
SDVRP solutions for the constructive approach were found to be less than ideal due to the disad-
vantages of a constructive procedure. Constructive approaches perform moves with the best imme-
diate benefit while ignoring the effects this can have in later stages of the search. When the solution
construction starts, the best moves can be performed. As the search progresses, the number of good
alternatives are reduced and the final moves usually have a negative impact on the quality of the

final solution.

The iterative approach is based on the presumption that customers inserted in the later stages
of the procedure are likely to most deteriorate the solution quality. Thus, those customers will
have a higher contribution to the solution value than customers inserted earlier in the solution. The

impact of those contributions influence the decisions made when constructing new solutions. As
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new solutions are constructed, customers with a history of high contributions are inserted into the

solution earlier by changing the structurelof

Figure5.3shows an example of the ligt used by the iterative constructive approach to solve
a benchmark instance involving 50 customers with vehicle capgrity 160. For simplicity, the
figure only shows the customers assigned to roitesR,, and 5 of the customers assigned to route
R». These routes are constructed by inserting sequentially the custoniessifollows. LetL, be
the node list containing the customers forming roltefollowing the order in which the customer
demands are assigned to the route. Thus, for instdncprovides the order customers are placed
into the route whileR; provides the order those customers are visited. The construction ofiRpute
commences with the assignment of the 6 demand units of customer 36 (positidn )1 fallowed
by the 17 demand units of customer 35 (position Zif), until all demands in.; are assigned to
R;. Note that customer 11 in the last position/gfis partially supplied byR; with only 5 demand
units as the vehicle has no more capacity at the moment the demand of customer 11 is assigned to
the route. In this particular instance, this demang {s= 19. The remaining 14 units are assigned
to route R2 whose construction is out of the scope of this example. Simultaneously, Raute
constructed by assigning the demands of customers 43, 31, 26, 7, 24, 8, 23, 48, 32, and 27. In
contrast toR;, all demands can be fully assigned®a and the vehicle still has 20 units left (see
spare( of R4 in figure). The process continues following the order in listintil all customer
demands are assigned and the solution is complete. In F3gBifg and L, are provided explicitly

and showR; and R4 graphically.

The customers i, are sorted based on the distance to the depot, so that customers located
closer to the depot are inserted into the solution later in the process. Preliminary experiments found
that customers near the depot caused route angles to increase since preferred routes lacked capacity
to support the customer insertion. Such angle spreading customers need to be inserted earlier so they
need to be placed earlier in Temporarily removing a customer from a route changes the angle of
that route, a value denoted A#,.. Let customei* have the largeshé,., i.e., the customer that most

deteriorates the solution. This custonigis re-positioned irl. to ensure its earlier consideration in
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Figure 5.3:Example of partial solution to SDVRP, based on a sequential list of customers,

L.

List L of sorted customers

Position inL 1 2 3 4 5 6 7 8 9 16 17
Customer 36 40 35 39 43 33 3 20 21 28 3L
Position inL 18 19 20 21 22 23 24 29 30 31 32
Customer 13 29 10 26 7 50 24 8 16 23 4D
Position inL 33 34 40 43 44 46 49 50
Customer 2 22 48 1 11 32 27 46
List Ly of sorted customers forming;
Position inL1 1 2 3 4 5 6 7 8 9 10 11 12
Customer 36 35 3 20 21 28 29 16 2 22 1 11
Delivery 6 17 16 28 8 14 6 15 30 8 7 5
Spare QofR; | 154 137 121 93 85 71 65 50 20 12 5 )
List L4 of sorted customers forming4
Position inL4 1 2 3 4 5 6 7 8 9 10 11 12
Customer 43 31 26 7 24 8 23 48 32 27
Delivery 11 11 7 19 10 23 16 17 11 15
SpareQofRy | 149 138 131 112 102 79 63 46 35 20
36
35
20
L2
Q\
ol
....... O
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List L. Of sorted customers

Position inL 1 2 3 4 5 6 7 8 9 ... 16 17
Customer 36 40 35 39 43 33 3 20 21 ... 28 31
Position inL 18 19 20 21 22 23 24 ... 29 30 31 32
Customer 13 29 10 26 7 50 24 ... 8 16 23 49
Position inL 33 34 ... 40 . 43 44 45 ... ... 49 50
Customer 2 22 ... 48 ... 32 1 11 ... ... 27 46

New list L of sorted customers forming;
Position inLy 1 2 3 4 5 6 7 8 9 10 11 132
Customer 36 35 3 20 21 28 29 16 2 2232 1
Delivery 6 17 16 28 8 14 6 15 30 8 11 1
Spare QofR; | 154 137 121 93 85 71 65 50 20 12 1 0

New list L4 of sorted customers forming4
Position inL4 1 2 3 4 5 6 7 8 9 10 11 12
Customer 43 31 26 7 24 8 23 48 1 27 46
Delivery 11 11 7 19 10 23 16 17 6 15 5
SpareQofRy | 149 138 131 112 102 79 63 46 40 25 20

36

Figure 5.4: Example of iterated solution to SDVRP based on solution information from

Figure5.3solution.
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the constructive approach.

To relocatei* in L, first the route;* closest toi* is found such that* could be inserted at
lowest cost if vehicle capacity were sufficient. The node list of this ralite, is then examined to
determine where to placé so that it can fit within the vehicle capacity. This position is usually
earlier in theL,- sequence of customers. Desighatéathe customer that immediately succeeds
this insertion point. In other words, the customerd.ja prior to i, leave enough spare capacity to
accommodate th& demand. To obtaiti.,.., from L, relocatei* to occur immediately beforg, in

L. This new sequential list of customers,..,, is then used to create a new solution to the SDVRP.

In the example illustrated in Figu®3, the customer with the highestd, is shown in bold
text in L, i* = 32. Given the design of the routd®; and R4, the insertion of customer 32 into
route R; seems more reasonable than into rollfewhere it was placed. Based on Ilist, i, = 1
is identified as the last customer inthat spends the capacity of rouly necessary to service
customer 32. Thus, customer 32 is relocated right before customek.ITihis relocation modifies

L to produce the lisL,,.,, shown in Figures.4.

List L., in Figure5.4is used to execute the constructive heuristic approach again and produce
a new solution, as illustrated. The relocation produced the expected insertion of customerr32 into
plus other perturbations to the solution; siriéecannot fully service customer 1 (see sp@ref R;
after this insertion), this delivery is split amoiy andR4. The deliveries of?; and R, to customer
1 are then 1 and 6 units, respectively, as provided by theneand L4 in the figure. The relocation
of customer 32 inL produced a reduction in the objective function value of the complete solution
from z = 578.83 in Figure5.3to z = 577.92 in Figure5.4. Note that this relocation produced the
transfer of customer 32 from, to R, (similar to the standard customer shift used in multi-route
improvement algorithms) plus the relocation of a split delivery in the solution (similar to the relocate
split operator ofHo and Haugland, 2004 This iterative construction of new solutions continues
until no improvements to the best solution found in the search are obtained after a predefined number

of consecutive iterations.
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5.3.3 Variable Neighborhood Descent (VND)

Variable neighborhood search (VNS) is a relatively new meta-heuristic concept based on the prin-
ciple of systematically changing the neighborhood structure during the search to escape from local
optima. This meta-heuristic first appears in the literature in the studyladenovE and Hansen
(1997)where this scheme is shown to outperform other heuristics on the traveling salesman prob-
lem. GivenNy, (k = 1, ..., kmaz), @ finite set of pre-selected neighborhood structures\grid) the

set of solutions in théth neighborhood of, neighborhoodsV, may be induced from one or more

metric functions.

Some variable neighborhood searches have been applied to routing proBleysy (2003)
proposes a reactive variable neighborhood search that modifies some parameters and changes the
objective function to avoid local optimality. The method is applied successfully to the VRPTW
and provided four new best-solutions for the test problems UBeldicek et al. (2004)se variable
neighborhood search to solve the multi-depot VRPTW (MDVRPTW). The algorithm outperforms
a tabu search, found 10 new best-solutions, and demonstrated superiority on large real-world prob-
lems. Kytojoki et al. (2007)use a variable neighborhood descent to solve large-scale VRPs and
accept non-improving solutions by penalizing certain solution features. High quality solutions are

found for problems involving up to 20,000 customers.

In Variable Neighborhood Descent (VND), the final solution is a local optimum with respect
to all neighborhood#vy, and thus the chances of finding a global optimum are higher than by using

a single neighborhood structure. The proposed VND is defined as follows:

Step 1 Define the set of neighborhood structures to be usedk,Sgtequal to the number of such
structures.

Step 2 Find an initial solutione.

Step 3 Setk = 1.

Step 4 Find the first improving neighbar’ of z, 2’ € Ny (z).
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Step 5 If a neighborz’ was found, set = z’ and go to Step 4. Otherwise, det= k + 1.
Step 6 If k£ > k4, and there were no improvements sirice: 1, stop.

Step 7 If k& > k.q and the solution was improved with af¥, : & > 1, go to Step 3. Otherwise,

go to Step 4.

Neighborhood Structure

Three neighborhoodsy,, N», and N3, are used in this study and are described below. The first
two neighborhoods are based on the well known custahifirand customeswap respectively, to

move and exchange customers between routes. These operators are adapteddnohiiaugland
(2004)to handle split deliveries. The third neighborhood is based on a new operator, called customer
shift*, that introduces a split delivery when a customer shift is infeasible due to a lack of vehicle

capacity in the destination route.

The operators are illustrated in Figure$to 5.7. In these figures, the depot is graphically
represented by a white square, roufgsand R, represent any two existing routes in the current
solution, solid arrows represent the sequence of customers withand dashed arrows represent
the sequence of customers withity. Customers are represented by a circle with shading used
to differentiate the customers; customers not involved in the transformation and remaining in their
original routes are white, customers originally withi and moved taR, are gray, and customers
originally within Ry and moved taR; are black. Finally, and for the purpose of the operator’'s
description, the spare capacity of routis denoted bys;, the demand of customeris denotedy;,

and the delivery made by routgo customer; is denoted byy; ;.

e The customeshiftis illustrated in Figures.5. This operator moves customgr € R; to
the cheapest position iR,. If j; is split amongR; and Ry, it is removed fromR; and the

quantityy.;, is increased tq;, . This move is feasible whesy > ;.
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Figure 5.5:1llustration of the shift operator.

e The customeswapis illustrated in Figures.6. This operator exchanges two customers by
removingj; € R; andj, € R, and inserting them into the cheapest position&irand R,
respectively. Ifj, is split amongR; and Ry, it is removed fromR, and the quantity, ;, is

increased t@;,. This move is feasible whesy + y2;, > g, ands; + g;j, > 125,

e The customeshift® is illustrated in Figureb.7. This operator is a variant of the standard
customershift and moves customel € R; to the cheapest position iR; and inserts a
partial delivery of customef, € Rs into the cheapest position iB;. This move is feasible
whensy < gj, andg;, — s2 < gj,. In other words, the move is feasible wh&p does not
have enough capacity to servigeand the demangl;, of customerj, € R, is large enough
to cover the lack of capacity iR5. As this transformation allows botR; and R, to service
Jo, the quantitieg;;;, andy,;, are possibly adjusted to avoid any route exhausting the entire

capacity. This adjustment helps increase the number of feasible candidates that may be found

later in the search.
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Figure 5.7:lllustration of theshift operator.
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5.4 Experimental Results

The proposed algorithms were tested on existing problem sets available in the litefatiretti,

Hertz, and Speranza (200@elenguer et al. (2000Chen et al. (2007)andJin et al. (2007)

These problems total 96. The instances frAnehetti, Hertz, and Speranza (200@klude the
problems with both original and randomly generated customer demands. These instances involve
50, 75, 100, 120, 150, and 199 customers and their demands are randomly generated as a function
of the vehicle capacity to test the performance of the algorithmi&rcifietti, Hertz, and Speranza

when the customer demands get large, d3rior and Trudeau (1989)nstances 1-5 have customers
uniformly located around the depot, whereas instances 6 and 7 have clustered customers. In contrast
to problem 7, in problem 6 the depot is not centered with respect to the customer locations. The
description of these instances can be foun@lmistofides and Eilon (196@ndChristofides et al.

(1979) It is important to mention that the instances with random demands generafeghmstti,

Hertz, and Speranzare unavailable. Instances frdBoudia et al. (2007are the same instances
tested and generated bjota et al. (2007)with the generator oArchetti, Hertz, and Speranza

When required, special notes are used at the bottom of the tables to differentiate the instances used
by the authors in their corresponding publications. The instances usBdlegguer et al. (2000)
include 11 problems taken from TSPLIB and another 14 problems created by randomly generating
the customer demands as a function of the vehicle capacity. These instances involve 21 to 100
customersChen et al. (2007)ecently generated a set of 21 problems involving 8 to 288 customers
having a geometric symmetry, a star shape, with the customers located in concentric circles around
the depot.Jin et al. (2007used one TSPLIB instance involving 21 customers and generated four

instances with 18, 21, and 22 customers.

The notatiorp-aaa-nnn is used to name each instance, wheis an alphabetical character
to identify the publication where the problem is given (see T&hlg aaa is a string of variable
length corresponding to the name of the instance adopted on the publication, and the third naming

field is a three-digit integer denoting the number of customers. For instance, a-01-050 corresponds
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Table 5.1:Test problems naming scheme.

Value First Naming

Fieldp Publication
a Archetti, Hertz, and Speranza (2006)
b Belenguer et al. (2000)
c Chen et al. (2007)

] Jin et al. (2007)

to problem 1 fromArchetti, Hertz, and Speranza (2008ith 50 customers. The algorithms were
implemented irC# and the experiments were carried out on a PC Pentium 4, 2.8GHz processor, and
512MB of RAM. During the experiments, parametarand in Equation 6.2) were set to 200 and
1000000, respectively. These values were empirically found to work reasonably well for the tested

problems.

In this chapter, a constructive approach with a RAC mechanism is proposed to best allocate
customers to routes. To test the performance of RAC, initial solutions are constructed with and
without this mechanism and the savings obtained in the total traveled distance when the RAC is
actually used are calculated. Except for one case, i.e., problem b-eil33-032, where the depot is not
geographically centered with respect to the customer locations, the RAC obtains better solutions.
On average, RAC savings are 32.84% on the 96 tested problems. However, these savings were
found to vary with two problem characteristics: the geographical distribution of customers and
the customer demand range. The RAC does well on problems with a centered depot, less well
on problems where the depot is not centered. The tested problems are classified as GC when the
depot is geographically centered with respect to the customers (e.g., problems a-01-050 and a-
07-100), non-GC (NGC) when the depot is not geographically centered (e.g., problems a-06-120
and b-eil33-032), random (R) when the customers are randomly scattered (e.g., problems a-01-050
and b-eil33-032), or clustered (C) when customers form clusters (e.g., problems a-06-120 and a-07-
100). Tablés.2shows the percentage savings obtained when the RAC is used within the constructive

approach for each problem type. Note that RAC is more effective when the depot is centered, i.e.,
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Table 5.2:Impact of problem type on the benefits of the route angle control.

Problem| Tested Savings due to RAC

Type | problems| Min Avg | Max

GC-R 77 10.76 | 35.16 | 46.94

GC-C 11 27.85| 37.33| 46.92
NGC-R 1 0.00 | 12.83| 26.19
NGC-C 7 8.49 | 13.97| 17.86

Table 5.3:Impact of demand range on the benefits of the route angle control.

Demand| Tested Savings due to RAC
range | problems| Min Avg | Max
D1 10 8.49 | 21.83| 37.66
D2 10 17.15| 41.22 | 46.85
D3 10 17.86| 39.56 | 45.38
D4 9 17.49| 34.79| 39.28
D5 9 14.75| 35.90| 41.72
D6 8 13.07| 31.20| 35.28

problem types GC-R and GC-C. Problems with clustered or scattered customers do not seem to

affect the performance of the proposed angle control measure.

Table5.3shows the percentage savings due to the RAC for different demand rdngesD6.
These ranges are used Bglenguer et al. (200nd Archetti, Hertz, and Speranza (2008ith
D1 =[0.01 — 0.10] and D6 = [0.70 — 0.90]. The results in the table reveal that the RAC produces
solutions of considerable less quality to problems with low customer demands in thelrangbe
reason for this is that fewer vehicles are required to satisfy the capacity constraints so the threshold
anglef* = 2% gets larger. As a consequence, the tetm max{0, %} in Equation 6.2

becomes zero for most insertion candidates so no penalties are applied to insertions into far routes.

Tables5.4to 5.6 show the solution values obtained with the proposed constructive approach

(CA), iterative constructive approach (ICA), and variable neighborhood descent along with the per-
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centage improvement with respect to the CA solution value and the running times. The VND was
tested using the solutions obtained with the CA and ICA approaches as the initial solutions. How-
ever, using the ICA as the initial solution (ICA+VND in the table) produces better results in 78% of
the tested problems. As seen in Tale$and5.5, although the ICA approach outperforms CA in

35 of the 63 problems, the improvements occur mainly in problems with small customer demands.
As demands get larger, ICA does not improve the solution found with CA. The ICA uses a very
conservative scheme to improve the search based on the information of constructed solutions. Thus,
it is difficult to find solutions of lower value by simply re-positioning a single customer in the list

L when the customer demands are large. This fact is reinforced by the results Ghaheet al.
(2007)problem set presented in Taleb. In this set, customer demands are 60 and 90, the vehicle
capacity is 100, and the ratio of the total demand and total capacity is 1 for all problems, which
means that all vehicles are fully loaded in the final solution. ICA was able to slightly improve CA
in only problem ¢c-SD15-144. In contrast, the ICA+VND approach has a stronger neighborhood

structure and a more aggressive search process so the improvements over CA are noticeably higher.

The results on the instances frofnchetti, Hertz, and Speranzae compared with those ob-
tained by the best among the three tabu searchascbietti, Hertz, and Speranza (200&plitabu-
DT), the scatter search (SS) bfota et al. (2007)the hybrid approach (EMIP+VRTR) &Zhen
et al. (2007) and the memetic algorithm with population management (M) of Boudia et al.
(2007) Since the tabu search has random elemdmtdetti, Hertz, and Speranzan each problem
five times. Thus, their average values are provided in the experimental results. Similarly, values
reproduced fromChen et al. (2007korrespond to median solution values from 30 different in-
stances for each problem. The computational results of the best among the proposed approaches,
ICA+VND, are presented in Tablds7 and5.8 Solution values: and percentage improvements
IMP of the other approaches over the objective function value of the ICA+VND solution are shown
in Table5.7. Improvements in bold font denote the cases where the ICA+VND solution has a bet-
ter value. EMIP+VRTR was not tested on problems a-03-100 so these values are omitted. The

results are grouped according to the actual instances used in the experiments. The instances used
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Table 5.4:Computational results on problems of Archetti et al. (2006).

CA ICA ICA+VND

Problem Demand z CPU z IMP  CPU z IMP CPU

a-01-050 578.83 0.08| 568.67 1.76 2.69| 540.82 6.57 10.89
a-02-075 899.11 0.06| 889.05 1.12 3.25| 880.28 2.09 9.81
a-03-100 873.46 0.16| 863.18 1.18 9.34| 854.13 2.21 4350
a-04-150 1121.33 0.33] 1108.97 1.10 20.77| 1088.91 2.89 129.23
a-05-199 1412.18 0.55| 1412.18 - 26.66| 1390.55 1.53 534.83
a-06-120 1257.48 0.41| 1257.48 - 20.27| 1223.28 2.72 257.30
a-07-100 82759 0.11| 826.03 0.19 6.20| 824.82 0.33 21.02
a-01-050 [0.01-0.10] 477.66 0.09| 477.66 - 442 | 473.22 0.93 4.52

a-02-075 [0.01-0.10] 638.10 0.19| 628.30 1.53 11.14| 617.65 3.20 51.28
a-03-100 [0.01-0.10] 864.06 0.42| 84595 2.10 27.34| 789.16 8.67 415.47
a-04-150 [0.01-0.10] 907.36 0.56| 902.48 0.54 45.80| 893.49 153 666.20
a-05-199 [0.01-0.10] 1163.38 1.06| 1126.78 3.15 181.28 1079.04 7.25 3750.44
a-06-120 [0.01-0.10] 1175.43 0.53| 1169.57 0.50 28.66| 1101.14 6.32 341.59
a-07-100 [0.01-0.10] 706.74 0.48| 687.12 2.78 28.72| 673.54 470 222.42

a-01-050 [0.10-0.30] 787.03 0.02| 777.75 118 1.09| 777.75 1.18 1.59
a-02-075 [0.10-0.30] 1157.90 0.05| 1152.97 0.43 2.36| 1099.47 5.05 13.19
a-03-100 [0.10-0.30] 1513.33 0.08| 1512.37 0.06  3.97| 1452.52 4.02 34.09
a-04-150 [0.10-0.30] 2124.89 0.19| 2124.89 - 9.30 | 1978.01 6.91 164.19
a-05-199 [0.10-0.30] 2584.94 0.33| 2584.94 - 16.45| 2502.54 3.19 248.83
a-06-120 [0.10-0.30] 2996.54 0.13| 2979.88 0.56 6.28| 2806.92 6.33 54.25
a-07-100 [0.10-0.30] 1555.18 0.09| 1490.76 4.14  4.56| 1428.27 8.16 22.56

a-01-050 [0.10-0.50] 1098.88 0.03| 1098.88 - 1.06 | 1045.93 4.82 2.81
a-02-075 [0.10-0.50] 1574.85 0.05| 1529.71 2.87 2.77| 1503.02 4.56 11.25
a-03-100 [0.10-0.50] 2029.21 0.09| 2015.64 0.67 4.41| 195755 3.53 25.16

a-04-150 [0.10-0.50] 2774.54 0.17| 2774.54 - 9.06 | 2685.33 3.22 111.66
a-05-199 [0.10-0.50] 3615.66 0.33| 3615.66 - 16.20| 3450.84 4.56 339.36
a-06-120 [0.10-0.50] 4212.58 0.13] 4212.58 - 6.31 | 4085.36 3.02 40.53

a-07-100 [0.10-0.50] 2108.74 0.08| 2078.99 1.41  4.69| 2046.15 2.97 11.92

Continued on next page
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Table 5.4:Computational results on problems of Archetti et al. (20@)rtinued.

CA ICA ICA+VND

Problem Demand z CPU z IMP  CPU z IMP  CPU

a-01-050 [0.10-0.90] 1604.25 0.03] 1602.49 0.11 1.38] 1547.32 355 2.83
a-02-075 [0.10-0.90] 2367.26 0.06| 2348.75 0.78 3.36| 2212.93 6.52 10.80
a-03-100 [0.10-0.90] 3026.61 0.09| 3018.59 0.27 5.08| 2925.13 3.35 19.00
a-04-150 [0.10-0.90] 4395.14 0.22| 4395.14 - 10.89 419250 4.61 141.2]
a-05-199 [0.10-0.90] 5559.98 0.38| 554557 0.26 28.06 5192.06 6.62 662.7]
a-06-120 [0.10-0.90] 6541.28 0.16] 6541.28 - 7.22| 6483.06 0.89 42.00
a-07-100 [0.10-0.90] 3295.74 0.11] 3269.30 0.80 4.88| 3178.28 3.56 12.89
a-01-050 [0.30-0.70] 1605.45 0.03] 1591.06 0.90 1.55 1557.52 2.99 2.20
a-02-075 [0.30-0.70] 2348.60 0.06| 2348.60 - 297| 224159 456 11.28
a-03-100 [0.30-0.70] 3068.10 0.11] 3057.85 0.33 4.78| 2945.19 4.01 15.14
a-04-150 [0.30-0.70] 4395.14 0.22| 4395.14 - 10.89 419250 4.61 143.0%
a-05-199 [0.30-0.70] 5680.50 0.45| 5680.50 - 18.92 5366.06 5.54 349.91
a-06-120 [0.30-0.70] 6826.12 0.14| 6814.97 0.16 7.31| 6591.40 3.44 59.20
a-07-100 [0.30-0.70] 3402.47 0.09| 3348.16 1.60 5.03] 3318.08 2.48 13.69
a-01-050 [0.70-0.90] 2246.82 0.03] 2246.82 - 1.63| 221534 140 2.59
a-02-075 [0.70-0.90] 3400.01 0.09| 3400.01 - 3.92| 3341.26 1.73 10.25
a-03-100 [0.70-0.90] 4526.40 0.13] 4526.40 - 6.61| 4455.14 157 14.31
a-04-150 [0.70-0.90] 6665.56 0.31] 6665.56 - 15.34 6513.36 2.28 93.78
a-05-199 [0.70-0.90] 8692.00 0.56| 8662.98 0.33 32.63 8368.35 3.72 460.84
a-06-120 [0.70-0.90] 10585.01 0.20] 10585.01 - 9.77| 10302.16 2.67 59.28
a-07-100 [0.70-0.90] 5196.44 0.13]| 5196.44 - 6.75| 5058.76 2.65 20.70

z denotes objective function value obtained.

IMP denotes percentage objective function improvement over CA.

CPU denotes running time in seconds on a P4, 2.8GHz, 512MB.
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Table 5.5:Computational results on the random problems of Belenguer et al. (2000).

CA ICA ICA+VND

Problem Demand z CPU z IMP  CPU z IMP CPU
b-S51D1-050 [0.01-0.10] 477.66 0.09| 477.66 - 459 | 473.22 0.93 4.53
b-S51D2-050 [0.10-0.30] 759.56 0.03| 74546 186 1.27| 732.38 3.58 4.05
b-S51D3-050 [0.10-0.50] 1034.90 0.02| 1034.90 - 0.98| 1001.22 3.25 2.50
b-S51D4-050 [0.10-0.90] 1740.38 0.03| 1740.38 - 1.38| 1708.00 1.86 2.89
b-S51D5-050  [0.30-0.70] 1421.74 0.03| 1421.74 - 1.16| 140454 1.21 1.80
b-S51D6-050  [0.70-0.90] 2266.58 0.03| 2266.58 - 1.73| 2230.06 1.61 2.27

b-S76D1-075  [0.01-0.10] 642.18 0.22| 626.72 2.41 2191 610.23 4.98 63.55
b-S76D2-075  [0.10-0.30] 1199.42 0.06| 1196.42 0.25 2.48| 1169.80 2.47 7.73

b-S76D3-075  [0.10-0.50] 1584.35 0.05| 1584.35 - 2.25| 1490.08 5.95 12.23
b-S76D4-075  [0.10-0.90] 2326.64 0.06| 2326.64 - 2.73| 2220.87 4.55 6.91
b-S101D1-100 [0.01-0.10] 854.05 0.41| 831.64 2.62 47.45 765.48 10.37 210.36
b-S101D2-100 [0.10-0.30] 1510.85 0.09| 1510.85 - 4.36| 144496 4.36  26.20

b-S101D3-100 [0.10-0.50) 2167.71 0.08| 2144.46 1.07 4.23| 1990.28 8.19 27.84
b-S101D5-100 [0.30-0.70] 3062.17 0.09| 3046.95 0.50 6.27| 2999.31 2.05 18.36

z denotes objective function value obtained.
IMP denotes percentage objective function improvement over CA.
CPU denotes running time in seconds on a P4, 2.8GHz, 512MB.
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Table 5.6:Computational results for problems of Chen et al. (2007).

CA ICA ICA + VND
Problem z CPU z IMP  CPU z IMP CPU
c-SD01-008| 25478.71 0.02| 25478.71 - 0.06| 22828.43 10.40 0.06
c-SD02-016| 73478.71 0.00] 73478.71 - 0.19| 70828.43 3.61 0.22
c-SD03-016| 43058.22 0.02| 43058.22 - 0.16| 43058.22 - 0.17
c-SD04-024| 70448.03  0.00, 70448.03 - 0.36| 63583.51 9.74 0.55
c-SD05-032| 139056.83 0.02) 139056.83 - 0.61| 139056.83 - 0.69
c-SD06-032| 85288.45  0.03] 85288.45 - 0.81| 83124.14 2.54 0.94
c-SD07-040| 364000.00 0.02 364000.00 - 0.94| 364000.00 - 1.03
c-SD08-048| 509478.71 0.03] 509478.71 - 1.36| 506828.43 0.52 1.75
c-SD09-048| 213794.48 0.03 213794.48 - 1.45| 207102.79 3.13 291
c-SD10-064| 277291.42 0.06) 277291.42 - 2.52| 274783.08 0.90 3.58
c-SD11-080| 1328000.01 0.08 1328000.01 - 3.56| 1328000.01 - 3.97
c-SD12-080| 727997.00 0.06] 727997.00 - 3.59| 727997.00 - 4.00
c-SD13-096| 1011057.51 0.09 1011057.51 - 5.25| 1011057.51 - 5.80
c-SD14-120| 1092000.85 0.16 1092000.85 - 7.84| 1089349.80 0.24 15.49
c-SD15-144| 1522449.07 0.23 1522342.27 0.01 11.751516827.58 0.37  18.33
c-SD16-144| 375542.10 0.25 375542.10 - 11.77 363526.95 3.20 39.7]
c-SD17-160| 2655992.75 0.28 2655992.75 - 14.16 2655992.75 0.00 17.47
c-SD18-160| 1455999.62 0.28 1455999.62 - 13.88 1444059.28 0.82  40.38
c-SD19-192| 2021283.59 0.39 2021283.59 - 20.39 2019119.29 0.11  27.64
c-SD20-240| 3983999.63 0.63 3983999.63 - 32.25 3981348.58 0.07 63.18
c-SD21-288| 1244552.35 1.05 1244552.35 - 52.90 1179960.15 5.19 738.4

z denotes objective function value obtained.

IMP denotes percentage objective function improvement over CA.

CPU denotes running time in seconds on a P4, 2.8GHz, 512MB.
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in this study have the same customer demands used to test SS aRMMKowever, there is no
evidence to support the equality of the customer demands with the other instarciestt|, Hertz,

and Speranza, 200€hen, Golden, and Wasil, 2007

In terms of solution values in Table5.7, ICA+VND is comparable with SS and MRM.
On average, the ICA+VND solutions are within 1.77% and 4.34%, respectively|PMAs not
improved in any case, but SS is improved in 10 problems with large demands (see the three largest
demand ranges in the table). There is a tendency of ICA+VND to perform better as the customer
demands get larger. While the other approaches tend to outperform ICA+VND, across the board the
ICA+VND is competitive with those approaches. Columrshows the minimum possible fleet size
to satisfy all customer demands, which is also the number of vehicles in the final ICA+VND, SS, and
MA |PM solutions. Columnn’ shows the number of vehicles in the final feasible solutions of the
tabu searchChen et al. (2007lo not report the fleet size for EMIP+VRTR in their computational
results. A very important consideration is that ICA+VND usually utilizes less vehicles than the tabu
search (see bold numbers in columi). Using more vehicles may reduce objective function values
thereby somewhat obscuring solution comparisons. Tallesummarizes the reported running
times for the existing algorithms and the running times for the ICA+VND approach. The ICA+VND
approach only requires a single run, and per TaBebtains those solutions quicker than the other

approaches in most cases.

Computational results on the TSPLIB instances solvedblenguer et al. (200Gre pre-
sented in Tabl®.9. This table compares the ICA+VND solution valuewith the bounds obtained
by Belenguer et alusing a heuristic method and a cutting plane algorithm, the bounds foulnid by
(2005)using a branch-and-price approach (B&P), and the bounds obtain#d byal. (2008ith
a column generation approach (omitted values in the table are not published). ICA+VND solution
values are also compared with those foundBmudia et al. (2007yith MA|PM. ICA+VND is
competitive with the other approaches and clearly dominates B&P on these instances. To compare
with Belenguer et aland MAIPM, euclidean inter-node distances are also truncated to the near-

est integer. In these instances, ICA+VND solutions are within 5.78% above the lower bounds of
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Table 5.8:Running time in seconds for existing approaches and the ICA+VND approach

on instances of Archetti et al. (2006).

Problem  Demand | ICA+VND® | sSSP | MA|PM© | Splitabu-DT® | EMIP+VTR®)
a-01-050 10.89 24.80 8.53 13.20 1.80
a-02-075 9.81 61.66 | 35.72 35.80 4.00
a-03-100 43.50 108.80| 34.59 57.60 -
a-04-150 129.23 | 261.28| 103.69 389.00 10.00
a-05-199 534.83 | 352.31| 353.84 386.40 18.10
a-06-120 257.30 | 131.34| 50.92 38.40 5.60
a-07-100 21.02 108.41| 42.89 49.00 3.70
a-01-050 [0.01-0.10] 4.52 26.86 | 12.38 4.80 1.90
a-02-075 [0.01-0.10] 51.28 68.80 | 18.75 13.00 25.80
a-03-100 [0.01-0.10]  415.47 | 125.06| 37.12 31.20 -
a-04-150 [0.01-0.10] 666.20 | 352.09| 100.27 172.80 107.80
a-05-199 [0.01-0.10] 3750.44 | 963.84| 356.22 525.80 413.40
a-06-120 [0.01-0.10] 34159 | 163.28| 72.98 42.40 36.40
a-07-100 [0.01-0.10] 222.42 80.56 | 34.97 57.80 53.90
a-01-050 [0.10-0.30] 1.59 26.31 | 10.22 21.80 3.40
a-02-075 [0.10-0.30]  13.19 86.02 | 34.14 45.40 57.00
a-03-100 [0.10-0.30]  34.09 98.00 | 78.06 95.80 -
a-04-150 [0.10-0.30] 164.19 10.06 | 147.89 393.20 308.00
a-05-199 [0.10-0.30] 248.83 19.11 | 347.14 754.80 618.50
a-06-120 [0.10-0.30]  54.25 11.33 | 144.19 142.60 136.40
a-07-100 [0.10-0.30]  22.56 151.25| 43.27 146.00 126.50
a-01-050 [0.10-0.50] 2.81 3.84 12.49 28.20 14.70
a-02-075 [0.10-0.50]  11.25 6.09 37.38 123.20 214.00
a-03-100 [0.10-0.50] 25.16 7.55 28.39 136.20 -
a-04-150 [0.10-0.50]  111.66 16.17 | 224.89 739.20 630.50
a-05-199 [0.10-0.50] 339.36 20.64 | 436.20 2668.00 1775.70
a-06-120 [0.10-0.50]  40.53 63.80 | 163.14 268.00 220.70
a-07-100 [0.10-0.50]  11.92 41.23 | 51.31 292.80 287.60
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Table 5.8:Running time in seconds for existing approaches and the ICA+VND approach

on instances of Archetti et al. (2008}¢ntinued.

Problem  Demand | ICA+VND® | sSSP | MA|PM© | Splitabu-DT EMIP+VTR®
a-01-050 [0.10-0.90] 2.83 3.91 21.42 60.80 55.40
a-02-075 [0.10-0.90] 10.80 6.64 46.11 193.40 401.10
a-03-100 [0.10-0.90] 19.00 9.16 84.38 648.60 -
a-04-150 [0.10-0.90] 141.27 25.03 24491 2278.00 2220.00
a-05-199 [0.10-0.90] 662.77 71.09 725.69 3297.20 3038.10
a-06-120 [0.10-0.90] 42.00 15.86 196.14 877.80 722.80
a-07-100 [0.10-0.90] 12.89 9.08 52.13 259.60 251.20
a-01-050 [0.30-0.70] 2.20 4.25 24.53 48.60 47.90
a-02-075 [0.30-0.70] 11.28 7.14 51.78 128.60 509.60
a-03-100 [0.30-0.70] 15.14 10.36 100.16 810.20 -
a-04-150 [0.30-0.70] 143.05 19.38 244.86 3008.00 3028.30
a-05-199 [0.30-0.70] 349.97 120.28| 749.94 3565.60 3035.70
a-06-120 [0.30-0.70] 59.20 17.16 271.39 658.60 605.40
a-07-100 [0.30-0.70] 13.69 9.73 91.31 777.80 716.50
a-01-050 [0.70-0.90] 2.59 4.13 22.91 106.40 135.40
a-02-075 [0.70-0.90] 10.25 7.66 27.48 869.20 811.00
a-03-100 [0.70-0.90] 14.31 12.06 55.75 1398.40 -
a-04-150 [0.70-0.90] 93.78 131.91| 401.62 10223.20 10038.80
a-05-199 [0.70-0.90] 460.89 165.28| 571.70 21849.20 12542.30
a-06-120 [0.70-0.90] 59.28 20.17 298.08 1825.60 725.40
a-07-100 [0.70-0.90] 20.70 9.19 180.11 1004.40 1024.30

@p4, 512MB, 2.8 GHZ®P4, 1.0GB, 2.4GHZ%3GHz;¥P4, 256MB, 2.4GHz)©)P4, 512MB, 1.7GHz.
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Table 5.9:Computational results of ICA+VND on some TSPLIB VRP instances.

ICA+VND Belenguer et al. (2000) MA|PM
Problem 2@  CcPUd | UB® LB %ALB | :® CPU9 IMP

b-eil22-021 375 0.70 | 375 375 0.00 | 375 411  0.00
b-eil23-022 570 0.59 | 569 569 0.18 | 569 547 0.18
b-€il30-029 520 2.22 | 510 508 2.31 | 503 570 3.27
b-eil33-032 869 1.86 | 835 833 414 | 835 519 391
b-eil51-050 538 10.89| 521  511.57 491 | 521 7.28 3.16
b-eilA76-075 | 875 9.81 | 832 782.7 10.55| 828 35.94 5.37
b-eilB76-075 | 1055 16.42| 1023 937.47 11.14| 1019 13.09 3.41
b-eilC76-075 | 751 26.25| 735  706.01 599 | 738 14.75 1.73
b-eilD76-075 | 714 29.92| 683  659.43 7.64 | 682 23.12 4.48
b-eilA101-100| 842 4350 | 817  793.48 5.76 | 818 2525 2.85
b-eilB101-100| 1129 31.13| 1077 1005.85 10.91| 1082 21.81 4.1§

Continued on next page

Belenguer et aland 2.96% above MM, on average. Although the percentages above the lower
bounds of B&P are higher, note that these percentages change with the bounds and also with the
strategy to calculate the inter-node distances. However, the upper bounds of B&P are improved in

all but one problem, b-eil30-029 (see bold type in columns UB).

The computational results of ICA+VND on the random problemBalenguer et al. (200@re
presented in TablB.1Q In this table the results are also compared with thogehei et al. (2007)
who used the EMIP+VRTR to solve only the problems with large average demands (omitted values
in the table are not published). In these instances ICA+VND is able to improve the upper bounds
of Belenguer et alin problems with large demands with 50 and 75 customers and find the same
solution value on two other problems in demand rang@sand D3. With respect to MAPM,
ICA+VND solutions are within 4.04% on average in this problem set. In terms of running time,
ICA+VND is highly competitive and finds those solutions quicker than the other approaches in

almost all cases.

112



"ZHO8'Z ‘992 ‘d(pyZHO0'E Dd(x)ZHO8'Z ‘dNZTS ‘Yd(q)

"1aB81ul 1Sa1e8U BU) 0] PaTEIUNJ) SBOURISIP UBSPIONa YNIM Paulelqo anjeA uoinoun) aAoslqo ()
"620-0E19-q d2ULISU| UO 3ZIS 193J} WNWIUIW SY} UeY} d|IYdA 3I0W 8U0 Sasn Nd| VI

‘punoq Jamo| anoge aNA+VYDI Jusdiad sajousp g1vd

*ANA+VYDI J8A0 uononpal uonouny anloalgo abejuadalad sajousp dIA|

"'SpU02as Ul awn Buiuuni salouap NdD

"paurelqo anjeA uonoun; aAndalqo salousp 2

- - - - ¢¢'TT 06°€TOT OTVLTT |ETTE <2O0CYIT |00T-TOTAI®-q
- - - - €99 059°.6L 02'0T6 |0S9°€Ey  €TVYS8 |00T-TOTVIIS-Q
- - - - €e6 0€¢S9 08'89. |¢6'6C¢ Tv6r. | §20-9.dl8-q
- - - - €29 0C'TT. 0€608 |S¢'9¢ 6¥'85. | G,0-9.2l8-4
ov’'.L 00v80Sy V1186 G.L'€90T | 988 04996 OT'€9TT |¢¥'9T LS'6S0T | S.0-9.4l°-G
- - - - 60'6 0€008 0,006 | 186 82°088 | S.0-9.VIie-q
- - - - vT'9 09209 09855 |68'0T ¢80VS 0S0-TSlle-q
- - - - 19y 0c'0e8 0Ov'EL8 | 98T G€'0.8 ¢E0-EEll=e-q
- - - - vi¢e 02’085 0€'S9TS | ¢2'¢ 8¥'1¢Sa 6¢0-0¢le-q
- - - - 960 0E¥9S 00809 | 650 S9.°699 ¢c0-g¢lie-q
- - - - S0 09°€.E 009LE | 00 [STATA Tco-ccle-q

awv%  ENdd 91 an | gIv% g1 an | @Ndd z wajgoid

(8002) ‘fe1e uir d¥d ANA+VYOI

‘panunusguRISUl dYA 917dSL 8Wos Uo ANA+VYDI 40 sinsal feuoneindwoD:6's a|qeL

113




Table 5.10:Computational results of ICA+VND on the random problems of Belenguer et

al. (2000).

ICA+VND Belenguer et al. (2000) MA|PM
Problem 2@ cpud | ue®@ LB %ALB | @ CPU® IMP

b-S51D1-050 | 469 453 | 458 454 3.20 | 458 8.77 235
b-S51D2-050 | 726 405 | 726  676.63 6.80 | 707 744  2.62
b-S51D3-050 | 994 250 | 972 905.22 8.93 | 945 7.84 493
b-S51D4-050 | 1700 2.89 | 1677 1520.67 10.55 1578 11.98 7.18
b-S51D5-050 | 1399 1.80 | 1440 1272.86 9.02 | 1351 16.72 3.43
b-S51D6-050 | 2221  2.27 | 2327 2113.03 4.86 | 2182 9.92 1.76
b-S76D1-075 | 603 63.55| 594  584.87 3.01| 592 1523 1.82
b-S76D2-075 | 1165 7.73 | 1147 1020.32 12.42| 1089 30.5 6.52
b-S76D3-075 | 1485 12.23| 1474 1346.29 9.34| 1427 1289 3.91
b-S76D4-075 | 2205 6.91 | 2257 2011.64 8.77 | 2117 8.76  3.99
b-S101D1-100, 757 210.36| 716  700.56 746 | 717 49.75 5.28
b-S101D2-100| 1431 26.20 | 1393 1270.97 11.18 1372 31.72 4.12
b-S101D3-100 1975 27.84| 1975 1739.66 11.92| 1891 33.98 4.25
b-S101D5-100 2985 18.36 | 2915 2630.43 11.88 2854 18.66 4.39

Continued on next page
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Table5.11shows the computational results of ICA+VND on the problem set recently gener-
ated byChen et al. (2007)Each algorithm is presented with the objective function valaad the
running time in seconds. The last column, in the table contains the number of vehicles in the
ICA+VND final solutions. Bold type indicates the best known solution value each problem.
These problems were generated to have a geometric symmetry, a star shape, with the customers lo-
cated in concentric circles around the deficiién et al., 2007 As one might expect the heuristics,
each of which rely upon the proposed route angle computation, do extremely well on these prob-
lems. With ICA+VND, 16 of the 21 problems are improved. By examining Takfet is seen that
CA improved upon 12 of the 21 problems. It is not possible to compare the number of vehicles in
the final feasible solutions as this information is not published for EMIP+VRTR. In Fig@the
ICA+VND final solution to problem c-SD10-64 is shown. This problem is also illustratéchien

et al. (2007) The ICA+VND solution has a lower value and uses one less vehicle.

In Table5.12, solution values: and running times obtained with ICA+VND on instances of
Jin et al. (2007 pare presented. In this table, results are compared with the optimal solutions found
by Jin et al. (2007with their TSVI approach. ICA+VND found the optimal solution in problems
j-eil22-021 and j-J2-021, whereas a small deviation from optimality was obtained in problem j-J1-

018. The obtained solutions are within 4.18% of the optimal value, on average.

5.5 Conclusions and Future Directions

This chapter provided a background on the SDVRP and approaches to solve the problem. Three
local heuristic search algorithms are presented to solve the SDVRP with the minimum fleet size,
examine their performance on available benchmark test problems, and offer insight into heuristic
performance. These algorithms are then compared to available algorithms based on a thorough
empirical study. The first algorithm is a constructive approach that uses a new route angle control
mechanism to quickly find high quality solutions on seven benchmark problems. This approach pro-

vides solutions within 9% of the best known solutions on a set of previously employed benchmark
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Figure 5.8:ICA + VND solution to problem cheSD10-64. Total distance is 2,747.83 with

48 vehicles.
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Table 5.11:Comparison of ICA+VND on Chen et al. (2007) problem set and approach.

EMIP+VRTR ICA+VND
Problem z CPU® 2@ CPU9 | m

c-SD01-008| 228.28 0.7 228.28 0.06 6
c-SD02-016| 714.40 54.4 | 708.28 0.22 | 12
c-SD03-016| 430.61 67.3 | 430.58 0.17 | 12
c-SD04-024| 631.06 400 635.84 0.55 | 18
c-SD05-032| 1408.12 402.7| 1390.57 0.69 | 24
c-SD06-032| 831.21 408.3 831.24 094 | 24
c-SD07-040| 3714.40 403.2| 3640.00 1.03 | 30
c-SD08-048| 5200.00 404.1| 5068.28 1.75 | 36
c-SD09-048| 2059.84 404.3 | 2071.03 291 | 36
c-SD10-064| 2749.11 400 | 2747.83 3.58 | 48
c-SD11-080| 13612.12 400.1| 13280.00 3.97 | 60
c-SD12-080| 7399.06 408.3| 7279.97 4.00 | 60
c-SD13-096| 10367.06 404.5| 10110.58 5.80 | 72
c-SD14-120| 11023.00 5021.7 10893.50 15.49 | 90
c-SD15-144| 15271.77 5042.3 15168.28 18.33 | 108
c-SD16-144| 3449.05 5014.7| 3635.27 39.71| 108
c-SD17-160| 26665.76 5023.6 26559.93 17.42 | 120
c-SD18-160| 14546.58 5028.9 14440.59 40.38 | 120
c-SD19-192| 20559.21 5034.2 20191.19 27.64 | 144
c-SD20-240| 40408.22 5053 | 39813.49 63.18 | 180
c-SD21-288| 11491.67 5051 | 11799.60 738.49 216

z denotes objective function value obtainédvalues divided by 100 for comparison purposes (see Tab)e
CPU denotes running time in secon&P4, 512MB, 1.7GHz®P4, 512MB, 2.8GHz.

m denotes the number of vehicles in the ICA+VND final solution. EMIP+VRTR vehicles not published.
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Table 5.12:Computational results of ICA+VND versus optimality on instances of Jin et al.
(2007).

TSVI ICA+VND % above
Problem z* CPU z CPU | optimality

j-eil22-021 | 375.28 17 h| 375.28 0.7s 0.00
j-J1-018 127.39 13h| 127.76 0.3s 0.29
j-J2-021 388.44 84h| 38844 05s 0.00
j-J3-022 367.93 17h| 409.19 055 11.21
j-J4-022 3722 13h| 407.16 05s 9.39

z* denotes optimal objective function value.
z denotes objective function value obtained.

CPU denotes running time.

problems. The second algorithm is an iterative approach that executes the constructive approach
repeatedly. This algorithm uses the knowledge from past solutions to influence future decisions
in the constructive approach and can provide good feasible solutions at a relatively low compu-
tational time, again when applied to the set of previously employed benchmark problems. The
third algorithm is a variable neighborhood descent that produces the best solutions. On average,
ICA+VND found solutions whose values are within 4.18% of optimality on existing benchmark
problems, while the optimal solutions were obtained within a second for two problems involving

21 customers. When tested on the newest benchmark problems available for SDVRP research each
of the proposed approaches improved significantly upon existing solutions. Overall, the new algo-
rithms were shown to be competitive on general forms of SDVRP instances and a particular good

choice for special classes of SDVRP instances.

The proposed route angle control mechanism is easy to implement and looks useful to solve
the SDVRP, specially in problems with large customer demands. In the future, other methods can be
explored to estimate the threshold angle used by this mechanism and be able to perform better with
the constructive approach, especially in problems where the depot is not centered with respect to

the customer locations. Although the proposed constructive approach tends to produce non-crossing
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routes, optimal solutions can have crossing as well as inner routes so the CA can be guided to design
such routes. In addition, more aggressive strategies can be investigated to modify the sequence of
customersl used by the constructive approach and force a better exploration of the search space.

These strategies have been tested to produce solutions with common attributes and similarities with
the best known solutions and can potentially be used for recombination operators and produce high

guality solutions.
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Chapter 6

A Ring-Based Diversification Scheme for

Routing Problems!

6.1 Introduction

The vehicle routing problem (VRP) was introduced almost 50 years ago and is still under active
investigation by practitioners and researchers. In its classical version, the problem is to effectively
design routes that a fleet of homogeneous vehicles will follow to supply the demand of geographi-
cally scattered customers without exceeding the vehicle capacity and considering that customers can
be visited by exactly one vehicle. Traditionally, solution techniques for the VRP have been clas-
sified as exact approaches, classical heuristic algorithms (i.e., constructive, saving, improvement,
sweep, petal, and matching algorithms), and metaheuristic algorithms (i.e., tabu search, genetic al-
gorithms, simulated annealing, etc.). Smin and Golden (1981).aporte et al. (2000)Toth and

Vigo (2002) Cordeau et al. (2002 ordeau et al. (2005andLaporte (2007¥or a full complete

survey and description of these techniques. The split delivery vehicle routing problem (SDVRP) is
a variant of the VRP where individual customer demands can be supplied by multiple vehicles. In

contrast to the VRP, there is a limited number of heuristic solution techniques to solve the SDVRP

1This chapter is found asleman et al. (2008)
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including local Dror and Trudeau, 198%nd tabu searchAfchetti, Hertz, and Speranza, 2006
A scatter search methodpta et al., 200Y, a hybrid approachGhen et al., 2007 a memetic al-
gorithm (Boudia et al., 200)f and a column generation approadim(et al., 2008 were recently

developed to effectively solve benchmark problems.

Most of the existing techniques to solve the SDVRP perform an aggressive search in certain
regions of the solution space, but do not employ diversification strategies to make a better explo-
ration of the space. Diversification methods are usually used within heuristic search methods to
increase the effectiveness of the search procedure particularly on hard problems. The exploration
of different regions of the solution space helps to overcome any local optimum and increase the
chance of finding a global optimal solution. When the search appears to have stagnated, it is useful
to examine ways to move the search process into other areas of the search space that may not have
been explored. If some predefined criteria are met, the algorithm moves to a “diversified” solution
whose attributes differ from those of the already evaluated solutions. Resuming the search from a
diversified solution is intended to explore new regions of the search space. Although the exploration
of different regions in the solution space can help to find better solutions, the cost in processing time
may be high and hence it is sometimes unattractive to diversify the search. This chapter examines

this search process tradeoff.

This chapter presents a new diversification scheme for routing problems applied to the SDVRP.
This scheme is based on a geographical division of the problem by means of concentric rings cen-
tered at the depot that temporarily exclude a subset of customers. A partial solution to the original
problem is created and the excluded customers are then incorporated into the solution by means
of a constructive approach until a complete solution is obtained. Different ring settings produce
varied partitions and thus different solutions to the original problem are obtained. The search is
restarted from those solutions and improved via a variable neighborhood descent. The diversifica-
tion scheme created is used with the constructive approach (CA) and iterative constructive approach
(ICA) with route angle control and the variable neighborhood descent (VND) descrildderman

et al. (2007)to obtain SDVRP solutions. The remainder of this chapter is organized as follows.
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Section6.2 provides an up-to-date literature review of the SDVRP and diversification methods ap-
plied to VRPs and SDVRPs. The proposed diversification method is described in Sk8taord
the solution approach is given in Secti6r3.2 Computational results are presented in Sedign

with conclusions presented in Sectiérb.

6.2 Background

In this section, an up-to-date literature review of the SDVRP, a review of the CA, ICA and VND
approaches okleman et al. (2007)and representative diversification methods applied to VRPs and
SDVRPs is presented. The review of diversification strategies is limited to how the solutions are
generated and does not cover how they evolve during any subsequent search. The studies discussed
address the classical VRP and the literature available for the generation of multiple solutions in the
context of split deliveries. The number of studies on SDVRPs is limited and there are a limited
number of solution methods for this combinatorial problem. These solution methods include some
exact approaches for small-sized problems and local search, tabu search, and hybrid methods for
larger problems. As discussed below, a couple of publications present population-based solution
methodologies including scatter search and memetic algorithms. Simulated annealing has been
recently used to find solutions to the capacited VRP with heterogeneous fixed fleet and split services,

but no computational results are reported on benchmark problem instances.

6.2.1 Solving the SDVRP

The SDVRP is a relaxation of the classical VRP. SDVRP was first introduc&tdayand Trudeau

(1989) and Dror and Trudeau (199(s a variant of the classical VRP where the demand of a
customer can be supplied by one or more vehicles. In the VRP vehicles with the same capacity
depart from a central depot and follow designated routes to visit and fully supply the demands of
geographically scattered customers. The combined demand of the customers visited by each vehicle

cannot exceed the vehicle's capacity. After supplying the customer demands, all vehicles return to
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the central depot. The goal is to effectively design the vehicle routes to minimize the total traveled

distance.

Mathematically, the SDVRP is defined on an undirected, fully connected gragh(V, E)
whereV = {0, 1,...,n} is the set of» + 1 nodes of the graph, anll = {(i,5) : 4,5 € V, i < j}
is the set of edges connecting the nodes. Node O represents a depot wherd/a-feft, ..., m}
of identical vehicles with capacit§) are stationed, while the remaining node 8et= {1,...,n}
represents the customers. A non-negative cost, usually the inter-node distanseassociated
with every edg€(i, j) € E. Each customei € N has a demand af; units and is located at a
point (x;, y;) in the two-dimensional space with respect to the depot locationy,). The SDVRP
potentially allows reducing the operational cost of the fleet, especially when the average customer
demand exceeds 10% of the vehicle capacity (as stat&tdryand Trudeau, 1989In their worst-
case analysis of the SDVRRychetti, Savelsbergh, and Speranza (20€)&)w that the reduction in
delivery costs that can be obtained by allowing split deliveries is at most 50%, and this reduction
bound is tightArchetti et al. (2008%kuggest that the benefits are mainly due to the reduction in the
number of vehicles required to supply the customer demands. Their mathematical analysis proved
that the maximum reduction in the number of vehicles is 50% and the largest reduction occurs
when the mean customer demand is between 50% and 70% of the vehicle capacity and the demand

variances are relatively small.

Dror and Trudeau (1989)ropose a local search which uses an initial VRP solution and then
uses a&-split interchange and route addition operators to introduce split deliveries if reductions in
the objective function value are possible with the split delivéyor and Trudeau (199Q)resent
some properties and valid inequalities for the SDVRizzell and Giffin (1992use grid network
distances in the problem and present a constructive approach to cluster the customers and a blocking
mechanism to assign the demand of clustered customers to available vehicles. In an apparent first
attempt to incorporate uncertainty into the SDVBBuUzaiene-Ayari et al. (1993dapt theClarke
and Wrightalgorithm to solve the problem with stochastic demaridier et al. (1994)escribe a

branch-and-bound approach using valid inequalities and exactly solve instances with up to 20 cus-
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tomers. In a second papéizzell and Giffin (1995)ntroduce time windows into the problem and

use these time windows as a criteria in the constructive approach to assign the customer demands.
Mullaseril et al. (1997)hdapt the local search @fror and Trudeau (1989p model a feed distri-

bution problem on a cattle ranch as a SDVRP with time windo@®rksma and Tijssen (1998)
formulate a set-covering problem and a column generation method to schedule helicopters in the

North Sea for crew exchange purposes.

Belenguer et al. (20009tudy the SDVRP and estimate lower bounds using a cutting plane
algorithm. They generate 14 random instances each having the same distribution of customers but
with different ranges of customer demand3ong et al. (2002jnodel a distribution problem in
Korea as a SDVRP to route vehicles and deliver newspapers from a central facility to different
distribution centers at different timesdo and Haugland (2004present a tabu search to solve
the SDVRP with time windows, adapt existing multiple-routes operators to the context of split
deliveries, and introduce the relocate split operator which changes the customer being split among
two routes. Nowak (2005)study the pickup and delivery routing problem with split loads and
present a heuristic approach to solve a real problam(2005) present a two stage algorithm and
a branch-and-price approach to solve some of the problems previously solNB=ldnguer et al.

(2000) Archetti, Hertz, and Speranza (20afgscribe a tabu search approach to solve the SDVRP
and solve 7 benchmark and 42 newly generated test problem instances using random customer
demands. Their results have been used in recent studies for empirical comparison of algorithm
performancelee et al. (2006present a shortest path approach to exactly solve the SDVRP with

up to 7 customers.

Belfiore et al. (2006study the implementation of a scatter search algorithm in an actual
problem to supply 519 customers in 12 states in Brazil. The problem involves heterogeneous ve-
hicles, time windows, accessibility constraints, and split deliveris.et al. (2006)propose an
approximate linear model with subtour elimination constraints, lagrangian relaxation, and a heuris-
tic method to solve the inventory routing problem with split deliverids et al. (2007propose

a cutting plane algorithm to optimally solve the SDVRP dividing the original problem into clus-
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tering and traveling salesman subproblems. The distances of the traveling salesman subproblems
are repeatedly added as bounds to the clustering subproblems to find better soutidmesino

and Sciomachen (200odel an actual problem in Italy to plan the country-wide distribution of
fresh/dry and frozen foodViota et al. (2007 present a scatter search procedure that uses the mini-
mum fleet size and produces good results on instances previously solved in the literature, particularly
on problems with average customer demands less than half of the vehicle caplcityand Cav-

alier (2007)consider an objective function involving total distance traveled and vehicle loads. They
use a constructive approach to find good solutions to small sized proliB#res.et al. (2007)evel-

oped a hybrid approach combining a mixed integer program and a record-to-record travel algorithm
that produces high-quality solutions compared to the existing literatlia@akkoli-Moghaddam

et al. (2007)present a mixed-integer linear and a simulated annealing method for solving the SD-
VRP with heterogeneous vehicleBoudia et al. (2007)mplemented a memetic algorithm with
population management and produced high quality solutions on the problefrstudtti, Hertz,

and Speranza (2008)nd Belenguer et al. (2000)Jin et al. (2008)present a column generation
approach to estimate bounds for the SDVRP with large customer demands. The algorithm improves

some of the bounds found tBelenguer et al. (2000)

6.2.2 The CA, ICA and VND Solution Approaches

Constructive Approach (CA)

The parallel constructive approach (CA)AlEman et al. (2007)ses an ordered ligt of customers

based on the distances from the depot and then inserts them into the solution under construction
to initiate new routes or modify existing ones. The farthest customer from the depot is assigned
the first position inL whereas the closest customer to the depot is assigned the last position. Once
L is designed, customers are sequentially inserted into the routes until all customer demands are
satisfied. A customer demand can be split when that demand exceeds the capacity left on the selected

vehicle. In this case, any remaining demand is assigned to either an empty vehicle or the best vehicle
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available. The characteristic that differentiates the CA from existing constructive approaches is that
it uses a novel route angle control mechanism (RAC) to avoid the design of spatially spread routes.
The intuition of RAC is to avoid overlapping routes among the vehicles. The RAC mechanism
utilizes the angle of a route, defined by the customers assigned to the route, to penalize insertions
into far routes and favor closer routes. The polar angle of customedaitive to the depot, denoted

0;, is defined as:

f; = arctan Yi Yo (6.1)
Ly — X0

where(x;, y;) represents the location of customemnd customer 0 represents the depot. The angle
of route R is then defined a8r = max{#; — 0;;Vi,j € N N R}. The CA can obtain solutions
of good quality at a very low computational effort using the minimum number of vehiales

[> ien @i/Q1, where[z] denotes the smallest integer greater than or equal to

Iterative Constructive Approach (ICA)

A limitation of the CA is that the customers closest to the depot inserted later in routes due to
their position inL, tend to deteriorate the quality of the final solution as there are a limited number
of route alternatives available at the moment of their insertion. Aleenan et al. (2007)CA is

an iterative approach that applies adaptive memory and dynamic modification of the [idte
resulting ICA executes the CA iteratively but modifieseach iteration. Customers that cause the
widest spread of routes are assigned an earlier positidn tim ensure their insertion into more
adequate routes. This is done as follows. First, the custemproducing the widest route is
identified. Second, the closest routeto :* in the current solution is selected. Third, the customer

i, spending the last resources f needed to fully supply customéft is determined. Finally,
customer:* is relocated inL so that it will be inserted into the solution right befakg This

guarantees a full service and a less expensive delivery for
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Variable Neighborhood Descent (VND)

The VND presented i\leman et al. (2007)ooks to improve the SDVRP solutions found with

ICA. The VND uses three neighborhoods. The first and second neighborhoods are based on the
standard customeshift and customeswapto move customers among routes. In the case of the
customershift, if the customer to be shifted is currently using split delivery, it is simply removed
from the origin route and its quantity is increased in the destination route (the split is eliminated).
In the case of the customsewap if a customer to be swapped is currently using split delivery, it is

also removed from the origin route and its quantity is increased in the destination route. The other
customer is then moved from one route to the other. The third neighborhood is a new operator that
moves a customer among routes when the destination route does not have enough capacity to cover
the demand of the moved customer. In order to make the move feasible, the load of the destination
route is released by reducing its delivery to any other customer in the route with enough demand
(i.e., larger than the demand of the moved customer). The unserved demand is then served by the
original route. At the end, the customer shift is feasible and a new split is introduced by sharing a
customer. A detailed illustration of these operators is foundllé@man et al. (2007along with an

empirical evaluation of CA, ICA, and VND performance on all available problem sets.

6.2.3 Solution Diversification Techniques

Despite using a variety of local search and local improvement methods, search heuristics can still
have problems finding really good solutions to hard problems. A diversification scheme aims to
move the search process into new, hopefully unvisited, regions of the solution space. Once in those

new regions, the search process resumes.

One of the first studies for generating diversified solutions for routing problemsRoblgat
and Taillard (1995who partition large problems into independent subproblems, each defined by
sectors and regions centered at the depot, and then optimize each subproblem independently. Their

diversified solutions are generated with a local search by considering various initial partitions of the
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problem. Tarantilis and Kiranoudis (200resent a population-based heuristic calBheRoute

that extracts sequences of nodes, or bones, from the pool of solutions to compose partial solu-
tions. They complete these partial solutions with a constructive approach. The diversified solutions
forming the initial pool are generated with the savings algorithrPaéssens (1988Berger and
Barkaoui (2003)propose a hybrid genetic algorithm to evolve two populations using selection, re-
combination, mutation, and migration operators. The generation of initial solutions is based on a
random construction of feasible solutions. A solution is rapidly constructed through a sequential
insertion heuristic which inserts customers into randomly chosen positions within routes. Customer

insertion order is randomly modified to ensure unbiased solution generation.

Reimann et al. (2004present the D-Ants algorithm that uses tBavingsAntsystem of
Doerner et al. (20023s the mechanism to generate a pool of solutions. IrSdangsAntap-
proach, solutions are generated using attractiveness values balancing the savings values of the clas-
sical Clarke and Wrightlgorithm and the pheromone information from previous iterations. The
D-Ants approach is effective solving small and large scale benchmark instances as well as real

world sized problems.

In his evolutionary algorithmRrins (2004 )proposes a population of solutions initialized using
three heuristic method<C{arke and Wright, 1964Mole and Jameson, 197&illett and Miller,
1974 and utilizing random permutations of customers to produce a complete population. Chromo-
somes represent solutions in the form of giant tours formed with the ordered sequence of routes. In
genetic algorithms for solving routing problems, each bit in the chromosome usually represents a
customer and multiple copies of the depot are used to separate the routes. Instead of using copies
of the depotPrinsutilizes an optimal splitting procedure to determine the best way to separate the
routes in the chromosome. The routes and the fitness value of each solution are determined by

solving a min-cost path problem on an auxiliary graph.

Tarantilis (2005)employes the method dBlover (1998)to generate a collection of diversi-

fied solutions and initiate an adaptive memory solution procedure. This methodology systemati-
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cally generates different permutations, or sequences, of customers and then successively assigns
customers to routes to produce a VRP solution using a generalized assignment process. These di-
versified solutions are then improved with a tabu search and combined using elite parts of the routes

to produce new solutions that update the adaptive memory components.

Only a few studies have used an initial set of solutions as a means to solve the SEBiRire
et al. (2006)%tudy the implementation of a scatter search for a routing problem with split deliveries,
heterogeneous vehicles, time windows, and accessibility constraints applied to a retail market in
Brazil. Their’s is the first attempt to solve split delivery problems with those particular side con-
straints. The initial solutions for the scatter search are generated using the constructive heuristic
of Dullaert et al. (2002jor the problem with heterogeneous vehicles and time windows. Random

elements are used to diversify the solutions.

Mota et al. (2007)propose a scatter search that generates a population of feasible solutions
based on a giant TSP tour visiting all customers. The construction of a solution commences by se-
lecting a starting customer in the giant tour and sequentially cutting that tour into individual routes
where the demand of the first and last customer of each route is split when that demand does not fit
the first vehicle serving it. The selection of nonconsecutive starting customers helps obtain different
solutions.Mota et al. (2007pglso adapt the algorithm &larke and Wrightfor split deliveries to
find another fraction of the population of solutions. This adaptation ofXflagke and Wrightl-
gorithm does not guarantee feasibility but produces diversified solutions by statistically prohibiting
half of the savings used in the construction of previous solutiBosdia et al. (200730lve the SD-

VRP using a memetic algorithm with population management and create the initial population both
heuristically and randomly; two solutions are constructed heuristically by the algorith@larke

and Wright (1964 andGillett and Miller (1974)whereas the rest of the population is generated with

a random permutation of the customers. This method to generate the initial population is similar
to that of Prins (2004, the only difference is the number of solutions created heuristically. The
memetic algorithm produces new best SDVRP solutions for benchmark proble@iwisfofides

and Eilon (1969and Christofides et al. (1979hvolving 75 and 120 customers with original de-
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mands and improves the state of the art algorith&rgl{etti, Hertz, and Speranza, 2006hen,

Golden, and Wasil, 20Q7n some of the other tested problems.

6.3 An Aggressive Diversification-Based Search Algorithm

6.3.1 A New Diversification Method

CA quickly finds SDVRP solutions whose objective function value is usually within 10% of the
best existing solutions. However, those solutions display a common pattern; customers closer to the
depot considerably deteriorate the quality of the overall solution. To mitigate this problem, the ICA
changes the sequence of customers to improve upon CA solutions. The VND further improves

the search process using a set of local search moves. Although each method is effective and can
avoid getting trapped in a local optimum region, these procedures do not guarantee a thorough ex-
ploration of the solution space. Diversification schemes are explicitly designed to improve solution

space exploration.

A diversification scheme is proposed and tested based on a geographical division of the cus-
tomers using rings, or spatial bands, centered at the depot. The geographic space of the problem is
marked with rings of varying circumferences used to group the customers. The original problem is
partially solved with the customers located inside certain rings. These selected customers are as-
signed to routes using the CA. Subsequently, the remaining customers, belonging to the other rings,

are inserted into the partial solution to yield a complete solution to the original problem.

Aring is defined by an inner and outer radiug, andr,,:, measured outward from the depot.
The customers inside a ring are those whose distance from the depot is greatey, thad less
than or equal toy, 7in, < coj < Toue. Although any number of rings can be used, the proposed
scheme uses three non-overlapping rings encompassing all customers. @igilitestrates the

geographical division used in the scheme applied to a problem involving 50 customers. In the

figure, there are three rings of radiusR, and R,,...., respectively. These define the rinds B,
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Figure 6.1:Geographical depiction of ring-based partition of 50 customers problem from
Archetti et al. (2006).
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Deviation from CA Solution
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Figure 6.2: Diversified solutions for problem 1 of Archetti et al. (2006) involving 50

customers with the original demands.

andC'. For example, rin@A is defined byr;, = 0 andr,,; = r, ring B is defined byr;, = r and

rout = R, and ringC'is defined byr;, = R androu; = Rmax

The original problem includes thecustomers in the séf = {1,...,n}. RingsA, B, andC
partition NV into three subset¥ 4, Ng, andN¢ such that: 1INANNg = NoNNg = NgNNe = ()
and 2)N = N4 U Np U N¢. A partial solution is then obtained using the CA with the customers
in N4 and N¢ while the customers itV are temporarily excluded. The complete solution is then
obtained when the customersNg are inserted into the partial solution also using the CA. Varying
values ofr and R varies the size oBB, and subsequentlyVg, the exclusion set in the method,
yielding a variety of solutions. This approach yields a much more aggressive diversification strategy

than the one obtained just using local improvement methods such as found with ICA.

The range of diversified solutions based on varied sizeB @ next examined. Figuré.2
shows the solutions to problem 1 and Fig@rgshows solutions to problem 6 froArchetti, Hertz,
and Speranza (200@ptained with the CA and the diversification scheme using different settings

for ring B. In each figure, solution values are shown as a percentage deviation from the objective
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Figure 6.3: Diversified solutions for problem 6 of Archetti et al. (2006) involving 120

customers with the original demands.

function value obtained using the basic CA. A negative deviation indicates that the diversification
directly provides a better solution whereas a positive deviation indicates the diversified solution is
not as good. The width and location of ritdg) varies as a function oR,,.,. The inner radius

varies in the rang®.1 R4z, 0.9 R4z in Steps 00).1R,,,., Whereas the outer radidgvaries in the
range(0.2R 4z, 1.0R 4] also in steps 00.1R,,q,. The ring settings and R are shown in each

figure in the formr — R on the horizontal axis. Note that different settings for the inner and outer
radius can be used to generate a larger number of diversified solutions. This diversification scheme
can be applied to any routing problem. Also, note that since this scheme generates diverse solutions,
the initial solution quality is not a primary concern; local improvement is ultimately applied to the

diverse solutions in the computational procedure.

Figures6.4to 6.7 illustrate four solutions taken from the generated set shown in Fig2re
Figure6.4illustrates the solution found with the basic CA while Fig6t&illustrates the solution
in the diversified set which is the most different from the basic CA solution shown in Fegdirin

this case, the number of edges appearing in one solution but not in the other are counted to measure
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2= 578.333277433216

Figure 6.4:lllustration of the basic CA solution for problem 1 of Archetti et al. (2006)

involving 50 customers with the original demands= 578.83).

2= 640.58982837579

Figure 6.5: lllustration of a solution taken from the set of solutions for problem 1 of
Archetti et al. (2006) that most differs from the basic CA solutienH 640.58 and ring
settings0.40 — 0.50).
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2 = 556.564286025323

Figure 6.6: lllustration of a solution taken from the set of solutions for problem 1 of
Archetti et al. (2006) with the lowest objective function valueX{ 556.56 and ring settings
0.20 — 0.90).

== 746.14319225763%

Figure 6.7: lllustration of a solution taken from the set of solutions for problem 1 of
Archetti et al. (2006) with the highest objective function value=€ 746.14 and ring
settings).60 — 1.00).
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the difference between two solutions. Fig@.é illustrates the solution in the diversified set with
the lowest objective function valug and finally Figures.7illustrates the solution in the diversified
set with the highest objective function value These figures reinforce with confidence that the

ring-based diversification process does in fact generate a variety of solutions.

6.3.2 The ICA+VND With Diversification (iVNDiv) Solution Approach

The proposed solution approach couples the algorithms presenédenran et al. (2007ith the

new diversification methodology. The idea is to solve the problem using the iterative constructive
approach and variable neighborhood descerlefnan et al. (2007and then restart the search
from different points in the solution space when the diversification phase commences. The result is

a multi-start algorithm for the SDVRP.

The details of iVNDiv are given in Algorithms 1 and 2. The set of solutions is generated
using Algorithm 1. This algorithm utilizes various ring settings to partition the original problem
in a variety of ways and produce different solutions. The algorithm constructs solutions with the
constructive approach (CA) dtleman et al. (2007) Once a complete solution is generated, it
is added to the full set of solutions. Before adding solutions, their objective function values are

verified to guarantee unique elements in the set of diverse solutions.

With the full set of diversified solutions, the ICA and VND Afeman et al. (2007are used
to improve the solutions in the diversified set. The number of solutions from the set used as starting
points in the solution space varies. The more solutions used, the higher the computational cost.
A maximum of 5 starting solutions are used in the proposed iVNDiv to balance the quality of the
solution and their running times. These 5 solutions are the best solutions in the set of diversified

solutions. The iVNDiv is presented in Algorithm 2.
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Algorithm 1: - Generation of se$ of solutions
SetS = 0.

Let N = {1,...,n} be the set of customers in the original problem.
Let N4 C N be the subset of customers in accordance wjth< r for i € V.
Let N C N be the subset of customers in accordance withcy; < R.
Let No C N be the subset of customers in accordance With cg; < R0 fOri € N.
width = 0.10
for r=0;r<1.00;r =r+ width do
for R =r + width ; R <1.00; R = R+ width do
Design a listL; with all customers € N4 U N¢.
Order the customers ih; by nonincreasing distance from the depot.
With L, use the CA to find a partial solution to the problem.
Define a listL, with all customers € Np.
Order the customers ihy by nonincreasing distance from the depot.
Using the CA, insert the customersiip sequentially intos; to produce a complete solutics.
SetS = SU {sq2}.
end for
end for

return S

Algorithm 2: - ICA+VND With Diversification (iVNDiv)

Execute Algorithm 1 to generate sg&bf solutions.
Setz;, as the best solution with solution valyéx;,) = oo
jumpCounter = 0.
maxJumps = 5.
while jumpCounter < mazxJumps do
Select the solution from setS with the lowest objective function value and remove it frém
Execute the ICA+VND approach éfleman et al. (20070 improvex and obtain:’.
if f(a') < f(zp) then
Ty =2’
end if
jumpCounter = jumpCounter + 1.
end while

return a
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6.4 Computational Results

The iVNDiv was implemented irfC# and experiments were carried out using a Pentium 4, 2.8
GHz, 512MB of RAM. The iVNDiv algorithm was tested on problem sets available in the literature
including Archetti, Hertz, and Speranza (200Belenguer et al. (2000Chen et al. (2007)andJin

et al. (2008) These sets have been solved with existing approaches which are compared to iVNDiv
in this empirical analysis. The tested instances are identified using theofaam-nnn . The first

field, p, is an alphabetical character to identify the publication where the problem is identified. The
second fieldaaa, is a string of variable length corresponding to the name of the instance adopted
in the publication, whereas the third field is a three-digit integer denoting the number of customers

excluding the depot. The first field, takes the following values:

e a Archetti, Hertz, and Speranza (2006)

b  Belenguer et al. (2000)

e ¢ Chenetal. (2007)

] Jin et al. (2007)

The instances used byrchetti, Hertz, and Speranza (200&e the same problems 1-5 and
11-12 given inChristofides and Eilon (1969nd Christofides et al. (1979volving 50 to 199
customers in addition to the depot. In problems 1-5, customers are randomly distributed in the
plane, while they are clustered in problems 11-12. From those 7 probkewisetti, Hertz, and
Speranza (2006yenerated 42 more by randomly modifying the customer demands at different
intervals. These random problems are unavailable. Howéteta et al. (2007used the same
algorithm ofArchetti, Hertz, and Speranza (20a6)generate their problems. The problems used
in this study were obtained froBoudia et al. (2007)In this analysis, the problems with random
customer demands have the exact same demand valuedagaret al. (2007)rndBoudia et al.

(2007) Belenguer et al. (2000ysed a total of 25 problems: 11 TSPLIB problems involving
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21 to 100 customers and 14 randomly generated problems from the TSPLIB (eil51, €il76, and
eil101). The same vehicle capaciy= 160 is used in each problem and the customer demands are
randomly generated within 6 intervals expressed as a funtiép, @ inDror and Trudeau (1989)
andArchetti, Hertz, and Speranza (2006}hen et al. (2007)ecently generated a new set of 21
problems involving 8 to 288 customers. Each problem has a geometric symmetry with customers
located in concentric circles around the depdih et al. (2007used a TSPLIB instance with 21

customers and generated 4 problems involving 18 to 22 customers.

Computational results for th&rchetti et al.instances are presented in Tab#esto 6.3. The
solution values from the existing algorithms are reproduced from the corresponding references. The
existing algorithms are the variable neighborhood descent (ICA+VNDlefan et al. (2007)
the scatter search (SS) blota et al. (2007)the memetic algorithm with population management
(MA|PM) of Boudia et al. (2007 the three tabu searches (Splitabu, Splitabu-DT, and Fast-Splitabu)
of Archetti, Hertz, and Speranza (200@&nd the hybrid algorithm (EMIP+VRTR) dfhen et al.
(2007) In Table6.1, columns with headem contain the number of vehicles in the final iVNDiv,
ICA+VND, SS, and MAPM solutions, which is always the minimum possible, whereas columns
with headenn’ contain the number of vehicles in the final solutions found with the tabu searches
of Archetti, Hertz, and Speranza (200®esults in Tablé.1show that the ICA+NVD algorithm is
clearly dominated by its counterpart with the proposed diversification scheme, i.e. iVNDiv. Com-
pared to SS, iVNDiv provides better solutions especially in problems with large customer demands
in the ranges [0.10-0.90], [0.30-0.70], and [0.70-0.90], where the largest cost reduction can occur,
as shown irDror and Trudeau (198@ndArchetti et al. (2008) Although iVNDiv finds solutions
of similar quality and performs better in one problem, the MK clearly dominates iVNDiv in this

problem set.

The comparison with the tabu searches and EMIP+VRTR on the problems with random cus-
tomer demands is not straightforward. First, there is a potential discrepancy regarding the actual
customer demand values usedAxghetti, Hertz, and Speranza (200gecond, the values repro-

duced fromChen et al. (2007¢orrespond to the median values from 30 solution instances for
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each random problem. Across the board, there is no apparent dominance of iVNDiv over the tabu
searches, but the number of vehicles in the final iVNDiv solutions is generally lower than in the
tabu search solutions. In some cases, the tabu searches use up to 14 more vehicles than iVNDiv
(see for example problem a-05-199 with demands in [0.10-0.90]), which can lead to solutions with
lower objective function values but possibly higher operational costs in actual prolddmas.et al.
(2007)do not provide the number of vehicles used in their final EMIP+VRTR solutions, but the fleet

size is apparently a decision variable. iVNDIv is able to improve EMIP+VRTR in only 1 problem.

Table 6.2 shows the best known SDVRP solutions available in the literature for the instances
of Archetti et al.and a comparison with the iVNDiv solutions. Note that EMIP+VRTR values are
median values from 30 instances. The best known solutions are presented with their solution values
z, the numbern of vehicles, and the publication where they are reproduced from. Problem a-01-
050 with original demands is optimally solved Bglenguer et al. (200@nd its solution value was
calculated using integer inter-node distances. The tables also provide the percentage improvement
of the iVNDiv solutions over the best ones. Out of the 49 problems, 26 best solutions have been
found with the EMIP+VRTR hybrid approach @hen et al. (2007)10 with the MAPM memetic
algorithm, 10 with the tabu searches, and 2 with the scatter search. In this table, it is also important
to recall the effect of the number of vehicles in the final solutions and that iVNDiv, SS, anBMA
utilize the smallest fleet possible. The iVNDiv improves the best known solution to problem a-02-

075 in the range [0.01-0.10] and generally uses less vehicles than other approaches.

The running times in seconds are provided in Tah® The characteristics of the machines
where the different approaches were run are listed at the bottom of the table. The impact of the
diversification scheme on the running time is noticed by comparing the results for iVNDiv and
ICA+VND in the table. However, the diversification procedure does not deteriorate the running
time considerably as the average customer demands get larger, which is not the case for the tabu
searches and EMIP+VRTR. With the tabu searches, one reason for the increase in the computational
effort may be the neighborhood structure used in the search. For each cu#tarhetti, Hertz, and

Speranza (2006&)valuate removals from the visiting vehicles and/or insertions into other vehicles
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Table 6.2:Comparison of iVNDiv to Best Known Solutions for instances of Archetti et al.
(2006).

Best Known iVNDiv % above Best
Problem Demand z m Source z m z m
a-01-050 521.00 5| Belengueretal. (2000) 524.61 5| 0.69 0.00
a-02-075 823.89 10| Boudiaetal. (2007) | 851.24 10| 3.32 0.00
a-03-100 82944 8 Boudia et al. (2007) | 852.74 8| 2.81 0.00
a-04-150 1041.99 Chenetal. (2007) | 1074.11 12| 3.08
a-05-199 1307.40 Chenetal. (2007) | 1368.67 16| 4.69
a-06-120 1041.20 7| Boudiaetal (2007) | 1201.83 7| 15.43 0.00
a-07-100 819.56 10| Boudiaetal. (2007) | 824.78 10| 0.64 0.00
a-01-050 [0.01-0.10] 457.21 Chen et al. (2007) 471.92 3| 3.22
a-02-075 [0.01-0.10] 598.25 Chen et al. (2007) 59746 4| -0.13
a-03-100 [0.01-0.10] 726.81 5 Boudia et al. (2007) | 745.35 5| 2,55 0.00
a-04-150 [0.01-0.10] 875.16 Chenetal. (2007) | 891.98 8| 1.92

a-05-199 [0.01-0.10] 1018.71 10| Boudia etal. (2007) | 1073.55 10| 5.38  0.00
a-06-120 [0.01-0.10] 976,57 6| Boudiaetal. (2007) | 1087.80 6| 11.39 0.00
a-07-100 [0.01-0.10] 633.80 5| Motaetal (2007) | 673.54 5| 6.27 0.00
a-01-050 [0.10-0.30] 723.57 Chenetal. (2007) | 766.19 10| 5.89

a-02-075 [0.10-0.30] 1074.01 15| Motaetal. (2007) | 1099.47 15/ 2.37  0.00
a-03-100 [0.10-0.30] 1392.85 20| Boudiaetal. (2007) | 1425.90 20| 2.37 0.00

a-04-150 [0.10-0.30] 1844.96 Chenetal. (2007) | 1978.01 29| 7.21
a-05-199  [0.10-0.30] 2258.66 Chen etal. (2007) | 2464.65 38| 9.12
a-06-120  [0.10-0.30] 2568.90 Chen etal. (2007) | 2806.92 23| 9.27
a-07-100 [0.10-0.30] 1414.33 Chenetal. (2007) | 1428.27 20| 0.99
a-01-050 [0.10-0.50] 943.86 Chen etal. (2007) | 1039.89 15| 10.17
a-02-075 [0.10-0.50] 1393.53 Chenetal. (2007) | 1478.67 22| 6.11
a-03-100 [0.10-0.50] 1845.30 29| Boudia etal. (2007) | 1956.13 29| 6.01  0.00
a-04-150 [0.10-0.50] 2532.93 Chen etal. (2007) | 2671.62 43| 5.48
a-05-199 [0.10-0.50] 3191.25 56| Boudia etal. (2007) | 3411.38 56/ 6.90 0.00
a-06-120 [0.10-0.50] 3687.06 Chenetal. (2007) | 4026.53 34| 9.21
a-07-100  [0.10-0.50] 1973.34 Chenetal. (2007) | 2007.11 29| 1.71

Continued on next page
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Table 6.2:Comparison of iVNDiv to Best Known Solutions for instances of Archetti et al.
(2006) Continued.

Best Known iVNDiv % above Best
Problem Demand z m Source z m z m
a-01-050 [0.10-0.90] 1408.34 Chenetal. (2007) | 1522.43 25| 8.10
a-02-075 [0.10-0.90] 2056.54 Chen etal. (2007) | 2200.51 37| 7.00

a-03-100 [0.10-0.90] 2746.75 56 | Archettietal. (2006)| 2865.86 48| 4.34 -14.29
a-04-150 [0.10-0.90] 3849.73 84| Archettietal. (2006)] 4165.18 73| 8.19 -13.10
a-05-199 [0.10-0.90] 4737.47 107| Archetti etal. (2006)] 5184.57 93| 9.44 -13.08

a-06-120 [0.10-0.90] 6079.14 Chenetal. (2007) | 6364.87 56| 4.70
a-07-100 [0.10-0.90] 3010.50 Archetti et al. (2006)] 3156.31 48| 4.84
a-01-050 [0.30-0.70] 1408.68 Chenetal. (2007) | 1540.39 25| 9.35
a-02-075 [0.30-0.70] 2112.61 Chenetal. (2007) | 2238.98 37| 5.98

a-03-100 [0.30-0.70] 2764.25 53| Archettietal. (2006)] 2941.64 49| 6.42 -7.55
a-04-150 [0.30-0.70] 3967.11 80 | Archettietal. (2006)| 4165.18 73| 4.99 -8.75
a-05-199 [0.30-0.70] 5001.45 103| Archettietal. (2006)| 5363.65 96| 7.24  -6.80

a-06-120 [0.30-0.70] 6123.96 Chen etal. (2007) | 654550 58| 6.88
a-07-100 [0.30-0.70] 2882.12 Archetti et al. (2006)| 3225.63 49| 11.92
a-01-050  [0.70-0.90] 2056.01 Chenetal. (2007) | 2215.34 40| 7.75
a-02-075 [0.70-0.90] 3067.19 Chenetal. (2007) | 3304.24 60| 7.73
a-03-100 [0.70-0.90] 4278.83 82| Archetti etal. (2006)| 4429.21 80| 3.51 -2.44
a-04-150  [0.70-0.90] 5950.35 Chenetal. (2007) | 6482.11 119 8.94
a-05-199  [0.70-0.90] 7207.04 Chen etal. (2007) | 8329.55 158 15.58
a-06-120 [0.70-0.90] 8941.79 Chen etal. (2007) | 10302.16 95| 15.21
a-07-100 [0.70-0.90] 4773.59 Archetti et al. (2006) 5028.78 80| 5.35

z denotes objective function value obtained.

m denotes number of vehicles in final solution.
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Figure 6.8: Average running times versus demand range for instances of Archetti et al.
(20086).

to find a better solution. This operator may be particularly expensive when the number of vehicles
is large, as in problems with larger customer demands. In the case of EMIP+VRTR, the number of
endpoints increases with the number of routes as one or two endpoints and the closest neighbors to
each endpoint are considered for each route. For larger average customer demands, the resulting
mixed integer program can be considerable in size and more difficult to solve. Bigsieows the
average running times of the existing algorithms on the instancAscbktti, Hertz, and Speranza
(2006)grouped by demand range. Note how the time increases with the customer demand for the
tabu searches and EMIP+VRTR. Because both the constructive approach and YAkinah et al.

(2007) evaluate the cheapest insertion position, a larger number of customers per route increases
the complexity of iVNDiv. The large average running time of iVNDiv on problems in the range
[0.01-0.10] is caused by a large number of stops per route. Running times for iVNDiv were found
related to the ratia/m (see Tablé.4), which is an estimation of the expected stops per route. This

dependency is illustrated in FiguBel.
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Table 6.4:Expected stops per route for problems of Archetti et al. (2006).

Demand | Stops per route Running time
Range (n/m) in seconds
[0.70-0.90] 1.25 528.02
[0.30-0.70] 2.04 640.06
[0.10-0.90] 2.08 727.40
[0.10-0.50] 3.46 500.88
[0.10-0.30] 5.09 471.52
Original 11.73 1234.83
[0.01-0.10] 19.15 3808.35
IVNDiv
4000.00
3500.00 /
- 3000.00 /
g 2500.00
4
'é. 2000.00
; 1500.00 /
E 1000.00 //
500.00 A _'/
0.00
[0.70-0.90] [0.30-0.70] [0.10-0.90] [0.10-0.50] [0.10-0.30] Original [0.01-0.10]
Demand range

Figure 6.9: Average running times of iVNDiv versus demand range for instances of

Archetti et al. (2006).
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Table 6.5:Computational results of iVNDiv on some TSPLIB instances.

iVNDiv Belenguer et al. (2000) MA|PM
Problem 2@  CcPUd | UB® LB %ALB | :® CPU9 IMP

b-eil22-021 375 419 | 375 375 0.00 | 375 411  0.00
b-eil23-022 570 3.42 | 569 569 0.18 | 569 547 0.18
b-€il30-029 510 14.47| 510 508 0.39 | 503 570 1.37
b-eil33-032 851 14.03| 835 833 2.12 | 835 519 1.88
b-eil51-050 521 5491 | 521  511.57 1.81| 521 7.28 0.00
b-eilA76-075 | 847 83.28 | 832 782.7 7.59 | 828 3594 224
b-eilB76-075 | 1055 79.00| 1023 937.47 11.14| 1019 13.09 3.41
b-eilC76-075 | 746 148.20| 735  706.01 536 | 738 14.75 1.07
b-eilD76-075 | 695 140.83| 683  659.43 512 | 682 23.12 1.87
b-eilA101-100| 843 319.33| 817  793.48 5.87| 818 2525 2.97
b-eilB101-100| 1122 185.84| 1077 1005.85 10.35 1082 21.81 3.57

Continued on next page

Tables6.5 and 6.6 show the computational results on the 25 problems giveBelenguer
et al. (2000) The iVNDiv solution values are compared with the bounds foun8élgnguer et al.
with a cutting plane and a heuristic approach, the solution values found witf?MAthe bounds
obtained with the branch-and-price approach (B&Pliof (2005), the solution values found with
EMIP+VRTR, and the bounds produced by the column generation approakh ef al. (2008)
Unpublished values are omitted from the tables. Bold type indicate iVNDiv providing a better
feasible solution. Note that upper bounds and solution values obtain@®lbpguer et aland

MA|PM are calculated by rounding inter-node distance values to the nearest integer.

Table 6.7 shows the computational results on the new 21 problems generai€tidyet al.
(2007) The table contains solution valugsrunning times in seconds, and the percentage improve-
ments of iVNDiv over the EMIP+VRTR hybrid approach. Bold text is used to indicate the new best
solutions found so far for this new problem set. According to the literature, this is the first time

this problem set is used aft@hen et al. (2007andAleman et al. (2007) Out of the 21 prob-
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Table 6.6:Computational results of iVNDiv on the random problems of Belenguer et al.
(2000).

iVNDiv Belenguer et al. (2000) MA |PM
Problem 2@  cpu® | UB®@ LB %ALB | z:® CPU® IMP

b-S51D1-050 | 466 40.53 | 458 454 2.58 | 458 8.77 1.72
b-S51D2-050 | 725 28.34 | 726 676.63 6.67 | 707 744  2.48
b-S51D3-050 | 994 14.70 | 972 905.22 8.93| 945 7.84 493
b-S51D4-050 | 1672  16.53 | 1677 1520.67 9.05 | 1578 11.98 5.62
b-S51D5-050 | 1385  13.94 | 1440 1272.86 8.10 | 1351 16.72 2.45
b-S51D6-050 | 2211  16.83 | 2327 2113.03 443 | 2182 992 131
b-S76D1-075 | 600 476.27| 594 584.87 252 | 592 1523 1.33
b-S76D2-075 | 1138  46.94 | 1147 1020.32 10.34| 1089 30.5 4.31
b-S76D3-075 | 1485 53.34 | 1474 1346.29 9.34| 1427 12.89 3.9
b-S76D4-075 | 2160 51.84 | 2257 2011.64 6.87 | 2117 876 1.99
b-S101D1-100, 740 2125.58| 716 700.56 533| 717 49.75 311
b-S101D2-100| 1426 217.91| 1393 {1270.97 10.87| 1372 31.72 3.79
b-S101D3-100 1974 146.61| 1975 {1739.66 11.87| 1891 33.98 4.20
b-S101D5-100 2970 104.05| 2915 12630.43 11.43| 2854 18.66 3.91

Continued on next page
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lems, the iVNDiv improves the solution values in 15 cases and equals the EMIP+VRTR solution
in the problem with 8 customers. The iVNDiv is computationally faster than EMIP+VRTR in all
the cases. ICA+VND performs similar to iVNDiv in terms of solution values, although iVNDiv
performs better in 7 cases. It is difficult to see how the running time of EMIP+VRTR is affected
by the problem size as it uses the maximum amount of computing time to solve the endpoint mixed

integer program for problems with at least 24 custométsef et al., 2007

Finally, Table6.8 shows the solution values and running times in seconds of iVNDiv with
respect to the optimal solutions found with the exact approadmaidt al. (2007)iVNDiv generates
high quality solutions that are 1.19% above optimality on average for the tested problems.8able
reveals how difficult it is to exactly solve small sized problems (up to 21 customers) while iVNDiv
finds the optimal solution in three of the tested problems and is quite close to optimality in another

problem at a low computational effort.

6.5 Conclusions

Diversification of a local search process can be computationally expensive but is of benefit on harder
optimization problems. This research presents a new diversification method for routing problems
based on a novel use of spatially varied concentric rings around the routing depot. A set of diversi-
fied solutions are used to restart the VND search proceskeaian et al. (2007)A comprehensive
empirical test of this new diversification method was conducted and the reported results show the
utility of this new diversification scheme. The proposed diversification strategy can be used to solve
any variant of the vehicles routing problem as long as the constructive approach considers the corre-
sponding side constraints. Although the proposed diversification scheme is based on a geographical
division of the problem by means of concentric rings centered at the depot, this geographical divi-
sion can be modified. For example, instead of excluding all the customers in a complete ring, it may

be divided into sectors to exclude only the customers in those regions of the ring.
There are a couple future avenues of research. For instance, an aggressive diversification
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Table 6.7:Computational results of iVNDiv on instances of Chen et al. (2007).

EMIP + VRTR ICA + VND iVNDiv
Problem z CPU? z cpPuU® z CPUD | m
c-SD01-008| 228.28 0.7 228.28 0.06 228.28 0.19 6
c-SD02-016| 714.40 54.4 | 708.28 0.22 708.28 1.48 12
c-SD03-016| 430.61 67.3 | 430.58 0.17 430.58 0.58 12
c-SD04-024| 631.06 400 635.84 0.55 635.84 2.31 18
c-SD05-032| 1408.12  402.7| 1390.57 0.69 | 1390.57 5.55 24
c-SD06-032| 831.21 408.3 831.24 0.94 | 831.24 295 | 24
c-SD07-040| 3714.40 403.2| 3640.00 1.03 3640.00 8.13 30
c-SD08-048| 5200.00 404.1| 5068.28 1.75 5068.28 11.91 | 36
c-SD09-048| 2059.84 404.3 | 2071.03 2.91 | 2071.03 19.73 | 36
c-SD10-064| 2749.11 400 | 2747.83 3.58 2742.84 33.27 | 48
c-SD11-080| 13612.12 400.1| 13280.00 3.97 | 13280.00 35.16 | 60
c-SD12-080| 7399.06  408.3| 7279.97 4.00 | 7265.70 43.13 | 60
c-SD13-096| 10367.06 404.5| 10110.58 5.80 | 10110.58 50.97 | 72
c-SD14-120| 11023.00 5021.7 10893.50 15.49| 10829.25 141.77 | 90
c-SD15-144| 15271.77 5042.3 15168.28 18.33 | 15168.28 191.66 | 108
c-SD16-144| 3449.05 5014.7| 3635.27 39.71| 3580.07 2120.14 108
c-SD17-160| 26665.76 5023.4 26559.93  17.42| 26556.13 179.61 | 120
c-SD18-160| 14546.58 5028.9 14440.59  40.38| 14372.80 366.14 | 120
c-SD19-192| 20559.21 5034.2 20191.19 27.64| 20188.62 330.06 | 144
c-SD20-240| 40408.22 5053 | 39813.49 63.18| 39803.13 633.33 | 180
c-SD21-288| 11491.67 5051 | 11799.60 738.49 11682.09 9387.55 216

z denotes objective function value obtained.

CPU denotes running time in seconds.

m denotes the number of vehicles in the final iVNDiv and ICA+VND solutions.
@p4, 512MB, 1.7 GHz.

®p4, 512MB, 2.8 GHz.
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Table 6.8: Computational results of iVNDiv versus optimality on instances of Jin et al.

(2007).

TSVI iVNDiv % above
Problem z* CPU? 2 CPU® | optimality

j-Eil22-021 | 375.28 17h | 375.28 4.19 0.00
j-J1-018 | 127.39 13h | 127.49 1.73 0.08
j-J2-021 | 388.44 84 h | 388.44 4.59 0.00
j-J3-022 | 367.93 17 h | 389.54 3.73 5.87
j-J4-022 372.2 13h | 3722 5.64 0.00

z* denotes optimal objective function value.
z denotes objective function value obtained.
CPU denotes running timé&—; ®)p4, 512MB, 2.8 GHz.

scheme is employed focusing on the best solutions. Future studies might consider examining the
worse solutions as a means of potentially maximizing the distance between a current solution and
a new search area. Another avenue would be to use the ring-based diversification method as a vo-
cabulary building mechanism to construct either high quality solutions, or to diversify solutions
whose components are selected based on low frequency of use. These avenues are currently under

investigation; the vocabulary building approach is presented next.
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Chapter 7

A Tabu Search with Vocabulary
Building Approach for the Vehicle
Routing Problem with Split Demandst

7.1 Introduction

The vehicle routing problem (VRP) seeks optimal routes over which similar vehicles deliver de-
mands to geographically dispersed customers. The VRP presumes all vehicles leave from and return
to a common depot. Customer demand is fully met by the vehicle visiting that customer. The split
delivery vehicle routing problem (SDVRP), first introduced bsor and Trudeau (1989nd then

Dror and Trudeau (1990)s a variant of the VRP. The SDVRP relaxes vehicle restrictions so that
customer demands can be supplied by one or more vehicles. The intent of the relaxation is so the

SDVRP approach can yield more efficient route structures.

Mathematically, the SDVRP is defined on an undirected, fully connected gragh(V, E)
whereV = {0, 1, ...,n} is the set of» + 1 nodes of the graph, anl = {(i,7) : i,j € V, i < j}

is the set of edges connecting the nodes. Node O represents a depot wherd/a-feft, ..., m}

1This chapter is found asleman and Hill (2008)
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of identical vehicles with capacit§) are stationed, while the remaining node 8et= {1,...,n}
represents the customers. A non-negative cost, usually the inter-node disianseassociated
with every edg€i, j) € E. Each customer € N has a demand af; units and is located at a point
(zi,v;) in the two-dimensional space. The coordinates, yo) indicate the depot location. This

notation is used throughout this chapter to describe the proposed SDVRP solution approach.

The SDVRP solution potentially reduces the operational cost of the fleet, especially when the
average customer demand exceeds 10% of the vehicle capacity (as stddeor land Trudeau,
1989. In their worst-case analysis of the SDVR¥chetti, Savelsbergh, and Speranza (2056w
that the reduction in delivery costs obtainable by allowing split deliveries is at most 50%, and this
reduction bound is tightArchetti et al. (2008suggest that the benefits are mainly due to the re-
duction in the number of vehicles required to supply the customer demands. Their mathematical
analysis proved that the maximum reduction in the number of vehicles is 50% and the largest re-
duction occurs when the mean customer demand is between 50% and 70% of the vehicle capacity

with demand variances relatively small.

Although the literature on SDVRP is limited, different solution techniques have been imple-
mented to solve the problem. These techniques include branch and bound, column generation, dy-
namic programming, lagrangian relaxation, mixed integer programming, constructive approaches,
local, tabu and scatter search, variable neighborhood descent, memetic algorithms, and simulated
annealing. Most of these solution approaches have been developed in the last four years showing an
increasing interest in this routing problem. The reader is referréddbetti and Speranza (20Q7)

Chen et al. (2007and Aleman et al. (2008jor a thorough literature review on properties, ap-
plications, and algorithms available. A state-of-the-art compilation of this literature is presented
in Table7.1showing the author(s), the solution methodologies deployed, and some remarkable in-
formation describing the study. This compilation includes the very recent woRubfico et al.
(2004) Nakao and Nagamochi (200 Bchmid (2007)Archetti, Speranza, and Savelsbergh (2008)

Belfiore et al. (2008)Bolduc et al. (2008)andNowak et al. (2008)
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Table 7.1:Existing literature on SDVRP.

Author(s) Year  Solution methodology & Remarks

Dror and Trudeau 1989 Local search

Dror and Trudeau 1990 Properties and complexity

Frizzell and Giffin 1992 Constructive heuristic, grid network distances
Bouzaiene-Ayari et al. 1993 AdaptedClarke and Wrightstochastic demands
Dror et al. 1994 Branch and bound, properties

Frizzell and Giffin 1995 Constructive heuristic, grid network distances, time windows
Mullaseril et al. 1997 AdaptedDror and Trudeau (1989pr time windows
Sierksma and Tijssen 1998 Column generation, crew exchange

Belenguer et al. 2000 Lower bounds

Song et al. 2002 Newspaper allocation

Ho and Haugland 2004 Tabu search, time windows

Rubrico et al. 2004 Fast heuristics, grid distances

Archetti et al. 2005 Complexity; vehicles with capacity &f units

Liu 2005 Two-stage algorithm, valid inequalities

Nowak 2005 Dynamic program, pickup and delivery

Archetti, Hertz, and Speranza 2006 Tabu search

Archetti, Savelsbergh, and Speranza2006 Worst-case analysis and potential savings
Belfiore et al. 2006 Scatter search, heterogeneous fleet, time windows
Gendreau 2006 Properties and review

Lee etal. 2006 Dynamic programming and shortest path

Yu et al. 2006 Lagrangian relaxation, inventory routing

Aleman et al. 2007 Variable neighborhood descent, adaptive memory concepts
Ambrosino and Sciomachen 2007 Local search, clustering procedure

Archetti and Speranza 2007  Survey on the SDVRP

Boudia et al. 2007 Memetic algorithm with population management
Chen et al. 2007 Mixed integer program, heuristic algorithm
Jinetal. 2007 Exact method with valid inequalities

Mota et al. 2007 Scatter search

Nakao and Nagamochi 2007 Dynamic program, set of items per customer
Schmid 2007 Exact and heuristic approaches, multi-depot,

heterogeneous fleet, time windows

Tavakkoli-Moghaddam et al. 2007 Simulated annealing, heterogeneous fleet
Wilck and Cavalier 2007 Loaded travel cost objective
Aleman et al. 2008 Diversification strategies, variable neighborhood descent

Archetti, Savelsbergh, and Speranza2008 Empirical analysis; benefits of split deliveries
Archetti, Speranza, and Savelsbergh2008 Integer program, heuristic search

Belfiore et al. 2008 Scatter search, time windows

Bolduc et al. 2008 Tabu search, time horizon, production, inventory
Jinetal. 2008 Column generation, lower bounds

Nowak et al. 2008 Heuristic approach, tabu list, pickup and delivery
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This chapter presents a learning procedure, called Tabu Search with Vocabulary Building Ap-
proach (TSVBA) for solving the SDVRP. TSVBA is a population-based search approach that con-
structs an initial set of solutions and then uses the set of solutions to find attractive solution attributes
with which to construct new solutions. As the search progresses, the solution set evolves; better so-
lutions move into the set while bad solutions are removed. The initial set is constructed by varying
the critical angle of the constructive approach describefil@man et al. (2007) New solutions
are also created using an adaptation of the well-known savings algoritt@tad€e and Wright
(1964)that uses an improved version of the variable neighborhood descent preseAledhan
et al. (2007) The remainder of this chapter is organized as follows. Sedti@rescribes the
proposed approach. Secti@r8 provides the procedure to construct the initial set of solutions while
the generation of new solutions is presented in SectidnA diversification strategy is outlined in
Section7.5, computational results are provided in Sectio, and finally conclusions are given in

Section?.7.

7.2 Tabu Search with Vocabulary Building Approach

Tabu search with vocabulary building (TSVBA) is a learning procedure based on generating an
initial set of solutions whose characteristics are then used to construct new solutions of higher
quality replacing existing solutions of less quality. The method used to construct the new solutions
adapts the savings algorithm@farke and Wright (1964)Edges from previous solutions are stored

in a short-term memory structure to diversify the search and avoid getting trapped in a local optima.
Some of the edges are also kept in an elite list. This elite list functions as an aspiration criteria for
those edges within it. Within the framework of tabu search, this helps to intensify the search in
regions where good solutions may exist. The solutions generated are improved with the variable
neighborhood descent (VND) procedureAlEman et al. (2007) The VND modifies standard
operators used for the VRP and helps improve SDVRP solutions. Since TSVBA is population

based, a fast local search is needed to improve the solutions at a relatively low computational effort.
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Thus, the VND ofAleman et al. (2007)vas modified to create Fast-VND which drastically reduces
the required processing time. The improved solutions obtained using Fast-VND replace selected
solutions in the set. The set of solutions is continually improved and evolved during the search until
a completion criteria is met. Once a final set is obtained, the search is intensified by again improving
each solution with another version of the original VNDAJ&man et al. (2007)called Slow-VND.

The proposed TSVBA is outlined in Table2

7.3 Initial Set of Solutions

The initial set is formed using various solutions generated with the constructive appradeimain

et al. (2007)augmented with a solution constructed using an adaptation of the parallel version of
the savings algorithm oflarke and Wright (1964)called Clarke and Wright with split demands
(CW-SD). The inclusion of this latter solution in the set augments the solution attributes found in
solutions obtained with thaleman et al. (2007approach, particularly in problems with clustered

customers. Both constructive approaches are described below.

7.3.1 Constructive Approach ofAleman et al. (2007) CA

The CA creates a list of customers sorted according to their distance from the depot. The farthest
customer is inserted into the solution to initiate a new route. Subsequent customers are inserted in
an existing route or a new route is initiated. The triangular inequality e+ ci; > c;;, for all 4,

4, k) favors insertions in existing routes.

The CA adds additional considerations to keep routes from spreading spatially. Potential cus-
tomers should be placed in routes that are not spread out. The CA employs a route angle control
mechanism (RAC) which penalizes the insertion of customers into routes whose angles exceed a
critical angle value. The angle of a customer is defined as the angle between the line connecting the

depot with the customer and the horizon (i.e., 0 degrees), while the angle of a route is defined as the
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Table 7.2:Tabu Search with Vocabulary Building Approach: TSVBA.

Step 1: Generate an empty list of elite edges.
Step 2: Generate an initial set of solutions.
Step 3: Improve all solutions in the set with the Fast-VND.

Step 4: Find the common edges among the solutions in the set and generate a savings list based on the savings measure used in the
Clarke and Wright (1964algorithm.

Step 5: Generate a final savings list with the common edges, elite edges, and the classical savin@ddi&ieadind Wright (1964)n

that order (i.e., concatenate the lists).
Step 6: Construct a solution with the CW-SD and the final savings list.
Step 7: Use the Fast-VND and the route addition local search to improve the constructed solution and g&nerate
Step 8: Update the short-term memory with the edges existing in soluffipn
Step 9: If the worst solution in the sef,,, was improved bys,,, remove from the list of elite edges those not existingin
Step 10: CompareS,, with the best solution in the sefy, and identify those edges in one solution but not in the other.
Step 11: Calculate the degree of attractiveness for each of those edges found in Step 10.
Step 12: If the degree of attractiveness of an edge is greater than 0.5, add the edge to the list of elite edges.
Step 13: If S,, is better thars,,, replaceS,, with S,, in the set.
Step 14: If a predefined number of iterations without improvifig, has not been reached, go to Step 4.

Step 15: If a split savings list is being used by CW-SD, go to Step 16. Otherwise, generate a split savings list and replace the classical

savings list in Step 5. Restart the iterations and go to Step 4.
Step 16: Use the Slow-VND to improve the solutions in the final set.

Step 17: Stop. The final solution correspondsSg in the final set.
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maximum angle between the lines connecting the depot with any two customers in the route. In the
CA, the critical angleg*, is estimated as the ratio of the circumference (360 degrees) and the fleet
size. This divides the region of the problem into equal slices so each vehicle ideally services the
customers located inside each slice. The insertion of customers into existing routes is penalized if
the route angles after the insertions excé&dtherwise, the insertion cost corresponds to the extra

distance required to service the customer and resume the trajectory of the original route.

The CA performs reasonably well in problems where customers are uniformly spread about
the solution region. The CA does not do as well on problems with clustered customers. In problems
with clustered customers, some slices of the region may be without customers, or at least less than

the expected number of customers. Changihbelps CA find better solutions for such problems.

The TSVBA use9* as a parameter to populate the initial set. The CA performs better in some
problems with smal* values while better in other problems with lafevalues. The TSVBA uses
0* values in the rangg0*, 56*], where0 < a < 1 and1 < f3, to construct a variety of solutions.

To construct theth solution of the pool, TSVBA uses CA with critical alngle:

9:( = Hmm + Hmaac zemln X 4 (7-1)

whereb, i, = ab*, Oqe = B0, k is the desired maximum number of solutions to be generated,
ando < i < k. The constructed solutions form the initial set. The TSVBA also ensures only unique

solutions are retained in the initial set.

7.3.2 Clarke and Wright (1964) Algorithm with Split Demands: CW-
SD

The classical savings algorithm Gfarke and Wright (1964)CW) is widely used to solve diverse
routing problems because of its simplicity and efficiency. CW initially creates an exclusive route for

each customer and then merges those routes producing the largest savings in the objective function
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Table 7.3:Clarke and Wright (1964) Algorithm with Split Demands: CW-SD.

Step 1: Calculate the savings; = co; + coj — c;; for each pair of customer, 7).

Step 2: Sort the pairgs, j) in descending order based on the savifigs This generates savings list Process theavings liststarting

from the first item (largest; ;).

Step 3: For the savings;; in consideration, insert the edgg 5) in a route if no constraints are violated and any of of the following

conditions holds:

o Neither customet nor j are assigned to a route. In this case a new route is initialized with the(edge If the
combined demand afand; exceeds the vehicle capacity, the demand of the closer customer to the depot is splitand a

new customer demand is included in the problem whose value is equal to the un-serviced demand.

e Exactly one of the two customeir j is assigned to an existing route and that customer is not interior in that route.
A customer is interior if it is not the first or last customer in the route, excluding the depot. In this case the edge
(4,4) is added to the existing route. If the demand of the customer not assigned to the existing route exceeds the
vehicle capacity, its demand is split and a new customer demand is included in the problem whose value is equal to the

un-serviced demand.

e Both customersg andj are included in existing routes and neithieror j are interior in the routes. In this case the
routes are merged through the edggj). The sequence to service the customers in each route is considered before the

merge. For simplicity, no split is allowed if the combined demand of the existing routes exceeds the vehicle capacity.

Step 4: If all customer demands are fully supplied, go to Step 6.

Step 5: If the savings list is not exhausted, return to Step 3 and process the next item in the list. Otherwise, create an exclusive route
for each customer with any un-supplied demand.

Step 6: Stop. The solution consists of the routes created in Steps 3 and 5.

value. The savings produced by merging the routes of custoi@d; is given bys;; = co; +

co; — ¢;j. While CW only allows feasible route merges, the CW-SD developed in this study allows
infeasible merges. When infeasible, meaning vehicle capacity is exceeded, the customer demand
closer to the depot is split and the split demand is modeled as a new customer demand with the same

location. The CW-SD is described in Taies.

7.3.3 Adaptation of the VND ofAleman et al. (2007)

Solutions generated with both the CA and CW-SD form the initial set of solutions, which is then

improved with an adaptation of the VND dfleman et al. (2007) In its original version, the
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Figure 7.1:lllustration of neighbor routes.

VND exchanges customers between routes and considers the quantities delivered to include/remove
split deliveries. This VND is modified for TSVBA to reduce the combinations of pairs of routes,
and thus reduce the complexity of the procedure. Instead of using all possible combinations, only
neighboring routes are considered. This modified VND is referred to as Fast-VND and we designate

the original VND as Slow-VND simply to highlight its more aggressive neighborhood structure.

Because routes are constructed in parallel in both CA and CW-SD, routes with consecutive in-
dices are not necessarily neighbors and thus a routine is used to identify neighbor routes. Two routes
are considered neighbors if they are spatially contiguous or their trajectories cross. InFiure
routes R1 and R2 as well as routes R2 and R3 are neighbors because they are spatially contiguous;
however, routes R1 and R3 are neighbors as well because their trajectories cross. At this point,

Fast-VND and Slow-VND are used to improve solutions in the framework of the TSVBA.

A common practice in VRP and SDVRP algorithms is to evaluate only the closest customers.
This reduces the number of candidates and allows local searches to run quicker. The Fast-VND
embedded in the TSVBA considers the closest customers and those located within the region formed
by those closest customers. In Figatd, customers 1 and 3 are closest to customer 2; however,
customer 4 is in the same region. The Slow-VND evaluates all customers, giving it a larger candidate
list and thus a higher computational complexity. However, Slow-VND explores the search space

more thoroughly and can provide better solutions than just using the Fast-VND.
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7.4 Generation of New Solutions

The initial set is composed of solutions with different objective function values but often solution
common attributes. Those attributes are used in the TSVBA to modify the savings list of the CW-SD
and construct new — and different — solutions. Those edges that are common among all solutions in
the set are utilized to generate a sub-list cafladings list of common edgdske the CW savings

list, common edges are ordered according to their associated savings measure. Once generated and
ordered, both the savings list of the common edges and the CW savings list are combined to create

a final savings list with the common edges located in the top positions.

New solutions are generated using CW-SD and the final savings list. These solutions are im-
proved using Fast-VND followed by the route addition local search described below. The edges
included in the improved solution are stored in a short-term memory structure and considered tabu
for a fixed number of iterations. Edgés j) and(j,¢) are considered equivalent in the memory
structure. Those edges with an active tabu status are ignored in Step 3 iY Bafdlke tabu tenure
is calculated deterministically and is equakta, wheren is the number of customers in the prob-
lem. This value was found satisfactory during preliminary experiments and was used during the

actual computational experiments.

7.4.1 Route Addition Local Search

Sometimes a customer demand appears in multiple routes. It may be possible to reduce the objective
function value by consolidating the customer demand into a new route that supplies the customer
exclusively. The TSVBA uses a local search based on this operator to reduce the objective function
value (similar to the Splitabu &rchetti et al., 200B For each split customer demand, this reduction
corresponds to the savings produced by removing the demand from all the visiting routes minus
twice the distance between the customer and the depot. To reduce the complexity of the local
search, the savings for each customer with split demand are pre-processed and the savings of those

customers involved in the route addition are updated if the objective function value is reduced.
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7.4.2 Appearing/Disappearing and Elite Edges

As the solution set evolves, solution attributes change. Edges in new solutions, but not in the best
solutions, are calledppearing edgesEdges in the best solutions, but not in new solutions, are
calleddisappearing edgesBoth appearing and disappearing edges are managed in separate lists.
The degree of attractiveness of the appearing and disappearing edges is defined as the ratio between
the number of solutions containing the edge and the size of the solution set. Those edges with a
degree of attractiveness greater than 0.5 are includedefitariist In contrast, those edges in new
solutions that already exist in the elite list but disappear when the new solutions are improved with

Fast-VND are removed from the elite list.

The elite list is then used to modify the final savings list of the CW-SD. The final savings list is
composed of the savings lists formed by the common edges, the elite edges, and the classical savings
list as inClarke and Wright (1964)In CW-SD, the common edges are the first edges inserted in
the solution under construction, followed by the elite edges, and finally those edges in the classical

savings list.

7.4.3 Conflicting Edges

When edges are added to both the list of common edges and elite list there may be conflicts with
the edges already included in the lists. The conflict occurs when one of the two customers, either

or j, in the edgdi, j) to be added to the list are already in the list and have degree 2. The degree of

a customer corresponds to the number of edges where it appears in a solution excluding the edges
linking the depot. For example, in Figui®2 customer 26 has degree 1 (linked to customer 8)
whereas customer 8 has degree 2 (linked to customers 26 and 48). Fjilitestrates some of the
common edges — in weighted lines — and the edges selected as elite — in regular lines — during the

execution of TSVBA to solve a problem with 50 customers.

In Figure7.2, the edgeg(23, 48), with the dashed line, has a degree of attraction greater than

0.5, but its addition to the elite list would conflict with edg8s48) and(27, 48). This conflict must
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Figure 7.2:Conflicting edges.

be resolved. TSVBA is a learning process so it assumes that the common edges among the solutions
in the set as well as the estimation of degree of attractiveness for elite edges are more reliable as the
search progresses. Therefore, the conflicting edge first added to the list is removed while the new
edge is added to the list. However, the TSVBA is more effective when a routine is used to remove
from the list the conflicting edge, including the new one, with the lowest degree of attractiveness.
This routine guarantees that common and elite edges are inserted in the solution under construction.
In contrast, edges coming from the classical savings list may be ignored by the CW-SD (see Step 3

in Table7.3) during the construction of solutions.

7.5 Split Savings List

Despite using a variety of local search and local improvement methods, search heuristics can still
have problems finding really good solutions to hard problems. A diversification scheme aims to
move the search process into new, hopefully unvisited, regions of the solution space. Once in those

new regions, the search process resumes. BdmeRouteheuristic of Tarantilis and Kiranoudis
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(2002) changes the number of solutions in the pool, or the bone-frequency, that must include an
edge in their routes in order to vary the level that the user wants to intensify/diversify the search in
the solution space. The short-term memory structure employed by TSVBA helps to use different
edges each iteration. Although this does diversify the search, TSVBA uses an additional mechanism
which consists of modifying the classical savings list of the CW-SD. When TSVBA commences, it
uses the classical savings list proposedtarke and Wright (1964 )adapted to the split demands,

but modifies the classical savings list when no more new solutions are found. In the modified savings

list, calledsplit savings listthe savings associated to the pair of custonigerg is given by:

Coi — Coj — Cij, Co; > CQj
vl
In the top case in Equatioh2, demand of customerris split and the initial exclusive route for

servicing customey is maintained after merging the two customers. In the lower case, demand of
customer; is split and its initial exclusive route is similarly maintained. If the vehicle capacity is
greater than the combined demand ahdj, both routes are merged without splitting any demand.

As seen in Equatiof7.2, the savings measure depends upon the location of the customers with
respect to the depot. In this savings list, the TSVBA assumes a combined demand of customers
andj greater than the vehicle capacity and thus the demand of the customer closest to the depot is

split. This assumption helps SDVRP in problems where the customer demands are at least 50% of

the vehicle capacity.

7.6 Computational Results

This section presents the computational results for the proposed TSVBA. All tests were conducted
on a P4, 2.8GHz, 512MB of RAM. The algorithm was implemente@#mand the problems sets of
Archetti et al. (2006)Belenguer et al. (2000andChen et al. (2007Ayere used in the experiments.
Tested problems are named using the notgti@aa-nnn , where the first fieldp, is an alphabet-

ical character to identify the publication where the problem is presenteda(iter,Archetti et al,
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b for Belenguer et al.andc for Chen et a),; the second fieldaaa, is a string of variable length
corresponding to the name of the instance adopted in the original publication; and the third field is a
three-digit integer denoting the number of customers excluding the depot. Solutions obtained with
TSVBA are compared to those found with algorithms available in the literature. The size of the
solutions set is fixed t& = 10 (although the number of solutions can be smaller than this number,
as discussed previously in Sectidr8.]); the critical angle?* of the CA is generated in the range
[0.01 x 6*,2 x #*]. The predefined number of iterations without improvements is set to 5, and the

maximum number of iterations is set 40.

Tables7.4 and 7.5 show the results of TSVBA on the problems Afchetti et al. (2006)
and Chen et al. (2007) For each problem, these tables show the size of the set, the wgjst (
and best £) solutions, the initial and final sets information, the number of iterations required to
obtain the final set from its initial version, the running times, and the final solution produced by
TSVBA. Running times correspond to those to produce the initial set, the final set after the initial
set is produced, and the time required to improve the final set with the Slow-VND and pick its best
solution. Note the difference in the set size from Tahleto Table7.5; this is a consequence of the
problem type. Changing the critical andléin the CA does not produce many different solutions
in the problems ofChen et al. (2007 ue to the radial distribution of customers around the depot.
Since solutions with a common objective function value are not inserted into the set of solutions,
the size of the initial set is considerably lower than the expected size of 10 in these instances. Note
that the best solution in the final set improves its counterpart in the initial set in most cases (see bold
numbers in Tableg.4and7.5). In contrast, the worst solution in the final set is always better than
the worst solution in the initial set. This shows how the learning process in the TSVBA helps to

improve the population of solutions.

Table 7.6 shows the best solution produced by TSVBA in the problem sétrohetti et al.
(2006)and a comparison with other existing approaches. Results in this table and bold fonts show
a clear dominance of TSVBA over the iVNDiv dfleman et al. (2008)the ICA+VND of Aleman

et al. (2007) and the scatter search (SS)Mbta et al. (2007)while the memetic algorithm with
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population management (MRM) of Boudia et al. (2007produces the best known solutions in

this problem set; TSVBA improves MRM in one case only. Results obtained with the tabu search
(Splitabu) ofArchetti et al. (20063re not included in the table because there is no evidence about
the equivalence of the tested problems, in spite of the fact that the problems were generated with the
same code. In the case of the hybrid algorithm (EMIP+VRTREbén et al. (2007 )yesults were
omitted because they solved 30 instances for each problem and published just the median solution

values.

Except for iVNDiv, TSVBA is the approach with the largest processing times among those
presented. TSVBA is usually faster than iVNDiv which shows the benefits of using both closest
customers and neighboring routes to reduce the complexity of the variable neighborhood descent
without deteriorating solution quality. It is important to highlight the fact that TSVBA produces
more solutions than iVNDiv. For example, in problem a-04-150 with demands in the range [0.10-
0.30] TSVBA produces 60 solutions (i.e., 10 forming the initial solution set, 40 to obtain the final
solution set, and 10 after improving the final solution set, as shown in Taljievhile iVNDiv
produces only 5 solutionsA{eman et al., 2008 The running times of TSVBA can be reduced
by coding the algorithm more efficiently and using a programming language with lower resource

requirements, but this is left for future work.

Tables7.7and7.8 show the computational results on some TSPLIB instances and the random
problems ofBelenguer et al. (2000fespectively, using bold fonts to denote cases where TSVBA
performs better. In the problems shown in TaBlé TSVBA finds better solutions than iVNDiv
in most cases, improves the upper bound produced by the column generation appriiadt af.

(2008) and dominates both ICA+VND and the branch-and-price (B&R)iof(2005). Note that

the solutions values are calculated using integer inter-node distance in order to compare to the
bounds oBelenguer et al. (200@nd the values obtained with (MRM). In the random problems

of Belenguer et al. (2003hown in Table7.8, TSVBA improves the upper bounds BElenguer

et al. (2000)in most cases and dominates the solution values obtained with iVNDiv, ICA+VND,

B&P, and the column generation dfn et al. (2008) Both MA|PM and the hybrid algorithm
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Table 7.7:Computational results of TSVBA on some TSPLIB instances.

TSVBA Belenguer et al. (2000 MA|PM

Problem 2@  cpud | uB@ LB 2@ CcPU9
b-eil22-021 375 258 | 375 375.00 375 411
b-€il23-022 570 159 | 569 569.00 569 5.47
b-€il30-029 503 7.45 | 510 508.00 503 5.70
b-€il33-032 844 8.38 | 835 833.00 835 5.19
b-€il51-050 526  49.84 | 521 511.57 521 7.28
b-eilA76-075 | 847 145.78| 832 782.70 828  35.94
b-eilB76-075 | 1027 91.36 | 1023 937.47 1019  13.09
b-eilC76-075 | 754 151.13| 735 706.01 738  14.75
b-eilD76-075 | 691  122.52| 683 659.43 682  23.12
b-eilA101-100 | 834  295.22| 817 793.48 818  25.25
b-eilB101-100 | 1104 173.13| 1077 1005.85 | 1082 21.81

Continued on next page

(EMIP+VRTR) of Chen et al. (2007however, perform better than TSVBA.

Finally, Table7.9 shows the results on the problemsGtien et al. (2007)TSVBA performs
well on these problems and improves over all the presented approaches. In this set, it is also evident
the difference in processing times, with TSVBA the fastest among all presented algorithms. In
all cases, TSVBA uses the minimum possible fleet size, a key benefit in actual vehicle routing

problems.

7.7 Conclusions

This chapter presented a learning procedure based on a population of solutions. The learning strat-
egy consists of generating an initial set of solutions and finding common attributes among those to
construct new solutions. New solutions contain those common attributes as well as new character-
istics that can lead to better solutions. The solution set is evolved by replacing solutions with large
objective function values with new solutions having lower values. The new solution characteristics
are evaluated for each solution in the set to determine their degree of attractiveness and then these

characteristics are included in an elite list of attributes if they are found attractive enough. The
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Table 7.8:Computational results of TSVBA on the random problems of Belenguer et al.
(2000).

TSVBA Belenguer et al. (2000 MA|PM
Problem 2@ cpud | UB® LB 2@ CcPUo
b-S51D1-050 | 465 13.56 458 454 458 8.77
b-S51D2-050 715 31.66 726 676.63 707 7.44
b-S51D3-050 966 18.75 972 905.22 945 7.84

b-S51D4-050 | 1621 19.77 | 1677 1520.67 1578  11.98
b-S51D5-050 | 1357 15.39 | 1440 1272.86 1351 16.72
b-S51D6-050 | 2228 14.38 | 2327 2113.03 2182 9.92

b-S76D1-075 | 606  252.28| 594 584.87 592 15.23
b-S76D2-075 | 1124  60.44 | 1147 1020.32 1089  30.50
b-S76D3-075 | 1466  51.13 | 1474 1346.29 1427 12.89
b-S76D4-075 | 2170  53.56 | 2257 2011.64 2117 8.76

b-S101D1-100| 741  860.31| 716 700.56 717 49.75
b-S101D2-100| 1398 219.52| 1393 11270.97 1372 31.72
b-S101D3-100| 1936 132.19| 1975 11739.66 1891  33.98
b-S101D5-100| 2897  131.16| 2915 12630.43 2854  18.66

Continued on next page

search is intensified by using the common and elite attributes in the construction of new solutions,
while the diversification is based on the use of a short-term memory structure and a modified cost
function for the evaluation of candidates. Once a final solution set is obtained after a certain num-
ber of iterations, solutions are further improved with a variable neighborhood descent. The final
solution is the best one found overall. The proposed learning procedure was tested on benchmark

instances and performed well when its solutions were compared to those reported in the literature.
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Chapter 8

Summary

8.1 Summary

This dissertation presented a study on the SDVRP that includes a thorough literature review cov-
ering representative research on the VRP, the SDVRP, and the VRPSC. Various solution methods
are proposed to efficiently solve the SDVRP. Proposed techniques include a constructive approach
based on a novel route angle control mechanism that help to produce thin routes with the minimum
possible fleet size, an iterative constructive approach that uses adaptive memory concepts to modify
the rules of the constructive approach, a variable neighborhood descent that uses operators specific
to the SDVRP, a new diversification scheme based on concentric rings centered at the depot that
partitions the original problem and solves resulting subproblems independently, and a tabu search
with vocabulary building that creates an initial solution set to find attractive solution attributes and
then generate new solutions to evolve the set. An empirical analysis is performed to compare the
proposed techniques to existing solution techniques available in the literature. The results obtained

demonstrate their effectiveness on the tested problems.
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8.2 Contributions

The SDVRP is a variant of the classical VRP that allows to use multiple vehicles to supply the
demand of single customers. The SDVRP has received little attention from researchers. According
to the literature reviewed, only a few approaches prior to this study have been proposed to solve the
problem. This dissertation provides multiple contributions. Parbvides a focused yet thorough
literature review on the VRP, SDVRP, and VRPSC. The review includes problem properties, mod-
els, and solution algorithms. A new problem classification scheme is also presented indedun

for categorizing modern routing problems. This classification scheme is based on three criteria:
staticism/dynamism of the problem parameters, the knowledge of the information relevant to the
design of its solution, and the method to model the unknown data.|IRam¢sents new algorith-

mic contributions, including: 1) a novel constructive approach, an iterative constructive approach
that uses adaptive memory concepts, and a variable neighborhood descent félerdan et al.

(2007) 2) a new solution diversification scheme foundhleman et al. (2008pased on concentric

rings centered at the depot that partitions the original problem and solves the resulting problems
using a constructive approach; and 3) a population-based search approach, called tabu search with
vocabulary building approach, that constructs an initial solution set and then uses the set of solutions

to find attractive solution attributes with which to construct new solutions and evolve the set.

8.3 Future Research

The route angle control mechanism proposed in Chdpieeasy to implement and looks useful to

solve the SDVRP, specifically in problems with large customer demands. Although the constructive
approach tends to produce non-crossing routes, optimal solutions can have crossing as well as inner
routes so it may be helpful to guide the CA to design such routes. Other local searches that have
produced good results on the VRP, such as exchanging sequences of customer between routes, can

be investigated for robustness and to find better solutions to problems with small customer demands.
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Approaches presented in Pdirtcan be implemented more efficiently and using a programming

language with lower resource requirements, such as C++.
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