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ABSTRACT

Aleman, Rafael, Ph.D., Engineering Ph.D. Program, Department of Biomedical, Industrial and Hu-
man Factors Engineering, Wright State University, 2009.A Guided Neighborhood Search Applied
to the Split Delivery Vehicle Routing Problem.

The classic vehicle routing problem considers the distribution of goods to geographically scat-

tered customers from a central depot using a homogeneous fleet of vehicles with finite capacity.

Each customer has a known demand and can be visited by exactly one vehicle. Each vehicle ser-

vices the assigned customers in such a way that all customers are fully supplied and the total service

does not exceed the vehicle capacity. In the split delivery vehicle routing problem, a customer can

be visited by more than one vehicle, i.e., a customer demand can be split between various vehicles.

Allowing split deliveries has been proven to potentially reduce the operational costs of the fleet.

This study efficiently solves the split delivery vehicle routing problem using three new ap-

proaches. In the first approach, the problem is solved in two stages. During the first stage, an initial

solution is found by means of a greedy approach that can produce high quality solutions comparable

to those obtained with existing sophisticated approaches. The greedy approach is based on a novel

concept called the route angle control measure that helps to produce spatially thin routes and avoids

crossing routes. In the second stage, this constructive approach is extended to an iterative approach

using adaptive memory concepts, and then a variable neighborhood descent process is added to

improve the solution obtained.

A new solution diversification scheme is presented in the second approach based on concentric

rings centered at the depot that partitions the original problem. The resulting sub-problems are then

solved using the greedy approach with route angle control measures. Different ring settings produce

varied partitions and thus different solutions to the original problem are obtained and improved via

a variable neighborhood descent.

The third approach is a learning procedure based on a set or population of solutions. Those

solutions are used to find attractive attributes and construct new solutions within a tabu search

framework. As the search progresses, the existing population evolves, better solutions are included

in it whereas bad solutions are removed from it. The initial set is constructed using the greedy ap-

iv



proach with the route angle control measure whereas new solutions are created using an adaptation

of the well known savings algorithm ofClarke and Wright (1964)and improved by means of an en-

hanced version of the variable neighborhood descent process. The proposed approaches are tested

on benchmark instances and results are compared with existing implementations.
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Chapter 1

Introduction

The vehicle routing problem is a core problem in transportation, logistics, and supply chain man-

agement. Although it has been studied for almost 50 years, this problem is still under active inves-

tigation by practitioners and researchers. The optimization problem is to supply the demand of a

number of customers with a fleet of vehicles with finite capacity. Usually, goods are delivered from

a central depot to customers placing an order for those goods, while the operational cost of the fleet

is minimized. Typically, the objective function corresponds to the total travel distance or total travel

time. Sometimes, an additional set of constraints is used to establish an upper bound on the travel

time of routes to avoid drivers exceeding the assigned work shift.

Real world situations involve other complexities that the classical VRP does not consider.

Thus, various extensions to the VRP appear in the literature that try to incorporate more variables,

more constraints, and model more realistic conditions. These extensions include but are not limited

to: VRP with multiple depots (MDVRP) where a company can have several depots from which

customers are supplied; periodic VRP (PVRP) where the planning horizon is composed of several

periods, usually days, and customers have fixed daily demands; VRP with split deliveries (SDVRP)

where various vehicles can serve a customer; stochastic VRP (SVRP) where some elements in the

problem (including travel time, customer demand, customer presence) are stochastic; VRP with

pick-ups and deliveries (VRPPD) where vehicles can pick-up goods at the customers for return to
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the depot; VRP with time windows (VRPTW) where a time interval is associated to each customer

wherein the delivery has to be made; and VRP with backhauls (VRPB) which is similar to the

VRPPD, but in the case of VRPB all deliveries in a route are made before the pick-ups in order to

avoid rearranging the loads.

The VRP has been studied both in a deterministic and stochastic version and a wide variety

of techniques have been used to solve each of them. These techniquees include exact algorithms,

classical heuristics, such as constructive and saving algorithms, single-route and multiple-route im-

provement algorithms, sweep algorithms, petal algorithms, sequential route-building algorithms,

cluster-first route-second algorithms, route-first cluster-second, and matching algorithms, and meta-

heuristics, such as simulated annealing, tabu search, genetic algorithms, and ant systems.

The SDVRP is an alternative to the classic VRP, which allows one to potentially reduce the

operational costs of the fleet of vehicles. However, there is not much in the literature on the SDVRP.

In fact, only a few heuristic algorithms have been developed to solve the problem. This dissertation

applies meta-heuristic methods to solve the SDVRP. In these methods, solutions are constructed

through a simple and effective greedy algorithm that assign customers to the routes under construc-

tion based on the route angles. This mechanism favors spatially thin routes. A motivation for this

angle evaluation can be found in commercial trucking where drivers from a common depot prefer

to not travel far among customers and dislike crossing routes with other drivers.

Constructed solutions are subsequently improved following the philosophy of the variable

neighborhood search proposed byMladenovíc and Hansen (1997). The defining characteristic of a

variable neighborhood search is changing the neighborhood structure to avoid local optimum. Given

a set of pre-defined neighborhoods, the solution space is explored within a local search while sys-

tematically changing the neighborhood of the current solution. The search stops when the current

solution is a local optimum for all the pre-defined neighborhoods.

Some variable neighborhood searches have been applied to routing problems.Bräysy (2003)

proposes a reactive variable neighborhood search that modifies select parameters and changes the
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objective function to avoid local optimality. The method is applied successfully to the VRPTW and

provided four new best-solutions.Polacek et al. (2004) use variable neighborhood search to solve

the multi-depot VRPTW (MDVRPTW). The algorithm outperforms a tabu search, found 10 new

best-solutions, and demonstrates some superiority solving large real-world problems.Kytöjoki et al.

(2007) use a variable neighborhood descent to solve large-scale VRPs and accept non-improving

solutions by penalizing certain solution features. High quality solutions are found for problems

involving up to 20,000 customers.

Initial solutions are constructed with a greedy algorithm based on an insertion method. Cus-

tomers are added to a list and sorted according to their distance to the depot. They are then inserted

into the solution at the lowest possible cost. A customer can be inserted to initiate a new route or

to modify an existing route. In the latter case, a customer is inserted into the cheapest position in

the route. However, this insertion method produces poor solutions when the triangular inequality

favors the customer insertion into existing routes producing spread routes instead of initialization of

new routes. Thus, a new mechanism based on the spatial distribution of routes is used to penalize

the insertion of customers producing spread routes. This mechanism uses a fixed threshold value to

determine when a route is too wide and penalizes its insertion. The incorporation of this mechanism

provides high quality solutions compared to the best known SDVRP solutions in the literature at a

low computational time.

This dissertation presents new search techniques for practitioners and researchers solving SD-

VRPs. For practitioners, using simple yet effective solution techniques allow operators and man-

agers to efficiently use the fleet of vehicles. The quality of solutions obtained is comparable to the

quality of those obtained with existing sophisticated techniques. Computational times are substan-

tially lower than those of existing techniques. For researchers, the development of meta-heuristics

based on new diversification and vocabulary building techniques represents an advance in variable

neighborhood searches.

This dissertation provides multiple contributions. PartI provides a focused yet thorough liter-
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ature review on the VRP, SDVRP, and VRPSC. The review includes problem properties, models,

and solution algorithms. A new problem classification scheme is also presented in PartI useful for

categorizing modern routing problems. This classification scheme is based on three criteria: stati-

cism/dynamism of the problem parameters, the knowledge of the information relevant to the design

of its solution, and the method to model the unknown data. PartII presents new algorithmic con-

tributions, including: 1) a novel constructive approach, an iterative constructive approach that uses

adaptive memory concepts, and a variable neighborhood descent found inAleman et al. (2007);

2) a new solution diversification scheme found inAleman et al. (2008)based on concentric rings

centered at the depot that partitions the original problem and solves the resulting problems using a

constructive approach; and 3) a population-based search approach, called tabu search with vocab-

ulary building approach, that constructs an initial solution set and then uses the set of solutions to

find attractive solution attributes with which to construct new solutions and evolve the set.

This document is organized as follows. First, a literature review relevant to this research is

found in Chapters2 to 4. Chapter2 contains a review on representative existing techniques to solve

the classic VRP. Chapter3 reviews existing research and search methods to solve the SDVRP, the

primary focus of this research. Chapter4 contains concepts and existing studies on routing prob-

lems with stochastic customers. Second, the proposed approaches to efficiently solve the SDVRP

are presented in Chapters5 to 7. Chapter5 describes a greedy approach with a novel route angle

control measure, an iterative approach using adaptive memory concepts, a variable neighborhood

descent process based on the standard customer shift and swap adapted to handle split deliveries

plus a new operator that introduces split deliveries into the solution in order to reduce the objective

function value. Chapter6 provides a new solution diversification scheme based on concentric rings

centered at the depot to partition the original problem, solve the resulting-subproblems indepen-

dently, produce a complete solution, and then improve it using the variable neighborhood descent

described in Chapter5. Chapter7 outlines a learning procedure that uses a population of solutions

to derive information used to find attractive attributes and a tabu search framework to generate new

solutions. Finally, a summary of this dissertation is provided in Chapter8.
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Background Literature
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Chapter 2

Vehicle Routing Problem (VRP):

Solution Techniques

2.1 Problem Definition

The vehicle routing problem (VRP) was first formulated byDantzig and Ramser (1959) and is a

core problem in transportation, logistics, and supply chain management. It is also sometimes called

the capacited vehicle routing problem (CVRP) or truck dispatching problem. The VRP involves a

fleet of vehicles with fixed characteristics (i.e., speed, capacity, etc.) and a set of geographically

scattered delivery points (i.e., cities, warehouses, schools, customers, etc.) with fixed demands for

transporting goods between a unique depot and specified delivery points. The VRP is defined on

an undirected graphG = (V,E) whereV = {0, 1, ..., n} is the set ofn + 1 nodes of the graph,

andE = {(i, j) : i, j ∈ V, i < j} is the set of edges. Node 0 represents a depot where a fleet

M = {1, ...,m} of identical vehicles with capacityQ are stationed, while the remaining node set

V ′ = {1, ..., n} is the set ofn customers. A non-negative cost –or distance, or travel time–cij is

associated to every edge(i, j). Each customeri ∈ V ′ has a demand ofqi units. The optimization

problem is to determine which customers are served by each vehicle and what route the vehicle

follows to serve those assigned customers, while minimizing the operational costs of the fleet, such
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as travel distance, gas consumption, and vehicle depreciation. Traditionally, routes are designed to

start and end at the depot, every customer is visited exactly once by exactly one vehicle, and the

total demand of any route cannot exceed the available vehicle capacity.

This chapter provides background on the vehicle routing problem. It is organized as follows.

Section2.2 reviews some of the mathematical formulations employed. Each formulation below is

provided in complete form to promote readability. Sections2.3to 2.5review the most representative

techniques used to solve the VRP.Bodin and Golden (1981) classify these techniques whereas

a full complete survey and description is found inLaporte et al. (2000), Toth and Vigo (2002),

Cordeau et al. (2002), Cordeau et al. (2005), andLaporte (2007). These techniques include exact

algorithms, classical heuristic algorithms (i.e., constructive, saving, improvement, sweep, petal, and

matching algorithms), and metaheuristic algorithms. Section2.6 discusses the dynamic aspects

appearing in the vehicle routing problem and presents a classification scheme for the VRP based on

the staticism/dynamism of the problem parameters, the availability of information relevant to solve

the problem, and the method used to model the unknown information.

2.2 Models for the VRP

Although different authors have implemented various formulations of the vehicle routing problem,

this section presents some VRP models based on the work ofBaldacci et al. (2004).
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2.2.1 A Two-Index Vehicle Flow Formulation

Notation
E Set of edges
cij Nonnegative cost of edge{i, j} ∈ E
qi Demand of clienti
Q Vehicle capacity
M Fleet size
V {0, 1, . . . , n} is the set of nodes. Node 0 represents the depot
V ′ V ′ = V \{0} is the set ofn customers
S Subset of customersS ⊆ V ′

S̄ Complementary set of nodesV \S
J Set of customersJ = {S : S ⊆ V ′, |S| ≥ 2}
r(S) Minimum number of vehicles of capacity Q needed to satisfy the demand of customers inS
ξij 0, if edge{i, j} ∈ E is not in the solution; 1, if the edge is in the solution; and 2, if a route

including the single customerj is selected in the solution

Minimize
∑

{i,j}∈E

cijξij (2.1)

Subject to: ∑
j∈V
i<j

ξij +
∑
j∈V
i>j

ξji = 2;∀i ∈ V ′ (2.2)

∑
i∈S

∑
j∈S̄
i<j

ξij +
∑
i∈S̄

∑
j∈S
i<j

ξij = 2r(S);∀S ∈ J (2.3)

∑
j∈V ′

ξ0j = 2M (2.4)

ξij ∈ {0, 1};∀{i, j} ∈ E\{{0, j} : j ∈ V ′} (2.5)

ξ0j ∈ {0, 1, 2};∀{0, j} ∈ E, j ∈ V ′ (2.6)

Constraints (2.2) are the degree constraints for each customer. Constraints (2.3) are the subtour

elimination constraints which, for any subsetS of customers that does not include the depot, impose

thatr(S) vehicles enter and leaveS. Constraints (2.4) state thatM vehicles must leave and return

to the depot. Constraints (2.5) and (2.6) are the integrality constraints.

8



2.2.2 A Multicommodity Flow Formulation

Notation
cij Nonnegative cost of edge{i, j} ∈ E
qi Demand of clienti
Q Vehicle capacity
M Fleet size
V {0, 1, . . . , n} is the set of nodes. Node 0 represents the depot
V ′ V ′ = V \{0} is the set ofn customers
ξij 1, if arc(i, j) is in the optimal solution. 0 otherwise
yl

ij Amount of demand destined to customerl ∈ V ′ that is transported on arc(i, j)

Minimize
∑

i,j∈V
i6=j

cijξij (2.7)

Subject to: ∑
i∈V

ξij = 1;∀j ∈ V ′ (2.8)

∑
j∈V

ξij = 1;∀i ∈ V ′ (2.9)

∑
j∈V ′

ξ0j = M (2.10)

∑
j∈V ′

ξj0 = M (2.11)

∑
i∈V

yl
ij −

∑
i∈V

yl
ji =


ql, j = l ∀l ∈ V ′,

0, j 6= l ∀j, l ∈ V ′

−ql, j = 0 ∀l ∈ V ′
(2.12)

yl
ij ≤ qlξij ;∀i, j ∈ V, i 6= j;∀l ∈ V ′ (2.13)

∑
j∈V ′

∑
l∈V ′

yl
ij ≤ Q− qi;∀i ∈ V (2.14)

yl
ij ≥ 0;∀i, j ∈ V, i 6= j;∀l ∈ V ′ (2.15)
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ξij ∈ {0, 1};∀i, j ∈ V, i 6= j (2.16)

Constraints (2.8) and (2.9) ensure that each customer is visited exactly once. Constraints (2.10)

and (2.11) ensure allM vehicles in the fleet leave from and return to the depot. Constraints (2.12)

and (2.13) are the commodity flow constraints to guarantee that each demand is satisfied. Con-

straints (2.14) ensure that vehicle capacity is not exceeded. Finally, constraints (2.15) and (2.16) are

the integrality and binary conditions, respectively.

2.2.3 A Set-Partitioning Formulation

Notation
V {0, 1, . . . , n} is the set of nodes. Node 0 represents the depot
V ′ V ′ = V \{0} is the set ofn customers
R Index set of all feasible routes
M Fleet size
ĉj Cost of routej ∈ R
aij Binary coefficient equal to 1 if customeri belongs to routej ∈ R. 0, otherwise
ζj 1, if routej ∈ R is in the optimal solution. 0, otherwise

Minimize
∑
j∈R

ĉjζj (2.17)

Subject to: ∑
j∈R

aijζj = 1;∀i ∈ V ′ (2.18)

∑
j∈R

ζj = M (2.19)

ζj ∈ {0, 1};∀j ∈ R (2.20)

Constraints (2.18) ensure that each customer is visited exactly once. Constraints (2.19) ensure all

M vehicles are in the solution. Finally, Constraints (2.20) are the binary conditions.
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2.2.4 A Two-Commodity Flow Formulation

Notation
V {0, 1, . . . , n} is the set of nodes. Node 0 represents the depot
E Set of edges
G Undirected graphG = (V,E)
V̄ V̄ = V ∪ {n + 1}
V ′ V ′ = V̄ \{0, n + 1}
Ḡ Extended graph̄G = (V̄ , Ē)
S̄ Complementary set of nodes̄V \S
M Fleet size
Q Vehicle capacity
cij Cost of edge{i, j}
qi Demand of clienti
q(V ′) Sum of demands of customers in setV ′

ξij 1, if edge{i, j} ∈ Ē is in the solution. 0, otherwise
xij Load of vehicle associated with edge{i, j}
xji Empty space on the vehicle associated with edge{i, j} (i.e.,xji = Q− xij)

Minimize
∑

{i,j}∈Ē

cijξij (2.21)

Subject to: ∑
j∈V̄

(xji − xij) = 2qi;∀i ∈ V ′ (2.22)

∑
j∈V ′

x0j = q(V ′) (2.23)

∑
j∈V ′

xj0 = MQ− q(V ′) (2.24)

∑
j∈V ′

x(n+1)j = MQ (2.25)

xij + xji = Qξij ;∀{i, j} ∈ Ē (2.26)

∑
j∈V̄
i<j

ξij +
∑
j∈V̄
i>j

ξji = 2;∀i ∈ V ′ (2.27)

11



xij ≥ 0, xji ≥ 0;∀{i, j} ∈ Ē (2.28)

ξij ∈ {0, 1};∀{i, j} ∈ Ē (2.29)

Constraints (2.22) ensure that the inflow minus the outflow at each customer is equal to2qi. Con-

straint (2.23) forces the outflow at the depot to equal the total customer demand. Constraint (2.24)

defines the residual capacity of the vehicle fleet. Constraint (2.25) ensures the inflow at sourcen+1

is the total capacity of the vehicle fleet. Constraints (2.26) define the edges of a feasible solution.

Constraints (2.27) force a customer to be connected to two edges. Constraints (2.28) and (2.29) are

integrality and binary conditions, respectively.

2.3 Exact Algorithms for the VRP

2.3.1 Branch and Bound

Christofides and Eilon (1969) present an approach for solving the vehicle dispatching problem.

Their solution method is based on a branch-and-bound (B&B) algorithm designed to solve a travel-

ing salesman problem. Their VRP is formulated as a TSP by deleting the depot and replacing it with

as many artificial copies of the depot as there are vehicles in the fleet. Traveling from one artificial

depot to another is disabled by setting the distance between them to a large cost (i.e., infinity). The

number of artificial depotsN (i.e., the number of vehicles required in the final solution) has a lower

bound determined by the vehicle capacity and the demand of all customers as:

N ≥
n∑

qi/C

whereqi is the demand of customeri, n is the number of customers, andC is the vehicle capacity.
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Obviously, there may exist no feasible solution for this value ofN . Therefore, the problem is solved

for several values ofN , and the best solution among these is chosen as the final solution.

Before branching to a new node, the load capacity and distance limit of the vehicle in question

as well as the remaining fleet capacity are evaluated. If any constraints are violated, there is no need

to keep exploring the current branch. In order to reduce the search space, the bounds for nodes of

the decision tree are determined by computing a minimal spanning tree. The B&B algorithm was

tested on two instances with 6 and 13 customers. Another 8 problems, having 21 to 100 customers,

required excessive computation time and memory space requirements. The computation time for

the solved problems are 1.5 and 15 minutes, respectively, but keep in mind the work was conducted

in 1969.

Miller (1995) describes a B&B algorithm where the lower bounds are computed by relaxing

the subtour elimination and vehicle capacity constraints to produce a b-matching problem. This

algorithm differs from others in that b-matching, instead of spanning trees, forms the kernel of

the relaxation. The algorithm is tested on 11 instances taken from the literature involving 7 to 61

customers. The optimal solution for the largest problem is obtained in about 16 minutes whereas

for a problem with 51 customers, it took about 4 hours.

2.3.2 Branch-and-cut

Baldacci et al. (2004) describe a branch-and-cut procedure for the VRP based on an integer pro-

gramming formulation in the form of the two-commodity network flow problem presented in Sec-

tion 2.2. A lower bound is computed based on the linear relaxation of the formulation, strengthened

by a set of flow and capacity inequalities. The algorithm is tested on 19 problems taken from

the literature, involving 15 to 134 customers, and 8 randomly generated instances, involving 30

to 100 customers. The algorithm successfully solved problems involving up to 80 customers and

an instance involving 135 customers. It took about 2 hours and 30 minutes to optimally solve the

problem with 135 customers.
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Table 2.1:Representative Exact Algorithms for the VRP.

Algorithm Year Description & Remarks

Christofides and Eilon 1969 Branch and Bound

Miller 1995 Branch and Bound

Hadjiconstantinou et al. 1995 Set-partitioning

Baldacci et al. 2004 Branch and Cut

2.3.3 Set-partitioning

Hadjiconstantinou et al. (1995) present a tree-search procedure based on the use of lower bounds

that are derived from a combination of two different relaxations of the original problem:q-paths

(i.e., chains of customers whose weight is equal toq) andk-shortest paths. The algorithm is eval-

uated using 25 problem sets (involving 15 to 150 customers), 10 of them fromEilon et al. (1971)

and 15 randomly generated with customers distributed uniformly. The algorithm found an optimal

solution for problems with up to 50 customers but could not solve problems with 75 or more cus-

tomers within a 12 hour computational limit. The largest solvable problem, 50 customers, solved in

about 2 hours.

2.4 Classical Heuristic Algorithms for the VRP

In operations research, heuristics are generally simple search algorithms designed to find a solution

to an optimization problem. Heuristics are a set of rules logically designed to solve an optimization

problem based on a specific objective, such as minimizing costs or maximizing profits. In gen-

eral, the design of heuristics follows the common sense of the designer and his/her perception of

the problem. There is no a unique way to design, and of course implement, heuristics; the only

limitation is creativity. There are two aspects characterizing heuristics: quality of the solution and

computational time. Although heuristics can find good solutions without guaranteeing optimality,

these solutions can be found in reasonable computational time. Many heuristics have been invented
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to solve the VRP. Some of them present new thoughts and challenges, whereas others are not as cre-

ative or simply follow previous techniques. The next sections review some of the classical heuristics

used to solve the VRP.

2.4.1 Constructive Algorithms

In their route building heuristic,Dantzig and Ramser (1959) use “stages of aggregation” and pair

customers whose combined demand does not exceed some fraction of the vehicle capacity. At every

stage, pairs of customers obtained in previous stages are combined so the capacity of a vehicle is

not exceeded. To calculate the number of stages of aggregation, they sort the customers based on

their demands and determine the maximum number of customers that a single vehicle can serve.

In the initial solution, a vehicle serves exactly one customer so the initial solution contains as

many routes as customers. These pairs are called the “basic set”. In the first stage, a series ofrapid

correctionsare executed by bringing into the solution non-basic pairs with the smallest inter-pair

distances whose combined demand does not exceed the fraction of the truck capacity established in

the stage. These rapid corrections are repeated as long as non-basic pairs are available.

The customer pairs obtained in the first stage are combined in the second stage to minimize

the distance traveled by all vehicles. A matrix containing the minimum distances between pairs and

the depot is created. This “distance matrix” is used in every stage. Subsequent stages repeat the

process until the vehicles are near capacity. The selection criterion for pairing customers is focused

on filling the vehicles and minimizing the sum of inter-pair distances within a route. Although

“rapid corrections” allow reducing the inter-pair distances, once customers are grouped they are not

separated in further stages. This myopic approach does not focus on minimizing the total distance

of all vehicles.
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2.4.2 Savings Algorithms

The calculation of the distance matrix inDantzig and Ramser’s method (1959) can be tedious and

computationally demanding. The savings algorithm ofClarke and Wright (1964) does not calculate

this matrix, which reduces computational efforts.Clarke and Wrightalso remove the restriction that

only customers whose combined demand does not exceed a fraction of the vehicle capacity can be

grouped. Instead, they group any customers whose combined demand does not exceed the capacity

of a vehicle. There is both a concurrent and a sequential version of the algorithm. The concurrent

version creates routes simultaneously. Initially every customer is served by a separate vehicle. The

algorithm repeatedly takes a pair of customers from two different routes and calculates the distance

saving of the four possible ways in which the two customers can be linked and the routes split. The

two customers with the maximum savings are linked and new feasible routes are produced. This

procedure stops when no further savings are attainable. The sequential version creates one route

at a time by selecting a seed customer and iteratively linking that customer using the highest sav-

ings and the last linked customer. When no more customers can be linked, a new seed customer

is selected and the procedure continues until all the customers are served. Although routes are not

optimized in the final allocation, the computational results demonstrate better performance than

Dantzig and Ramser’s (1959) in 17 of 31 different problem sets.Clarke and Wrightsuggest, how-

ever, re-optimizing the routes as independent TSPs to obtain even better solutions. This “savings”

algorithm was developed as a greedy approach, but is really an improvement method.

2.4.3 Single-Route Improvement Algorithms

Single-route improvement algorithms try to improve an existing solution by rearranging the order

in which customers are served within the routes. In this sense, every route can be thought of as

an independent TSP. The most representative procedures are given byLin and Kernighan (1973),

Or (1976), Potvin and Rousseau (1995), andRenaud et al. (1996). These algorithms are iterative

procedures that improve the solution by relocating “customers” or “edges” within a route. The
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improvement search stops when no further cost reductions can be found.

Or (1976) proposes a “customer” exchange heuristic that tries to improve a route by relocating

sequences of one, two, or three adjacent customers within the route. For example, an Or-opt-1

exchange considers each customer in a route and tries to improve the tour by inserting that customer

at another location. The classicalk-opt is an “edge” exchange heuristic which deletesk edges

from a route, temporarily reconnects the remaining portions of the route in all the possible ways

and selects the exchange providing the best cost for the route.Lin and Kernighan (1973) discuss a

sequential exchangemethod based on a generalization of thek-opt transformation. Their procedure

does not use a fixed value fork, but tries to identify the highestk each iteration and, obviously,

the edges that can be exchanged to best improve the route cost. If a best improvement is found,

edges are exchanged and the process is repeated until no further improvement can be made by the

procedure. The algorithm produces optimal solutions for all problems tested including problems in

the literature for the TSP and randomly generated instances involving up to 110 cities.

The improvement algorithm ofPotvin and Rousseau (1995) transforms a VRP into an equiv-

alent TSP by creating copies of the depot. The idea of creating copies of the depot was previously

explored in other studies (Christofides and Eilon, 1969; Potvin et al., 1989). Once the VRP solu-

tion is transformed into a TSP, a proposed 2-opt* exchange heuristic is applied where two links are

replaced by two new links in such a way that the TSP route is divided into two subroutes without

reversing any portion of the routes (as opposed to the 2-opt that can reverse a segment of the route).

The new solution is valid only if there is a copy of the depot in both subroutes. The 2-opt* exchange

is particularly well suited for problems with time windows because it preserves the orientation of the

routes by introducing the last customers in a given route at the end of another route. The algorithm

was tested on Solomon’s test problems (Solomon, 1987) and randomly generated problems with

100 customers. The results indicate that, even though the Or-opt dominates, the 2-opt* algorithm is

fast and effective on problems with tight time windows. A hybrid algorithm that merges 2-opt* and

Or-opt is tested and outperforms the classical 3-opt algorithm.
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Renaud et al. (1996) describe a 3-phase algorithm that uses a route improvement heuristic

for the TSP based on a 4-opt* move. This move is similar to the classical 4-opt, but reduces the

number of possible reconnections to 8 (the standard 4-opt produces 48) by inserting the cheapest

of two predefined edges. The other three edges are selected from the remaining 8 neighbor tours.

The algorithm was tested on 100 randomly generated instances with customers ranging from 50 to

500. The improvement heuristic was compared with other improvement heuristics including 2-opt,

3-opt, and Or-opt. Results indicate that 4-opt* dominates Or-opt and considerably improves over

3-opt in terms of processing time.

2.4.4 Sweep Algorithms

Wren and Holliday (1972) present an algorithm for the VRP which allows routes emanating from

several depots subject to a limited number of vehicles at each depot. The algorithm is composed

of a constructive method followed by an improvement process that moves customers either within

or between routes. The contribution of the proposed algorithm is the constructive procedure that

sorts the customers in a novel manner and assigns them sequentially to the nearest feasible route.

A feasible route is either an existing route with enough spare capacity or a new route. Customers

are first assigned to the nearest depot. The constructive algorithm is informally known as a sweep

algorithm because it sweeps a “ray” from each depot in a clockwise direction and determines a

bearing for customers assigned to that depot. Customers are then sorted by the bearings regardless

of the depots and assigned to the nearest feasible route. The algorithm (constructive plus refining

process) was tested on 9 problem sets. In the first 6 sets, ranging in size from 21 to 36 customers and

only one depot, the algorithm improved 2 solutions obtained from a version of theClarke and Wright

method andChristofides and Eilon (1969). In the last 3 sets, involving 50, 75 and 100 customers,

the algorithm provided solutions with fewer vehicles than theClarke and Wrightmethod in two

cases and a significant reduction in traveled distance in the third case. The authors also provide a

case study where the algorithm outperformed a commercially available program to solve VRP with

multiple depots that first allocates the customers to depots and then applies theClarke and Wright
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method to each depot independently.

Gillett and Miller (1974) introduce a procedure that is officially called the sweep algorithm and

is quite similar to the algorithm presented byWren and Holliday (1972) but with two differences.

The first difference is thatGillett and Miller (1974) use a single depot, so the routes are made up

while the “ray” sweeps around. Thus, there is no further need for finding a nearest depot. The second

difference is thatGillett and Miller (1974) sweep the “ray” both clockwise and counterclockwise.

The best solution is then selected. These two versions are called theforward andbackwardsweep

algorithm, respectively.

The sweep algorithm ofGillett and Miller (1974)is tested on 12 problem sets where the number

of customers ranges from 21 to 250. Of these problem sets, 7 are solved byChristofides and Eilon

(1969) and 5 are new problems. In terms of total traveled distance, theGillett and Miller (1974)

algorithm outperforms theChristofides and Eilon (1969) algorithm in 3 cases, matches the solution

in 2 cases, and provides a less attractive solution in the other 2 cases. With respect to the algorithm

of Wren and Holliday (1972), 4 of the problem sets are solved by both algorithms. From those,

Gillett and Miller’s outperformsWren and Holliday’s in 3 cases.

2.4.5 Petal Algorithms

The algorithm ofGillett and Miller (1974) produces routes with a petal-like structure. It seems

natural to expect that an optimal VRP solution, barring any unusual side constraints, includes routes

that do not cross each other. Based on this assumption,Foster and Ryan (1976) explore a subset

of feasible VRP petal solutions, referred to as the “petal set”, and reduce the feasible region by

imposing the constraint that neither deliveries within a “petal” are bypassed nor adjacent routes

cross. They solve an over-constrained LP model of the VRP to optimality by producing a set of

feasible routes and then separately solving a traveling salesman problem for each route.Foster

and Ryan’s algorithm is evaluated using 13 problems from various authors (Clarke and Wright,

1964; Gaskell, 1967; Christofides and Eilon, 1969; Gillett and Miller, 1974), involving 21 to 100
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customers. The algorithm provides 11 new best solutions and generally outperforms the solutions

obtained from the two sweep approaches (Wren and Holliday, 1972; Gillett and Miller, 1974).

The petal algorithm ofRyan et al. (1993) is based on the work ofGillett and Miller (1974)

and Foster and Ryan (1976). A VRP optimal solution can include crossing routes if there are

restrictions on the structure of feasible routes, such as vehicle capacity, route distance limit, and

time restrictions. The distinction with this work is the use of a shortest path technique to produce

petals and their associated routes, rather than an LP. The performance of the shortest path method

for finding a shortest set of petals and the LP method for finding an equivalent optimal petal solution

have been compared by solving the problems defined inAltinkemer and Gavish (1991). The results

show that the shortest path method outperforms the LP method by two orders of magnitude, in terms

of the CPU time.

2.4.6 Sequential Route-Building Algorithm

All the existing sequential saving algorithms select a customer to insert based on the savings as-

sociated with the insertion. However, the customer is inserted into the route under construction

following the position of the last inserted customer.Mole and Jameson (1976) describe a savings

algorithm that sequentially constructs routes and inserts unserved customers into the route under

construction,Rk. The proposed method follows three steps to determine not only the next customer

to be inserted, but also where withinRk to place the customer. In the first step, the most advanta-

geous feasible position onRk for each unserved customer is determined. In the second step, the next

unserved customer is identified and inserted intoRk. In the third step, the possible resequencing of

customers onRk is explored via a 2-opt operator. If the capacity ofRk is exhausted, a new route

is started (k = k + 1). The process is repeated until all customers are in a route. Two parameters,

λ andµ, are used in the algorithm to vary the criteria used to choose the best unserved customer

to be inserted. A “refine” procedure, which transfers customers from one route to another, is used

to improve the routes. The algorithm is tested on 10 instances taken fromChristofides and Eilon
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(1969) and clearly outperformsClarke and Wright, but does not provide better solutions thanWren

and Holliday.

Christofides et al. (1979) present a sequential procedure that uses two phases. In the first phase,

routes are constructed quite similar toMole and Jameson (1976), but the first unserved customer

xih inserted into a new routeRh is selected arbitrarily. In Phase 2, routes are constructed in parallel,

based on the routes from Phase 1. The algorithm is tested on 14 problem sets, with customers

ranging from 50 to 199, taken fromChristofides and Eilon (1969) and some structured problems.

Results are compared in terms of total traveled distance with those obtained from the implemented

versions of various algorithms (Clarke and Wright, 1964; Mole and Jameson, 1976; Gillett and

Miller, 1974). The comparison clearly reveals that the presented algorithm outperformsMole and

Jamesonby finding better solutions on 12 of the tested problems.

2.4.7 Cluster-First Route-Second Algorithms

Cluster-first, route-second algorithms are two-phase methods that divide the VRP into two subprob-

lems. In phase 1, customers are assigned, or grouped/clustered, to vehicles without considering the

order of servicing the assigned demands. In phase 2, customers are rearranged to try and find an

optimal or near-optimal solution for each cluster. Different techniques are used to cluster the cus-

tomer, including the sweep and the petal algorithms. To design efficient routes for each cluster, any

TSP heuristic can be utilized including the single-route improvement algorithms cited previously.

Fisher and Jaikumar (1981) present a heuristic that solves an integer program for a general-

ized assignment problem to optimally assign customers to vehicles. Among the customers, “seed”

customers are selected either manually (via the user preferences, expertise, etc.) or heuristically.

Customers are then allocated to the selected “seed” customers at a minimum cost. The cost of al-

locating a customer to a “seed” customer is estimated by the route formed by the two customers

through the depot. This makes the objective function of the generalized assignment problem an ap-

proximation of the cost of the TSP. A complete solution is obtained by applying a TSP heuristic to
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each vehicle (i.e., each cluster). Computational tests are performed on 12 test problems taken from

the literature. The problems range in size from 50 to 199 customers, 5 to 19 vehicles, and a single

depot. In terms of total traveled distance, the algorithm provided 9 new best solutions to the VRP

and equaled 2 of the best existing solutions. In general, the generalized assignment based heuristic

outperforms both theClarke and Wright (1964) and theGillett and Miller (1974) algorithms.

Bramel and Simchi-Levi (1995) present a location based heuristic that clusters customers by

approximating the VRP with acapacitated concentrator location problem(CCLP). The approxi-

mated solution to the CCLP specifies “seed” customers and the customers allocated to them without

violating capacity constraints. They use two ways to determine the cost of allocating a customer

to a “seed” customer. In the first implementation, the cost corresponds to the length of the route

through the two customers and the depot (similar toFisher and Jaikumar, 1981). In the second

implementation, the cost corresponds to the direct round-trip between the “seed” and the customer.

A computational experiment is conducted on 7 standard problem sets taken fromChristofides et al.

(1979), ranging in size from 50 to 199 customers. In general, the two implementations improved

only two of the existing solutions on the test problems. The philosophy of the first implementa-

tion is similar toFisher and Jaikumar (1981), but provides better solutions in only 2 of the 7 cases.

However, the second implementation has the advantage of being asymptotically optimal, which

means that the deviation from the optimal solution tends towards zero as the number of customers

increases.

2.4.8 Route-First Cluster-Second Algorithm

Route-first, cluster-second algorithms are two phase methods that construct a TSP tour during phase

1 that connects all the customers and then divides them into segments in phase 2, subject to the

vehicle capacity constraints. Each segment is then serviced by a vehicle.Beasley (1983) considers

a route-first cluster-second method for the VRP. Although the author cites similar approaches used

in the literature, this work appears to be the first attempt to evaluate this type of algorithm on

22



standard VRPs. The algorithm randomly generates an initial “giant” tour visiting all the customers

and excluding the depot and improves the tour via a 2-opt operator. In order to reduce the fleet size

as much as possible, a large positive constant is added to the inter-customer distances. The “giant”

tour is then partitioned by means of a shortest path algorithm. The routes in the final partitions

are improved using a 3-opt operator. Computational results and a comparison with the savings

algorithm ofClarke and Wright (1964) use the 10 problems taken fromEilon et al. (1971). For

each problem, 25 “giant” tours are generated and the best solution is kept. The developed algorithm

clearly outperforms the algorithm ofClarke and Wright. However, no other existing results on VRP

instances are used for benchmarking. In the evolutionary algorithm ofPrins (2004), giant tours are

created with the ordered sequence of customers and a splitting procedure is utilized to determine

the best way to separate the routes in the giant tour.

2.4.9 Matching Algorithm

Altinkemer and Gavish (1991) present a parallel savings based algorithm (PSA) which is an im-

provement of the saving algorithm ofClarke and Wright (1964). In the algorithm ofClarke and

Wright only one pair of routes can be merged whereas multiple pairs of routes can be merged at

each iteration of the proposed PSA. The number of pairs of routes merged is determined by solving

a weighted matching problem (i.e., finding the largest size set of edges such that each customer is

linked to at most one route at the maximum saving possible). As inClarke and Wright’s algorithm,

every customer is initially served by a separate vehicle. When two routes merge, the customers in

both routes are served by a single route. At each iteration, the exact savings obtained by merging

routesp andq, Spq, is calculated for all possible pairs of routes without exceeding the vehicle ca-

pacity. New routes are formed by merging the matched routes. The procedure repeats until no more

routes can be merged.

One disadvantage of this PSA algorithm is that a TSP is solved at each iteration to calculate

the savingsSpq for every pair of routes considered for merging. Thus, two additional versions are
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proposed to estimate the savings instead of solving a TSP. One of them solves a TSP but only after

obtaining the final routes. The three algorithms are tested using 14 problem sets taken from the

literature. The problem size ranges from 50 to 200 customers, customer demands are not equal, and

the vehicle capacity is the same. The PSA improves 6 of the previously known best solutions for

the 14 problem sets. From those 6 improved solutions, 4 are obtained from PSA and the others from

the version that solves the TSP after the final routes. As expected, CPU times from PSA are larger

than from the two additional versions due to the solution of TSPs at each iteration. CPU times from

the two versions are quite similar, which reveals that most of the computing time is spent solving

the weighted matching problem.

2.4.10 Multiple-Route Improvement Algorithms

Multiple-route improvement algorithms improve an existing VRP solution by combining and mod-

ifying various routes. Most of these algorithms use the operators ofVan Breedam (1995) and

Kindervater and Savelsbergh (1997) or more complex operators such as the ones used byThompson

and Psaraftis (1993).

Kindervater and Savelsbergh (1997) describe three basick-exchange operators that relocate

customers between two routes: (1)relocation, which movesk consecutive customers (usuallyk ≤

3) from one route to another; (2)exchange, which allows any two routes to exchangek consecutive

customers; and (3)crossover, which allows any two routes to exchangek consecutive customers

in such a way that the last part of either route becomes the last part of the other.Kindervater

and Savelsbergh (1997) report finding no studies that compare these three operators with other

algorithms.

Thompson and Psaraftis (1993) investigate a neighborhood search based oncyclic k-transfers

to solve the multi-vehicle routing problem. The procedure attempts to improve a solution by trans-

ferring k demands among a cyclic permutation of routes. They also study a special case,b-cyclic

k-transfers, which specifies the transfer amongb routes. This search procedure is complex because
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a TSP is solved for each modified route in the permutation subset to evaluate the transfer cost and

the number ofk demands that can be transferred is large. The cyclic transfer algorithms are tested

using 3 standard VRPs taken fromEilon et al. (1971). These problems have 50, 75, and 100

customers. The best solutions found are compared with solutions in the literature obtained with

various algorithms (includingClarke and Wright, 1964; Gillett and Miller, 1974; Fisher and Jaiku-

mar, 1981). The results reveal that the solution quality in terms of total distance is not better than

Fisher and Jaikumar (1981) but is quite close to it. The algorithms are also tested using six test sets

from Solomon (R1, C1, RC1, R2, C2, RC2) for the VRP with time windows, each set contain from

7-12 instances all with 100 customers. On average, the cyclic transfer algorithms provide a better

solution in 4 of the test sets.

Table2.2provides a brief summary of the classical heuristic algorithms defined for and tested

on VRP-types of problems.

2.5 Metaheuristics for the VRP

Metaheuristics are solution methods that guide a subordinate heuristic algorithm to escape from

regions having local optimal solutions and thus perform a more effective search in the solution

space. These methods can use different techniques to avoid local optimum, including randomiza-

tion, population-based procedures, and memory-based techniques. This section overviews different

metaheuristic approaches used to solve the VRP, including simulated annealing, tabu search, genetic

algorithms, and ant colony optimization.

2.5.1 Simulated Annealing (SA)

This technique was first introduced byKirkpatrick et al. (1983) as an analogy between the anneal-

ing process of solids and the problem of solving combinatorial optimization with the objective of

converging to an optimal solution. The analogy provides a useful connection between the behavior
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Table 2.2:Representative Classical Heuristic Algorithms for the VRP.

Algorithm Year Description & Remarks

Dantzig and Ramser 1959 Constructive algorithm. First approach

Clarke and Wright 1964 Saving. Concurrent & sequential

Wren and Holliday 1972 Sweep Algorithm. Multiple depots

Lin and Kernighan 1973 Single-route improvement

Sequentialk-exchange

Gillett and Miller 1974 Sweep Algorithm. Single depot

Or 1976 Single-route improvement

Consecutive customers relocation

Foster and Ryan 1976 Petal algorithm. Optimal petal solution

Mole and Jameson 1976 Sequential Route-Building

Insertion position check

Christofides et al. 1979 Sequential Route-Building

Sequential & Parallel construction

Fisher and Jaikumar 1981 Cluster-First Route-Second

Generalized Assignment + TSP

Beasley 1983 Route-First Cluster-Second

Altinkemer and Gavish 1991 Matching Algorithm. Matching clusters

Ryan et al. 1993 Petal algorithm

Thompson and Psaraftis 1993 Multiple-Route Improvement

b-cyclic k-transfer

Potvin and Rousseau 1995 Single-route improvement. Based on 2-opt*

Bramel and Simchi-Levi 1995 Cluster-First Route-Second

Renaud et al. 1996 Single-route improvement

Kindervater and Savelsbergh1997 Multiple-Route Improvement
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of systems in thermal equilibrium at a finite temperature and a combinatorial optimization, which

provides a new method to solve this type of problem.

To overcome local optimum in optimization applications, SA allows hill-climbing (non-improving)

moves with a probability that depends on the magnitude of the increase in the cost function and on

the search time to date.Osman (1993) developed a SA algorithm where the local search approach

is based on aλ-interchange descent mechanism to explore new solutions. They useλ = 1, so the

neighboring solutions can be obtained by exchanging a customer between any pair of routes. The

criterion to select the best neighbor solution uses two different strategies: the best-improvement

strategy, which examines all candidates in the neighborhood and selects the one with the best so-

lution costC(S′) according to an acceptance criterion, and the first-improvement strategy, which

immediately accepts the first candidate satisfying the acceptance criterion. The algorithm uses: 1)

a starting and final temperature (Ts andTf ), 2) a decrement rule (i.e., a temperature reduction fac-

tor α) to change the temperatureTk after each iterationk, 3) an update rule for temperature reset

variablesTr after the system freezes, and 4) a stopping criterion, which is the total number of tem-

perature resets performed since the best solution was found. The best solution found during the

search,Sb, is kept instead of the one obtained in the last iteration. The algorithm performs a single

iteration at every temperature level.

To evaluate SA performance on 17 test problems,Osman (1993) used the algorithm ofClarke

and Wrightand two hybrid approaches combining the SA approach with the tabu search (TS). The

hybrid approaches use the two selection strategies previously described: best-improvement and

first-improvement. The results of the experiment are summarized as:

• SA outperforms the existing heuristics and provides new best solutions.

• Both hybrid approaches with best-improve strategy and first-improve strategy outperformed

the SA method in both computational time and solution quality.

• SA reduced the total number of vehicles used with respect to the existing solutions.
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TheOsmanSA method was implemented before the TS approach ofGendreau et al. (1994).

However, the latter TS approach provided better solutions in terms of the objective value in three

of the problem sets, equal solutions for four problems, and worse solutions for six problems. In

other instances, TS provided better objective functions but used a higher number of vehicles. Better

results can be obtained with the SA approach by using a post-optimization procedure which was not

used byOsman.

Van Breedam (1995) describes the use of SA-based improvement methods for the VRP. Fea-

sible solutions are found by using three different multiple-route improvement heuristics and those

embedded in a SA metaheuristic. The descent implementations usestring relocationto insert a

customer(s) from one route into another,string exchangeto exchange customer(s) between any two

routes, andstring mixto combine those into a single operator. TheVan BreedamSA implementa-

tion uses a traditional scheme. A maximum number of feasible solutions are generated for every

temperature and the best one is kept. To offset the limitations of convergence to local optimum, a

non-improving neighbor solution is accepted with some probability. After a fixed number of itera-

tions, the SA algorithm stops. As a particular characteristic, they use a distance limit on potential

moves to restrict the neighborhood and thus improve computational times.

The descent algorithms and the same algorithms combined with the SA metaheuristic were

tested using the 14 test problems ofChristofides et al. (1979)to compare their results. To evaluate

the quality of the solutions obtained with the SA-based algorithm, a comparison was carried out

with existing TS solutions and the SA solutions ofOsman (1993). Results reveal that, as expected,

the SA-based versions of the three improvement methods gave better results in comparison with the

pure descent variants. The comparison withOsman’s SA algorithm indicated that both implemen-

tations provide solutions with similar quality and neither one dominates the other. However, the TS

implementations clearly outperformed SA on the problem sets in terms of both solution quality and

computation time.
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2.5.2 Tabu Search (TS)

TS is a strategy that uses local search and flexible memory structures to learn from the search history

and overcome local optimum (Glover, 1986). A local search is performed until a local optimum is

found. Systematic up-hill moves are used to escape regions of local optimum, explore the search

landscape and, hopefully, find a global optimum. Cycling moves are forbidden by the use of a

tabu list, or short-term memory, that records the recent history of the search. Promising solutions,

or attributes, are reinforced by the use of a recency memory, or intermediate-term memory, that

records the number of consecutive iterations that some attributes have been present in the current

solution. New solution regions are explored by diversifying the search using a frequency memory,

or long-term memory, that records the number of iterations that some attributes have been present in

a selected solution during the search and using that information to build new, more diverse solutions.

Taillard (1993) presents a parallel iterative search method for the VRP based on TS and two

partitioning methods. The algorithm partitions a full VRP into subproblems defined by sectors

and polar regions. Each subproblem is solved independently using TS. Once the subproblems are

solved, they are grouped together to construct a full solution to the original problem. This solution

is partitioned again and the process repeats. The TS is based on two neighborhoods created by

moving a customer from one route to another and by exchanging customers between routes. The

search is diversified by penalizing the moves that are frequently performed. The penalty value varies

with the frequency of moves and with a weight that is randomly generated at each iteration within

a range whose length depends on the move value and the problem size. Similarly, the tabu tenure

is determined randomly and is problem size dependent. Although a TSP is approximately solved

to determine the cost of a move, routes are exactly solved periodically during the search to produce

optimal routes. The algorithm partitions the problem differently when customers are uniformly

distributed around the depot and when they are not. The algorithm provides solutions with a quality

that is at least as good as the best published values on the 14 problems proposed inChristofides

et al. (1979) and improves 5 of them.
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Gendreau et al. (1994) propose a TS approach, TABUROUTE, to solve the VRP with capacity

and length restrictions. In their approach, the neighborhood is built by removing a customer from

one route and reinserting it into another. The reinsertion method differs from a regular insertion in

the sense that, only routes containing nearby customers are considered for insertion. The current

route is optimized when the customer is reinserted into another route.

The procedure considers the set of all possible customers to reinsert. It randomly selects a

subset of customers. Then, for the selected candidates from the subset, all the potential moves are

evaluated moving the customer from the current route to another empty route or a route including

the closest customers. The insertion cost is then calculated. They use a simple aspiration criterion

where a tabu candidate is selected only if its value yields a solution better that the best found so far.

A penalty value is assigned based on any excess in the vehicle capacity and the number of times a

customer has been removed (this is to diversify the search). The candidate with the lowest value is

identified and selected. The current solution is updated with the best candidate unless the following

three conditions are true: a) the penalty value is greater than the current, b) the current solution is

feasible, and c) the current solution was not improved in the previous iteration by rearranging all

the routes independently. If the current solution is not updated, it is obtained just by rearranging the

routes. If no improvement has been obtained for a maximum number of iterations, the algorithm

stops. To intensify the search, the procedure is executed using the best feasible or infeasible solution

found so far.

Their results show that TS is a good alternative to solve VRPs, and typically outperforms the

existing heuristics. The implementation ofGendreau et al. (1994) outperforms the best known

solutions in 11 of 14 test problems. The authors conclude that the success of the procedure lies in

the fact that infeasible solutions are allowed through penalty terms and also the current solution is

perturbed periodically, so the risk of getting trapped in a local optimum is reduced.

Rochat and Taillard (1995) present a very interesting and novel probabilistic technique to di-

versify, intensify, and parallelize a local search for VRPs. This technique uses a local search which
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is based on the TS ofTaillard (1993), but improves the partitioning procedure and replaces the exact

algorithm for optimizing routes with a heuristic approach. The novelty of this technique relies on the

method used to exploit the concepts of diversification and intensification. The search is diversified

by generating with the local search a set of unique solutions. There is a random component in the

local search, so the algorithm produces different solutions each run. A pool ofelite routesis created

from these initial solutions. Theseelite routesare probabilistically extracted and used to generate a

partial solution,S. routes belonging to better solutions are more likely to be extracted. Customers

not included inS are allocated by solving an independent VRP, which produces a feasible solution

S′. Then, solutionsS andS′ are combined to create a feasible solution to the initial VRP. This so-

lution is then improved using a local search. The best routes of the improved solution are included

in the pool. Identical routes are not removed from the pool and, as the pool grows, there exist routes

that are not modified during the search. These routes contain strongly determined variables and are

more likely to be included in the final, hopefully optimal, solution. As far as the process goes, the

best routes are more frequently extracted from the pool and the search progressively changes from

a diversification to an intensification approach.

The behavior of the diversification and intensification technique is analyzed in terms of compu-

tation time with respect to the TS ofTaillard (1993) andGendreau et al. (1994). The new technique

is much faster than the previous TS approaches to produce solutions at certain average levels of

quality above the best known solutions, especially on problems with more than 100 customers. The

proposed technique accompanied by a postoptimization procedure (based on a set partitioning prob-

lem) improves the quality of 4 of the best solutions reported in the literature for the VRP. The TS

used in the experiment (a modified version ofTaillard, 1993) improves or reaches the quality of

about 27 out of 56 best solutions previously published for the VRP with time windows.

Xu and Kelly (1996) develop a TS approach composed of a network flow model, a direct cus-

tomer swap, and a TSP component to solve the classical VRP. This TS heuristic relaxes the capacity

constraints through the use of penalty parameters dynamically changed during the search. A net-

work flow model is used to optimally exchange a numberc of customers (which is cyclicly changed
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during the search) between routes. Although the exchanges are made to local optimality, the ex-

change costs may only estimate the actual move costs as the least insertion positions need to be

found. This philosophy of optimally solving an approximate model is similar to the generalized

assignment heuristic ofFisher and Jaikumar (1981), mentioned previously. The direct customer

swap procedure simply exchanges two customers between two routes. The TSP component is em-

ployed as an improvement method that uses the 3-opt operator and a TS heuristic for the TSP. The

tabu tenure is randomly generated within a fixed interval. The diversification strategy relies on a

long-term, frequency-based memory that gives preference to those customers that appear less fre-

quently in a specific route. The search is intensified by restarting the search periodically from an

elitesolution obtained from the repository.

An important characteristic of this TS implementation is that infeasible solutions are allowed

via penalty parameters. The search oscillates between feasibility and infeasibility. The network flow

moves dominate the search whereas direct customer swaps are executed periodically, or under some

specific conditions, to help produce feasible solutions of high quality when infeasible solutions

exhibit low capacity violation. If the capacity violation is high, the penalty parameters are modified

to drive the search back to feasibility. Computational tests are conducted on 7 benchmark problems.

The developed TS approach provides high quality solutions in reasonable times when compared

with the best solutions published (Taillard, 1993; Rochat and Taillard, 1995). Compared to the TS

of Gendreau et al. (1994), the proposed TS provides slightly better solutions on 3 out of 7 tested

problems. Another test conducted determined that the network flow moves seems to provide the

highest contribution to the solution quality.

Toth and Vigo (2003) present a variant of the traditional TS approach, called GTS, that uses

a candidate list strategy to drastically restrict the search neighborhoods. This approach uses four

neighborhoods based on the classicalk-exchange (i.e.,k ≤ 4) and has similarities to the TS ofXu

and Kelly: 1) infeasible solutions are allowed during the search by using penalty parameters; 2)

the penalty values are dynamically updated during the search; and 3) the tabu tenure is randomly

generated within a fixed interval. However, the characteristic that differentiates this TS from pre-
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vious approaches is the use ofgranular neighborhoodsthat discard a large number of unpromising

candidate moves and allow exploring only a small subset of them, containing the most promising

ones. This is accomplished by reducing the original complete graphG = (V,A) to a new sparse

graphG′ = (V,A′) containingshortarcs whose cost is not greater than thegranularity threshold

value:

ϑ = β · z′

(n + K)

whereβ is a positivesparsification parameter, z′ is the value of a heuristic solution provided by any

traditional heuristic,n represents the number of customers, andK corresponds to the fleet size. The

sparse graph also contains all arcs incident to the depot, those belonging to the best solution found,

and to the current solution. The same graph is periodically rebuilt using an appropriateβ value

which computationally gives the best performance. Intensification and diversification strategies

are adopted by dynamically modifying the structure of the sparse graph. That is, smallβ values

produce an intensified search, whereas largeβ values diversify the search. Whenever the current

best solution is not improved after certain iterations, theβ value is increased and a new sparse graph

is built.

The GTS algorithm was tested on instances from the literature with up to 500 customers. The

quality of the obtained solutions was compared with those obtained byGendreau et al. (1994)

and Xu and Kelly (1996). On problems with less than 200 customers, the solution quality was

comparable to or better than the solutions obtained by the others. In terms of computing time, the

GTS algorithm was on average five times faster than the other approaches. On problems with more

than 200 customers, however, the GTS algorithm was able to improve some of the best existing

solutions. Note thatToth and Vigo (2003)provide a detailed summary of the commonly used VRP

instances for benchmarking including the number of customers and vehicles, vehicle capacities,

route maximum capacities and service times for some instances, the reference to the paper where

the instances are first described, the best solutions known, and the paper where the best solution is
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reported.

2.5.3 Genetic Algorithms (GAs)

Genetic algorithms are evolutionary algorithms that use a population of potential solutions, called

chromosomes, and analogies of genetic crossover and mutation to recombine chromosomes and

produce new solutions. The search is guided by evaluating the objective function of all the solutions

in the population. Solutions with a better value, or fitness, replace old solutions and “survive” into

subsequent generations.

Baker and Ayechew (2003) apply a GA to the VRP. In their approach, givenn customers andm

vehicles, the chromosome for a solution is a string of sizen where each gene represents a customer

and has a decimal coded value in the range[1,m] corresponding to the vehicle number to which the

customer is assigned. This means that the vehicle routes are not specified explicitly, but once we

know which vehicles visit the customers, it is possible to construct the routes.

They use two methods to generate an initial population of structured solutions. The first one is

based on the sweep algorithm ofGillett and Miller (1974) and the second one uses the assignment

heuristic ofFisher and Jaikumar (1981). The authors performed preliminary tests and realized that

using random solutions slowed the convergence of the GA; this method was not used in the final

version of the GA. Thus, each structured approach was used to generate half the initial population

while the individuals are ensured unique. The population size varies with the problem size. For

larger problems, it is 50 whereas for smaller problems the population size is 30.

Each generation parents are selected for reproduction by the binary tournament method. To

select each parent, two individuals are chosen at random and the one with the best fitness value is

selected. The offsprings are produced from the parents using a standard 2-point crossover procedure

in which the two points are selected randomly. Offsprings that duplicate existing members are dis-

carded. In addition to the crossover procedure, mutation was applied to the offspring. In mutation,

two genes (or customers) are selected at random and their values are exchanged whenever the two
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customers belong to two different vehicles. This procedure is equivalent to swapping two customers

from different routes, commonly used to solve the TSP.

To select the members of the population to be replaced, aranking replacementmethod is used.

In this method, the population is divided into four subsets according to the fitness and unfitness

value of the offspring and the members. The unfitness value is defined as the excess in capacity

and/or distance in the violated constraints. The member with the worst unfitness is selected for

replacement from the first non-empty subset. If the offspring does not duplicate another member, it

enters and the chosen member is removed from the population. The stopping criterion can be based

on the number of generations, number of generations with no improvements, or elapsed time. In

either case, no improvements were found in terms of solution quality.

The results did not demonstrate a benefit to using a random initial population. The GA con-

verges slower when a random initial population is generated instead of a structured start. Averaged

over 14 problems, the 2-point crossover produced lower total distances for the best population mem-

ber than the 1-point crossover; theranking replacementmethod produced lower total distances than

the worst fitness/unfitness replacement method. “The best known results for VRP have been ob-

tained with tabu search and simulated annealing”, but “it appears that GAs have not yet made a

great impact on the VRP” (Baker and Ayechew, 2003).

2.5.4 Ant Colony Optimization (ACO)

Ant colony optimization metaheuristics intend to mimic the foraging behavior of real ants to solve

real-life path finding problems, such as the search for food. Ants secrete pheromone along the path

they use when traveling from the nest to the place where the food is located. This substance allows

the ants to communicate indirectly so other ants can follow the same path. As more ants follow the

path, the route becomes more attractive for subsequent ants. ACO is based on the interaction of a

colony of “artificial” ants using “artificial” pheromone trails. These trails provide numerical infor-

mation which is adapted during the algorithm run and used by the artificial ants to probabilistically
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construct a solution to the path-finding problem.

Scientists have explored different hard combinatorial optimization problems using this ant be-

havior analogy.Kawamura et al. (1998), Bullnheimer et al. (1999), andMazzeo and Loiseau (2004)

consider the ACO applied to the VRP.Kawamura et al. (1998) propose a cooperative search algo-

rithm based on pheromone communication for solving the VRP. The algorithm consists of multi-

agents that provide a partial solution consisting of a single vehicle route. The initial solution for

each search agent is randomly generated. At each iteration, the route of each agent is modified by

replacing a customer at random and optimizing the resulting route by means of a classical 2-opt

operator. If an improvement is found, the partial solution of the agent is updated. Otherwise, it is

accepted with a probability that depends on the pheromone information associated to the replaced

customer and the search agent. The procedure is executed a fixed number of iterations. They gen-

erate two test problems with 60 and 30 customers and found the optimal solution in both cases.

However, no comparisons are made with other existing VRP solution methods.

Bullnheimer et al. (1999) describe how to construct vehicle routes and how to update the

pheromone trails in a basic ant system for the VRP as well as their improved ant system algo-

rithm. First, for every ant, the construction of the routes is done by means of a local heuristic

function where ants successively choose customers to visit until all customers are visited. When-

ever a capacity constraint is violated, the ant returns to the central depot and starts a new route. The

information regarding how good was a customer in previous iterations is stored in the pheromone

trailsτij associated with the arc connecting two customers, whereas the information of how good is

the next arc to take (i.e., the visibility, denoted byηij) is used by the local heuristic function. In the

local heuristic, the next customer to visit depends on a probability distribution constructed using the

trail intensities, the visibility, and two other parameters,α andβ, to establish the relative influence

of the visibility versus the pheromone trails, respectively. After an artificial ant has constructed a

feasible solution, the pheromone trails are updated.Bullnheimer et al.suggest different techniques

for trails update, such as using only the contribution of the best ant or using an elite-list of artificial

ants.
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To improve the performance of the basic ant system, they solve the TSP for the routes generated

by the ants and use a candidate list sorted by the increasing distances for the selection of customers

in the local search. The performance of the ACO approach was compared to other heuristics in 14

test problems. Results conclude that, although the best known solutions could not be improved on

the problems tested, the proposed ant system approach is competitive in terms of processing time

and becomes a viable alternative to solve vehicle routing problems.

Mazzeo and Loiseau (2004) investigated different alternatives for each component of the ACO

algorithm. For example, the route building can be sequential or parallel. Sequential means that each

ant constructs the route for a vehicle until the capacity is reached and then continues with other

vehicles until all customers are visited, as implemented byBullnheimer et al. (1999). In parallel

means that each ant constructs the routes for all vehicles at the same time. At each iteration, only

one customer is chosen, according to the transition rule. Then, the best route is extended. The

transition rule might berandom-proportionalor pseudo-random-proportional. In the former case,

the next customer is randomly selected based on a probability distribution. In the latter case, the

customer is selected based on the same probability distribution and also on the best option. The

pheromone update at the end of each iteration varies: use all the solutions, an elite-list of solutions,

only information of the best solution of the previous iteration, or locally each time an ant moves

from one customer to another. In addition, they use a reduced neighborhood list when the problem

is large and an improving heuristic to modify the ant solutions after each iteration.

Mazzeo and Loiseau (2004) experimented to determine the best alternatives: parallel route

building, best solution global pheromone update, a reduction of 25% of the candidate list, and ran-

domly located ants in a number lower than the number of customers. The results obtained are similar

to those ofBullnheimer et al. (1999) in the sense that ACO does not clearly outperform existing

heuristics for the VRP, but is still a promising VRP technique. Table2.3 provides a summary of

metaheuristic algorithms defined for and tested on VRPs.
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Table 2.3:Representative Metaheuristic Algorithms for the VRP.

Algorithm Year Description

Osman 1993 SA

Taillard 1993 TS

Gendreau et al. 1994 TS

Van Breedam 1995 SA

Rochat and Taillard 1995 TS

Xu and Kelly 1996 TS

Kawamura et al. 1998 ACO

Bullnheimer et al. 1999 ACO

Toth and Vigo 2003 TS

Baker and Ayechew 2003 GA

Mazzeo and Loiseau 2004 ACO

2.6 Static and Dynamic VRPs

In more realistic applications, some parameters in the VRP vary as a function of other parameters.

Although any parameter may vary with others, such as weather and traffic conditions, they usu-

ally vary as a function of time. In the last decade, there has been increased interest in studying

dynamic VRPs as a consequence of the technological revolution and advances in communications.

Technology has yielded devices such as GPS and on-board computers that allow companies to con-

tinually update information and thus enhance the performance of decision systems. Although there

exist various classification schemes for vehicle routing (Bodin and Golden, 1981; Desrochers et al.,

1990; Psaraftis, 1995; Carlton, 1995), those schemes focus on problems where information relevant

to their solution is not updated in real-time. Terms likedynamic, stochastic, andreal-timeare com-

monly used in recent VRP publications, but it is still unclear what these articles mean by stochastic,

dynamic, or real-time VRPs. There does not seem to be any unified criteria to classify dynamic and

real-time VRPs; authors seem to use the terms interchangeably.
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In this section, a classification of VRPs is presented based on three criteria: staticism/dynamism

of the parameters of the problem, the knowledge of information relevant to the design of its solution,

and the method to model the unknown data (see Figure2.1). This new classification uses up-to-date

definitions to organize the different types of VRPs. See, for instance, the definitions and concepts

by Bertsimas and Van Ryzin (1991) andGhiani et al. (2003). Bertsimas and Van Ryzindefine the

probabilistic VRP as “inherently static and solved a priori using only probabilistic information”.

According toGhiani et al., “A VRP is said to bestatic if its input data (travel times, demands,...) do

not depend explicitly on time, otherwise it isdynamic. Moreover, a VRP isdeterministicif all input

data are known when designing vehicle routes, otherwise it isstochastic.”

Currently, some authors agree about the definition of dynamic VRPs. Under this definition, a

problem is dynamic if the input data is unknown, or partially known, at the time an initial solution

is obtained; the unknown data is revealed as the current solution executes. This means that the

information can change after the initial routes have been designed (see for instancePsaraftis, 1995;

Ichoua et al., 2000; Ichoua et al., 2007; Larsen et al., 2007). The problem is static if the input data

is known before the routes are designed and does not change afterwards. Clearly, this does not align

with Bertsimas and Van Ryzin (1991) andGhiani et al. (2003).

The concept of dynamism is broader. Letx(t0−) be a solution to a combinatorial optimization

problemP (a) with set of parametersa. Solutionx(t0−) is obtained at timet = t0− based on the

known information,I(t0−). Let t0 be the instant when the execution of solutionx(t0−) begins and

∆te > 0 be its execution time. The execution of the solution then ends att = t0 +∆te. Clearly, the

problem is dynamic if there exists0 < ∆t < ∆te such thatI(t0−) 6= I(t0− + ∆t).

However, there are other instances where the problem is dynamic as well. Suppose some

problem parameters are time-dependent, i.e., the problem is nowP (a(t)). The problem is defined

asP (a(t0−)) at t = t0− , while it is defined asP (a(t0− +∆t)) at t = t0− +∆t. P (a(t)) is dynamic

if there exists0 < ∆t < ∆te such thata(t0−) 6= a(t0− + ∆t). This means that, although the

input data is known before the initial routes are designed and executed, time is considered in the
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problem. For example, in the PVRP customers have fixed, and probably different, daily demands.

Even if their demands are known before the routes are designed, days are considered a variable in

the problem in order to produce a solution.

In the classification scheme illustrated in Figure2.1, three factors formally define a problem

type. The first factor defines the time-dependency of the problem parameters and/or the variability

of the input data. In the context of VRPs, these parameters include travel times, customer demands,

and customer presence. A problem isdynamicif: 1) some problem parameters are time-dependent,

or 2) the input data when the solution is obtained and executed differs from that at the moment its

execution ends; otherwise, it isstatic. The first factor is coded usingα andβ. Theα defines whether

problem parameters are time dependent, or not,α. Theβ defines whether the input data changes

over time, or not,β. Under this notation, a problem is: 1) dynamic if the logical expression(α + β)

is true, or 2) static if it is false, i.e.,(α + β).

The second factor defines the availability, or knowledge, of the information relevant to solve

the problem. A problem isdeterministicif all the information relevant to solve the problem is

available, or known. A problem is classified as deterministic if the logical value of parameterπ is

true. If a problem is not deterministic, its category depends on the third factor.

The third factor defines how the unknown information is modeled. A problem isstochasticif

unknown information is forecasted or modeled probabilistically. In this case, unknown variables are

modeled as random variables and historical data, for example, are used to estimate their values. This

modeling method takes advantages of the potential benefits of considering the stochastic aspects of

the problem (Ichoua et al., 2000). If no model can be used, the information remains unknown and the

problem is classified asreal-time. In such a case, an initial plan is based on the known information

and the solution is updated, or re-optimized, regularly as the unknown variables are revealed during

the operation. The third factor is coded withµ. Using π andµ, a problem is classified as: 1)

stochastic if the logical expression̄π·µ is true, or 2) real-time if the logical expressionπ̄· µ̄ is true.

Note that the method used to model the unknown information does not have anything to do with
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Figure 2.1:Classes of Dynamic VRP.

the solution method. A solution method utilizes the input data to produce a solution regardless of

the nature of the data, deterministic or stochastic. Some authors refer to dynamic non-deterministic

VRPs as real-time, oron-line, problems and do not differentiate the probabilistic estimation of the

unknown problem information. This is the case ofGhiani et al. (2003), who state that a plan is not

elaborated beforehand, but customer requests are assigned to vehicles in an on-going fashion as new

data arrive.

The classification scheme illustrated in Figure2.1shows a tree structure with blocks represent-

ing the nodes of the tree. Each block has a label and a logical expression in terms of the notation

previously described. Labels are used from top to bottom to construct the names of the problem

types whereas logical expressions are used to classify the problems. For example, a problem is

static stochasticif logical expressions(α + β) andπ̄·µ are both true. Similarly, a problem isdy-

namic deterministicif logical expressions(α+β) andπ are both true. From the figure, we note that

a static problem can be either deterministic or stochastic while a dynamic one can be deterministic,

stochastic, or real-time. For simplicity, a dynamic real-time problem is simply called real-time.

Examples of some well-known routing problems are presented below to provide a guide to classify
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routing problems.

2.6.1 Static VRPs

Static Deterministic VRPs

In static deterministic routing problems there are no time-dependent parameters in the problem,

the input data does not change over time, and all the data is known. Within this category, we find

problems such as the capacited VRP, VRP with multiple depots, VRP with split deliveries, VRP

with pick-ups and deliveries, and VRP with backhauls. The static version of the dial-a-ride problem

(DARP) described inCordeau and Laporte (2003) where all requests are known in advance also

belongs to this category.

Static Stochastic VRPs

In static stochastic VRPs there are no time-dependent parameters in the problem and the input data

does not change over time. Although not all the data is known, unknown data can be modeled using

some probability distributions and random variables. These problems are solved in two stages. In

the first stage, ana priori solution is found which takes into account the possible realizations of the

problem. In the second stage, a recourse is applied to the solution found in the first stage according

to the actual problem realization. In stochastic programming, two versions of the problem can

be considered: 1) chance constrained programming (CCP) where the objective is to minimize the

planned route costs subject to a bound in the probability of violating a capacity constraint without

considering the costs of recourse, and 2) stochastic programming with recourse (SPR) where the

objective is to minimize the cost of the solution found in the first stage plus the expected cost of

recourse.

Within static stochastic problems, we find the VRP with stochastic demands, VRP with stochas-

tic customers, VRP with stochastic customers and demands, VRP with stochastic travel times, and

VRP with stochastic service times.
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VRP With Stochastic Demands (VRPSD) The Vehicle Routing Problem with Stochastic

Demandsis probably the most studied of all the SVRPs. A good summary of contributions and

publications can be found inGendreau et al. (1996). The VRPSD is defined on a graphG = (V,A),

whereV = {v0, v1, ..., vn} represents the set of vertices with known and fixed locations andA =

{(vi, vj) : vi, vj ∈ V, i 6= j} represents the set of arcs. Vertexv0 corresponds to a central depot

wherem identical vehicles with capacityQ are located, whereas the other vertices correspond to

customers with a nonnegative demandqi. Each arc(vi, vj) has an associated costcij , usually

representing distances or travel times. The particular characteristic of the VRPSD is that customer

demands,qi, are random variables,ξi, usually but not necessarily assumed to be independent. The

value ofξi may become known upon arriving at the customer location or before leaving the previous

customer.

VRP With Stochastic Customers (VRPSC) The Vehicle Routing Problem with Stochastic

Customerscan be defined on the same graphG = (V,A) where vertexv0 defines a central depot

with some fleet of vehicles and the parametercij is used to represent the cost of arc(vi, vj). The

characteristic that differentiates this problem from other SVRPs is that each vertexvi is present in

the graph with probabilitypi, whereas the customer demandqi remains deterministic.

VRP With Stochastic Customers and Demands (VRPSCD)TheVehicle Routing Problem

with Stochastic Customers and Demandsis a combination of the VRPSC and the VRPSD. Absent

customers are represented by a set of customers with zero demand and present customers have

positive demands known only when the vehicle arrives at the customer location. Obviously, this

problem is more difficult than the previous SVRP because both customers and their demands are

uncertain when the solution is obtained.

VRP With Stochastic Travel Times (VRPST) TheVehicle Routing Problem with Stochastic

Travel Timesis also defined on graphG = (V,A). However, the costcij of arc(vi, vj) specifically
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represents the travel time between the two vertices and is a random variable. Usually the fleet size

is a decision variable in this problem, which is solved to maximize the probability of completing

the tours within a given deadline.

VRP With Stochastic Service Time (VRPSST) TheVehicle Routing Problem with Stochas-

tic Service Timeis also defined on the graphG = (V,A), but additional parameters are used. First,

arc(vi, vj) has an associated travel timetij . Second, vehicles in the fleet have an operational time

restrictionτ . Third, all customer demandsqi are deterministic. And fourth, each vertexvi (i > 0)

has an associated random variable,ξi, representing the service time with meanµi and and variance

σ2
i .

2.6.2 Dynamic VRPs

Dynamic Deterministic VRPs

In dynamic deterministic problems, there either are time-dependent parameters in the problem or the

input data changes over time. However, any time-dependency or data variation is known. Within this

category, we find problems such as the VRP with time windows, and periodic VRP. The dynamic

version of the dial-a-ride problem described inMadsen et al. (1995), where customers provide time

windows on the origin, destination, or both, also belongs to this category.

The time-dependent vehicle routing problem (TDVRP) is another dynamic deterministic prob-

lem, where travel times depend on the distance between customers and the time of day. The TDVRP

accounts for variations in the travel time due to random events, such as traffic congestion, accidents,

and weather conditions, and temporal variations that result from seasonal, weekly, daily, or hourly

cycles. The assumption that the travel times are deterministically known and constant is an approx-

imation of actual conditions (Malandraki and Daskin, 1992). Although the TDVRP traditionally

assumes that only the travel times vary over time, there are a few recent studies that consider the

44



Table 2.4:Available literature on TSP with moving-customers.

Author(s) Year Description & Remarks

Helvig et al. 1998 Moving-target TSP. Related problems

Helvig et al. 2003 Moving-target TSP

Bourjolly et al. 2006 Moving-target TSP

possibility of customers with dynamic locations. The literature on VRP with moving-customers is

very scarce. As far as we are aware, it can be summarized as shown in Table2.4.

Helvig et al. (1998) andHelvig et al. (2003) introduce a generalization of the TSP with moving

customers and propose the first heuristic for this type of problem. This research is motivated by

some applications that reveal customers moving, such as a supply ship supplying patrolling boats,

or an aircraft intercepting a number of mobile ground units. The moving-target TSP is formulated

as follows. Given a setS = {s1, ..., sn} of targets, eachsi moving at constant velocity~vi from an

initial positionpi, and given apursuerstarting at the origin and having maximum speedv > |~vi|,

find the fastest tour starting and ending at the origin, which intercepts all targets.

Bourjolly et al. (2006) show the On-Orbit Servicing problem (OOS) as another line of research

where moving-target TSP can be applied. The concept of OOS can be summarized as an orbital

“depot” full of consumables and spare parts for spacecraft, and a “servicing platform” (based at this

depot) to service a set of client spacecraft and then return to the depot to resupply. Their work is

motivated by the problem of maintaining and repairing satellites in orbit, which are continuously in

motion.

Dynamic Stochastic VRPs

In dynamic stochastic problems, there either are time-dependent parameters in the problem or the

input data changes over time. Although not all the data is known, any unknown time-dependency

or data variation is modeled using some probability distributions and random variables. Within this
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category, we find emergency response systems, automobile road service, inventory routing prob-

lems (IRP), and other problems, such as the dynamic stochastic VRP defined byBertsimas and

Van Ryzin (1991), where demands vary over time, are stochastic, and follow a Poisson process.

Weintraub et al. (1999) present an emergency service where repair vehicles are dispatched to ser-

vice electrical breakdowns in a metropolitan area. Breakdowns can occur anywhere, but knowledge

of the probability of breakdowns in the electrical system is used to predict the service requests,

generate vehicle routes efficiently, and reduce the response time. In IRPs, a central supplier delivers

goods to retailers on a repeated basis. The customer’s consumption rate is unknown. If a reactive

strategy is adopted, deliveries are made based on the actual inventory levels of retailers at a high

cost due to potential stock-outs. However, if the customer’s consumption rate is represented by a

random variable with known probability distribution, a plan is made based on expected customer’s

consumption rate reducing the delivery costs of stock-outs. See the IRPs described byBerman and

Larson (2001) andJaillet et al. (2002). In spite of the elaboration of a plan, it can be modified as

required. For example,Bell et al. (1983) present an IRP where historical data on customer demands

is used to project the inventory level in each customer at any point in time. The problem is titled

on-line because a detailed schedule is produced for a short planning horizon, but it can be updated

when the actual inventory levels are disclosed.

Real-Time VRPs

In real-time problems, either there are time-dependent parameters in the problem or the input data

changes over time, and there is no way to forecast the future. An example of a problem within this

category is the classical dial-a-ride problem where customer requests are evaluated as they arrive.

A particular characteristic of real-time VRPs is that arriving requests can be accepted, postponed,

or rejected. Once a request is accepted, it must be serviced. Another example in this category is

the dynamic VRP described byBent and Van Hentenryck (2004), where requests have associated

service times and time windows. Requests are numbered and evaluated in the chronological order

of their arrival. The objective is to service as many customers as possible.
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Chapter 3

Split Delivery VRP (SDVRP)

3.1 Problem Definition

In the VRP defined in Chapter2, every customer is visited exactly once by exactly one vehicle,

and the total demand of any route cannot exceed the vehicle capacity available. In reality, however,

there may be cases where either a customer demand exceeds the vehicle capacity or a savings both

in terms of the total distance and the number of vehicles can be obtained by allowing customers to

be visited more than once. The split delivery vehicle routing problem (SDVRP) allows the use of

multiple vehicles to satisfy demand points and potentially reduce the total cost by splitting deliveries

(Dror and Trudeau, 1989). The computational complexity of this problem remains NP-hard (Dror

and Trudeau, 1990). In the literature, a variant of the SDVRP, thek-SDVRP, can be found.Archetti

et al. (2001) andArchetti et al. (2005) define thek-SDVRP as a special case of the SDVRP where

vehicles have a capacity ofk units,k ∈ Z+. They show that the2-SDVRP is solvable in polynomial

time when some specific conditions on the distances are satisfied, while the problem withk ≥ 3 is

NP-hard, as proved byDror and Trudeau (1990). They also show that the2-SDVRP may be reduced

to a problem of possibly smaller size, where each customer has unitary demand.

In any case, vehicle capacities are usually greater than two units. As such, large instances of

routing problems are commonly solved via heuristic algorithms so that good solutions are found in
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reasonable computational time and with reasonable use of computational resources.

3.2 Benefits of SDVRP

At first glance, one may believe that the benefits of allowing split deliveries are small when the

customer demands are either considerably small with respect to the vehicle capacity or close to the

vehicle capacity. In their experimental study,Dror and Trudeau (1989)showed that if customer

demands are low relative to the vehicle capacity and the triangular inequality holds (cij ≤ cik + ckj ,

for all i, j, andk), the split demand benefits are actually small. In contrast, when the customer

demand is larger, at least 10% of the vehicle capacity, the cost of a SDVRP solution is considerably

lower than the cost of a VRP solution. Figure3.1shows a simple example to illustrate the potential

benefits of allowing split deliveries in terms of the number of vehicles and the solution cost. In this

figure, there are 12 customers with demandqi = 60 symmetrically located on a circle of radiusr

centered at the depot, where a fleet of vehicles with capacityQ = 100 is located. The optimal VRP

solution is illustrated in Figure3.1(a). It employs 12 vehicles with an average utilization of60%

and has a value ofz = 240r distance units. If split deliveries are allowed, all customer demands

can be supplied as illustrated in Figure3.1(b) with only 8 vehicles, an average utilization of90%,

and a solution value ofz = 201.4r.

Gendreau (2006) extends the scenario depicted in Figure3.1and makes a theoretical general-

ization. He considers a circle centered on the depot with radiusM , n = 2k demand points with

demand ofk units located equidistantly on the circle, and vehicle capacityQ = 2k−1. The optimal

VRP solution consists of2k independent tours with a cost of2nM . A feasible SDVRP solution

consists ofk routes visiting two consecutive customers (and leaving a unit of demand at the second

customer) plus a last route visiting the thek remaining unsatisfied unit demands. Ifε defines the

distance between two consecutive customers in the circle, each one of the firstk routes have a cost

of 2M + ε and the last route has a cost less than2M + 2πM . As the number of demand points

grows, the cost of the SDVRP solution converges to be 50% of that of the VRP solution.
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Figure 3.1:Illustration of savings by SDVRP: (a) VRP solution and (b) SDVRP solution.

Archetti et al. (2006) provide a worst-case analysis for the SDVRP and show that the savings in

delivery costs obtained by allowing split deliveries is at most 50% and that bound is tight (i.e., there

exist an example in which the value of the optimal VRP solution doubles the value of the optimal

SDVRP solution). This analysis, however, does not provide any insight into the relation between

the customer characteristics and the savings by allowing split deliveries.Archetti et al. (2008)

characterize distribution environments and conduct a very thorough study (the most detailed found

so far) of the value and benefits of allowing split deliveries. The focus of the study was to determine

the practical implications of split deliveries for different customer characteristics, particularly in

terms of geographic distributions of customers and demand distributions of customers. The benefits

are quantified in: 1) the reduction in the number of routes required to fully supply all customer

demands and 2) the reduction in delivery costs.

To quantify the reduction in the number of delivery routes, the ratior(V RP )
r(SDV RP ) is studied,

where the numerator and denominator represent the number of routes required in a VRP and a

SDVRP solution to fully supply all demands, respectively. A mathematical analysis is used to
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prove that the maximum reduction in the number of routes that can be achieved by allowing split

deliveries is 50%. Moreover, the analysis confirms that the largest reduction is obtained when the

mean customer demand is between 50% and 70% of the vehicle capacity and the demand variances

are relatively small.

Regarding the reduction in delivery costs, they empirically study the ratioz(V RP )
z(SDV RP ) -where

the numerator and denominator represent the VRP and SDVRP solutions, respectively- through

the use of the granular TS heuristic for the VRP (Toth and Vigo, 2003) and a TS for the SDVRP

(Archetti et al., 2006), which is described later in this chapter. To conduct the experiment, instances

are constructed from three instances of Solomon’s benchmark data for the VRP. To determine any

dependence of the ratio on the geographic distribution of customers, one instance from each problem

type (i.e., R101 for random locations, C101 for clustered locations, and RC101 for mixed locations)

was used. For each set of customer locations, instances for various combinations of mean demand

and demand variances are created. According to the results, there does not appear to be a depen-

dence on the geographic distribution of customers, but there does appear to exist a dependence on

the demand variance.

3.3 Various Models for the SDVRP

3.3.1 Formulation of Dror and Trudeau (1990)

Notation
Cij The distance (“cost”) between demand pointsi andj
di The daily demand at pointi
Qv Capacity of vehiclev
xv

ij 1 if vehiclev travels directly from pointi to j, andxv
ij = 0 otherwise

yiv The fraction of point demandi delivered by vehiclev
NV The number of vehicles in the fleet
S Set of all cycles on the setN which include the depot. The point 0 denotes the depot

Minimize zs =
n∑

i=0

n∑
j=0

NV∑
v=1

Cijx
v
ij (3.1)
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Subject to:
NV∑
v=1

n∑
i=0

xv
ij ≥ 1; for j = 0, . . . , n (3.2)

n∑
i=0

xv
ip −

n∑
j=0

xv
pj = 0; for p = 0, . . . , n; v = 1, . . . , NV (3.3)

NV∑
v=1

yiv = 1; for i = 1, . . . , n (3.4)

n∑
i=1

diyiv ≤ Qv; for v = 1, . . . , NV (3.5)

yiv ≤
n∑

j=0

xv
ji; for i = 1, . . . , n; v = 1, . . . , NV (3.6)

X ∈ S (3.7)

xv
ij ∈ {0, 1}; for i = 0, . . . , n; j = 0, . . . , n; v = 1, . . . , NV (3.8)

yiv ≥ 0; for i = 1, . . . , n; v = 1, . . . , NV (3.9)

Equation (3.1) denotes the objective function represented by the total distance traveled by the fleet

of vehicles. Constraints (3.2) ensure that each customer is visited at least once. Constraints (3.3)

stipulate that a vehicle visiting a customer has to leave the customer. Constraints (3.4) ensure that

all customers are fully supplied. Constraints (3.5) ensure that the total demand of any route cannot

exceed the vehicle capacity available. Constraints (3.6) state that a customer is supplied only if it is

visited. Constraints (3.7) ensure that the tours start and end at the depot. Constraints (3.8) and (3.9)

represent binary and non-negativity conditions forxv
ij andyiv, respectively.
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3.3.2 Formulation of Frizzell and Giffin (1992)

Notation
dij Cost of traveling between customeri and customerj
wi Demand of customeri
mk Capacity of vehiclek
xijk 1 if the vehiclek travels directly from customeri to customerj, andxijk = 0 otherwise
fik The fraction of demand of customeri delivered by vehiclek
v The number of vehicles in the fleet
n The total number of customers
yi An arbitrary real number (i.e., usually taken to be the position number of customeri

in a TSP tour)

Minimize
n∑

i=0

n∑
j=0

v∑
k=1

dijxijk (3.10)

Subject to:
v∑

k=1

n∑
i=0

xijk ≥ 1;∀j = 0, . . . , n (3.11)

n∑
i=0

xihk −
n∑

j=0

xhjk = 0;∀h = 0, . . . , n; k = 1, . . . , v (3.12)

v∑
k=1

fik = 1;∀i = 1, . . . , n (3.13)

n∑
i=1

wifik ≤ mk;∀k = 1, . . . , v (3.14)

fik ≤
n∑

j=1

xjik;∀i = 1, . . . , n; k = 1, . . . , v (3.15)

yi − yj + nxijk ≤ n− 1;∀1 ≤ i 6= j ≤ n; 1 ≤ k ≤ v (3.16)

xijk ∈ {0, 1}; for i, j = 0, . . . , n; k = 1, . . . , v (3.17)

fik ≥ 0; for i = 1, . . . , n; k = 1, . . . , v (3.18)
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Equation (3.10) denotes the objective function minimizing the total distance traveled by the fleet of

vehicles. Constraints (3.11) ensure that each customer is visited at least once. Constraints (3.12)

force a vehicle visiting a customer to leave the customer. Constraints (3.13) ensure that all customers

are fully supplied. Constraints (3.14) ensure that the total demand of any route cannot exceed the

vehicle capacity available. Constraints (3.15) ensure that a customer is supplied only if it is visited.

Constraints (3.16) ensure that the tours start and end at the depot. Constraints (3.17) and (3.18)

represent binary and non-negativity conditions forxijk andfik, respectively.

The subtour elimination constraints (3.16) of the above formulation differs from the one by

Dror and Trudeau (1990), constraints (3.7). As stated byFrizzell and Giffin, these constraints can

be replaced by any inequalities which prevent subtours.

3.3.3 Formulation of Dror et al. (1994)

Notation
cij Nonnegative distance associated to arc(i, j)
qi Nonnegative demand at vertexi
Qv Capacity of vehiclev
xijv 1 if vehiclev travels directly from pointi to j, andxijv = 0 otherwise
yiv Proportion of theith customer demand delivered by vehiclev
m̄ The number of vehicles in the fleet

Minimize
n∑

i=0

n∑
j=0

m̄∑
v=1

cijxijv (3.19)

Subject to:
n∑

i=0

xikv −
n∑

j=0

xkjv = 0;∀k = 0, . . . , n; v = 1, . . . , m̄ (3.20)

m̄∑
v=1

yij = 1;∀i = 1, . . . , n (3.21)

n∑
i=1

qiyiv ≤ Qv;∀v = 1, . . . , m̄ (3.22)

n∑
j=0

xijv ≥ yiv ≤;∀i = 1, . . . , n; v = 1, . . . , m̄ (3.23)
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Subtour elimination and connectivity constraints (3.24)

xijv ∈ {0, 1};∀i, j = 0, . . . , n; v = 1, . . . , m̄ (3.25)

0 ≤ yiv ≤ 1;∀i = 1, . . . , n; v = 1, . . . , m̄ (3.26)

Equation (3.19) denotes the objective function represented by the total distance traveled by the fleet

of vehicles. Constraints (3.20) are flow conservation conditions. Constraints (3.21) ensure that all

customers are fully supplied. Constraints (3.22) ensure that the total demand of any route cannot

exceed the vehicle capacity available. Constraints (3.23) force that a customer is not supplied by

a vehicle if the vehicle does not visit the customer. Constraints (3.24) are initially relaxed and

successively introduced as part of the branch and bound exact algorithm ofDror et al. (1994)

described later. Constraints (3.25) and (3.26) represent binary and non-negativity conditions for

xijv andyiv, respectively.

3.3.4 Formulation of Frizzell and Giffin (1995)

This mixed-integer programming formulation is based onDror and Trudeau’s (1990). It includes

additional constraints for the time windows considered byFrizzell and Giffin.
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Notation
dij Cost of traveling between customeri and customerj
wi Demand of customeri
mk Capacity of vehiclek
xijk 1 if the vehiclek travels directly from customeri to customerj, andxijk = 0 otherwise
fik The fraction of demand of customeri delivered by vehiclek
V {1, . . . , v} the set of all vehicles in the fleet
N {1, . . . , n} the set of all customers
Dik The departure time of vehiclek from customeri
ei The beginning of customeri’s time window
tij The time required to travel from customeri to customerj
li The end of customeri’s time window
S Set of subtour breaking constraints

Minimize
n∑

i=0

n∑
j=0

v∑
k=1

dijxijk (3.27)

Subject to:
v∑

k=1

n∑
i=0

xijk ≥ 1;∀j ∈ N (3.28)

n∑
i=0

xihk −
n∑

j=0

xhjk = 0;∀h ∈ N, k ∈ V (3.29)

v∑
k=1

fik = 1;∀i ∈ N (3.30)

n∑
i=1

wifik ≤ mk;∀k ∈ V (3.31)

xijk = 1 ⇒ Dik + tij ≤ Djk;∀(i, j) ∈ N, k ∈ V (3.32)

ei ≤ Dik ≤ li;∀i ∈ N, k ∈ V (3.33)

fik ≤
n∑

j=1

xjik;∀i ∈ N, k ∈ V (3.34)

xijk ∈ S (3.35)
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xijk ∈ {0, 1};∀(i, j) ∈ N, k ∈ V (3.36)

fik ≥ 0;∀i ∈ N, k ∈ V (3.37)

Equation (3.27) denotes the objective function represented by the total distance traveled by the

fleet of vehicles. Constraints (3.28) ensure that each customer is visited at least once. Constraints

(3.29) force a vehicle visiting a customer to leave the customer. Constraints (3.30) ensure that

each customer is fully supplied. Constraints (3.31) ensure that the total demand of any route cannot

exceed the vehicle capacity available. Constraints (3.32) and (3.33) ensure time windows feasibility.

Constraints (3.34) ensure that a customer is supplied only if it is visited. Constraints (3.35) ensure

that the tours start and end at the depot. Constraints (3.36) and (3.37) represent binary and non-

negativity conditions forxijk andfik, respectively.

There is a small difference between the above mixed-integer programming formulation and

the one ofDror and Trudeau (1990). Frizzell and Giffin (1995) consider the SDVRP with hard time

windows (SDVRPTW) where vehicles must arrive at the customers within the time windows[ei, li].

If the arrivals occur beforeei, vehicles wait at the customer. InDror and Trudeau’s formulation

there is no infeasibility due to arrival times so a customer can be visited anytime. To handle the time

windows,Frizzell and Giffinincorporate constraints (3.32) and (3.33). In addition, the parametertij

is used to set the travel time between two delivery points. This parameter does not explicitly appear

in the notation given by the authors, but it is very easy to imply its meaning from the formulation.

3.3.5 Formulation of Belenguer et al. (2000)

This integer programming formulation differs from those previously in the fact that all vehicles are

used, as explained below.
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Notation
cij The distance between clientsi andj
di Demand of clienti
Q Vehicle capacity
K Fleet size
M A constant “big enough”
V {0, . . . , n} is the set of vertices. Vertex 0 represents the depot
E {(i, j), i, j ∈ V, i < j} is the set of edges
S S ⊆ V is a subset of vertices
S̄ Set of vertices inV \S
d(S) Sum of the demands of the vertices inS
δ(S) Set of edges with an endpoint inS and the other in̄S
xh

ij The number of times that vehicleh uses edge(i, j), ∀(i, j) ∈ E

yih 1 if vehiclesh visits clienti, and 0 otherwise,∀i ∈ V \{0}
dh

i The portion of the demand of clienti serviced by vehicleh, ∀i ∈ V \{0}

Minimize
K∑

h=1

∑
(i,j)∈E

cijx
h
ij (3.38)

Subject to:
K∑

h=1

yh
i ≥ 1; i = 1, . . . , n (3.39)

n∑
i=1

yh
i ≥ 1;h = 1, . . . ,K (3.40)

n∑
i=1

xh
0i ≥ 2;h = 1, . . . ,K (3.41)

∑
(i,j)∈δ(i)

xh
ij ≥ 2yh

i ;h = 1, . . . ,K; i = 1, . . . , n (3.42)

xh
ij ≤ Myh

i ;∀(i, j) ∈ E;h = 1, . . . ,K; i = 1, . . . , n (3.43)

∑
(i,j)∈(S,S̄)

xh
ij ≥ 2yh

u;∀S ⊆ V \{0}; 2 ≤ |S| ≤ n− 1;∀u ∈ S;h = 1, . . . ,K (3.44)

K∑
h=1

∑
(i,j)∈(S,S̄)

xh
ij ≥ 2dd(S)

Q
e;∀S ⊆ V \{0}; 2 ≤ |S| ≤ n− 1 (3.45)
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dh
i ≤ diy

h
i ;h = 1, . . . ,K; i = 1, . . . , n (3.46)

K∑
h=1

dh
i = di; i = 1, . . . , n (3.47)

n∑
i=1

dh
i ≤ Q;h = 1, . . . ,K (3.48)

xh
ij ∈ Z+;h = 1, . . . ,K;∀(i, j) ∈ E (3.49)

yh
i ∈ {0, 1};h = 1, . . . ,K; i = 1, . . . , n (3.50)

dh
i ∈ Z+;h = 1, . . . ,K; i = 1, . . . , n (3.51)

Equation (3.38) denotes the objective function represented by the total distance traveled by the fleet

of vehicles. Constraints (3.39) ensure that each customer is visited at least once. Constraints (3.40)

force that each vehicle visits at least one customer. Constraints (3.41) stipulate that all vehicles visit

the depot. Constraints (3.42) ensure that tours start and end at the depot. Constraints (3.43) prevent

use of an edge if a vehicle does not visit a customer. Constraints (3.44) force the use of an edge

if a vehicle does visit a customer. Constraints (3.45) ensure the capacity constraint is not violated

and prevent the existence of subtours. Constraints (3.46) stipulate that a vehicle does not supply an

unvisited customer. Constraints (3.47) force supplying each customer’s demand. Constraints (3.48)

ensure the vehicle capacity is not exceeded. Constraints (3.49)-(3.51) represent binary and integer

conditions forxh
ij , yh

i , anddh
i , respectively.
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3.4 Exact Algorithms for the SDVRP

Few algorithms are found in the literature to exactly solve the SDVRP. It is often impractical to look

for optimal solutions of routing problems as the needed computational resources can be enormous.

As far as we know, there exist only three exact approaches for the SDVRP.

3.4.1 Branch and Bound Algorithm of Dror et al. (1994)

Dror et al. (1994) propose an integer linear programming formulation and describe a B&B algo-

rithm based on new classes of valid inequalities for the SDVRP. The algorithm uses the formulation

described previously in Section3.3.3and the heuristic approach ofDror and Trudeau (1989) to cal-

culate an upper bound. The heuristic approach is described later in this chapter. A lower bound is

computed by relaxing the original formulation, adding new valid constraints, and using the simplex

method. Although a full implementation of the B&B algorithm would provide an optimal solution,

the relaxed problem is solved only at the root of the B&B tree as the objective of the study is to de-

termine the strength of the inequalities. The gap between the heuristic solution and the lower bound

is drastically reduced by the inclusion of various cuts in problems with 10, 15 and 20 customers.

A problem with 10 customers is solved to optimality. They point to the low gaps obtained with the

B&B algorithm to indicate the quality of their heuristic approach.

3.4.2 Column Generation Algorithm of Sierksma and Tijssen (1998)

Sierksma and Tijssen (1998) use a SDVRP applied to the transportation schedule of helicopters to

offshore platforms in the North Sea for crew exchange of people employed on those platforms. The

helicopters are based at an airport near Amsterdam. They propose a set-covering formulation for

the SDVRP and solve its relaxation using a simplex algorithm and a column generation technique

that includes a knapsack problem and several TSPs. The solution is a non-integer optimal schedule.

This linear solution is transformed into an integer, not necessarily optimal, solution by means of an
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iterative rounding procedure. Finding the exact solution takes a considerable amount of time and is

suitable for long-term planning. However, given the size of the problem (51 platforms or customers),

a Cluster-and-Route procedure is proposed that obtains an approximate solution much quicker. The

heuristic procedure clusters and routes the customers but differs from previous clustering procedures

in the fact that the clustering and routing are performed simultaneously. The farthest unserved

customer from the depot is selected as a seed and the closest unserved customers are routed with it.

When the tour capacity is reached, a new seed customer is selected and the procedure is repeated

until all demands are fully supplied.

The exact, rounding, and heuristic procedures are tested on the problem having 51 real plat-

forms with 11 different demand quantities. The results are compared to solutions obtained with

modified versions of the sweep algorithm ofGillett and Miller (1974) and the saving algorithm of

Clarke and Wright (1964). The gap between the lower non-integer bound and the solutions obtained

with both the rounding procedure and the cluster-and-route approach are less than 5%. Although

the developed heuristic approach improved over the other two modified algorithms, the two prior

algorithms were not intended for SDVRP instances, so it is difficult to make a fair comparison.

3.4.3 Dynamic Programming Formulation of Lee et al. (2006)

Lee et al. (2006) propose an entirely new approach for the multiple-vehicle routing problem with

split pick-ups (mVRPSP) based on a deterministic dynamic program model and a shortest path

search algorithm. The mVRPSP is equivalent to the SDVRP, but vehicles are to pickup supplies

from different suppliers and then go back to the depot. Based on some properties of optimal solu-

tions of the mVRPSP, they reformulate the original dynamic program to find an equivalent model

with a finite action and state space without loss of optimality. The reduced model is associated with

a directed network, which is then solved as a shortest path problem. The authors claim that their

procedure is exact because theA∗ algorithm is used to solve the shortest path, which is an algorithm

known to find an optimal solution when it is accompanied with a guidance function. The algorithm
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is used to solve small instances with 4, 5, and 7 suppliers and the optimal solution is obtained in all

cases. The proposed shortest path approach takes significantly shorter time to solve all the instances.

3.5 Bounds for the SDVRP

3.5.1 Cutting-plane Algorithm of Belenguer et al. (2000)

Belenguer et al. (2000) calculate lower bounds to optimal solutions of SDVRP instances based on

a linear program formulationLPj and a cutting-plane algorithm. The cutting-plane algorithm starts

from an initial lower bound,LP0, calculated by solving the initial formulation via a linear program-

ming code (CPLEX 3.0). Valid inequalities are developed and used to determine the feasibility of

the solutions obtained by the algorithm. Any violated inequality, if existing, is added to the initial

formulation and the process is repeated to calculate a better bound. If no inequality violation is

found in the new solution, the cutting-plane algorithm stops and provides a final lower bound,LB.

The quality of boundLB is determined by comparing it with the optimal integer SDVRP solu-

tion value. This optimal value is obtained at a higher computational cost through the cutting-plane

algorithm, by solving at each iteration an integer program by adding the integrality constraint corre-

sponding to each variable. The cutting-plane algorithm is tested on 11 instances from the TSPLIB

and a set of 14 randomly generated instances. Optimal solutions are found for instances ranging

from 21 to 50 customers.

3.6 Classical Heuristics for the SDVRP

3.6.1 Algorithm of Dror and Trudeau (1989)

Dror and Trudeau (1989) propose a local search to solve the routing problem with split deliveries.

This is a two-stage algorithm that first constructs a feasible VRP solution and from this generates

a feasible SDVRP solution if split deliveries improve the initial VRP solution. The first stage uses
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three subroutines: (i) an initial route generator based on the algorithm ofClarke and Wright (1964);

(ii) a node interchange based on a one-node and two-node swap; and (iii) a route improvement

based on a 2-opt procedure. The second stage uses: (i) a2-split interchange and (ii) a route addition

routine. Given a demand point, the2-split creates a neighborhood with all the possible alternatives

that remove the demand point and insert it into two other routes whose combined spare capacity is

sufficient for the demand. At each iteration, the candidate with the highest saving is selected and

the search terminates when improvements cease. After this local search, a route addition routine

creates new routes to eliminate split deliveries as long as a reduction in the total routing cost is

obtained. From this search neighborhood, the candidate solution with the highest saving is selected.

The routine stops when no more improvements are found.

To test the potential savings associated with SDVRP, 180 problem sets are generated and solved

with the proposed local search and the solutions are compared to VRP solutions. The number

of customer varies from 75 to 150, the customer demands range from0.1Q and0.9Q, whereQ

is the vehicle capacity fixed at 160 units. The customer locations are obtained fromEilon et al.

(1971) and modified in a systematic/random fashion. A paired one-tailedt-test comparison was

conducted, and the results show no significant difference between the SDVRP and VRP solutions for

small customer demands in the range[0.01Q, 0.1Q]. However, for all other problem sets, SDVRP

solutions significantly outperform VRP solutions in terms of travel distance.

3.6.2 Algorithm of Frizzell and Giffin (1992)

Frizzell and Giffin (1992) provide a construction heuristic to solve the SDVRP. They consider grid

network distances, lower and upper bounds to limit the ways to split deliveries, and splitting costs

in the objective function.Frizzell and Giffingroup, or cluster, the customers whose distances to

each other are lower than a predefined value. The mechanism to group customers is what they

call clustering of adjacent customers, CAC. Any customer which does not meet this condition is

clustered in another group. If the combined demand within a cluster exceeds the vehicle capacity,
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the algorithm sequentially allocates vehicles to another group until all demands are fully supplied.

Once the clusters are formed, nearest neighbor blocking, NNB, is used to decide the order in

which customer demands are assigned to vehicles in order to produce distance savings. This order

does not have anything to do with the sequence of customers within a tour. The NNB mechanism

takes the two nearest customers (i.e.,dij = min[dik]|k 6= 0, i) with unassigned demands and, from

those, assigns the one which is farthest from the depot (i.e., customeri|di0 > djk) the maximum

possible demand in the route under consideration.

Since grid network instead of Euclidean distances are used, it is not possible to compare their

results with previous work. Therefore, 1050 problem sets are generated by assigning customer

locations randomly on the grid network, the number of customers ranges from 20 to 100, the vehicle

capacity is 100, and customer demand is uniformly distributed from 1 to 100. The results show

significant savings in 73.1% of the problem sets in terms of travel distance and number of vehicles

required with respect to a basic construction heuristic that does not use the NNB mechanism.

3.6.3 Algorithm of Frizzell and Giffin (1995)

Frizzell and Giffin (1995) propose a mixed-integer formulation and develop a construction heuris-

tic and two improvement methods to approximately solve the SDVRP with time windows (SD-

VRPTW). Their constructive procedure sorts the customers and sequentially assigns them to vehi-

cles until all demands are filled. Customers are sorted according to their distance from the depot

and their time windows. Vehicles are allocated to deliver the maximum possible demand to all cus-

tomers. However, a customer demand can be split when it exceeds the spare capacity of the assigned

vehicle. If the current vehicle fleet cannot service all customers, the fleet size is augmented. Im-

provements are obtained from the initial solution by moving a customer from one route to another

or by exchanging any two customers between two routes when a savings in the objective function

results.
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3.6.4 Algorithm of Mullaseril et al. (1997)

Mullaseril et al. (1997) describe a feed distribution problem encountered on a cattle ranch in Ari-

zona. They study the problem of scheduling a fleet of trucks for feed distribution in a large livestock

range. The characteristics of this problem are: 1) different feed types are required in each stage of

the growth of cattle; 2) the feed type, volume, and feeding time for each pen may vary from day to

day; 3) the fleet is composed of 5 trucks with different capacities; and 4) a pen may need to have

feed delivered from more than one route due to inaccuracies in the weight and loading of the trucks.

Since each vehicle delivers only one type of feed, the feed delivery problem is decomposed into

a different routing problem for each type of feed. Each subproblem is then modeled as a routing

problem with split deliveries and time windows (SDVRPTW).

Their solution strategy for this problem adapts the algorithm ofDror and Trudeau (1989).

Initially, a feasible VRP solution is generated and improved by an arc interchange adapted to include

time windows. Then, split deliveries are introduced via thek-split interchange if the total travel

distance can be reduced. Since the solution must consider time windows, the candidate list is pruned

to those routes respecting the time windows constraint. To mitigate a potential reduction in the

number of candidates, thek-split operator uses2 ≤ k ≤ M , whereM is the number of candidate

routes generated usually less than 10. Finally, the route addition improvement approach is used,

but a check is done for capacity and time feasibility. The algorithm is run and the solutions, VRP

and SDVRP, are compared with the current practice at the ranch. Substantial reductions in the

total distance covered are obtained (from 25% to 40%). SDVRP solutions improve VRP solutions,

especially when time windows constraints are respected.

3.7 Metaheuristic Algorithms for the SDVRP

3.7.1 Tabu Search of Ho and Haugland (2004)

Ho and Haugland (2004) developed a TS to solve instances of the SDVRPTW. They construct an
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initial solution by checking customers in sequence and appending the nearest un-routed customer

to the latest routed customer in feasible routes. If the customer demand exceeds the capacity, the

current route is deemed full loaded, the demand is split, and a new route is created to supply the

remaining demand. Once the route schedule is constructed, the TS commences. Each iteration, the

best feasible candidate among four neighborhoods,N1 to N4, is selected and the neighboring solu-

tion is evaluated for improvements. The neighborhoods examined are: (N1) relocating a customer

between routes; (N2) eliminating a split delivery between two routes and introducing a new delivery

between the same two routes; (N3) exchanging two customers between two routes; (N4) performing

a 2-opt operation between two routes. If the candidate move is tabu, a best so far aspiration criteria

overrides the tabu status. Once the neighboring solutions are chosen, routes withη customers or less

are eliminated by inserting those customers into non-empty routes via the same relocate operator

used forN1. This customer relocation is performed once everyq iterations. In addition, a cus-

tomer can be relocated in a least cost position within a route afterv consecutive iterations without

improvement. The repetitive procedure stops aftery consecutive iterations with no improvement.

Finally, a post-optimization phase is applied to the best solution.

3.7.2 Tabu Search of Archetti et al. (2006)

Archetti et al. (2006) propose a TS to solve the SDVRP where a customer is removed from a set of

routes serving it and inserted into a new route or into an existing route that has spare capacity. The

scheme of the procedure employs an initial solution, a TS, and an improvement phase. The TS uses

a list, Oi, with all the routes visiting customeri in descending order based on the saving obtained

when removingi from the route. A neighborhood is constructed by inserting a customeri into a

router and removing it from a subsetU ⊆ Oi − {r}. The neighbor yielding the best objective

function value is selected. Parameterθ, the tabu tenure, is a random number from an interval based

on the number of customers and the number of routes in the current solution. If a neighbor solution

yields a solution better than the best encountered so far, that solution is always accepted. The search

concludes afternmax iterations without improving the best solution found so far.
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Table 3.1:Existing literature on SDVRP.

Algorithm Year Description & Remarks

Dror and Trudeau 1989 SDVRP is proposed; introduce splits and local search

Dror and Trudeau 1990 Properties and complexity

Frizzell and Giffin 1992 Grid network distances; construction heuristic

Dror et al. 1994 Properties; branch and bound

Frizzell and Giffin 1995 Grid network; SDVRPTW; local search; shift and swap

Mullaseril et al. 1997 Application feed distribution; adapted to time windows

Sierksma and Tijssen 1998 Application crew exchange; column generation

Belenguer et al. 2000 Lower bounds

Archetti et al.2 2001 SDVRP with small capacities

Ho and Haugland 2004 Time windows; split relocate and tabu search

Archetti et al. 2005 Complexity; vehicles with capacity ofk units

Lee et al. 2006 Dynamic programming and shortest path

Archetti et al. 2006 Eliminate splits and tabu search

Archetti et al.2 2008 Empirical analysis; benefits of allowing split deliveries

Archetti et al. 2006 Worst-case analysis and potential savings

2To appear

The algorithm was compared to the optimal solution in small instances (up to 15 customers)

providing the same optimal solution for these problems in less than one second. For larger problems

(between 50 and 199 customers), the problem is hard to solve to optimality so the performance of

the procedure was evaluated by comparing the results with those of another heuristic (Dror and

Trudeau, 1989). The comparison shows that the algorithm byArchetti et al. (2006)almost always

provides better solutions on the tested problems.

Table3.1 provides a brief summary of the solution approaches defined for and tested on SD-

VRP types of problems.
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Chapter 4

VRP With Stochastic Customers

(VRPSC)

The study of combinatorial problems with stochastic elements has received increasing attention

recently due to the uncertainties inherent in many real world applications. Technological develop-

ments, such as onboard computers and communication systems allow updates to problem informa-

tion and plan changes during the execution of a schedule. In addition, the desire to model problems

in a more realistic way and analyze the robustness of optimal solutions of deterministic problems

when instances are randomly changed motivate the incorporation of stochastic elements into the

problem (Jaillet, 1993). This chapter reviews literature on the VRP with stochastic customers, also

known as the probabilistic vehicle routing problem (PVRP). This review begins with the available

literature on problem instances where a single vehicle with infinite capacity is used to service the

customers. This problem is commonly known as the TSP with stochastic customers, or the prob-

abilistic traveling salesman problem (PTSP). Then, the literature on the relaxation of this problem

using multiple vehicles with finite capacity, which is the focus of this research, is reviewed.

67



4.1 Solution Concepts

Stochastic optimization problems are usually solved using either of two strategies. One strategy is to

obtain the optimal solution to every realization of the problem each time a random variable becomes

known. This strategy is known as re-optimization. However, such a strategy can become undesirable

in certain occasions due to the lack of the required resources or to the high computational cost

of finding an optimal solution to every realization, even if the resources are available. Thus, a

second strategy looks for ana priori solution, which minimizes the total expected cost based on the

probability distribution of the stochastic variables.

A stochastic problem is usually modeled in two stages. In the first stage, ana priori solution

is obtained with the information available at that time. When the values of certain random variables

are revealed, a recourse, or corrective action, occurs in a second stage in order to maintain feasibility

in the solution. Such a recourse usually generates a variation in the objective function value which

should be accounted for during the generation of thea priori solution. The problem is modeled as

a Chance Constrained Program (CCP) when thea priori solution is obtained without considering

the costs of the corrective actions. In such a case, if uncertainty affects feasibility and the objective

function is deterministic, it may be necessary to respect the constraints with certain probability. In

a more general approach, the problem is modeled as a Stochastic Program with Recourse (SPR)

when the expected cost of the corrective actions taken in the second stage is considered in thea

priori solution (Ghiani et al., 2003).

4.2 TSP With Stochastic Customers

Just as the classical VRP is a generalization of the deterministic TSP, the VRPSC is a generalization

of the TSP with stochastic customers. The TSPSC first appears in the literature in the doctoral thesis

of Jaillet (1985) as a variant of the TSP where the presence of some customers is uncertain. This

means that, although the customer demands are known, the presence of a sub-set ofk customers
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(0 ≤ k ≤ n) is uncertain when the tour is designed. While the presence of some customers

is known beforehand, other customers are present with some probability. Such probabilities are

assumed independent for thek customers.

The PTSP is solved finding ana priori tour which includes all then potential customers, i.e.,

deterministic and stochastic, in such a way that, given any realization of the problem, the customers

are visited in the same order as they appear in thea priori tour and absent customers are simply

skipped. The design of thea priori tour minimizes the total expected traveled distance, which is

calculated based on all the problem realizations. The reasons for not re-optimizing the tour in a

second stage can vary according to the policies of a company, for example the lack of resources, the

cost and effort to re-optimize, or simply the desire of establishing a regular tour (Bertsimas, 1988;

Bertsimas, 1989).

Let V be the set of alln potential customers,τ be ana priori tour,S ⊆ V be a realization of

the problem,Lτ (S) be the length of tourτ to visit the subset of customersS, p(S) the probability

that only customers inS are present. The TSPSC seeks ana priori tour τp visiting all n potential

customers while minimizing:

E[Lτ ] =
∑
S⊆V

p(S)Lτ (S) (4.1)

In his doctoral thesis,Jaillet (1985) shows that thea priori solution to the deterministic version

of the TSP can be arbitrarily bad for the TSPSC (Gendreau et al., 1996). Berman and Simchi-Levi

(1988) examine finding the optimala priori tour and location for the TSP with non-homogeneous

customers. In contrast to other work where customers are homogeneous (Jaillet, 1985), the probabil-

ities associated with customer presence vary. They find a lower bound on the value of the objective

function. This bound is used in a branch-and-bound algorithm to find the optimala priori tour.

Given thea priori tour, the optimal home location for the service unit is found to minimize the

expected length of the tour. The solution to the problem serves as an upper bound for the problem

with different traveling salesman tours.Jaillet (1988) derives closed form expressions for comput-
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ing efficiently the expected length of any given tour when each customer has the same probability

of being present. The problem is represented as a Bernoulli process and it is shown that the optimal

TSP tour can be a very poor solution to the corresponding PTSP. However, under conditions speci-

fied in the study, an optimum TSP tour can optimally solve the PTSP for any instance and for any

probability distribution of uncertain customers.

Bertsimas and Howell (1993) examine the PTSP, derive some results, and consider its relation

with the TSP. They find upper and lower bounds and compare various TSP heuristics applied to

the PTSP with the re-optimization strategy.Bertsimas and Howell (1993) show that, in general,

a TSP solution throughn probabilistic points is potentially a very poor solution to the PTSP. The

difference between the expected lengths of the optimal PTSP tour and the optimal TSP tour can

be very large particularly when all customers have the same probability of being present and that

probability is small. Bertsimas and Howell (1993) also show that a PTSP tour in the Euclidean

plane can cross itself. This aspect should be taken into account particularly when TSP algorithms

are used to solve the probabilistic counterpart. In addition, when the Euclidean metric is used and

the customers are uniformly distributed in the unit square, a PTSP heuristic is shown to be very

close to the re-optimization strategy.

Jaillet (1993) provides a probabilistic analysis of the PTSP and presents general finite-size

bounds and limit theorems for the objective function. He proves the asymptotic convergence for

the PTSP with respect to the re-optimization strategy.Laporte et al. (1994) formulate the PTSP as

a stochastic linear integer program and solve it with a branch-and-cut approach, which is the first

exact algorithm proposed. They solve to optimality problems with up to 50 customers and conclude

that problems are more difficult to solve when the number of uncertain customers grows or the

probability of being present reduces.

Table4.1summarizes the research on PTSP-types of problems.
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Table 4.1:Research conducted on the PTSP

Algorithm Year Remarks

Jaillet 1985 Ph.D. Thesis

Jezequel 1986 M.S. Thesis

Berman and Simchi-Levi 1988 Non-homogeneous customers

Bertsimas 1988 Bounds; algorithms to compute the expected length

Jaillet 1988 Closed form expressions for the expected length

Bertsimas 1989 Bounds; algorithms to compute the expected length

Bertsimas et al. 1990 Applications, deterministic algorithms

Bertsimas and Howell 1993 TSP vs PTSP, bounds, and TSP heuristics

Jaillet 1993 Probabilistic analysis and asymptotic convergence

Laporte et al. 1994 Stochastic program and first exact approach

4.3 VRP With Stochastic Customers

The VRPSC appears in the literature the first time in the master’s thesis ofJezequel (1986). This

variant of the classical vehicle routing problem includes customers whose presence is unknown

when the routes are designed. The presence of some customers is known beforehand, while a sub-

set ofk customers (0 ≤ k ≤ n) are present with probabilityPi. Such probabilities are assumed

independent for thek customers. The optimization problem finds a fixed set of routes to satisfy

all customer demands while minimizing the total expected travel distance, which corresponds to

the total expected distance of the fixed set of routes plus the expected value of the extra distance

required in case the demand exceeds the vehicle capacity and the vehicle is forced back to the depot.

In the classical VRP, routes can be designed in advance because all the information is available

at the time of the routes design. This is not the case in the VRPSC because some of the customers

can be absent during the design of the routes. When thea priori routes are executed, some customers

do not require any service. If this is known before the execution of the current plan, the plan can be

modified to avoid visiting customers not requiring service.Bertsimas (1988) shows two strategies
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to perform thea priori routes,a andb, depending on the time the presence, or service, of uncertain

customers becomes known. When the customer service becomes known at the vehicle arrival, the

vehicle visits all the assigned customers in the same order as they appear in thea priori tour, but

serves only the customers requiring service (strategya). If, on the other hand, the information

on demands is known before performing the routes, customers not requiring service are simply

skipped (strategyb). Bertsimas (1988) finds algorithms to compute the expected length, examines

combinatorial properties of the problem and provides bounds for the PVRP and the re-optimization

strategy, makes worst-case analysis for some proposed heuristics, and proposes some asymptotically

optimal algorithms.Bertsimasdemonstrates that the strategy of finding ana priori tour is a practical

alternative to the re-optimization strategy.

The two strategiesa andb shown byBertsimas (1988) use fixed routes. These two strategies

are calledfixed routesandsemi-fixed routesby Waters (1989). The cost of the first strategy does not

change with the absence of customers, while the second strategy produces cumulative savings with

increasing number of absent customers. Avariable routesstrategy to increase the savings considers

all the customers needing service and re-optimize the solution. Figure4.1 shows a comparison of

the three strategies when customer 1 is absent. In part a), customers are visited as in the initial

routes, but only the customers requiring service are serviced. In part b), customer 1 is simply

skipped from thea priori solution, which produces a reduction in the total traveled distance. In part

c), the problem is resolved given that customer 1 is absent. When the number of absent customers

is small, the strategy of fixed routes might be acceptable. However, when this number gets larger,

fixed routes might yield a poor solution and the strategy of re-optimizing could provide valuable

savings. Although the third strategy is not always possible, the core question is: how large are

the potential savings from re-optimizing and using variable routes, and when is the re-optimization

strategy worthwhile?.Waters (1989) answers this question using an empirical analysis on 100

randomly generated problems with a total of 200 customers and randomly removing from 1 to 40

customers from the problem. The savings in distance are calculated with respect to the solution

with fixed routes and are found to increase linearly with the number of absent customers when this

72



Figure 4.1:Comparison of fixed routes, semi-fixed routes, and variable routes strategies.

number is relatively small. With up to 20% of customers being absent, the results reveal that, on

average, skipping customers under the semi-fixed routes strategy reduces the distance by 2.60 units

per absent customer, while re-optimizing the routes provides a reduction of 5.65 units per absent

customer. There may also be a reduction in the number of vehicles used when the solution is re-

optimized. In the case of variable over fixed routes, a mathematical analysis finds an upper bound

on the reduction in the number of vehicles and a minimum number of absent customers required

to make the re-optimization strategy worthwhile. In the case of variable over semi-fixed routes, the

average number of absent customers before the first vehicle can be saved is about 30% and a second

vehicle is saved when approximately 37.5% of customers are absent. From a practical perspective,

using a real world scenario, the benefits of re-optimizing are too low and this strategy is not worth

the effort.

Bertsimas et al. (1990) characterize the asymptotic behavior of the re-optimization and thea

priori strategies and observe that both have close asymptotic performance. From a computational

complexity point of view,Bertsimas et al. (1990) prove that finding the optimala priori solution

is NP-hard. When uncertain customers have the same presence probability and this probability

is large, a heuristic for the deterministic VRP behaves well for the corresponding probabilistic

problem. If, however, the probability is small, the optimal deterministic solution is an arbitrarily

bad approximation to the optimala priori solution.
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Table 4.2:Research conducted on the probabilistic VRP

Algorithm Year Remarks

Jezequel 1986 M.S. Thesis

Bertsimas 1988 Bounds; algorithms to compute the expected length

Waters 1989 Empirical analysis and potential savings

Bertsimas et al. 1990 Applications, deterministic algorithms

Bent and Van Hentenryck 2004 Non-unit demands, pool of solutions

Bent and Van Hentenryck (2004) introduce time windows to the PVRP and propose a multiple

scenario approach (MSA) to continuously generate and solve realizations of the problem. These

solutions include both known and unknown customer requests. Solutions in the pool are consistent

with the current solution and are used by a consensus function to choose a distinguished solution.

This distinguished solution is the solution most similar to the pool of solutions and is taken as the

new current solution. Since they generate new solutions continuously, a greedy approach is used to

generate the new solutions from the pool. The simple greedy approaches work better than sophis-

ticated algorithms –at least in the case with time windows– since more robust approaches tend to

produce tight solutions that do not accommodate future requests. The complexity of the problem

may vary greatly according to the degree of dynamism, i.e., the ratiouncertain customers/total cus-

tomers. Bent and Van Hentenryckuse chronological customer presence (i.e., customers appear any

time during the day), and probability distributions to model uncertainty of customer presence, and

non-unit customer demands. This differs from previous work where customer presence is known or

determined probabilistically before executing the routes and demands are assumed unitary.

Table4.2summarizes research conducted on the PVRP.
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4.4 Summary

This chapter reviewed the existing literature on the vehicle routing problem with stochastic cus-

tomers. Although there exist various studies on this problem, it has not been extensively explored.

The existing literature shows theoretical analysis, properties of the problem, probabilistic analysis,

and description of some heuristic methods to solve the problem. Most of these methods are adapted

versions of existing algorithms to solve the deterministic problem. There is still a lot of work to do

in the design of search algorithms that would facilitate a better understanding of the problem, gain

more knowledge on it, and find new more effective solution techniques.
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Part II

Solution Approaches
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Chapter 5

An Adaptive Memory Algorithm for the

SDVRP1

5.1 Introduction

The vehicle routing problem (VRP), or truck dispatching, was first formulated byDantzig and

Ramser (1959)and is a core problem in transportation, logistics, and supply chain management.

The VRP involves a fleet of vehicles with fixed characteristics (i.e., speed, capacity, etc.) stationed

at a central depot and a set of geographically scattered points (i.e., cities, warehouses, schools,

customers, etc.) with fixed demands. Vehicles are used to visit and fully supply the demand of

these points. The optimization problem is to determine which customers are visited by each vehicle

and what route will the vehicle follow to serve those assigned customers, while minimizing the

operational costs of the fleet, such as travel distance, gas consumption, and vehicle depreciation.

Routes are designed to start and end at the depot, the demand of every customer is fully supplied by

exactly one vehicle, and the total demand met by any route cannot exceed the vehicle capacity.

In reality, however, there may be cases where either a customer demand exceeds the vehicle

capacity or a savings in terms of the total distance or the number of vehicles can be obtained by

1This chapter is found asAleman et al. (2007).
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serving customers with more than one vehicle. The split delivery vehicle routing problem (SDVRP)

relaxes the VRP restraints and allows the use of multiple vehicles to satisfy customer demand points

and potentially reduce the total delivery cost by splitting customer deliveries among vehicles (Dror

and Trudeau, 1989). The computational complexity of the SDVRP remains NP-hard (Dror and

Trudeau, 1990). Archetti et al. (2005)define thek-SDVRP as a special case of the SDVRP where

vehicles have a capacity ofk units, k ∈ Z+. TheArchetti et al. (2005)study shows that the2-

SDVRP is solvable in polynomial time when some specific conditions on the distances are satisfied,

while the problem withk ≥ 3 remains NP-hard.Archetti et al. (2005)also show that the2-SDVRP

may be reduced to a problem of possibly smaller size, where each customer has unitary demand.

The SDVRP is defined on an undirected graphG = (V,E) whereV = {0, 1, ..., n} is the set

of n + 1 nodes of the graph, andE = {(i, j) : i, j ∈ V, i < j} is the set of edges connecting

the nodes. Node 0 represents a depot where a fleetM = {1, ...,m} of identical vehicles with

capacityQ are stationed, while the remaining node setN = {1, ..., n} represents the customers.

A non-negative cost, usually a function of distance or travel time,cij is associated with every edge

(i, j). Each customeri ∈ N has a demand ofqi units. The optimization problem is to determine

which customers are served by each vehicle and what route will the vehicle follow to serve those

assigned customers, while minimizing the operational costs of the fleet, such as travel distance, gas

consumption, and vehicle depreciation.

In this chapter a solution method that uses a constructive heuristic approach and a fixed number

of vehicles is proposed to construct an initial solution by inserting unassigned customers sequen-

tially into the solution under construction. A sequence is a list of customers in a specific order.

When the solution is complete, the sequence of customers is modified based on the characteris-

tics of the constructed solution. Once a new sequence of customers is determined, the constructive

heuristic approach is executed again to find another solution. Again, the sequence of customers is

modified and the procedure is repeated until no better solutions can be found. The best solution

found during this iterative constructive approach is then improved using a variable neighborhood

descent (VND) procedure. This is the first time a variable neighborhood search is used to solve the
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SDVRP.

This chapter is organized as follows. Section5.2 provides a review of the existing literature

on SDVRP. The algorithms are described in Section5.3. Numerical experiments comparing the

proposed algorithms with other existing methods found in the literature are presented in Section5.4.

Conclusions and future directions are provided in Section5.5.

5.2 Literature Review

5.2.1 Benefits of SDVRP

At first glance, one may believe that the benefits of allowing split deliveries are small when the

customer demands are either considerably small with respect to the vehicle capacity or close to the

vehicle capacity. In their experimental study,Dror and Trudeau (1989)showed that if customer

demands are low relative to the vehicle capacity and the triangular inequality holds (cij ≤ cik + ckj ,

for all i, j, andk), the split demand benefits are actually very little. In contrast, when the customer

demand is larger, at least 10% of the vehicle capacity, the cost of a SDVRP solution is considerably

lower than the cost of a VRP solution. Figure5.1shows a simple example to illustrate the potential

benefits of allowing split deliveries in terms of the number of vehicles and the solution cost. In this

figure, there are 12 customers with same demandqi = 60 symmetrically located on a circle of radius

r centered at the depot, where a fleet of vehicles with capacityQ = 100 is located. The optimal VRP

solution is illustrated in Figure5.1(a). It employs 12 vehicles with an average utilization of60%

and has a value ofz = 240r distance units. If split deliveries are allowed, all customer demands can

be supplied as illustrated in Figure5.1(b) with only 8 vehicles with an average utilization of90%

and a solution value ofz = 201.4r.

Archetti, Savelsbergh, and Speranza (2006)provide a worst-case analysis for the SDVRP and

show that the savings in delivery costs that can be obtained by allowing split deliveries is at most

50% and that this bound is tight (i.e., there exists an example in which the value of the optimal
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Figure 5.1:Illustration of savings by SDVRP: (a) VRP solution and (b) SDVRP solution.

VRP solution doubles the value of the optimal SDVRP solution). This analysis, however, does not

provide insight into the relation between the customer characteristics and the savings attained by

allowing split deliveries.

Archetti et al. (2008)characterize distribution environments and conduct a thorough study

(the most detailed found so far) of the value and benefits of allowing split deliveries. The focus

of their study is to determine the practical implications of split deliveries for different customer

characteristics, particularly in terms of the geographic and demand distribution of customers. The

benefits are in: 1) the reduction in the number of routes, and thus vehicles, required to fully supply

all customer demands and 2) the reduction in delivery costs.

Archetti et al. (2008)use a mathematical analysis to prove that the maximum reduction in the

number of routes that can be achieved by allowing split deliveries is 50%. Moreover, their analysis

confirms that the largest reduction can be obtained when the mean customer demand is between

50% and 70% of the vehicle capacity and the demand variances are relatively small. However, while

there does not appear to be a dependence of delivery cost reductions on the geographic distribution
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of customers, there does appear to exist a dependence on the demand variance.

5.2.2 Existing SDVRP Algorithms

Both exact and heuristic algorithms have been used to solve the SDVRP. Although exact algorithms

solve instances to guaranteed optimality, they can be unpractical to use in solving large instances

due to the computational costs involved. The largest SDVRP instance solved to optimality includes

50 customers (Belenguer et al., 2000).

There are some exact approaches found in the SDVRP literature.Dror et al. (1994)propose

an integer linear programming formulation and describe a branch-and-bound algorithm based on

new classes of valid inequalities for the SDVRP.Sierksma and Tijssen (1998)apply the SDVRP to

building the transportation schedule of helicopters supporting offshore platforms in the North Sea

for crew exchange of people employed on those platforms. They propose a set-covering formulation

for the SDVRP and solve its relaxation using a simplex algorithm and a column generation technique

that includes a Knapsack Problem and several TSPs.

Lee et al. (2006)propose a solution method for the multiple-vehicle routing problem with split

pick-ups (mVRPSP) based on a deterministic dynamic program model and a shortest path search

algorithm. Based on some properties of optimal solutions of the mVRPSP, they reformulate the

original dynamic program to find an equivalent model with a finite action and state space without

loss of optimality. The reduced model is associated with a directed network, which is then solved

as a shortest path problem. The algorithm is used to solve small instances with 4, 5, and 7 suppliers

and the optimal solution is obtained in all cases.

Jin et al. (2007)present an iterative exact method called two-stage approach with valid in-

equalities (TSVI) to find an optimal solution after a finite number of iterations for SDVRP instances

with average customer demands greater than 10% of the vehicle capacity. They divide the problem

into a clustering sub-problem and a traveling salesman problem for each vehicle. In a first stage,

the clustering sub-problem optimally assigns customer demands to the vehicles without considering
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distance costs. In a second stage, a traveling salesman problem is solved via a commercial opti-

mization solver to find the minimal distance traveled by each vehicle. Those distances are added

as cuts to the original clustering sub-problem. The process is repeated until no new clusters can be

found in the first stage.

Other studies have estimated problem bounds.Belenguer et al. (2000)calculate lower bounds

to optimal solutions of SDVRP instances based on a polyhedral study of the problem and a cutting-

plane algorithm. The cutting-plane algorithm starts with an initial lower bound, which is calculated

by solving the initial problem formulation via a linear programming code. Valid inequalities, or

cuts, are developed, added to the formulation, and used to determine the feasibility of the solutions

obtained by the algorithm. Any violated inequality is added to the initial formulation and the process

is repeated to calculate a better bound. If no inequality violation is found in the new solution, the

cutting-plane algorithm stops and provides a final lower bound.Jin et al. (2008)propose a column

generation to find lower bounds and an iterative approach to obtain upper bounds for the SDVRP.

The approaches are tested on 12 of the 25 instances used byBelenguer et al. (2000)containing large

customer demands as the algorithm is not efficient to solve problems with small average customer

demands. They suggest solving those instances as capacited vehicle routing problems (CVRPs)

rather than SDVRPs. The column generation improves some of the bounds ofBelenguer et al.

(2000).

Heuristic algorithms are often desirable to solve larger SDVRP instances. Various approaches

found in the literature include local, tabu, and scatter search, hybrid approaches, and memetic al-

gorithms.Dror and Trudeau (1989)proposed a local search to solve the routing problem with split

deliveries. Theirs is a two-stage algorithm that first constructs a feasible VRP solution and from

this generates a feasible SDVRP solution if split deliveries improve the initial VRP solution. Split

deliveries are incorporated into the solution by using a2-split interchange operator, which creates a

neighborhood with all the possible alternatives that remove a demand point from a route and insert

it into two other routes whose combined spare capacity is greater than or equal to the demand. A

route addition routine may create new routes to try eliminating split deliveries as long as a reduction
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in the total routing cost is obtained.Frizzell and Giffin (1992)use a grid network instead of eu-

clidean distances in the SDVRP. They use a constructive approach that clusters adjacent customers

and then allocates vehicles to the clusters until the unassigned demand of the cluster is less than the

vehicle capacity. For each cluster, a nearest neighbor blocking is used to first assign the demand of

the customers farther from the depot. In case the combined demands in the same cluster exceeds the

vehicle capacity, the blocking mechanism produces distance savings as the demands to be split are

the ones closer to the depot.Bouzaiene-Ayari et al. (1993)suggest an adaptation of theClarke and

Wright algorithm to solve the vehicle routing problem with stochastic demands and split deliveries.

This study is apparently the first attempt to solve a stochastic vehicle routing problem with split

deliveries.

In a second paper,Frizzell and Giffin (1995)incorporate time windows into the problem (SD-

VRPTW). The algorithm is similar to the one inFrizzell and Giffin (1992), but now customers are

sorted according to the distance from the depot and their time windows. The initial solution is

changed by moving a customer to alternate routes or by exchanging any two customers between

their assigned routes when a saving in the objective function results.Mullaseril et al. (1997)de-

scribe a feed distribution problem encountered on a cattle ranch in Arizona. They study the problem

of scheduling a fleet of trucks for the feed distribution in a large livestock range. The solution

strategy for this problem is an adaptation of the algorithm ofDror and Trudeau (1989). Since the

solution must consider time windows, the candidate list is pruned to those routes respecting the

time windows constraint. To mitigate a potential reduction in the number of candidates, thek-split

interchange operator uses2 ≤ k ≤ M , whereM is the number of candidate routes generated,

usually less than 10. Finally, a route addition improvement approach is used, but a check is done

for capacity and time feasibility.

The tabu search byHo and Haugland (2004)uses an operator called the relocate split oper-

ator. The algorithm starts with the construction of an initial solution by checking customers in a

pre-defined sequence and appending the nearest un-routed customer to the latest routed customer.

During the tabu search, the best candidate among four neighborhoods is selected at each iteration.
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They use standard operators (e.g., customer relocation, customer exchange, and2 − opt∗) adapted

to the SDVRP context to potentially eliminate split deliveries. They also use the relocate split oper-

ator, which uses two routes with a shared delivery and relocates the delivery within the two routes

subject to obtaining a reduction in the total distance.Archetti, Hertz, and Speranza (2006)propose

a tabu search where a customer is removed from a set of routes serving it and either inserted into

a new route or into an existing route that has spare capacity. The tabu search uses a random tabu

tenure selected from an interval defined by the number of customers and the number of routes in the

current solution. An improvement phase is used after the tabu search in order to eliminatek-split

cycles.Chen et al. (2007)develop a heuristic that combines a mixed integer program and a record-

to-record travel algorithm that starts with an initial SDVRP solution based on theClarke and Wright

algorithm. For each route in the initial solution, a mixed integer program considers the endpoints

and the closest neighbors to each endpoint to reallocate the demand of the endpoints and maximize

the total savings. An endpoint is reallocated in three ways: 1) no change is made; 2) the endpoint

is totally removed from its current route(s) and all of its demand is moved to other route(s); and

3) the endpoint is partially removed from its current route(s) and part of its demand is moved to

other route(s). The heuristic is tested on the 49 problems ofArchetti, Hertz, and Speranza (2006),

5 random problems ofBelenguer et al. (2000)with large customer demands, and 21 new bench-

mark problems and is shown to clearly outperform the algorithms ofArchetti, Hertz, and Speranza

(2006).

Other studies covering the SDVRP include the work bySong et al. (2002)who adopt a split

delivery scheme to find an allocation of newspaper agents and route vehicles to deliver newspapers

while minimizing the delivery costs and reducing the total delay time of the delivery. Various

algorithms were used and savings of 15% in the delivery costs and 40% in the delay time were

obtained. Nowak (2005)examines a pickup and delivery routing problem with split loads and

explores how costs can be reduced by eliminating the constraint that only one vehicle can service a

customer. The problem is modeled as a dynamic program and the results show that most benefits

with split loads occur when loads are at least half of vehicle capacity.Liu (2005)proposes a two-
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stage algorithm with valid inequalities (Jin et al., 2007) and a branch-and-price approach to solve

the problem.Wilck and Cavalier (2007)study a modified objective function to consider the impact

of the loads in the operational costs and potentially reduce them.Yu et al. (2006)consider an

inventory routing problem with split delivery and solve it using lagrangian relaxation and linear

programming.Belfiore et al. (2006)implemented a scatter search to solve the problem involving

other side constraints including heterogeneous vehicles, time windows, and accessibility constraints

applied to a retail market in Brazil. The algorithm was applied to solve real scenarios arising on

a daily basis and reduced the operational costs of the fleet compared to current practices in the

company.Ambrosino and Sciomachen (2007)deal with a real application for food distribution in

an Italian company. They model the problem as a generalization of the asymmetric VRP with split

deliveries to determine an efficient distribution plan of fresh/dry and frozen food along the country.

The solution algorithm includes a clustering procedure suitably tailored to the conditions of the real

problem and a local search to move customers between routes and to split customer demands to

improve the solution.Mota et al. (2007)present a scatter search that uses the minimum possible

number of vehicles and performs favorably with respect to the tabu searches ofArchetti, Hertz, and

Speranza (2006)in the tested problems, particularly when the customer demands are below half the

vehicle capacity.Tavakkoli-Moghaddam et al. (2007)present a simulated annealing method to solve

the problem with heterogeneous vehicles and use a new term in the objective function to maximize

the utilization of the vehicle capacity. The algorithm was tested on randomly generated instances

only and no benchmark problems were utilized.Boudia et al. (2007)implemented a memetic

agorithm with population management that produces high quality solutions and low running times

relative to the Splitabu approach ofArchetti, Hertz, and Speranza (2006).
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5.3 Proposed SDVRP Algorithm

5.3.1 Constructive Heuristic Approach (CA)

An initial SDVRP solution is obtained using a construction procedure that sorts the customers based

on the distance from the depotc0j and then creates new routes or modifies existing routes to allocate

the customers. A list,L, of customers is created and sorted in descending order based onc0j .

Customers are then analyzed in sequence to determine the best way to include them in the solution,

either by initiating a new route or by inserting them into existing routes. In the former case, new

routes are initialized until a maximum number of routes is reached. This approach utilizes the

minimum fleet size required to satisfy the demand constraints. In contrast to the classical VRP

where a bin packing problem is solved to find the number of vehicles required to supply all customer

demands, any SDVRP instance can be solved usingm = d
∑

k∈N qk/Qe vehicles, wheredxe is the

lowest integer greater than or equal tox. Customers are inserted into existing routes at the cheapest

insertion position.

During preliminary experiments, it was found that the insertion method can be improved by

using a new mechanism called route angle control (RAC). This mechanism uses the angle formed

by customers within routes to help determine the best way to allocate customers in the solution. The

polar angle of a customerθk relative to the depot is defined as:

θk = arctan
yk − y0

xk − x0
(5.1)

where(xk, yk) represents the location of customerk and customer 0 represents the depot. The

angle of a route,θr, is defined as the maximum angle formed by the customers in the route, i.e.,

θr = max{θi − θj ;∀(i, j) ∈ r}. Initially, an existing route has an associated angle formed by the

customers visited during the route. When a customer is inserted, this angle may either increase

or remain constant if the inserted customer is geographically located between the customers in the
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route. If the increased angle exceeds a threshold angle value, a penalty cost is incurred. The penalty

cost can be chosen arbitrarily as long as it makes the move prohibitive.

Inspired by the petal algorithm ofFoster and Ryan (1976), the problem is partitioned so that

routes serve sectors of the region centered at the depot. The region is partitioned as the number

of sectors equal to the fleet size,m. Thus, sectors are equally distributed with an angle of value

θ∗ = 2π
m . This angle is used as the threshold angle value to penalize insertions that spread routes. In

addition to the penalty cost, the RAC considers the route angle that results after inserting a customer

in the route. This means that when a customer inL is evaluated for insertion in the solution, it may

be located between two existing routes that can serve it without exceedingθ∗. In such a case, the

RAC mechanism favors the route closest to the customer for servicing the customer.

Figure5.2 illustrates the RAC. For this example, assumem = 8 so thatθ∗ = 2π/8 = π/4.

This figure illustrates two cases. In the first case, the insertion of customerj1 into R3 would spread

the route giving an angle exceedingθ∗; that insertion is penalized to favor the creation of a new

route or the insertion into another route, such asR1. In the second case, customerj2 can be inserted

either intoR1 or R2 without incurring a penalty because both routes would remain withinθ∗. In

such a case,j2 is inserted into the narrower route amongR1 andR2. In any case, the insertion cost

is proportional to the angle of the route after the insertion of the customer. The evaluation of the

insertion candidates is described in the algorithm below.

The constructive procedure is summarized as follows.

Notation:
L List containing all customersi ∈ N
ui Unserved demand of customeri
qi Demand of customeri
sr Spare capacity of router; r ∈ M
θir Angle of router after inserting customeri

Step 1 (Sort the customers). CreateL and sort the customers to produceL = {i1, i2, ..., in} with

c0i1 > c0i2 > · · · > c0in .

Step 2 Seti to the first customer inL andui = qi
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Figure 5.2:Route angle control.

Step 3 (Insertion candidate). Find the cheapest way to insert customeri within existing feasible

routes. The cost of inserting customeri into router, cir, includes the distance cost and the

value obtained by the route angle mechanism. Letib andia be the preceding and succeeding

customers, respectively, in router after inserting customeri. The insertion cost is then given

by:

cir = cibi + ciia − cibia + α× θir + β ×max{0,
|θir − θ∗|
θir − θ∗

} (5.2)

whereα represents a weight for the angle of router after inserting customeri andβ represents

a penalty value incurred when the insertion of customeri produces a route angleθir exceeding

θ∗. The value ofβ can be any value large enough to favor the insertion of the customer in
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other routes. Special care has to be taken in Equation (5.2) to avoid a division by zero when

θir = θ∗. The router yielding the lowest insertion cost is selected as the best insertion

candidate.

Step 4 (Insert customer). If the cost of the candidate found in Step 3 is less than the cost of a

returning route (that is,cir < 2c0i), insert customeri into the cheapest insertion position of

router. Otherwise, initiate a new route with customeri.

Step 5 (Calculating the quantity). Ifsr ≥ ui, thensr = sr − ui andui = 0. Otherwise,sr = 0

andui = ui − sr (i.e., split delivery occurs).

Step 6 (Optimize route). Using a local search, optimize router by moving single customers to the

cheapest position in the route. If all customers inL are fully supplied, go to Step 8.

Step 7 If ui = 0, go to the next customeri in L and setui = qi. Go to Step 3.

Step 8 Stop.

5.3.2 Iterative Constructive Approach (ICA)

A big advantage of constructive procedures is their ease of implementation. However, the initial

SDVRP solutions for the constructive approach were found to be less than ideal due to the disad-

vantages of a constructive procedure. Constructive approaches perform moves with the best imme-

diate benefit while ignoring the effects this can have in later stages of the search. When the solution

construction starts, the best moves can be performed. As the search progresses, the number of good

alternatives are reduced and the final moves usually have a negative impact on the quality of the

final solution.

The iterative approach is based on the presumption that customers inserted in the later stages

of the procedure are likely to most deteriorate the solution quality. Thus, those customers will

have a higher contribution to the solution value than customers inserted earlier in the solution. The

impact of those contributions influence the decisions made when constructing new solutions. As
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new solutions are constructed, customers with a history of high contributions are inserted into the

solution earlier by changing the structure ofL.

Figure5.3shows an example of the listL used by the iterative constructive approach to solve

a benchmark instance involving 50 customers with vehicle capacityQ = 160. For simplicity, the

figure only shows the customers assigned to routesR1, R4, and 5 of the customers assigned to route

R2. These routes are constructed by inserting sequentially the customers inL as follows. LetLr be

the node list containing the customers forming routeRr following the order in which the customer

demands are assigned to the route. Thus, for instance,L1 provides the order customers are placed

into the route whileR1 provides the order those customers are visited. The construction of routeR1

commences with the assignment of the 6 demand units of customer 36 (position 1 inL1), followed

by the 17 demand units of customer 35 (position 2 inL1), until all demands inL1 are assigned to

R1. Note that customer 11 in the last position ofL1 is partially supplied byR1 with only 5 demand

units as the vehicle has no more capacity at the moment the demand of customer 11 is assigned to

the route. In this particular instance, this demand isq11 = 19. The remaining 14 units are assigned

to routeR2 whose construction is out of the scope of this example. Simultaneously, routeR4 is

constructed by assigning the demands of customers 43, 31, 26, 7, 24, 8, 23, 48, 32, and 27. In

contrast toR1, all demands can be fully assigned toR4 and the vehicle still has 20 units left (see

spareQ of R4 in figure). The process continues following the order in listL until all customer

demands are assigned and the solution is complete. In Figure5.3L1 andL4 are provided explicitly

and showR1 andR4 graphically.

The customers inL are sorted based on the distance to the depot, so that customers located

closer to the depot are inserted into the solution later in the process. Preliminary experiments found

that customers near the depot caused route angles to increase since preferred routes lacked capacity

to support the customer insertion. Such angle spreading customers need to be inserted earlier so they

need to be placed earlier inL. Temporarily removing a customer from a route changes the angle of

that route, a value denoted as∆θr. Let customeri∗ have the largest∆θr, i.e., the customer that most

deteriorates the solution. This customeri∗ is re-positioned inL to ensure its earlier consideration in
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List L of sorted customers

Position inL 1 2 3 4 5 6 7 8 9 . . . 16 17

Customer 36 40 35 39 43 33 3 20 21 . . . 28 31

Position inL 18 19 20 21 22 23 24 . . . 29 30 31 32

Customer 13 29 10 26 7 50 24 . . . 8 16 23 49

Position inL 33 34 . . . 40 . . . 43 44 . . . 46 . . . 49 50

Customer 2 22 . . . 48 . . . 1 11 . . . 32 . . . 27 46

List L1 of sorted customers formingR1

Position inL1 1 2 3 4 5 6 7 8 9 10 11 12

Customer 36 35 3 20 21 28 29 16 2 22 1 11

Delivery 6 17 16 28 8 14 6 15 30 8 7 5

Spare Q ofR1 154 137 121 93 85 71 65 50 20 12 5 0

List L4 of sorted customers formingR4

Position inL4 1 2 3 4 5 6 7 8 9 10 11 12

Customer 43 31 26 7 24 8 23 48 32 27

Delivery 11 11 7 19 10 23 16 17 11 15

Spare Q ofR4 149 138 131 112 102 79 63 46 35 20

Figure 5.3:Example of partial solution to SDVRP, based on a sequential list of customers,

L.
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List Lnew of sorted customers

Position inL 1 2 3 4 5 6 7 8 9 . . . 16 17

Customer 36 40 35 39 43 33 3 20 21 . . . 28 31

Position inL 18 19 20 21 22 23 24 . . . 29 30 31 32

Customer 13 29 10 26 7 50 24 . . . 8 16 23 49

Position inL 33 34 . . . 40 . . . 43 44 45 . . . . . . 49 50

Customer 2 22 . . . 48 . . . 32 1 11 . . . . . . 27 46

New listL1 of sorted customers formingR1

Position inL1 1 2 3 4 5 6 7 8 9 10 11 12

Customer 36 35 3 20 21 28 29 16 2 22 32 1

Delivery 6 17 16 28 8 14 6 15 30 8 11 1

Spare Q ofR1 154 137 121 93 85 71 65 50 20 12 1 0

New listL4 of sorted customers formingR4

Position inL4 1 2 3 4 5 6 7 8 9 10 11 12

Customer 43 31 26 7 24 8 23 48 1 27 46

Delivery 11 11 7 19 10 23 16 17 6 15 5

Spare Q ofR4 149 138 131 112 102 79 63 46 40 25 20

Figure 5.4:Example of iterated solution to SDVRP based on solution information from

Figure5.3solution.
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the constructive approach.

To relocatei∗ in L, first the route,r∗ closest toi∗ is found such thati∗ could be inserted at

lowest cost if vehicle capacity were sufficient. The node list of this route,Lr∗ , is then examined to

determine where to placei∗ so that it can fit within the vehicle capacity. This position is usually

earlier in theLr∗ sequence of customers. Designate asia the customer that immediately succeeds

this insertion point. In other words, the customers inLr∗ prior to ia leave enough spare capacity to

accommodate thei∗ demand. To obtainLnew from L, relocatei∗ to occur immediately beforeia in

L. This new sequential list of customers,Lnew, is then used to create a new solution to the SDVRP.

In the example illustrated in Figure5.3, the customer with the highest∆θr is shown in bold

text in L, i∗ = 32. Given the design of the routesR1 andR4, the insertion of customer 32 into

routeR1 seems more reasonable than into routeR4 where it was placed. Based on listL1, ia = 1

is identified as the last customer inL that spends the capacity of routeR1 necessary to service

customer 32. Thus, customer 32 is relocated right before customer 1 inL. This relocation modifies

L to produce the listLnew shown in Figure5.4.

List Lnew in Figure5.4is used to execute the constructive heuristic approach again and produce

a new solution, as illustrated. The relocation produced the expected insertion of customer 32 intoR1

plus other perturbations to the solution; sinceR1 cannot fully service customer 1 (see spareQ of R1

after this insertion), this delivery is split amongR1 andR4. The deliveries ofR1 andR4 to customer

1 are then 1 and 6 units, respectively, as provided by the newL1 andL4 in the figure. The relocation

of customer 32 inL produced a reduction in the objective function value of the complete solution

from z = 578.83 in Figure5.3 to z = 577.92 in Figure5.4. Note that this relocation produced the

transfer of customer 32 fromR4 to R1 (similar to the standard customer shift used in multi-route

improvement algorithms) plus the relocation of a split delivery in the solution (similar to the relocate

split operator ofHo and Haugland, 2004). This iterative construction of new solutions continues

until no improvements to the best solution found in the search are obtained after a predefined number

of consecutive iterations.
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5.3.3 Variable Neighborhood Descent (VND)

Variable neighborhood search (VNS) is a relatively new meta-heuristic concept based on the prin-

ciple of systematically changing the neighborhood structure during the search to escape from local

optima. This meta-heuristic first appears in the literature in the study ofMladenovíc and Hansen

(1997)where this scheme is shown to outperform other heuristics on the traveling salesman prob-

lem. GivenNk (k = 1, ..., kmax), a finite set of pre-selected neighborhood structures andNk(x) the

set of solutions in thekth neighborhood ofx, neighborhoodsNk may be induced from one or more

metric functions.

Some variable neighborhood searches have been applied to routing problems.Bräysy (2003)

proposes a reactive variable neighborhood search that modifies some parameters and changes the

objective function to avoid local optimality. The method is applied successfully to the VRPTW

and provided four new best-solutions for the test problems used.Polacek et al. (2004)use variable

neighborhood search to solve the multi-depot VRPTW (MDVRPTW). The algorithm outperforms

a tabu search, found 10 new best-solutions, and demonstrated superiority on large real-world prob-

lems. Kytöjoki et al. (2007)use a variable neighborhood descent to solve large-scale VRPs and

accept non-improving solutions by penalizing certain solution features. High quality solutions are

found for problems involving up to 20,000 customers.

In Variable Neighborhood Descent (VND), the final solution is a local optimum with respect

to all neighborhoodsNk, and thus the chances of finding a global optimum are higher than by using

a single neighborhood structure. The proposed VND is defined as follows:

Step 1 Define the set of neighborhood structures to be used. Setkmax equal to the number of such

structures.

Step 2 Find an initial solutionx.

Step 3 Setk = 1.

Step 4 Find the first improving neighborx′ of x, x′ ∈ Nk(x).
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Step 5 If a neighborx′ was found, setx = x′ and go to Step 4. Otherwise, setk = k + 1.

Step 6 If k > kmax and there were no improvements sincek = 1, stop.

Step 7 If k > kmax and the solution was improved with anyNk : k > 1, go to Step 3. Otherwise,

go to Step 4.

Neighborhood Structure

Three neighborhoods,N1, N2, andN3, are used in this study and are described below. The first

two neighborhoods are based on the well known customershiftand customerswap, respectively, to

move and exchange customers between routes. These operators are adapted fromHo and Haugland

(2004)to handle split deliveries. The third neighborhood is based on a new operator, called customer

shift∗, that introduces a split delivery when a customer shift is infeasible due to a lack of vehicle

capacity in the destination route.

The operators are illustrated in Figures5.5 to 5.7. In these figures, the depot is graphically

represented by a white square, routesR1 andR2 represent any two existing routes in the current

solution, solid arrows represent the sequence of customers withinR1 and dashed arrows represent

the sequence of customers withinR2. Customers are represented by a circle with shading used

to differentiate the customers; customers not involved in the transformation and remaining in their

original routes are white, customers originally withinR1 and moved toR2 are gray, and customers

originally within R2 and moved toR1 are black. Finally, and for the purpose of the operator’s

description, the spare capacity of routei is denoted bysi, the demand of customerj is denotedqj ,

and the delivery made by routei to customerj is denoted byyij .

• The customershift is illustrated in Figure5.5. This operator moves customerj1 ∈ R1 to

the cheapest position inR2. If j1 is split amongR1 andR2, it is removed fromR1 and the

quantityy2j1 is increased toqj1 . This move is feasible whens2 ≥ y1j1 .
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Figure 5.5:Illustration of the shift operator.

• The customerswapis illustrated in Figure5.6. This operator exchanges two customers by

removingj1 ∈ R1 andj2 ∈ R2 and inserting them into the cheapest positions inR2 andR1,

respectively. Ifj2 is split amongR1 andR2, it is removed fromR2 and the quantityy1j2 is

increased toqj2 . This move is feasible whens2 + y2j2 ≥ qj1 ands1 + qj1 ≥ y2j2 .

• The customershift∗ is illustrated in Figure5.7. This operator is a variant of the standard

customershift and moves customerj1 ∈ R1 to the cheapest position inR2 and inserts a

partial delivery of customerj2 ∈ R2 into the cheapest position inR1. This move is feasible

whens2 < qj1 andqj1 − s2 < qj2 . In other words, the move is feasible whenR2 does not

have enough capacity to servicej1 and the demandqj2 of customerj2 ∈ R2 is large enough

to cover the lack of capacity inR2. As this transformation allows bothR1 andR2 to service

j2, the quantitiesy1j2 andy2j2 are possibly adjusted to avoid any route exhausting the entire

capacity. This adjustment helps increase the number of feasible candidates that may be found

later in the search.
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Figure 5.6:Illustration of the swap operator.

Figure 5.7:Illustration of theshift∗ operator.
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5.4 Experimental Results

The proposed algorithms were tested on existing problem sets available in the literature:Archetti,

Hertz, and Speranza (2006), Belenguer et al. (2000), Chen et al. (2007), andJin et al. (2007).

These problems total 96. The instances fromArchetti, Hertz, and Speranza (2006)include the

problems with both original and randomly generated customer demands. These instances involve

50, 75, 100, 120, 150, and 199 customers and their demands are randomly generated as a function

of the vehicle capacity to test the performance of the algorithms ofArchetti, Hertz, and Speranza

when the customer demands get large, as inDror and Trudeau (1989). Instances 1-5 have customers

uniformly located around the depot, whereas instances 6 and 7 have clustered customers. In contrast

to problem 7, in problem 6 the depot is not centered with respect to the customer locations. The

description of these instances can be found inChristofides and Eilon (1969)andChristofides et al.

(1979). It is important to mention that the instances with random demands generated byArchetti,

Hertz, and Speranzaare unavailable. Instances fromBoudia et al. (2007)are the same instances

tested and generated byMota et al. (2007)with the generator ofArchetti, Hertz, and Speranza.

When required, special notes are used at the bottom of the tables to differentiate the instances used

by the authors in their corresponding publications. The instances used byBelenguer et al. (2000)

include 11 problems taken from TSPLIB and another 14 problems created by randomly generating

the customer demands as a function of the vehicle capacity. These instances involve 21 to 100

customers.Chen et al. (2007)recently generated a set of 21 problems involving 8 to 288 customers

having a geometric symmetry, a star shape, with the customers located in concentric circles around

the depot.Jin et al. (2007)used one TSPLIB instance involving 21 customers and generated four

instances with 18, 21, and 22 customers.

The notationp-aaa-nnn is used to name each instance, wherep is an alphabetical character

to identify the publication where the problem is given (see Table5.1), aaa is a string of variable

length corresponding to the name of the instance adopted on the publication, and the third naming

field is a three-digit integer denoting the number of customers. For instance, a-01-050 corresponds
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Table 5.1:Test problems naming scheme.

Value First Naming

Fieldp Publication

a Archetti, Hertz, and Speranza (2006)

b Belenguer et al. (2000)

c Chen et al. (2007)

j Jin et al. (2007)

to problem 1 fromArchetti, Hertz, and Speranza (2006)with 50 customers. The algorithms were

implemented inC# and the experiments were carried out on a PC Pentium 4, 2.8GHz processor, and

512MB of RAM. During the experiments, parametersα andβ in Equation (5.2) were set to 200 and

1000000, respectively. These values were empirically found to work reasonably well for the tested

problems.

In this chapter, a constructive approach with a RAC mechanism is proposed to best allocate

customers to routes. To test the performance of RAC, initial solutions are constructed with and

without this mechanism and the savings obtained in the total traveled distance when the RAC is

actually used are calculated. Except for one case, i.e., problem b-eil33-032, where the depot is not

geographically centered with respect to the customer locations, the RAC obtains better solutions.

On average, RAC savings are 32.84% on the 96 tested problems. However, these savings were

found to vary with two problem characteristics: the geographical distribution of customers and

the customer demand range. The RAC does well on problems with a centered depot, less well

on problems where the depot is not centered. The tested problems are classified as GC when the

depot is geographically centered with respect to the customers (e.g., problems a-01-050 and a-

07-100), non-GC (NGC) when the depot is not geographically centered (e.g., problems a-06-120

and b-eil33-032), random (R) when the customers are randomly scattered (e.g., problems a-01-050

and b-eil33-032), or clustered (C) when customers form clusters (e.g., problems a-06-120 and a-07-

100). Table5.2shows the percentage savings obtained when the RAC is used within the constructive

approach for each problem type. Note that RAC is more effective when the depot is centered, i.e.,
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Table 5.2:Impact of problem type on the benefits of the route angle control.

Problem Tested Savings due to RAC

Type problems Min Avg Max

GC-R 77 10.76 35.16 46.94

GC-C 11 27.85 37.33 46.92

NGC-R 1 0.00 12.83 26.19

NGC-C 7 8.49 13.97 17.86

Table 5.3:Impact of demand range on the benefits of the route angle control.

Demand Tested Savings due to RAC

range problems Min Avg Max

D1 10 8.49 21.83 37.66

D2 10 17.15 41.22 46.85

D3 10 17.86 39.56 45.38

D4 9 17.49 34.79 39.28

D5 9 14.75 35.90 41.72

D6 8 13.07 31.20 35.28

problem types GC-R and GC-C. Problems with clustered or scattered customers do not seem to

affect the performance of the proposed angle control measure.

Table5.3shows the percentage savings due to the RAC for different demand ranges,D1 toD6.

These ranges are used byBelenguer et al. (2000)andArchetti, Hertz, and Speranza (2006)with

D1 = [0.01− 0.10] andD6 = [0.70− 0.90]. The results in the table reveal that the RAC produces

solutions of considerable less quality to problems with low customer demands in the rangeD1. The

reason for this is that fewer vehicles are required to satisfy the capacity constraints so the threshold

angleθ∗ = 2π
m gets larger. As a consequence, the termβ × max{0, |θir−θ∗|

θir−θ∗ } in Equation (5.2)

becomes zero for most insertion candidates so no penalties are applied to insertions into far routes.

Tables5.4 to 5.6 show the solution values obtained with the proposed constructive approach

(CA), iterative constructive approach (ICA), and variable neighborhood descent along with the per-
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centage improvement with respect to the CA solution value and the running times. The VND was

tested using the solutions obtained with the CA and ICA approaches as the initial solutions. How-

ever, using the ICA as the initial solution (ICA+VND in the table) produces better results in 78% of

the tested problems. As seen in Tables5.4and5.5, although the ICA approach outperforms CA in

35 of the 63 problems, the improvements occur mainly in problems with small customer demands.

As demands get larger, ICA does not improve the solution found with CA. The ICA uses a very

conservative scheme to improve the search based on the information of constructed solutions. Thus,

it is difficult to find solutions of lower value by simply re-positioning a single customer in the list

L when the customer demands are large. This fact is reinforced by the results on theChen et al.

(2007)problem set presented in Table5.6. In this set, customer demands are 60 and 90, the vehicle

capacity is 100, and the ratio of the total demand and total capacity is 1 for all problems, which

means that all vehicles are fully loaded in the final solution. ICA was able to slightly improve CA

in only problem c-SD15-144. In contrast, the ICA+VND approach has a stronger neighborhood

structure and a more aggressive search process so the improvements over CA are noticeably higher.

The results on the instances fromArchetti, Hertz, and Speranzaare compared with those ob-

tained by the best among the three tabu searches ofArchetti, Hertz, and Speranza (2006)(Splitabu-

DT), the scatter search (SS) ofMota et al. (2007), the hybrid approach (EMIP+VRTR) ofChen

et al. (2007), and the memetic algorithm with population management (MA|PM) of Boudia et al.

(2007). Since the tabu search has random elements,Archetti, Hertz, and Speranzaran each problem

five times. Thus, their average values are provided in the experimental results. Similarly, values

reproduced fromChen et al. (2007)correspond to median solution values from 30 different in-

stances for each problem. The computational results of the best among the proposed approaches,

ICA+VND, are presented in Tables5.7 and5.8. Solution valuesz and percentage improvements

IMP of the other approaches over the objective function value of the ICA+VND solution are shown

in Table5.7. Improvements in bold font denote the cases where the ICA+VND solution has a bet-

ter value. EMIP+VRTR was not tested on problems a-03-100 so these values are omitted. The

results are grouped according to the actual instances used in the experiments. The instances used
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Table 5.4:Computational results on problems of Archetti et al. (2006).

CA ICA ICA+VND

Problem Demand z CPU z IMP CPU z IMP CPU

a-01-050 578.83 0.08 568.67 1.76 2.69 540.82 6.57 10.89

a-02-075 899.11 0.06 889.05 1.12 3.25 880.28 2.09 9.81

a-03-100 873.46 0.16 863.18 1.18 9.34 854.13 2.21 43.50

a-04-150 1121.33 0.33 1108.97 1.10 20.77 1088.91 2.89 129.23

a-05-199 1412.18 0.55 1412.18 - 26.66 1390.55 1.53 534.83

a-06-120 1257.48 0.41 1257.48 - 20.27 1223.28 2.72 257.30

a-07-100 827.59 0.11 826.03 0.19 6.20 824.82 0.33 21.02

a-01-050 [0.01-0.10] 477.66 0.09 477.66 - 4.42 473.22 0.93 4.52

a-02-075 [0.01-0.10] 638.10 0.19 628.30 1.53 11.14 617.65 3.20 51.28

a-03-100 [0.01-0.10] 864.06 0.42 845.95 2.10 27.34 789.16 8.67 415.47

a-04-150 [0.01-0.10] 907.36 0.56 902.48 0.54 45.80 893.49 1.53 666.20

a-05-199 [0.01-0.10] 1163.38 1.06 1126.78 3.15 181.28 1079.04 7.25 3750.44

a-06-120 [0.01-0.10] 1175.43 0.53 1169.57 0.50 28.66 1101.14 6.32 341.59

a-07-100 [0.01-0.10] 706.74 0.48 687.12 2.78 28.72 673.54 4.70 222.42

a-01-050 [0.10-0.30] 787.03 0.02 777.75 1.18 1.09 777.75 1.18 1.59

a-02-075 [0.10-0.30] 1157.90 0.05 1152.97 0.43 2.36 1099.47 5.05 13.19

a-03-100 [0.10-0.30] 1513.33 0.08 1512.37 0.06 3.97 1452.52 4.02 34.09

a-04-150 [0.10-0.30] 2124.89 0.19 2124.89 - 9.30 1978.01 6.91 164.19

a-05-199 [0.10-0.30] 2584.94 0.33 2584.94 - 16.45 2502.54 3.19 248.83

a-06-120 [0.10-0.30] 2996.54 0.13 2979.88 0.56 6.28 2806.92 6.33 54.25

a-07-100 [0.10-0.30] 1555.18 0.09 1490.76 4.14 4.56 1428.27 8.16 22.56

a-01-050 [0.10-0.50] 1098.88 0.03 1098.88 - 1.06 1045.93 4.82 2.81

a-02-075 [0.10-0.50] 1574.85 0.05 1529.71 2.87 2.77 1503.02 4.56 11.25

a-03-100 [0.10-0.50] 2029.21 0.09 2015.64 0.67 4.41 1957.55 3.53 25.16

a-04-150 [0.10-0.50] 2774.54 0.17 2774.54 - 9.06 2685.33 3.22 111.66

a-05-199 [0.10-0.50] 3615.66 0.33 3615.66 - 16.20 3450.84 4.56 339.36

a-06-120 [0.10-0.50] 4212.58 0.13 4212.58 - 6.31 4085.36 3.02 40.53

a-07-100 [0.10-0.50] 2108.74 0.08 2078.99 1.41 4.69 2046.15 2.97 11.92

Continued on next page
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Table 5.4:Computational results on problems of Archetti et al. (2006) (Continued).

CA ICA ICA+VND

Problem Demand z CPU z IMP CPU z IMP CPU

a-01-050 [0.10-0.90] 1604.25 0.03 1602.49 0.11 1.38 1547.32 3.55 2.83

a-02-075 [0.10-0.90] 2367.26 0.06 2348.75 0.78 3.36 2212.93 6.52 10.80

a-03-100 [0.10-0.90] 3026.61 0.09 3018.59 0.27 5.08 2925.13 3.35 19.00

a-04-150 [0.10-0.90] 4395.14 0.22 4395.14 - 10.89 4192.50 4.61 141.27

a-05-199 [0.10-0.90] 5559.98 0.38 5545.57 0.26 28.06 5192.06 6.62 662.77

a-06-120 [0.10-0.90] 6541.28 0.16 6541.28 - 7.22 6483.06 0.89 42.00

a-07-100 [0.10-0.90] 3295.74 0.11 3269.30 0.80 4.88 3178.28 3.56 12.89

a-01-050 [0.30-0.70] 1605.45 0.03 1591.06 0.90 1.55 1557.52 2.99 2.20

a-02-075 [0.30-0.70] 2348.60 0.06 2348.60 - 2.97 2241.59 4.56 11.28

a-03-100 [0.30-0.70] 3068.10 0.11 3057.85 0.33 4.78 2945.19 4.01 15.14

a-04-150 [0.30-0.70] 4395.14 0.22 4395.14 - 10.89 4192.50 4.61 143.05

a-05-199 [0.30-0.70] 5680.50 0.45 5680.50 - 18.92 5366.06 5.54 349.97

a-06-120 [0.30-0.70] 6826.12 0.14 6814.97 0.16 7.31 6591.40 3.44 59.20

a-07-100 [0.30-0.70] 3402.47 0.09 3348.16 1.60 5.03 3318.08 2.48 13.69

a-01-050 [0.70-0.90] 2246.82 0.03 2246.82 - 1.63 2215.34 1.40 2.59

a-02-075 [0.70-0.90] 3400.01 0.09 3400.01 - 3.92 3341.26 1.73 10.25

a-03-100 [0.70-0.90] 4526.40 0.13 4526.40 - 6.61 4455.14 1.57 14.31

a-04-150 [0.70-0.90] 6665.56 0.31 6665.56 - 15.34 6513.36 2.28 93.78

a-05-199 [0.70-0.90] 8692.00 0.56 8662.98 0.33 32.63 8368.35 3.72 460.89

a-06-120 [0.70-0.90] 10585.01 0.20 10585.01 - 9.77 10302.16 2.67 59.28

a-07-100 [0.70-0.90] 5196.44 0.13 5196.44 - 6.75 5058.76 2.65 20.70

z denotes objective function value obtained.

IMP denotes percentage objective function improvement over CA.

CPU denotes running time in seconds on a P4, 2.8GHz, 512MB.
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Table 5.5:Computational results on the random problems of Belenguer et al. (2000).

CA ICA ICA+VND

Problem Demand z CPU z IMP CPU z IMP CPU

b-S51D1-050 [0.01-0.10] 477.66 0.09 477.66 - 4.59 473.22 0.93 4.53

b-S51D2-050 [0.10-0.30] 759.56 0.03 745.46 1.86 1.27 732.38 3.58 4.05

b-S51D3-050 [0.10-0.50] 1034.90 0.02 1034.90 - 0.98 1001.22 3.25 2.50

b-S51D4-050 [0.10-0.90] 1740.38 0.03 1740.38 - 1.38 1708.00 1.86 2.89

b-S51D5-050 [0.30-0.70] 1421.74 0.03 1421.74 - 1.16 1404.54 1.21 1.80

b-S51D6-050 [0.70-0.90] 2266.58 0.03 2266.58 - 1.73 2230.06 1.61 2.27

b-S76D1-075 [0.01-0.10] 642.18 0.22 626.72 2.41 21.91 610.23 4.98 63.55

b-S76D2-075 [0.10-0.30] 1199.42 0.06 1196.42 0.25 2.48 1169.80 2.47 7.73

b-S76D3-075 [0.10-0.50] 1584.35 0.05 1584.35 - 2.25 1490.08 5.95 12.23

b-S76D4-075 [0.10-0.90] 2326.64 0.06 2326.64 - 2.73 2220.87 4.55 6.91

b-S101D1-100 [0.01-0.10] 854.05 0.41 831.64 2.62 47.45 765.48 10.37 210.36

b-S101D2-100 [0.10-0.30] 1510.85 0.09 1510.85 - 4.36 1444.96 4.36 26.20

b-S101D3-100 [0.10-0.50] 2167.71 0.08 2144.46 1.07 4.23 1990.28 8.19 27.84

b-S101D5-100 [0.30-0.70] 3062.17 0.09 3046.95 0.50 6.27 2999.31 2.05 18.36

z denotes objective function value obtained.

IMP denotes percentage objective function improvement over CA.

CPU denotes running time in seconds on a P4, 2.8GHz, 512MB.
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Table 5.6:Computational results for problems of Chen et al. (2007).

CA ICA ICA + VND

Problem z CPU z IMP CPU z IMP CPU

c-SD01-008 25478.71 0.02 25478.71 - 0.06 22828.43 10.40 0.06

c-SD02-016 73478.71 0.00 73478.71 - 0.19 70828.43 3.61 0.22

c-SD03-016 43058.22 0.02 43058.22 - 0.16 43058.22 - 0.17

c-SD04-024 70448.03 0.00 70448.03 - 0.36 63583.51 9.74 0.55

c-SD05-032 139056.83 0.02 139056.83 - 0.61 139056.83 - 0.69

c-SD06-032 85288.45 0.03 85288.45 - 0.81 83124.14 2.54 0.94

c-SD07-040 364000.00 0.02 364000.00 - 0.94 364000.00 - 1.03

c-SD08-048 509478.71 0.03 509478.71 - 1.36 506828.43 0.52 1.75

c-SD09-048 213794.48 0.03 213794.48 - 1.45 207102.79 3.13 2.91

c-SD10-064 277291.42 0.06 277291.42 - 2.52 274783.08 0.90 3.58

c-SD11-080 1328000.01 0.08 1328000.01 - 3.56 1328000.01 - 3.97

c-SD12-080 727997.00 0.06 727997.00 - 3.59 727997.00 - 4.00

c-SD13-096 1011057.51 0.09 1011057.51 - 5.25 1011057.51 - 5.80

c-SD14-120 1092000.85 0.16 1092000.85 - 7.84 1089349.80 0.24 15.49

c-SD15-144 1522449.07 0.23 1522342.27 0.01 11.75 1516827.58 0.37 18.33

c-SD16-144 375542.10 0.25 375542.10 - 11.77 363526.95 3.20 39.71

c-SD17-160 2655992.75 0.28 2655992.75 - 14.16 2655992.75 0.00 17.42

c-SD18-160 1455999.62 0.28 1455999.62 - 13.88 1444059.28 0.82 40.38

c-SD19-192 2021283.59 0.39 2021283.59 - 20.39 2019119.29 0.11 27.64

c-SD20-240 3983999.63 0.63 3983999.63 - 32.25 3981348.58 0.07 63.18

c-SD21-288 1244552.35 1.05 1244552.35 - 52.90 1179960.15 5.19 738.49

z denotes objective function value obtained.

IMP denotes percentage objective function improvement over CA.

CPU denotes running time in seconds on a P4, 2.8GHz, 512MB.
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in this study have the same customer demands used to test SS and MA|PM. However, there is no

evidence to support the equality of the customer demands with the other instances (Archetti, Hertz,

and Speranza, 2006; Chen, Golden, and Wasil, 2007).

In terms of solution valuesz in Table5.7, ICA+VND is comparable with SS and MA|PM.

On average, the ICA+VND solutions are within 1.77% and 4.34%, respectively. MA|PM is not

improved in any case, but SS is improved in 10 problems with large demands (see the three largest

demand ranges in the table). There is a tendency of ICA+VND to perform better as the customer

demands get larger. While the other approaches tend to outperform ICA+VND, across the board the

ICA+VND is competitive with those approaches. Columnm shows the minimum possible fleet size

to satisfy all customer demands, which is also the number of vehicles in the final ICA+VND, SS, and

MA |PM solutions. Columnm′ shows the number of vehicles in the final feasible solutions of the

tabu search.Chen et al. (2007)do not report the fleet size for EMIP+VRTR in their computational

results. A very important consideration is that ICA+VND usually utilizes less vehicles than the tabu

search (see bold numbers in columnm). Using more vehicles may reduce objective function values

thereby somewhat obscuring solution comparisons. Table5.8 summarizes the reported running

times for the existing algorithms and the running times for the ICA+VND approach. The ICA+VND

approach only requires a single run, and per Table5.8obtains those solutions quicker than the other

approaches in most cases.

Computational results on the TSPLIB instances solved byBelenguer et al. (2000)are pre-

sented in Table5.9. This table compares the ICA+VND solution valuesz with the bounds obtained

by Belenguer et al.using a heuristic method and a cutting plane algorithm, the bounds found byLiu

(2005)using a branch-and-price approach (B&P), and the bounds obtained byJin et al. (2008)with

a column generation approach (omitted values in the table are not published). ICA+VND solution

values are also compared with those found byBoudia et al. (2007)with MA |PM. ICA+VND is

competitive with the other approaches and clearly dominates B&P on these instances. To compare

with Belenguer et al.and MA|PM, euclidean inter-node distances are also truncated to the near-

est integer. In these instances, ICA+VND solutions are within 5.78% above the lower bounds of
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Table 5.8:Running time in seconds for existing approaches and the ICA+VND approach

on instances of Archetti et al. (2006).

Problem Demand ICA+VND (a) SS(b) MA |PM(c) Splitabu-DT(d) EMIP+VTR(e)

a-01-050 10.89 24.80 8.53 13.20 1.80

a-02-075 9.81 61.66 35.72 35.80 4.00

a-03-100 43.50 108.80 34.59 57.60 -

a-04-150 129.23 261.28 103.69 389.00 10.00

a-05-199 534.83 352.31 353.84 386.40 18.10

a-06-120 257.30 131.34 50.92 38.40 5.60

a-07-100 21.02 108.41 42.89 49.00 3.70

a-01-050 [0.01-0.10] 4.52 26.86 12.38 4.80 1.90

a-02-075 [0.01-0.10] 51.28 68.80 18.75 13.00 25.80

a-03-100 [0.01-0.10] 415.47 125.06 37.12 31.20 -

a-04-150 [0.01-0.10] 666.20 352.09 100.27 172.80 107.80

a-05-199 [0.01-0.10] 3750.44 963.84 356.22 525.80 413.40

a-06-120 [0.01-0.10] 341.59 163.28 72.98 42.40 36.40

a-07-100 [0.01-0.10] 222.42 80.56 34.97 57.80 53.90

a-01-050 [0.10-0.30] 1.59 26.31 10.22 21.80 3.40

a-02-075 [0.10-0.30] 13.19 86.02 34.14 45.40 57.00

a-03-100 [0.10-0.30] 34.09 98.00 78.06 95.80 -

a-04-150 [0.10-0.30] 164.19 10.06 147.89 393.20 308.00

a-05-199 [0.10-0.30] 248.83 19.11 347.14 754.80 618.50

a-06-120 [0.10-0.30] 54.25 11.33 144.19 142.60 136.40

a-07-100 [0.10-0.30] 22.56 151.25 43.27 146.00 126.50

a-01-050 [0.10-0.50] 2.81 3.84 12.49 28.20 14.70

a-02-075 [0.10-0.50] 11.25 6.09 37.38 123.20 214.00

a-03-100 [0.10-0.50] 25.16 7.55 28.39 136.20 -

a-04-150 [0.10-0.50] 111.66 16.17 224.89 739.20 630.50

a-05-199 [0.10-0.50] 339.36 20.64 436.20 2668.00 1775.70

a-06-120 [0.10-0.50] 40.53 63.80 163.14 268.00 220.70

a-07-100 [0.10-0.50] 11.92 41.23 51.31 292.80 287.60

Continued on next page
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Table 5.8:Running time in seconds for existing approaches and the ICA+VND approach

on instances of Archetti et al. (2006) (Continued).

Problem Demand ICA+VND (a) SS(b) MA |PM(c) Splitabu-DT(d) EMIP+VTR(e)

a-01-050 [0.10-0.90] 2.83 3.91 21.42 60.80 55.40

a-02-075 [0.10-0.90] 10.80 6.64 46.11 193.40 401.10

a-03-100 [0.10-0.90] 19.00 9.16 84.38 648.60 -

a-04-150 [0.10-0.90] 141.27 25.03 244.91 2278.00 2220.00

a-05-199 [0.10-0.90] 662.77 71.09 725.69 3297.20 3038.10

a-06-120 [0.10-0.90] 42.00 15.86 196.14 877.80 722.80

a-07-100 [0.10-0.90] 12.89 9.08 52.13 259.60 251.20

a-01-050 [0.30-0.70] 2.20 4.25 24.53 48.60 47.90

a-02-075 [0.30-0.70] 11.28 7.14 51.78 128.60 509.60

a-03-100 [0.30-0.70] 15.14 10.36 100.16 810.20 -

a-04-150 [0.30-0.70] 143.05 19.38 244.86 3008.00 3028.30

a-05-199 [0.30-0.70] 349.97 120.28 749.94 3565.60 3035.70

a-06-120 [0.30-0.70] 59.20 17.16 271.39 658.60 605.40

a-07-100 [0.30-0.70] 13.69 9.73 91.31 777.80 716.50

a-01-050 [0.70-0.90] 2.59 4.13 22.91 106.40 135.40

a-02-075 [0.70-0.90] 10.25 7.66 27.48 869.20 811.00

a-03-100 [0.70-0.90] 14.31 12.06 55.75 1398.40 -

a-04-150 [0.70-0.90] 93.78 131.91 401.62 10223.20 10038.80

a-05-199 [0.70-0.90] 460.89 165.28 571.70 21849.20 12542.30

a-06-120 [0.70-0.90] 59.28 20.17 298.08 1825.60 725.40

a-07-100 [0.70-0.90] 20.70 9.19 180.11 1004.40 1024.30

(a)P4, 512MB, 2.8 GHz;(b)P4, 1.0GB, 2.4GHz;(c)3GHz; (d)P4, 256MB, 2.4GHz);(e)P4, 512MB, 1.7GHz.
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Table 5.9:Computational results of ICA+VND on some TSPLIB VRP instances.

ICA+VND Belenguer et al. (2000) MA |PM

Problem z(a) CPU(b) UB(a) LB %ALB z(a) CPU(c) IMP

b-eil22-021 375 0.70 375 375 0.00 375 4.11 0.00

b-eil23-022 570 0.59 569 569 0.18 569 5.47 0.18

b-eil30-029 520 2.22 510 508 2.31 503 5.70 3.27

b-eil33-032 869 1.86 835 833 4.14 835 5.19 3.91

b-eil51-050 538 10.89 521 511.57 4.91 521 7.28 3.16

b-eilA76-075 875 9.81 832 782.7 10.55 828 35.94 5.37

b-eilB76-075 1055 16.42 1023 937.47 11.14 1019 13.09 3.41

b-eilC76-075 751 26.25 735 706.01 5.99 738 14.75 1.73

b-eilD76-075 714 29.92 683 659.43 7.64 682 23.12 4.48

b-eilA101-100 842 43.50 817 793.48 5.76 818 25.25 2.85

b-eilB101-100 1129 31.13 1077 1005.85 10.91 1082 21.81 4.16

Continued on next page

Belenguer et al.and 2.96% above MA|PM, on average. Although the percentages above the lower

bounds of B&P are higher, note that these percentages change with the bounds and also with the

strategy to calculate the inter-node distances. However, the upper bounds of B&P are improved in

all but one problem, b-eil30-029 (see bold type in columns UB).

The computational results of ICA+VND on the random problems ofBelenguer et al. (2000)are

presented in Table5.10. In this table the results are also compared with those ofChen et al. (2007),

who used the EMIP+VRTR to solve only the problems with large average demands (omitted values

in the table are not published). In these instances ICA+VND is able to improve the upper bounds

of Belenguer et al.in problems with large demands with 50 and 75 customers and find the same

solution value on two other problems in demand rangesD2 andD3. With respect to MA|PM,

ICA+VND solutions are within 4.04% on average in this problem set. In terms of running time,

ICA+VND is highly competitive and finds those solutions quicker than the other approaches in

almost all cases.
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Table 5.10:Computational results of ICA+VND on the random problems of Belenguer et

al. (2000).

ICA+VND Belenguer et al. (2000) MA |PM

Problem z(a) CPU(b) UB(a) LB %ALB z(a) CPU(c) IMP

b-S51D1-050 469 4.53 458 454 3.20 458 8.77 2.35

b-S51D2-050 726 4.05 726 676.63 6.80 707 7.44 2.62

b-S51D3-050 994 2.50 972 905.22 8.93 945 7.84 4.93

b-S51D4-050 1700 2.89 1677 1520.67 10.55 1578 11.98 7.18

b-S51D5-050 1399 1.80 1440 1272.86 9.02 1351 16.72 3.43

b-S51D6-050 2221 2.27 2327 2113.03 4.86 2182 9.92 1.76

b-S76D1-075 603 63.55 594 584.87 3.01 592 15.23 1.82

b-S76D2-075 1165 7.73 1147 1020.32 12.42 1089 30.5 6.52

b-S76D3-075 1485 12.23 1474 1346.29 9.34 1427 12.89 3.91

b-S76D4-075 2205 6.91 2257 2011.64 8.77 2117 8.76 3.99

b-S101D1-100 757 210.36 716 700.56 7.46 717 49.75 5.28

b-S101D2-100 1431 26.20 1393 1270.97 11.18 1372 31.72 4.12

b-S101D3-100 1975 27.84 1975 1739.66 11.92 1891 33.98 4.25

b-S101D5-100 2985 18.36 2915 2630.43 11.88 2854 18.66 4.39

Continued on next page
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Table5.11shows the computational results of ICA+VND on the problem set recently gener-

ated byChen et al. (2007). Each algorithm is presented with the objective function valuez and the

running time in seconds. The last column,m, in the table contains the number of vehicles in the

ICA+VND final solutions. Bold type indicates the best known solution valuez to each problem.

These problems were generated to have a geometric symmetry, a star shape, with the customers lo-

cated in concentric circles around the depot (Chen et al., 2007). As one might expect the heuristics,

each of which rely upon the proposed route angle computation, do extremely well on these prob-

lems. With ICA+VND, 16 of the 21 problems are improved. By examining Table5.6 it is seen that

CA improved upon 12 of the 21 problems. It is not possible to compare the number of vehicles in

the final feasible solutions as this information is not published for EMIP+VRTR. In Figure5.8 the

ICA+VND final solution to problem c-SD10-64 is shown. This problem is also illustrated inChen

et al. (2007). The ICA+VND solution has a lower value and uses one less vehicle.

In Table5.12, solution valuesz and running times obtained with ICA+VND on instances of

Jin et al. (2007)are presented. In this table, results are compared with the optimal solutions found

by Jin et al. (2007)with their TSVI approach. ICA+VND found the optimal solution in problems

j-eil22-021 and j-J2-021, whereas a small deviation from optimality was obtained in problem j-J1-

018. The obtained solutions are within 4.18% of the optimal value, on average.

5.5 Conclusions and Future Directions

This chapter provided a background on the SDVRP and approaches to solve the problem. Three

local heuristic search algorithms are presented to solve the SDVRP with the minimum fleet size,

examine their performance on available benchmark test problems, and offer insight into heuristic

performance. These algorithms are then compared to available algorithms based on a thorough

empirical study. The first algorithm is a constructive approach that uses a new route angle control

mechanism to quickly find high quality solutions on seven benchmark problems. This approach pro-

vides solutions within 9% of the best known solutions on a set of previously employed benchmark
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Figure 5.8:ICA + VND solution to problem cheSD10-64. Total distance is 2,747.83 with

48 vehicles.
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Table 5.11:Comparison of ICA+VND on Chen et al. (2007) problem set and approach.

EMIP+VRTR ICA+VND

Problem z CPU(b) z(a) CPU(c) m

c-SD01-008 228.28 0.7 228.28 0.06 6

c-SD02-016 714.40 54.4 708.28 0.22 12

c-SD03-016 430.61 67.3 430.58 0.17 12

c-SD04-024 631.06 400 635.84 0.55 18

c-SD05-032 1408.12 402.7 1390.57 0.69 24

c-SD06-032 831.21 408.3 831.24 0.94 24

c-SD07-040 3714.40 403.2 3640.00 1.03 30

c-SD08-048 5200.00 404.1 5068.28 1.75 36

c-SD09-048 2059.84 404.3 2071.03 2.91 36

c-SD10-064 2749.11 400 2747.83 3.58 48

c-SD11-080 13612.12 400.1 13280.00 3.97 60

c-SD12-080 7399.06 408.3 7279.97 4.00 60

c-SD13-096 10367.06 404.5 10110.58 5.80 72

c-SD14-120 11023.00 5021.7 10893.50 15.49 90

c-SD15-144 15271.77 5042.3 15168.28 18.33 108

c-SD16-144 3449.05 5014.7 3635.27 39.71 108

c-SD17-160 26665.76 5023.6 26559.93 17.42 120

c-SD18-160 14546.58 5028.6 14440.59 40.38 120

c-SD19-192 20559.21 5034.2 20191.19 27.64 144

c-SD20-240 40408.22 5053 39813.49 63.18 180

c-SD21-288 11491.67 5051 11799.60 738.49 216

z denotes objective function value obtained:(a) values divided by 100 for comparison purposes (see Table5.6).

CPU denotes running time in seconds:(b)P4, 512MB, 1.7GHz;(c)P4, 512MB, 2.8GHz.

m denotes the number of vehicles in the ICA+VND final solution. EMIP+VRTR vehicles not published.
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Table 5.12:Computational results of ICA+VND versus optimality on instances of Jin et al.

(2007).

TSVI ICA+VND % above

Problem z∗ CPU z CPU optimality

j-eil22-021 375.28 17 h 375.28 0.7 s 0.00

j-J1-018 127.39 13 h 127.76 0.3 s 0.29

j-J2-021 388.44 84 h 388.44 0.5 s 0.00

j-J3-022 367.93 17 h 409.19 0.5 s 11.21

j-J4-022 372.2 13 h 407.16 0.5 s 9.39

z∗ denotes optimal objective function value.

z denotes objective function value obtained.

CPU denotes running time.

problems. The second algorithm is an iterative approach that executes the constructive approach

repeatedly. This algorithm uses the knowledge from past solutions to influence future decisions

in the constructive approach and can provide good feasible solutions at a relatively low compu-

tational time, again when applied to the set of previously employed benchmark problems. The

third algorithm is a variable neighborhood descent that produces the best solutions. On average,

ICA+VND found solutions whose values are within 4.18% of optimality on existing benchmark

problems, while the optimal solutions were obtained within a second for two problems involving

21 customers. When tested on the newest benchmark problems available for SDVRP research each

of the proposed approaches improved significantly upon existing solutions. Overall, the new algo-

rithms were shown to be competitive on general forms of SDVRP instances and a particular good

choice for special classes of SDVRP instances.

The proposed route angle control mechanism is easy to implement and looks useful to solve

the SDVRP, specially in problems with large customer demands. In the future, other methods can be

explored to estimate the threshold angle used by this mechanism and be able to perform better with

the constructive approach, especially in problems where the depot is not centered with respect to

the customer locations. Although the proposed constructive approach tends to produce non-crossing
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routes, optimal solutions can have crossing as well as inner routes so the CA can be guided to design

such routes. In addition, more aggressive strategies can be investigated to modify the sequence of

customersL used by the constructive approach and force a better exploration of the search space.

These strategies have been tested to produce solutions with common attributes and similarities with

the best known solutions and can potentially be used for recombination operators and produce high

quality solutions.
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Chapter 6

A Ring-Based Diversification Scheme for

Routing Problems1

6.1 Introduction

The vehicle routing problem (VRP) was introduced almost 50 years ago and is still under active

investigation by practitioners and researchers. In its classical version, the problem is to effectively

design routes that a fleet of homogeneous vehicles will follow to supply the demand of geographi-

cally scattered customers without exceeding the vehicle capacity and considering that customers can

be visited by exactly one vehicle. Traditionally, solution techniques for the VRP have been clas-

sified as exact approaches, classical heuristic algorithms (i.e., constructive, saving, improvement,

sweep, petal, and matching algorithms), and metaheuristic algorithms (i.e., tabu search, genetic al-

gorithms, simulated annealing, etc.). SeeBodin and Golden (1981), Laporte et al. (2000), Toth and

Vigo (2002), Cordeau et al. (2002), Cordeau et al. (2005), andLaporte (2007)for a full complete

survey and description of these techniques. The split delivery vehicle routing problem (SDVRP) is

a variant of the VRP where individual customer demands can be supplied by multiple vehicles. In

contrast to the VRP, there is a limited number of heuristic solution techniques to solve the SDVRP

1This chapter is found asAleman et al. (2008).
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including local (Dror and Trudeau, 1989) and tabu search (Archetti, Hertz, and Speranza, 2006).

A scatter search method (Mota et al., 2007), a hybrid approach (Chen et al., 2007), a memetic al-

gorithm (Boudia et al., 2007), and a column generation approach (Jin et al., 2008) were recently

developed to effectively solve benchmark problems.

Most of the existing techniques to solve the SDVRP perform an aggressive search in certain

regions of the solution space, but do not employ diversification strategies to make a better explo-

ration of the space. Diversification methods are usually used within heuristic search methods to

increase the effectiveness of the search procedure particularly on hard problems. The exploration

of different regions of the solution space helps to overcome any local optimum and increase the

chance of finding a global optimal solution. When the search appears to have stagnated, it is useful

to examine ways to move the search process into other areas of the search space that may not have

been explored. If some predefined criteria are met, the algorithm moves to a “diversified” solution

whose attributes differ from those of the already evaluated solutions. Resuming the search from a

diversified solution is intended to explore new regions of the search space. Although the exploration

of different regions in the solution space can help to find better solutions, the cost in processing time

may be high and hence it is sometimes unattractive to diversify the search. This chapter examines

this search process tradeoff.

This chapter presents a new diversification scheme for routing problems applied to the SDVRP.

This scheme is based on a geographical division of the problem by means of concentric rings cen-

tered at the depot that temporarily exclude a subset of customers. A partial solution to the original

problem is created and the excluded customers are then incorporated into the solution by means

of a constructive approach until a complete solution is obtained. Different ring settings produce

varied partitions and thus different solutions to the original problem are obtained. The search is

restarted from those solutions and improved via a variable neighborhood descent. The diversifica-

tion scheme created is used with the constructive approach (CA) and iterative constructive approach

(ICA) with route angle control and the variable neighborhood descent (VND) described inAleman

et al. (2007)to obtain SDVRP solutions. The remainder of this chapter is organized as follows.
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Section6.2provides an up-to-date literature review of the SDVRP and diversification methods ap-

plied to VRPs and SDVRPs. The proposed diversification method is described in Section6.3 and

the solution approach is given in Section6.3.2. Computational results are presented in Section6.4

with conclusions presented in Section6.5.

6.2 Background

In this section, an up-to-date literature review of the SDVRP, a review of the CA, ICA and VND

approaches ofAleman et al. (2007), and representative diversification methods applied to VRPs and

SDVRPs is presented. The review of diversification strategies is limited to how the solutions are

generated and does not cover how they evolve during any subsequent search. The studies discussed

address the classical VRP and the literature available for the generation of multiple solutions in the

context of split deliveries. The number of studies on SDVRPs is limited and there are a limited

number of solution methods for this combinatorial problem. These solution methods include some

exact approaches for small-sized problems and local search, tabu search, and hybrid methods for

larger problems. As discussed below, a couple of publications present population-based solution

methodologies including scatter search and memetic algorithms. Simulated annealing has been

recently used to find solutions to the capacited VRP with heterogeneous fixed fleet and split services,

but no computational results are reported on benchmark problem instances.

6.2.1 Solving the SDVRP

The SDVRP is a relaxation of the classical VRP. SDVRP was first introduced byDror and Trudeau

(1989) and Dror and Trudeau (1990)as a variant of the classical VRP where the demand of a

customer can be supplied by one or more vehicles. In the VRP vehicles with the same capacity

depart from a central depot and follow designated routes to visit and fully supply the demands of

geographically scattered customers. The combined demand of the customers visited by each vehicle

cannot exceed the vehicle’s capacity. After supplying the customer demands, all vehicles return to
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the central depot. The goal is to effectively design the vehicle routes to minimize the total traveled

distance.

Mathematically, the SDVRP is defined on an undirected, fully connected graphG = (V,E)

whereV = {0, 1, ..., n} is the set ofn + 1 nodes of the graph, andE = {(i, j) : i, j ∈ V, i < j}

is the set of edges connecting the nodes. Node 0 represents a depot where a fleetM = {1, ...,m}

of identical vehicles with capacityQ are stationed, while the remaining node setN = {1, ..., n}

represents the customers. A non-negative cost, usually the inter-node distance,cij , is associated

with every edge(i, j) ∈ E. Each customeri ∈ N has a demand ofqi units and is located at a

point(xi, yj) in the two-dimensional space with respect to the depot location,(x0, y0). The SDVRP

potentially allows reducing the operational cost of the fleet, especially when the average customer

demand exceeds 10% of the vehicle capacity (as stated byDror and Trudeau, 1989). In their worst-

case analysis of the SDVRP,Archetti, Savelsbergh, and Speranza (2006)show that the reduction in

delivery costs that can be obtained by allowing split deliveries is at most 50%, and this reduction

bound is tight.Archetti et al. (2008)suggest that the benefits are mainly due to the reduction in the

number of vehicles required to supply the customer demands. Their mathematical analysis proved

that the maximum reduction in the number of vehicles is 50% and the largest reduction occurs

when the mean customer demand is between 50% and 70% of the vehicle capacity and the demand

variances are relatively small.

Dror and Trudeau (1989)propose a local search which uses an initial VRP solution and then

uses ak-split interchange and route addition operators to introduce split deliveries if reductions in

the objective function value are possible with the split delivery.Dror and Trudeau (1990)present

some properties and valid inequalities for the SDVRP.Frizzell and Giffin (1992)use grid network

distances in the problem and present a constructive approach to cluster the customers and a blocking

mechanism to assign the demand of clustered customers to available vehicles. In an apparent first

attempt to incorporate uncertainty into the SDVRP,Bouzaiene-Ayari et al. (1993)adapt theClarke

and Wrightalgorithm to solve the problem with stochastic demands.Dror et al. (1994)describe a

branch-and-bound approach using valid inequalities and exactly solve instances with up to 20 cus-
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tomers. In a second paper,Frizzell and Giffin (1995)introduce time windows into the problem and

use these time windows as a criteria in the constructive approach to assign the customer demands.

Mullaseril et al. (1997)adapt the local search ofDror and Trudeau (1989)to model a feed distri-

bution problem on a cattle ranch as a SDVRP with time windows.Sierksma and Tijssen (1998)

formulate a set-covering problem and a column generation method to schedule helicopters in the

North Sea for crew exchange purposes.

Belenguer et al. (2000)study the SDVRP and estimate lower bounds using a cutting plane

algorithm. They generate 14 random instances each having the same distribution of customers but

with different ranges of customer demands.Song et al. (2002)model a distribution problem in

Korea as a SDVRP to route vehicles and deliver newspapers from a central facility to different

distribution centers at different times.Ho and Haugland (2004)present a tabu search to solve

the SDVRP with time windows, adapt existing multiple-routes operators to the context of split

deliveries, and introduce the relocate split operator which changes the customer being split among

two routes. Nowak (2005)study the pickup and delivery routing problem with split loads and

present a heuristic approach to solve a real problem.Liu (2005)present a two stage algorithm and

a branch-and-price approach to solve some of the problems previously solved byBelenguer et al.

(2000). Archetti, Hertz, and Speranza (2006)describe a tabu search approach to solve the SDVRP

and solve 7 benchmark and 42 newly generated test problem instances using random customer

demands. Their results have been used in recent studies for empirical comparison of algorithm

performance.Lee et al. (2006)present a shortest path approach to exactly solve the SDVRP with

up to 7 customers.

Belfiore et al. (2006)study the implementation of a scatter search algorithm in an actual

problem to supply 519 customers in 12 states in Brazil. The problem involves heterogeneous ve-

hicles, time windows, accessibility constraints, and split deliveries.Yu et al. (2006)propose an

approximate linear model with subtour elimination constraints, lagrangian relaxation, and a heuris-

tic method to solve the inventory routing problem with split deliveries.Jin et al. (2007)propose

a cutting plane algorithm to optimally solve the SDVRP dividing the original problem into clus-
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tering and traveling salesman subproblems. The distances of the traveling salesman subproblems

are repeatedly added as bounds to the clustering subproblems to find better solutions.Ambrosino

and Sciomachen (2007)model an actual problem in Italy to plan the country-wide distribution of

fresh/dry and frozen food.Mota et al. (2007)present a scatter search procedure that uses the mini-

mum fleet size and produces good results on instances previously solved in the literature, particularly

on problems with average customer demands less than half of the vehicle capacity.Wilck and Cav-

alier (2007)consider an objective function involving total distance traveled and vehicle loads. They

use a constructive approach to find good solutions to small sized problems.Chen et al. (2007)devel-

oped a hybrid approach combining a mixed integer program and a record-to-record travel algorithm

that produces high-quality solutions compared to the existing literature.Tavakkoli-Moghaddam

et al. (2007)present a mixed-integer linear and a simulated annealing method for solving the SD-

VRP with heterogeneous vehicles.Boudia et al. (2007)implemented a memetic algorithm with

population management and produced high quality solutions on the problems ofArchetti, Hertz,

and Speranza (2006)andBelenguer et al. (2000). Jin et al. (2008)present a column generation

approach to estimate bounds for the SDVRP with large customer demands. The algorithm improves

some of the bounds found byBelenguer et al. (2000).

6.2.2 The CA, ICA and VND Solution Approaches

Constructive Approach (CA)

The parallel constructive approach (CA) ofAleman et al. (2007)uses an ordered listL of customers

based on the distances from the depot and then inserts them into the solution under construction

to initiate new routes or modify existing ones. The farthest customer from the depot is assigned

the first position inL whereas the closest customer to the depot is assigned the last position. Once

L is designed, customers are sequentially inserted into the routes until all customer demands are

satisfied. A customer demand can be split when that demand exceeds the capacity left on the selected

vehicle. In this case, any remaining demand is assigned to either an empty vehicle or the best vehicle
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available. The characteristic that differentiates the CA from existing constructive approaches is that

it uses a novel route angle control mechanism (RAC) to avoid the design of spatially spread routes.

The intuition of RAC is to avoid overlapping routes among the vehicles. The RAC mechanism

utilizes the angle of a route, defined by the customers assigned to the route, to penalize insertions

into far routes and favor closer routes. The polar angle of customeri relative to the depot, denoted

θi, is defined as:

θi = arctan
yi − y0

xi − x0
(6.1)

where(xi, yi) represents the location of customeri and customer 0 represents the depot. The angle

of routeR is then defined asθR = max{θi − θj ;∀i, j ∈ N ∩ R}. The CA can obtain solutions

of good quality at a very low computational effort using the minimum number of vehiclesm =

d
∑

i∈N qi/Qe, wheredxe denotes the smallest integer greater than or equal tox.

Iterative Constructive Approach (ICA)

A limitation of the CA is that the customers closest to the depot inserted later in routes due to

their position inL, tend to deteriorate the quality of the final solution as there are a limited number

of route alternatives available at the moment of their insertion. TheAleman et al. (2007)ICA is

an iterative approach that applies adaptive memory and dynamic modification of the listL. The

resulting ICA executes the CA iteratively but modifiesL each iteration. Customers that cause the

widest spread of routes are assigned an earlier position inL to ensure their insertion into more

adequate routes. This is done as follows. First, the customeri∗ producing the widest route is

identified. Second, the closest router∗ to i∗ in the current solution is selected. Third, the customer

ia spending the last resources ofr∗ needed to fully supply customeri∗ is determined. Finally,

customeri∗ is relocated inL so that it will be inserted into the solution right beforeia. This

guarantees a full service and a less expensive delivery fori∗.
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Variable Neighborhood Descent (VND)

The VND presented inAleman et al. (2007)looks to improve the SDVRP solutions found with

ICA. The VND uses three neighborhoods. The first and second neighborhoods are based on the

standard customershift and customerswapto move customers among routes. In the case of the

customershift, if the customer to be shifted is currently using split delivery, it is simply removed

from the origin route and its quantity is increased in the destination route (the split is eliminated).

In the case of the customerswap, if a customer to be swapped is currently using split delivery, it is

also removed from the origin route and its quantity is increased in the destination route. The other

customer is then moved from one route to the other. The third neighborhood is a new operator that

moves a customer among routes when the destination route does not have enough capacity to cover

the demand of the moved customer. In order to make the move feasible, the load of the destination

route is released by reducing its delivery to any other customer in the route with enough demand

(i.e., larger than the demand of the moved customer). The unserved demand is then served by the

original route. At the end, the customer shift is feasible and a new split is introduced by sharing a

customer. A detailed illustration of these operators is found inAleman et al. (2007)along with an

empirical evaluation of CA, ICA, and VND performance on all available problem sets.

6.2.3 Solution Diversification Techniques

Despite using a variety of local search and local improvement methods, search heuristics can still

have problems finding really good solutions to hard problems. A diversification scheme aims to

move the search process into new, hopefully unvisited, regions of the solution space. Once in those

new regions, the search process resumes.

One of the first studies for generating diversified solutions for routing problems is byRochat

and Taillard (1995)who partition large problems into independent subproblems, each defined by

sectors and regions centered at the depot, and then optimize each subproblem independently. Their

diversified solutions are generated with a local search by considering various initial partitions of the

128



problem. Tarantilis and Kiranoudis (2002)present a population-based heuristic calledBoneRoute

that extracts sequences of nodes, or bones, from the pool of solutions to compose partial solu-

tions. They complete these partial solutions with a constructive approach. The diversified solutions

forming the initial pool are generated with the savings algorithm ofPaessens (1988). Berger and

Barkaoui (2003)propose a hybrid genetic algorithm to evolve two populations using selection, re-

combination, mutation, and migration operators. The generation of initial solutions is based on a

random construction of feasible solutions. A solution is rapidly constructed through a sequential

insertion heuristic which inserts customers into randomly chosen positions within routes. Customer

insertion order is randomly modified to ensure unbiased solution generation.

Reimann et al. (2004)present the D-Ants algorithm that uses theSavingsAntssystem of

Doerner et al. (2002)as the mechanism to generate a pool of solutions. In theSavingsAntsap-

proach, solutions are generated using attractiveness values balancing the savings values of the clas-

sical Clarke and Wrightalgorithm and the pheromone information from previous iterations. The

D-Ants approach is effective solving small and large scale benchmark instances as well as real

world sized problems.

In his evolutionary algorithm,Prins (2004)proposes a population of solutions initialized using

three heuristic methods (Clarke and Wright, 1964; Mole and Jameson, 1976; Gillett and Miller,

1974) and utilizing random permutations of customers to produce a complete population. Chromo-

somes represent solutions in the form of giant tours formed with the ordered sequence of routes. In

genetic algorithms for solving routing problems, each bit in the chromosome usually represents a

customer and multiple copies of the depot are used to separate the routes. Instead of using copies

of the depot,Prinsutilizes an optimal splitting procedure to determine the best way to separate the

routes in the chromosome. The routes and the fitness value of each solution are determined by

solving a min-cost path problem on an auxiliary graph.

Tarantilis (2005)employes the method ofGlover (1998)to generate a collection of diversi-

fied solutions and initiate an adaptive memory solution procedure. This methodology systemati-
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cally generates different permutations, or sequences, of customers and then successively assigns

customers to routes to produce a VRP solution using a generalized assignment process. These di-

versified solutions are then improved with a tabu search and combined using elite parts of the routes

to produce new solutions that update the adaptive memory components.

Only a few studies have used an initial set of solutions as a means to solve the SDVRP.Belfiore

et al. (2006)study the implementation of a scatter search for a routing problem with split deliveries,

heterogeneous vehicles, time windows, and accessibility constraints applied to a retail market in

Brazil. Their’s is the first attempt to solve split delivery problems with those particular side con-

straints. The initial solutions for the scatter search are generated using the constructive heuristic

of Dullaert et al. (2002)for the problem with heterogeneous vehicles and time windows. Random

elements are used to diversify the solutions.

Mota et al. (2007)propose a scatter search that generates a population of feasible solutions

based on a giant TSP tour visiting all customers. The construction of a solution commences by se-

lecting a starting customer in the giant tour and sequentially cutting that tour into individual routes

where the demand of the first and last customer of each route is split when that demand does not fit

the first vehicle serving it. The selection of nonconsecutive starting customers helps obtain different

solutions.Mota et al. (2007)also adapt the algorithm ofClarke and Wrightfor split deliveries to

find another fraction of the population of solutions. This adaptation of theClarke and Wrightal-

gorithm does not guarantee feasibility but produces diversified solutions by statistically prohibiting

half of the savings used in the construction of previous solutions.Boudia et al. (2007)solve the SD-

VRP using a memetic algorithm with population management and create the initial population both

heuristically and randomly; two solutions are constructed heuristically by the algorithms ofClarke

and Wright (1964)andGillett and Miller (1974)whereas the rest of the population is generated with

a random permutation of the customers. This method to generate the initial population is similar

to that ofPrins (2004), the only difference is the number of solutions created heuristically. The

memetic algorithm produces new best SDVRP solutions for benchmark problems ofChristofides

and Eilon (1969)andChristofides et al. (1979)involving 75 and 120 customers with original de-
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mands and improves the state of the art algorithms (Archetti, Hertz, and Speranza, 2006; Chen,

Golden, and Wasil, 2007) in some of the other tested problems.

6.3 An Aggressive Diversification-Based Search Algorithm

6.3.1 A New Diversification Method

CA quickly finds SDVRP solutions whose objective function value is usually within 10% of the

best existing solutions. However, those solutions display a common pattern; customers closer to the

depot considerably deteriorate the quality of the overall solution. To mitigate this problem, the ICA

changes the sequence of customers inL to improve upon CA solutions. The VND further improves

the search process using a set of local search moves. Although each method is effective and can

avoid getting trapped in a local optimum region, these procedures do not guarantee a thorough ex-

ploration of the solution space. Diversification schemes are explicitly designed to improve solution

space exploration.

A diversification scheme is proposed and tested based on a geographical division of the cus-

tomers using rings, or spatial bands, centered at the depot. The geographic space of the problem is

marked with rings of varying circumferences used to group the customers. The original problem is

partially solved with the customers located inside certain rings. These selected customers are as-

signed to routes using the CA. Subsequently, the remaining customers, belonging to the other rings,

are inserted into the partial solution to yield a complete solution to the original problem.

A ring is defined by an inner and outer radius,rin androut, measured outward from the depot.

The customers inside a ring are those whose distance from the depot is greater thanrin and less

than or equal torout, rin < c0j ≤ rout. Although any number of rings can be used, the proposed

scheme uses three non-overlapping rings encompassing all customers. Figure6.1 illustrates the

geographical division used in the scheme applied to a problem involving 50 customers. In the

figure, there are three rings of radiusr, R, andRmax, respectively. These define the ringsA, B,
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Figure 6.1:Geographical depiction of ring-based partition of 50 customers problem from

Archetti et al. (2006).
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Figure 6.2: Diversified solutions for problem 1 of Archetti et al. (2006) involving 50

customers with the original demands.

andC. For example, ringA is defined byrin = 0 androut = r, ring B is defined byrin = r and

rout = R, and ringC is defined byrin = R androut = Rmax

The original problem includes then customers in the setN = {1, ..., n}. RingsA, B, andC

partitionN into three subsetsNA, NB, andNC such that: 1)NA∩NB = NA∩NC = NB∩NC = ∅

and 2)N = NA ∪NB ∪NC . A partial solution is then obtained using the CA with the customers

in NA andNC while the customers inNB are temporarily excluded. The complete solution is then

obtained when the customers inNB are inserted into the partial solution also using the CA. Varying

values ofr andR varies the size ofB, and subsequentlyNB, the exclusion set in the method,

yielding a variety of solutions. This approach yields a much more aggressive diversification strategy

than the one obtained just using local improvement methods such as found with ICA.

The range of diversified solutions based on varied sizes ofB is next examined. Figure6.2

shows the solutions to problem 1 and Figure6.3shows solutions to problem 6 fromArchetti, Hertz,

and Speranza (2006)obtained with the CA and the diversification scheme using different settings

for ring B. In each figure, solution values are shown as a percentage deviation from the objective
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Figure 6.3: Diversified solutions for problem 6 of Archetti et al. (2006) involving 120

customers with the original demands.

function value obtained using the basic CA. A negative deviation indicates that the diversification

directly provides a better solution whereas a positive deviation indicates the diversified solution is

not as good. The width and location of ringB varies as a function ofRmax. The inner radiusr

varies in the range[0.1Rmax, 0.9Rmax] in steps of0.1Rmax whereas the outer radiusR varies in the

range[0.2Rmax, 1.0Rmax] also in steps of0.1Rmax. The ring settingsr andR are shown in each

figure in the formr − R on the horizontal axis. Note that different settings for the inner and outer

radius can be used to generate a larger number of diversified solutions. This diversification scheme

can be applied to any routing problem. Also, note that since this scheme generates diverse solutions,

the initial solution quality is not a primary concern; local improvement is ultimately applied to the

diverse solutions in the computational procedure.

Figures6.4 to 6.7 illustrate four solutions taken from the generated set shown in Figure6.2.

Figure6.4 illustrates the solution found with the basic CA while Figure6.5 illustrates the solution

in the diversified set which is the most different from the basic CA solution shown in Figure6.4. In

this case, the number of edges appearing in one solution but not in the other are counted to measure
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Figure 6.4: Illustration of the basic CA solution for problem 1 of Archetti et al. (2006)

involving 50 customers with the original demands (z = 578.83).

Figure 6.5: Illustration of a solution taken from the set of solutions for problem 1 of

Archetti et al. (2006) that most differs from the basic CA solution (z = 640.58 and ring

settings0.40− 0.50).

135



Figure 6.6: Illustration of a solution taken from the set of solutions for problem 1 of

Archetti et al. (2006) with the lowest objective function value (z = 556.56 and ring settings

0.20− 0.90).

Figure 6.7: Illustration of a solution taken from the set of solutions for problem 1 of

Archetti et al. (2006) with the highest objective function value (z = 746.14 and ring

settings0.60− 1.00).
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the difference between two solutions. Figure6.6 illustrates the solution in the diversified set with

the lowest objective function valuez, and finally Figure6.7illustrates the solution in the diversified

set with the highest objective function valuez. These figures reinforce with confidence that the

ring-based diversification process does in fact generate a variety of solutions.

6.3.2 The ICA+VND With Diversification (iVNDiv) Solution Approach

The proposed solution approach couples the algorithms presented inAleman et al. (2007)with the

new diversification methodology. The idea is to solve the problem using the iterative constructive

approach and variable neighborhood descent ofAleman et al. (2007)and then restart the search

from different points in the solution space when the diversification phase commences. The result is

a multi-start algorithm for the SDVRP.

The details of iVNDiv are given in Algorithms 1 and 2. The set of solutions is generated

using Algorithm 1. This algorithm utilizes various ring settings to partition the original problem

in a variety of ways and produce different solutions. The algorithm constructs solutions with the

constructive approach (CA) ofAleman et al. (2007). Once a complete solution is generated, it

is added to the full set of solutions. Before adding solutions, their objective function values are

verified to guarantee unique elements in the set of diverse solutions.

With the full set of diversified solutions, the ICA and VND ofAleman et al. (2007)are used

to improve the solutions in the diversified set. The number of solutions from the set used as starting

points in the solution space varies. The more solutions used, the higher the computational cost.

A maximum of 5 starting solutions are used in the proposed iVNDiv to balance the quality of the

solution and their running times. These 5 solutions are the best solutions in the set of diversified

solutions. The iVNDiv is presented in Algorithm 2.
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Algorithm 1: - Generation of setS of solutions

SetS = ∅.

Let N = {1, ..., n} be the set of customers in the original problem.

Let NA ⊂ N be the subset of customers in accordance withc0i ≤ r for i ∈ N .

Let NB ⊂ N be the subset of customers in accordance withr < c0i ≤ R.

Let NC ⊂ N be the subset of customers in accordance withR < c0i ≤ Rmax for i ∈ N .

width = 0.10

for r = 0 ; r < 1.00 ; r = r + width do

for R = r + width ; R ≤ 1.00 ; R = R + width do

Design a listL1 with all customersi ∈ NA ∪NC .

Order the customers inL1 by nonincreasing distance from the depot.

With L1, use the CA to find a partial solutions1 to the problem.

Define a listL2 with all customersi ∈ NB .

Order the customers inL2 by nonincreasing distance from the depot.

Using the CA, insert the customers inL2 sequentially intos1 to produce a complete solutions2.

SetS = S ∪ {s2}.

end for

end for

return S

Algorithm 2: - ICA+VND With Diversification (iVNDiv)

Execute Algorithm 1 to generate setS of solutions.

Setxb as the best solution with solution valuef(xb) = ∞

jumpCounter = 0.

maxJumps = 5.

while jumpCounter < maxJumps do

Select the solutionx from setS with the lowest objective function value and remove it fromS.

Execute the ICA+VND approach ofAleman et al. (2007)to improvex and obtainx′.

if f(x′) < f(xb) then

xb = x′

end if

jumpCounter = jumpCounter + 1.

end while

return xb
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6.4 Computational Results

The iVNDiv was implemented inC# and experiments were carried out using a Pentium 4, 2.8

GHz, 512MB of RAM. The iVNDiv algorithm was tested on problem sets available in the literature

includingArchetti, Hertz, and Speranza (2006), Belenguer et al. (2000), Chen et al. (2007), andJin

et al. (2008). These sets have been solved with existing approaches which are compared to iVNDiv

in this empirical analysis. The tested instances are identified using the formp-aaa-nnn . The first

field, p, is an alphabetical character to identify the publication where the problem is identified. The

second field,aaa , is a string of variable length corresponding to the name of the instance adopted

in the publication, whereas the third field is a three-digit integer denoting the number of customers

excluding the depot. The first field,p, takes the following values:

• a Archetti, Hertz, and Speranza (2006)

• b Belenguer et al. (2000)

• c Chen et al. (2007)

• j Jin et al. (2007)

The instances used byArchetti, Hertz, and Speranza (2006)are the same problems 1-5 and

11-12 given inChristofides and Eilon (1969)andChristofides et al. (1979)involving 50 to 199

customers in addition to the depot. In problems 1-5, customers are randomly distributed in the

plane, while they are clustered in problems 11-12. From those 7 problems,Archetti, Hertz, and

Speranza (2006)generated 42 more by randomly modifying the customer demands at different

intervals. These random problems are unavailable. However,Mota et al. (2007)used the same

algorithm ofArchetti, Hertz, and Speranza (2006)to generate their problems. The problems used

in this study were obtained fromBoudia et al. (2007). In this analysis, the problems with random

customer demands have the exact same demand values as inMota et al. (2007)andBoudia et al.

(2007). Belenguer et al. (2000)used a total of 25 problems: 11 TSPLIB problems involving
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21 to 100 customers and 14 randomly generated problems from the TSPLIB (eil51, eil76, and

eil101). The same vehicle capacityQ = 160 is used in each problem and the customer demands are

randomly generated within 6 intervals expressed as a funtion ofQ, as inDror and Trudeau (1989)

andArchetti, Hertz, and Speranza (2006). Chen et al. (2007)recently generated a new set of 21

problems involving 8 to 288 customers. Each problem has a geometric symmetry with customers

located in concentric circles around the depot.Jin et al. (2007)used a TSPLIB instance with 21

customers and generated 4 problems involving 18 to 22 customers.

Computational results for theArchetti et al.instances are presented in Tables6.1 to 6.3. The

solution values from the existing algorithms are reproduced from the corresponding references. The

existing algorithms are the variable neighborhood descent (ICA+VND) ofAleman et al. (2007),

the scatter search (SS) ofMota et al. (2007), the memetic algorithm with population management

(MA |PM) of Boudia et al. (2007), the three tabu searches (Splitabu, Splitabu-DT, and Fast-Splitabu)

of Archetti, Hertz, and Speranza (2006), and the hybrid algorithm (EMIP+VRTR) ofChen et al.

(2007). In Table6.1, columns with headerm contain the number of vehicles in the final iVNDiv,

ICA+VND, SS, and MA|PM solutions, which is always the minimum possible, whereas columns

with headerm′ contain the number of vehicles in the final solutions found with the tabu searches

of Archetti, Hertz, and Speranza (2006). Results in Table6.1show that the ICA+NVD algorithm is

clearly dominated by its counterpart with the proposed diversification scheme, i.e. iVNDiv. Com-

pared to SS, iVNDiv provides better solutions especially in problems with large customer demands

in the ranges [0.10-0.90], [0.30-0.70], and [0.70-0.90], where the largest cost reduction can occur,

as shown inDror and Trudeau (1989)andArchetti et al. (2008). Although iVNDiv finds solutions

of similar quality and performs better in one problem, the MA|PM clearly dominates iVNDiv in this

problem set.

The comparison with the tabu searches and EMIP+VRTR on the problems with random cus-

tomer demands is not straightforward. First, there is a potential discrepancy regarding the actual

customer demand values used byArchetti, Hertz, and Speranza (2006). Second, the values repro-

duced fromChen et al. (2007)correspond to the median values from 30 solution instances for
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each random problem. Across the board, there is no apparent dominance of iVNDiv over the tabu

searches, but the number of vehicles in the final iVNDiv solutions is generally lower than in the

tabu search solutions. In some cases, the tabu searches use up to 14 more vehicles than iVNDiv

(see for example problem a-05-199 with demands in [0.10-0.90]), which can lead to solutions with

lower objective function values but possibly higher operational costs in actual problems.Chen et al.

(2007)do not provide the number of vehicles used in their final EMIP+VRTR solutions, but the fleet

size is apparently a decision variable. iVNDiv is able to improve EMIP+VRTR in only 1 problem.

Table6.2 shows the best known SDVRP solutions available in the literature for the instances

of Archetti et al.and a comparison with the iVNDiv solutions. Note that EMIP+VRTR values are

median values from 30 instances. The best known solutions are presented with their solution values

z, the numberm of vehicles, and the publication where they are reproduced from. Problem a-01-

050 with original demands is optimally solved byBelenguer et al. (2000)and its solution value was

calculated using integer inter-node distances. The tables also provide the percentage improvement

of the iVNDiv solutions over the best ones. Out of the 49 problems, 26 best solutions have been

found with the EMIP+VRTR hybrid approach ofChen et al. (2007), 10 with the MA|PM memetic

algorithm, 10 with the tabu searches, and 2 with the scatter search. In this table, it is also important

to recall the effect of the number of vehicles in the final solutions and that iVNDiv, SS, and MA|PM

utilize the smallest fleet possible. The iVNDiv improves the best known solution to problem a-02-

075 in the range [0.01-0.10] and generally uses less vehicles than other approaches.

The running times in seconds are provided in Table6.3. The characteristics of the machines

where the different approaches were run are listed at the bottom of the table. The impact of the

diversification scheme on the running time is noticed by comparing the results for iVNDiv and

ICA+VND in the table. However, the diversification procedure does not deteriorate the running

time considerably as the average customer demands get larger, which is not the case for the tabu

searches and EMIP+VRTR. With the tabu searches, one reason for the increase in the computational

effort may be the neighborhood structure used in the search. For each customer,Archetti, Hertz, and

Speranza (2006)evaluate removals from the visiting vehicles and/or insertions into other vehicles
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Table 6.2:Comparison of iVNDiv to Best Known Solutions for instances of Archetti et al.

(2006).

Best Known iVNDiv % above Best

Problem Demand z m Source z m z m

a-01-050 521.00 5 Belenguer et al. (2000) 524.61 5 0.69 0.00

a-02-075 823.89 10 Boudia et al. (2007) 851.24 10 3.32 0.00

a-03-100 829.44 8 Boudia et al. (2007) 852.74 8 2.81 0.00

a-04-150 1041.99 Chen et al. (2007) 1074.11 12 3.08

a-05-199 1307.40 Chen et al. (2007) 1368.67 16 4.69

a-06-120 1041.20 7 Boudia et al. (2007) 1201.83 7 15.43 0.00

a-07-100 819.56 10 Boudia et al. (2007) 824.78 10 0.64 0.00

a-01-050 [0.01-0.10] 457.21 Chen et al. (2007) 471.92 3 3.22

a-02-075 [0.01-0.10] 598.25 Chen et al. (2007) 597.46 4 -0.13

a-03-100 [0.01-0.10] 726.81 5 Boudia et al. (2007) 745.35 5 2.55 0.00

a-04-150 [0.01-0.10] 875.16 Chen et al. (2007) 891.98 8 1.92

a-05-199 [0.01-0.10] 1018.71 10 Boudia et al. (2007) 1073.55 10 5.38 0.00

a-06-120 [0.01-0.10] 976.57 6 Boudia et al. (2007) 1087.80 6 11.39 0.00

a-07-100 [0.01-0.10] 633.80 5 Mota et al. (2007) 673.54 5 6.27 0.00

a-01-050 [0.10-0.30] 723.57 Chen et al. (2007) 766.19 10 5.89

a-02-075 [0.10-0.30] 1074.01 15 Mota et al. (2007) 1099.47 15 2.37 0.00

a-03-100 [0.10-0.30] 1392.85 20 Boudia et al. (2007) 1425.90 20 2.37 0.00

a-04-150 [0.10-0.30] 1844.96 Chen et al. (2007) 1978.01 29 7.21

a-05-199 [0.10-0.30] 2258.66 Chen et al. (2007) 2464.65 38 9.12

a-06-120 [0.10-0.30] 2568.90 Chen et al. (2007) 2806.92 23 9.27

a-07-100 [0.10-0.30] 1414.33 Chen et al. (2007) 1428.27 20 0.99

a-01-050 [0.10-0.50] 943.86 Chen et al. (2007) 1039.89 15 10.17

a-02-075 [0.10-0.50] 1393.53 Chen et al. (2007) 1478.67 22 6.11

a-03-100 [0.10-0.50] 1845.30 29 Boudia et al. (2007) 1956.13 29 6.01 0.00

a-04-150 [0.10-0.50] 2532.93 Chen et al. (2007) 2671.62 43 5.48

a-05-199 [0.10-0.50] 3191.25 56 Boudia et al. (2007) 3411.38 56 6.90 0.00

a-06-120 [0.10-0.50] 3687.06 Chen et al. (2007) 4026.53 34 9.21

a-07-100 [0.10-0.50] 1973.34 Chen et al. (2007) 2007.11 29 1.71

Continued on next page
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Table 6.2:Comparison of iVNDiv to Best Known Solutions for instances of Archetti et al.

(2006) (Continued).

Best Known iVNDiv % above Best

Problem Demand z m Source z m z m

a-01-050 [0.10-0.90] 1408.34 Chen et al. (2007) 1522.43 25 8.10

a-02-075 [0.10-0.90] 2056.54 Chen et al. (2007) 2200.51 37 7.00

a-03-100 [0.10-0.90] 2746.75 56 Archetti et al. (2006) 2865.86 48 4.34 -14.29

a-04-150 [0.10-0.90] 3849.73 84 Archetti et al. (2006) 4165.18 73 8.19 -13.10

a-05-199 [0.10-0.90] 4737.47 107 Archetti et al. (2006) 5184.57 93 9.44 -13.08

a-06-120 [0.10-0.90] 6079.14 Chen et al. (2007) 6364.87 56 4.70

a-07-100 [0.10-0.90] 3010.50 Archetti et al. (2006) 3156.31 48 4.84

a-01-050 [0.30-0.70] 1408.68 Chen et al. (2007) 1540.39 25 9.35

a-02-075 [0.30-0.70] 2112.61 Chen et al. (2007) 2238.98 37 5.98

a-03-100 [0.30-0.70] 2764.25 53 Archetti et al. (2006) 2941.64 49 6.42 -7.55

a-04-150 [0.30-0.70] 3967.11 80 Archetti et al. (2006) 4165.18 73 4.99 -8.75

a-05-199 [0.30-0.70] 5001.45 103 Archetti et al. (2006) 5363.65 96 7.24 -6.80

a-06-120 [0.30-0.70] 6123.96 Chen et al. (2007) 6545.50 58 6.88

a-07-100 [0.30-0.70] 2882.12 Archetti et al. (2006) 3225.63 49 11.92

a-01-050 [0.70-0.90] 2056.01 Chen et al. (2007) 2215.34 40 7.75

a-02-075 [0.70-0.90] 3067.19 Chen et al. (2007) 3304.24 60 7.73

a-03-100 [0.70-0.90] 4278.83 82 Archetti et al. (2006) 4429.21 80 3.51 -2.44

a-04-150 [0.70-0.90] 5950.35 Chen et al. (2007) 6482.11 119 8.94

a-05-199 [0.70-0.90] 7207.04 Chen et al. (2007) 8329.55 158 15.58

a-06-120 [0.70-0.90] 8941.79 Chen et al. (2007) 10302.16 95 15.21

a-07-100 [0.70-0.90] 4773.59 Archetti et al. (2006) 5028.78 80 5.35

z denotes objective function value obtained.

m denotes number of vehicles in final solution.
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Figure 6.8: Average running times versus demand range for instances of Archetti et al.

(2006).

to find a better solution. This operator may be particularly expensive when the number of vehicles

is large, as in problems with larger customer demands. In the case of EMIP+VRTR, the number of

endpoints increases with the number of routes as one or two endpoints and the closest neighbors to

each endpoint are considered for each route. For larger average customer demands, the resulting

mixed integer program can be considerable in size and more difficult to solve. Figure6.8shows the

average running times of the existing algorithms on the instances ofArchetti, Hertz, and Speranza

(2006)grouped by demand range. Note how the time increases with the customer demand for the

tabu searches and EMIP+VRTR. Because both the constructive approach and VND ofAleman et al.

(2007)evaluate the cheapest insertion position, a larger number of customers per route increases

the complexity of iVNDiv. The large average running time of iVNDiv on problems in the range

[0.01-0.10] is caused by a large number of stops per route. Running times for iVNDiv were found

related to the ration/m (see Table6.4), which is an estimation of the expected stops per route. This

dependency is illustrated in Figure6.9.

147



Ta
bl

e
6.

3:
R

un
ni

ng
tim

es
of

iV
N

D
iv

on
in

st
an

ce
s

of
A

rc
he

tti
et

al
.

(2
00

6)
.

P
ro

bl
em

D
em

an
d

iV
N

D
iv

(a
)

IC
A

+
V

N
D

(a
)

S
S(b

)
M

A
|P

M
(c

)
S

pl
ita

bu
(d

)
S

pl
ita

bu
-D

T(d
)

E
M

IP
+

V
T

R
(e

)

a-
01

-0
50

54
.9

06
3

10
.8

9
24

.8
0

8.
53

17
.0

0
13

.2
0

1.
80

a-
02

-0
75

83
.2

81
3

9.
81

61
.6

6
35

.7
2

63
.6

0
35

.8
0

4.
00

a-
03

-1
00

31
9.

32
81

43
.5

0
10

8.
80

34
.5

9
59

.6
0

57
.6

0
-

a-
04

-1
50

13
61

.1
56

3
12

9.
23

26
1.

28
10

3.
69

43
9.

60
38

9.
00

10
.0

0

a-
05

-1
99

32
84

.6
40

6
53

4.
83

35
2.

31
35

3.
84

19
00

.4
0

38
6.

40
18

.1
0

a-
06

-1
20

34
14

.4
06

3
25

7.
30

13
1.

34
50

.9
2

40
.0

0
38

.4
0

5.
60

a-
07

-1
00

12
6.

07
81

21
.0

2
10

8.
41

42
.8

9
86

.4
0

49
.0

0
3.

70

a-
01

-0
50

[0
.0

1-
0.

10
]

33
.7

03
1

4.
52

26
.8

6
12

.3
8

9.
00

4.
80

1.
90

a-
02

-0
75

[0
.0

1-
0.

10
]

30
3.

76
56

51
.2

8
68

.8
0

18
.7

5
42

.4
0

13
.0

0
25

.8
0

a-
03

-1
00

[0
.0

1-
0.

10
]

21
94

.2
34

4
41

5.
47

12
5.

06
37

.1
2

58
.6

0
31

.2
0

-

a-
04

-1
50

[0
.0

1-
0.

10
]

34
61

.4
37

5
66

6.
20

35
2.

09
10

0.
27

25
8.

00
17

2.
80

10
7.

80

a-
05

-1
99

[0
.0

1-
0.

10
]

15
50

5.
21

83
37

50
.4

4
96

3.
84

35
6.

22
75

3.
80

52
5.

80
41

3.
40

a-
06

-1
20

[0
.0

1-
0.

10
]

39
52

.6
71

9
34

1.
59

16
3.

28
72

.9
8

60
.6

0
42

.4
0

36
.4

0

a-
07

-1
00

[0
.0

1-
0.

10
]

12
07

.4
21

9
22

2.
42

80
.5

6
34

.9
7

71
.2

0
57

.8
0

53
.9

0

C
o

n
tin

u
e

d
o

n
n

ex
tp

ag
e

148



Ta
bl

e
6.

3:
R

un
ni

ng
tim

es
of

iV
N

D
iv

on
in

st
an

ce
s

of
A

rc
he

tti
et

al
.

(2
00

6)
(

C
o

n
tin

u
e

d).

P
ro

bl
em

D
em

an
d

iV
N

D
iv

(a
)

IC
A

+
V

N
D

(a
)

S
S(b

)
M

A
|P

M
(c

)
S

pl
ita

bu
(d

)
S

pl
ita

bu
-D

T(d
)

E
M

IP
+

V
T

R
(e

)

a-
01

-0
50

[0
.1

0-
0.

30
]

19
.7

65
6

1.
59

26
.3

1
10

.2
2

27
.2

0
21

.8
0

3.
40

a-
02

-0
75

[0
.1

0-
0.

30
]

73
.0

46
9

13
.1

9
86

.0
2

34
.1

4
78

.0
0

45
.4

0
57

.0
0

a-
03

-1
00

[0
.1

0-
0.

30
]

19
0.

53
13

34
.0

9
98

.0
0

78
.0

6
12

1.
60

95
.8

0
-

a-
04

-1
50

[0
.1

0-
0.

30
]

87
8.

54
69

16
4.

19
10

.0
6

14
7.

89
54

4.
80

39
3.

20
30

8.
00

a-
05

-1
99

[0
.1

0-
0.

30
]

14
57

.1
56

3
24

8.
83

19
.1

1
34

7.
14

12
24

.4
0

75
4.

80
61

8.
50

a-
06

-1
20

[0
.1

0-
0.

30
]

55
8.

56
25

54
.2

5
11

.3
3

14
4.

19
51

6.
00

14
2.

60
13

6.
40

a-
07

-1
00

[0
.1

0-
0.

30
]

12
3

22
.5

6
15

1.
25

43
.2

7
85

.2
0

14
6.

00
12

6.
50

a-
01

-0
50

[0
.1

0-
0.

50
]

18
.1

56
3

2.
81

3.
84

12
.4

9
55

.6
0

28
.2

0
14

.7
0

a-
02

-0
75

[0
.1

0-
0.

50
]

67
.7

96
9

11
.2

5
6.

09
37

.3
8

71
.0

0
12

3.
20

21
4.

00

a-
03

-1
00

[0
.1

0-
0.

50
]

15
4.

46
88

25
.1

6
7.

55
28

.3
9

20
5.

60
13

6.
20

-

a-
04

-1
50

[0
.1

0-
0.

50
]

62
5.

82
81

11
1.

66
16

.1
7

22
4.

89
56

3.
80

73
9.

20
63

0.
50

a-
05

-1
99

[0
.1

0-
0.

50
]

21
73

.8
43

8
33

9.
36

20
.6

4
43

6.
20

38
10

.6
0

26
68

.0
0

17
75

.7
0

a-
06

-1
20

[0
.1

0-
0.

50
]

35
8.

56
25

40
.5

3
63

.8
0

16
3.

14
25

9.
00

26
8.

00
22

0.
70

a-
07

-1
00

[0
.1

0-
0.

50
]

10
7.

46
88

11
.9

2
41

.2
3

51
.3

1
18

8.
20

29
2.

80
28

7.
60

C
o

n
tin

u
e

d
o

n
n

ex
tp

ag
e

149



Ta
bl

e
6.

3:
R

un
ni

ng
tim

es
of

iV
N

D
iv

on
in

st
an

ce
s

of
A

rc
he

tti
et

al
.

(2
00

6)
(

C
o

n
tin

u
e

d).

P
ro

bl
em

D
em

an
d

iV
N

D
iv

(a
)

IC
A

+
V

N
D

(a
)

S
S(b

)
M

A
|P

M
(c

)
S

pl
ita

bu
(d

)
S

pl
ita

bu
-D

T(d
)

E
M

IP
+

V
T

R
(e

)

a-
01

-0
50

[0
.1

0-
0.

90
]

16
.3

59
4

2.
83

3.
91

21
.4

2
34

.0
0

60
.8

0
55

.4
0

a-
02

-0
75

[0
.1

0-
0.

90
]

71
.1

09
4

10
.8

0
6.

64
46

.1
1

31
1.

20
19

3.
40

40
1.

10

a-
03

-1
00

[0
.1

0-
0.

90
]

12
6.

51
56

19
.0

0
9.

16
84

.3
8

41
2.

20
64

8.
60

-

a-
04

-1
50

[0
.1

0-
0.

90
]

67
1.

35
94

14
1.

27
25

.0
3

24
4.

91
18

22
.4

0
22

78
.0

0
22

20
.0

0

a-
05

-1
99

[0
.1

0-
0.

90
]

36
50

.5
93

8
66

2.
77

71
.0

9
72

5.
69

25
98

.4
0

32
97

.2
0

30
38

.1
0

a-
06

-1
20

[0
.1

0-
0.

90
]

45
8.

90
63

42
.0

0
15

.8
6

19
6.

14
10

37
.0

0
87

7.
80

72
2.

80

a-
07

-1
00

[0
.1

0-
0.

90
]

96
.9

84
4

12
.8

9
9.

08
52

.1
3

52
3.

40
25

9.
60

25
1.

20

a-
01

-0
50

[0
.3

0-
0.

70
]

15
.3

28
1

2.
20

4.
25

24
.5

3
51

.8
0

48
.6

0
47

.9
0

a-
02

-0
75

[0
.3

0-
0.

70
]

80
.2

96
9

11
.2

8
7.

14
51

.7
8

18
4.

40
12

8.
60

50
9.

60

a-
03

-1
00

[0
.3

0-
0.

70
]

10
3.

93
75

15
.1

4
10

.3
6

10
0.

16
45

3.
80

81
0.

20
-

a-
04

-1
50

[0
.3

0-
0.

70
]

67
5.

39
06

14
3.

05
19

.3
8

24
4.

86
15

12
.4

0
30

08
.0

0
30

28
.3

0

a-
05

-1
99

[0
.3

0-
0.

70
]

30
26

.2
18

8
34

9.
97

12
0.

28
74

9.
94

22
79

.4
0

35
65

.6
0

30
35

.7
0

a-
06

-1
20

[0
.3

0-
0.

70
]

46
9.

17
19

59
.2

0
17

.1
6

27
1.

39
47

6.
60

65
8.

60
60

5.
40

a-
07

-1
00

[0
.3

0-
0.

70
]

11
0.

04
69

13
.6

9
9.

73
91

.3
1

41
1.

00
77

7.
80

71
6.

50

a-
01

-0
50

[0
.7

0-
0.

90
]

18
.7

03
1

2.
59

4.
13

22
.9

1
15

9.
80

10
6.

40
13

5.
40

a-
02

-0
75

[0
.7

0-
0.

90
]

58
.0

46
9

10
.2

5
7.

66
27

.4
8

43
6.

60
86

9.
20

81
1.

00

a-
03

-1
00

[0
.7

0-
0.

90
]

94
.9

84
4

14
.3

1
12

.0
6

55
.7

5
18

91
.4

0
13

98
.4

0
-

a-
04

-1
50

[0
.7

0-
0.

90
]

58
4.

84
38

93
.7

8
13

1.
91

40
1.

62
87

82
.8

0
10

22
3.

20
10

03
8.

80

a-
05

-1
99

[0
.7

0-
0.

90
]

21
24

.6
56

3
46

0.
89

16
5.

28
57

1.
70

11
34

6.
80

21
84

9.
20

12
54

2.
30

a-
06

-1
20

[0
.7

0-
0.

90
]

63
6.

71
88

59
.2

8
20

.1
7

29
8.

08
20

32
.6

0
18

25
.6

0
72

5.
40

a-
07

-1
00

[0
.7

0-
0.

90
]

17
8.

18
75

20
.7

0
9.

19
18

0.
11

18
65

.0
0

10
04

.4
0

10
24

.3
0

(a
) P

4,
51

2M
B

,2
.8

G
H

z;(b
) P

4,
1.

0G
B

,2
.4

G
H

z;(c
) P

C
3.

0
G

H
z;

(d
) P

4,
25

6M
B

,2
.4

G
H

z;(e
) P

4,
51

2M
B

,1
.7

G
H

z.

150



Table 6.4:Expected stops per route for problems of Archetti et al. (2006).

Demand Stops per route Running time

Range (n/m) in seconds

[0.70-0.90] 1.25 528.02

[0.30-0.70] 2.04 640.06

[0.10-0.90] 2.08 727.40

[0.10-0.50] 3.46 500.88

[0.10-0.30] 5.09 471.52

Original 11.73 1234.83

[0.01-0.10] 19.15 3808.35

Figure 6.9: Average running times of iVNDiv versus demand range for instances of

Archetti et al. (2006).
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Table 6.5:Computational results of iVNDiv on some TSPLIB instances.

iVNDiv Belenguer et al. (2000) MA |PM

Problem z(a) CPU(b) UB(a) LB %ALB z(a) CPU(c) IMP

b-eil22-021 375 4.19 375 375 0.00 375 4.11 0.00

b-eil23-022 570 3.42 569 569 0.18 569 5.47 0.18

b-eil30-029 510 14.47 510 508 0.39 503 5.70 1.37

b-eil33-032 851 14.03 835 833 2.12 835 5.19 1.88

b-eil51-050 521 54.91 521 511.57 1.81 521 7.28 0.00

b-eilA76-075 847 83.28 832 782.7 7.59 828 35.94 2.24

b-eilB76-075 1055 79.00 1023 937.47 11.14 1019 13.09 3.41

b-eilC76-075 746 148.20 735 706.01 5.36 738 14.75 1.07

b-eilD76-075 695 140.83 683 659.43 5.12 682 23.12 1.87

b-eilA101-100 843 319.33 817 793.48 5.87 818 25.25 2.97

b-eilB101-100 1122 185.84 1077 1005.85 10.35 1082 21.81 3.57

Continued on next page

Tables6.5 and 6.6 show the computational results on the 25 problems given inBelenguer

et al. (2000). The iVNDiv solution values are compared with the bounds found byBelenguer et al.

with a cutting plane and a heuristic approach, the solution values found with MA|PM, the bounds

obtained with the branch-and-price approach (B&P) ofLiu (2005), the solution values found with

EMIP+VRTR, and the bounds produced by the column generation approach ofJin et al. (2008).

Unpublished values are omitted from the tables. Bold type indicate iVNDiv providing a better

feasible solution. Note that upper bounds and solution values obtained byBelenguer et al.and

MA |PM are calculated by rounding inter-node distance values to the nearest integer.

Table6.7 shows the computational results on the new 21 problems generated byChen et al.

(2007). The table contains solution valuesz, running times in seconds, and the percentage improve-

ments of iVNDiv over the EMIP+VRTR hybrid approach. Bold text is used to indicate the new best

solutions found so far for this new problem set. According to the literature, this is the first time

this problem set is used afterChen et al. (2007)andAleman et al. (2007). Out of the 21 prob-
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Table 6.6:Computational results of iVNDiv on the random problems of Belenguer et al.

(2000).

iVNDiv Belenguer et al. (2000) MA |PM

Problem z(a) CPU(b) UB(a) LB %ALB z(a) CPU(c) IMP

b-S51D1-050 466 40.53 458 454 2.58 458 8.77 1.72

b-S51D2-050 725 28.34 726 676.63 6.67 707 7.44 2.48

b-S51D3-050 994 14.70 972 905.22 8.93 945 7.84 4.93

b-S51D4-050 1672 16.53 1677 1520.67 9.05 1578 11.98 5.62

b-S51D5-050 1385 13.94 1440 1272.86 8.10 1351 16.72 2.45

b-S51D6-050 2211 16.83 2327 2113.03 4.43 2182 9.92 1.31

b-S76D1-075 600 476.27 594 584.87 2.52 592 15.23 1.33

b-S76D2-075 1138 46.94 1147 1020.32 10.34 1089 30.5 4.31

b-S76D3-075 1485 53.34 1474 1346.29 9.34 1427 12.89 3.91

b-S76D4-075 2160 51.84 2257 2011.64 6.87 2117 8.76 1.99

b-S101D1-100 740 2125.58 716 700.56 5.33 717 49.75 3.11

b-S101D2-100 1426 217.91 1393 †1270.97 10.87 1372 31.72 3.79

b-S101D3-100 1974 146.61 1975 †1739.66 11.87 1891 33.98 4.20

b-S101D5-100 2970 104.05 2915 †2630.43 11.43 2854 18.66 3.91

Continued on next page
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lems, the iVNDiv improves the solution values in 15 cases and equals the EMIP+VRTR solution

in the problem with 8 customers. The iVNDiv is computationally faster than EMIP+VRTR in all

the cases. ICA+VND performs similar to iVNDiv in terms of solution values, although iVNDiv

performs better in 7 cases. It is difficult to see how the running time of EMIP+VRTR is affected

by the problem size as it uses the maximum amount of computing time to solve the endpoint mixed

integer program for problems with at least 24 customers (Chen et al., 2007).

Finally, Table6.8 shows the solution values and running times in seconds of iVNDiv with

respect to the optimal solutions found with the exact approach ofJin et al. (2007). iVNDiv generates

high quality solutions that are 1.19% above optimality on average for the tested problems. Table6.8

reveals how difficult it is to exactly solve small sized problems (up to 21 customers) while iVNDiv

finds the optimal solution in three of the tested problems and is quite close to optimality in another

problem at a low computational effort.

6.5 Conclusions

Diversification of a local search process can be computationally expensive but is of benefit on harder

optimization problems. This research presents a new diversification method for routing problems

based on a novel use of spatially varied concentric rings around the routing depot. A set of diversi-

fied solutions are used to restart the VND search process ofAleman et al. (2007). A comprehensive

empirical test of this new diversification method was conducted and the reported results show the

utility of this new diversification scheme. The proposed diversification strategy can be used to solve

any variant of the vehicles routing problem as long as the constructive approach considers the corre-

sponding side constraints. Although the proposed diversification scheme is based on a geographical

division of the problem by means of concentric rings centered at the depot, this geographical divi-

sion can be modified. For example, instead of excluding all the customers in a complete ring, it may

be divided into sectors to exclude only the customers in those regions of the ring.

There are a couple future avenues of research. For instance, an aggressive diversification
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Table 6.7:Computational results of iVNDiv on instances of Chen et al. (2007).

EMIP + VRTR ICA + VND iVNDiv

Problem z CPU(a) z CPU(b) z CPU(b) m

c-SD01-008 228.28 0.7 228.28 0.06 228.28 0.19 6

c-SD02-016 714.40 54.4 708.28 0.22 708.28 1.48 12

c-SD03-016 430.61 67.3 430.58 0.17 430.58 0.58 12

c-SD04-024 631.06 400 635.84 0.55 635.84 2.31 18

c-SD05-032 1408.12 402.7 1390.57 0.69 1390.57 5.55 24

c-SD06-032 831.21 408.3 831.24 0.94 831.24 2.95 24

c-SD07-040 3714.40 403.2 3640.00 1.03 3640.00 8.13 30

c-SD08-048 5200.00 404.1 5068.28 1.75 5068.28 11.91 36

c-SD09-048 2059.84 404.3 2071.03 2.91 2071.03 19.73 36

c-SD10-064 2749.11 400 2747.83 3.58 2742.84 33.27 48

c-SD11-080 13612.12 400.1 13280.00 3.97 13280.00 35.16 60

c-SD12-080 7399.06 408.3 7279.97 4.00 7265.70 43.13 60

c-SD13-096 10367.06 404.5 10110.58 5.80 10110.58 50.97 72

c-SD14-120 11023.00 5021.7 10893.50 15.49 10829.25 141.77 90

c-SD15-144 15271.77 5042.3 15168.28 18.33 15168.28 191.66 108

c-SD16-144 3449.05 5014.7 3635.27 39.71 3580.07 2120.14 108

c-SD17-160 26665.76 5023.6 26559.93 17.42 26556.13 179.61 120

c-SD18-160 14546.58 5028.6 14440.59 40.38 14372.80 366.14 120

c-SD19-192 20559.21 5034.2 20191.19 27.64 20188.62 330.06 144

c-SD20-240 40408.22 5053 39813.49 63.18 39803.13 633.33 180

c-SD21-288 11491.67 5051 11799.60 738.49 11682.09 9387.55 216

z denotes objective function value obtained.

CPU denotes running time in seconds.

m denotes the number of vehicles in the final iVNDiv and ICA+VND solutions.

(a)P4, 512MB, 1.7 GHz.

(b)P4, 512MB, 2.8 GHz.
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Table 6.8: Computational results of iVNDiv versus optimality on instances of Jin et al.

(2007).

TSVI iVNDiv % above

Problem z∗ CPU(a) z CPU(b) optimality

j-Eil22-021 375.28 17 h 375.28 4.19 0.00

j-J1-018 127.39 13 h 127.49 1.73 0.08

j-J2-021 388.44 84 h 388.44 4.59 0.00

j-J3-022 367.93 17 h 389.54 3.73 5.87

j-J4-022 372.2 13 h 372.2 5.64 0.00

z∗ denotes optimal objective function value.

z denotes objective function value obtained.

CPU denotes running time:(a)—; (b)P4, 512MB, 2.8 GHz.

scheme is employed focusing on the best solutions. Future studies might consider examining the

worse solutions as a means of potentially maximizing the distance between a current solution and

a new search area. Another avenue would be to use the ring-based diversification method as a vo-

cabulary building mechanism to construct either high quality solutions, or to diversify solutions

whose components are selected based on low frequency of use. These avenues are currently under

investigation; the vocabulary building approach is presented next.
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Chapter 7

A Tabu Search with Vocabulary

Building Approach for the Vehicle

Routing Problem with Split Demands1

7.1 Introduction

The vehicle routing problem (VRP) seeks optimal routes over which similar vehicles deliver de-

mands to geographically dispersed customers. The VRP presumes all vehicles leave from and return

to a common depot. Customer demand is fully met by the vehicle visiting that customer. The split

delivery vehicle routing problem (SDVRP), first introduced byDror and Trudeau (1989)and then

Dror and Trudeau (1990), is a variant of the VRP. The SDVRP relaxes vehicle restrictions so that

customer demands can be supplied by one or more vehicles. The intent of the relaxation is so the

SDVRP approach can yield more efficient route structures.

Mathematically, the SDVRP is defined on an undirected, fully connected graphG = (V,E)

whereV = {0, 1, ..., n} is the set ofn + 1 nodes of the graph, andE = {(i, j) : i, j ∈ V, i < j}

is the set of edges connecting the nodes. Node 0 represents a depot where a fleetM = {1, ...,m}
1This chapter is found asAleman and Hill (2008).
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of identical vehicles with capacityQ are stationed, while the remaining node setN = {1, ..., n}

represents the customers. A non-negative cost, usually the inter-node distance,cij , is associated

with every edge(i, j) ∈ E. Each customeri ∈ N has a demand ofqi units and is located at a point

(xi, yi) in the two-dimensional space. The coordinates(x0, y0) indicate the depot location. This

notation is used throughout this chapter to describe the proposed SDVRP solution approach.

The SDVRP solution potentially reduces the operational cost of the fleet, especially when the

average customer demand exceeds 10% of the vehicle capacity (as stated byDror and Trudeau,

1989). In their worst-case analysis of the SDVRP,Archetti, Savelsbergh, and Speranza (2006)show

that the reduction in delivery costs obtainable by allowing split deliveries is at most 50%, and this

reduction bound is tight.Archetti et al. (2008)suggest that the benefits are mainly due to the re-

duction in the number of vehicles required to supply the customer demands. Their mathematical

analysis proved that the maximum reduction in the number of vehicles is 50% and the largest re-

duction occurs when the mean customer demand is between 50% and 70% of the vehicle capacity

with demand variances relatively small.

Although the literature on SDVRP is limited, different solution techniques have been imple-

mented to solve the problem. These techniques include branch and bound, column generation, dy-

namic programming, lagrangian relaxation, mixed integer programming, constructive approaches,

local, tabu and scatter search, variable neighborhood descent, memetic algorithms, and simulated

annealing. Most of these solution approaches have been developed in the last four years showing an

increasing interest in this routing problem. The reader is referred toArchetti and Speranza (2007),

Chen et al. (2007)andAleman et al. (2008)for a thorough literature review on properties, ap-

plications, and algorithms available. A state-of-the-art compilation of this literature is presented

in Table7.1showing the author(s), the solution methodologies deployed, and some remarkable in-

formation describing the study. This compilation includes the very recent work ofRubrico et al.

(2004), Nakao and Nagamochi (2007), Schmid (2007), Archetti, Speranza, and Savelsbergh (2008),

Belfiore et al. (2008), Bolduc et al. (2008), andNowak et al. (2008).
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Table 7.1:Existing literature on SDVRP.

Author(s) Year Solution methodology & Remarks

Dror and Trudeau 1989 Local search

Dror and Trudeau 1990 Properties and complexity

Frizzell and Giffin 1992 Constructive heuristic, grid network distances

Bouzaiene-Ayari et al. 1993 AdaptedClarke and Wright, stochastic demands

Dror et al. 1994 Branch and bound, properties

Frizzell and Giffin 1995 Constructive heuristic, grid network distances, time windows

Mullaseril et al. 1997 AdaptedDror and Trudeau (1989)for time windows

Sierksma and Tijssen 1998 Column generation, crew exchange

Belenguer et al. 2000 Lower bounds

Song et al. 2002 Newspaper allocation

Ho and Haugland 2004 Tabu search, time windows

Rubrico et al. 2004 Fast heuristics, grid distances

Archetti et al. 2005 Complexity; vehicles with capacity ofk units

Liu 2005 Two-stage algorithm, valid inequalities

Nowak 2005 Dynamic program, pickup and delivery

Archetti, Hertz, and Speranza 2006 Tabu search

Archetti, Savelsbergh, and Speranza2006 Worst-case analysis and potential savings

Belfiore et al. 2006 Scatter search, heterogeneous fleet, time windows

Gendreau 2006 Properties and review

Lee et al. 2006 Dynamic programming and shortest path

Yu et al. 2006 Lagrangian relaxation, inventory routing

Aleman et al. 2007 Variable neighborhood descent, adaptive memory concepts

Ambrosino and Sciomachen 2007 Local search, clustering procedure

Archetti and Speranza 2007 Survey on the SDVRP

Boudia et al. 2007 Memetic algorithm with population management

Chen et al. 2007 Mixed integer program, heuristic algorithm

Jin et al. 2007 Exact method with valid inequalities

Mota et al. 2007 Scatter search

Nakao and Nagamochi 2007 Dynamic program, set of items per customer

Schmid 2007 Exact and heuristic approaches, multi-depot,

heterogeneous fleet, time windows

Tavakkoli-Moghaddam et al. 2007 Simulated annealing, heterogeneous fleet

Wilck and Cavalier 2007 Loaded travel cost objective

Aleman et al. 2008 Diversification strategies, variable neighborhood descent

Archetti, Savelsbergh, and Speranza2008 Empirical analysis; benefits of split deliveries

Archetti, Speranza, and Savelsbergh2008 Integer program, heuristic search

Belfiore et al. 2008 Scatter search, time windows

Bolduc et al. 2008 Tabu search, time horizon, production, inventory

Jin et al. 2008 Column generation, lower bounds

Nowak et al. 2008 Heuristic approach, tabu list, pickup and delivery

161



This chapter presents a learning procedure, called Tabu Search with Vocabulary Building Ap-

proach (TSVBA) for solving the SDVRP. TSVBA is a population-based search approach that con-

structs an initial set of solutions and then uses the set of solutions to find attractive solution attributes

with which to construct new solutions. As the search progresses, the solution set evolves; better so-

lutions move into the set while bad solutions are removed. The initial set is constructed by varying

the critical angle of the constructive approach described inAleman et al. (2007). New solutions

are also created using an adaptation of the well-known savings algorithm ofClarke and Wright

(1964) that uses an improved version of the variable neighborhood descent presented inAleman

et al. (2007). The remainder of this chapter is organized as follows. Section7.2 describes the

proposed approach. Section7.3provides the procedure to construct the initial set of solutions while

the generation of new solutions is presented in Section7.4. A diversification strategy is outlined in

Section7.5, computational results are provided in Section7.6, and finally conclusions are given in

Section7.7.

7.2 Tabu Search with Vocabulary Building Approach

Tabu search with vocabulary building (TSVBA) is a learning procedure based on generating an

initial set of solutions whose characteristics are then used to construct new solutions of higher

quality replacing existing solutions of less quality. The method used to construct the new solutions

adapts the savings algorithm ofClarke and Wright (1964). Edges from previous solutions are stored

in a short-term memory structure to diversify the search and avoid getting trapped in a local optima.

Some of the edges are also kept in an elite list. This elite list functions as an aspiration criteria for

those edges within it. Within the framework of tabu search, this helps to intensify the search in

regions where good solutions may exist. The solutions generated are improved with the variable

neighborhood descent (VND) procedure ofAleman et al. (2007). The VND modifies standard

operators used for the VRP and helps improve SDVRP solutions. Since TSVBA is population

based, a fast local search is needed to improve the solutions at a relatively low computational effort.

162



Thus, the VND ofAleman et al. (2007)was modified to create Fast-VND which drastically reduces

the required processing time. The improved solutions obtained using Fast-VND replace selected

solutions in the set. The set of solutions is continually improved and evolved during the search until

a completion criteria is met. Once a final set is obtained, the search is intensified by again improving

each solution with another version of the original VND ofAleman et al. (2007), called Slow-VND.

The proposed TSVBA is outlined in Table7.2.

7.3 Initial Set of Solutions

The initial set is formed using various solutions generated with the constructive approach ofAleman

et al. (2007)augmented with a solution constructed using an adaptation of the parallel version of

the savings algorithm ofClarke and Wright (1964), called Clarke and Wright with split demands

(CW-SD). The inclusion of this latter solution in the set augments the solution attributes found in

solutions obtained with theAleman et al. (2007)approach, particularly in problems with clustered

customers. Both constructive approaches are described below.

7.3.1 Constructive Approach ofAleman et al. (2007): CA

The CA creates a list of customers sorted according to their distance from the depot. The farthest

customer is inserted into the solution to initiate a new route. Subsequent customers are inserted in

an existing route or a new route is initiated. The triangular inequality (i.e.,cik + ckj ≥ cij , for all i,

j, k) favors insertions in existing routes.

The CA adds additional considerations to keep routes from spreading spatially. Potential cus-

tomers should be placed in routes that are not spread out. The CA employs a route angle control

mechanism (RAC) which penalizes the insertion of customers into routes whose angles exceed a

critical angle value. The angle of a customer is defined as the angle between the line connecting the

depot with the customer and the horizon (i.e., 0 degrees), while the angle of a route is defined as the
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Table 7.2:Tabu Search with Vocabulary Building Approach: TSVBA.

Step 1: Generate an empty list of elite edges.

Step 2: Generate an initial set of solutions.

Step 3: Improve all solutions in the set with the Fast-VND.

Step 4: Find the common edges among the solutions in the set and generate a savings list based on the savings measure used in the

Clarke and Wright (1964)algorithm.

Step 5: Generate a final savings list with the common edges, elite edges, and the classical savings list ofClarke and Wright (1964), in

that order (i.e., concatenate the lists).

Step 6: Construct a solution with the CW-SD and the final savings list.

Step 7: Use the Fast-VND and the route addition local search to improve the constructed solution and generateSn.

Step 8: Update the short-term memory with the edges existing in solutionSn.

Step 9: If the worst solution in the set,Sw, was improved bySn, remove from the list of elite edges those not existing inSn.

Step 10: CompareSn with the best solution in the set,Sb, and identify those edges in one solution but not in the other.

Step 11: Calculate the degree of attractiveness for each of those edges found in Step 10.

Step 12: If the degree of attractiveness of an edge is greater than 0.5, add the edge to the list of elite edges.

Step 13: If Sn is better thanSw, replaceSw with Sn in the set.

Step 14: If a predefined number of iterations without improvingSw has not been reached, go to Step 4.

Step 15: If a split savings list is being used by CW-SD, go to Step 16. Otherwise, generate a split savings list and replace the classical

savings list in Step 5. Restart the iterations and go to Step 4.

Step 16: Use the Slow-VND to improve the solutions in the final set.

Step 17: Stop. The final solution corresponds toSb in the final set.
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maximum angle between the lines connecting the depot with any two customers in the route. In the

CA, the critical angle,θ∗, is estimated as the ratio of the circumference (360 degrees) and the fleet

size. This divides the region of the problem into equal slices so each vehicle ideally services the

customers located inside each slice. The insertion of customers into existing routes is penalized if

the route angles after the insertions exceedθ∗; otherwise, the insertion cost corresponds to the extra

distance required to service the customer and resume the trajectory of the original route.

The CA performs reasonably well in problems where customers are uniformly spread about

the solution region. The CA does not do as well on problems with clustered customers. In problems

with clustered customers, some slices of the region may be without customers, or at least less than

the expected number of customers. Changingθ∗ helps CA find better solutions for such problems.

The TSVBA usesθ∗ as a parameter to populate the initial set. The CA performs better in some

problems with smallθ∗ values while better in other problems with largeθ∗ values. The TSVBA uses

θ∗ values in the range[αθ∗, βθ∗], where0 < α < 1 and1 < β, to construct a variety of solutions.

To construct theith solution of the pool, TSVBA uses CA with critical alngle:

θ∗i = θmin +
θmax − θmin

k
× i (7.1)

whereθmin = αθ∗, θmax = βθ∗, k is the desired maximum number of solutions to be generated,

and0 ≤ i ≤ k. The constructed solutions form the initial set. The TSVBA also ensures only unique

solutions are retained in the initial set.

7.3.2 Clarke and Wright (1964) Algorithm with Split Demands: CW-

SD

The classical savings algorithm ofClarke and Wright (1964)(CW) is widely used to solve diverse

routing problems because of its simplicity and efficiency. CW initially creates an exclusive route for

each customer and then merges those routes producing the largest savings in the objective function
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Table 7.3:Clarke and Wright (1964) Algorithm with Split Demands: CW-SD.

Step 1: Calculate the savingssij = c0i + c0j − cij for each pair of customers(i, j).

Step 2: Sort the pairs(i, j) in descending order based on the savingssij . This generates asavings list. Process thesavings liststarting

from the first item (largestsij ).

Step 3: For the savingssij in consideration, insert the edge(i, j) in a route if no constraints are violated and any of of the following

conditions holds:

• Neither customeri nor j are assigned to a route. In this case a new route is initialized with the edge(i, j). If the

combined demand ofi andj exceeds the vehicle capacity, the demand of the closer customer to the depot is split and a

new customer demand is included in the problem whose value is equal to the un-serviced demand.

• Exactly one of the two customersi or j is assigned to an existing route and that customer is not interior in that route.

A customer is interior if it is not the first or last customer in the route, excluding the depot. In this case the edge

(i, j) is added to the existing route. If the demand of the customer not assigned to the existing route exceeds the

vehicle capacity, its demand is split and a new customer demand is included in the problem whose value is equal to the

un-serviced demand.

• Both customersi andj are included in existing routes and neitheri nor j are interior in the routes. In this case the

routes are merged through the edge(i, j). The sequence to service the customers in each route is considered before the

merge. For simplicity, no split is allowed if the combined demand of the existing routes exceeds the vehicle capacity.

Step 4: If all customer demands are fully supplied, go to Step 6.

Step 5: If the savings list is not exhausted, return to Step 3 and process the next item in the list. Otherwise, create an exclusive route

for each customer with any un-supplied demand.

Step 6: Stop. The solution consists of the routes created in Steps 3 and 5.

value. The savings produced by merging the routes of customersi andj is given bysij = c0i +

c0j − cij . While CW only allows feasible route merges, the CW-SD developed in this study allows

infeasible merges. When infeasible, meaning vehicle capacity is exceeded, the customer demand

closer to the depot is split and the split demand is modeled as a new customer demand with the same

location. The CW-SD is described in Table7.3.

7.3.3 Adaptation of the VND ofAleman et al. (2007)

Solutions generated with both the CA and CW-SD form the initial set of solutions, which is then

improved with an adaptation of the VND ofAleman et al. (2007). In its original version, the
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Figure 7.1:Illustration of neighbor routes.

VND exchanges customers between routes and considers the quantities delivered to include/remove

split deliveries. This VND is modified for TSVBA to reduce the combinations of pairs of routes,

and thus reduce the complexity of the procedure. Instead of using all possible combinations, only

neighboring routes are considered. This modified VND is referred to as Fast-VND and we designate

the original VND as Slow-VND simply to highlight its more aggressive neighborhood structure.

Because routes are constructed in parallel in both CA and CW-SD, routes with consecutive in-

dices are not necessarily neighbors and thus a routine is used to identify neighbor routes. Two routes

are considered neighbors if they are spatially contiguous or their trajectories cross. In Figure7.1,

routes R1 and R2 as well as routes R2 and R3 are neighbors because they are spatially contiguous;

however, routes R1 and R3 are neighbors as well because their trajectories cross. At this point,

Fast-VND and Slow-VND are used to improve solutions in the framework of the TSVBA.

A common practice in VRP and SDVRP algorithms is to evaluate only the closest customers.

This reduces the number of candidates and allows local searches to run quicker. The Fast-VND

embedded in the TSVBA considers the closest customers and those located within the region formed

by those closest customers. In Figure7.1, customers 1 and 3 are closest to customer 2; however,

customer 4 is in the same region. The Slow-VND evaluates all customers, giving it a larger candidate

list and thus a higher computational complexity. However, Slow-VND explores the search space

more thoroughly and can provide better solutions than just using the Fast-VND.
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7.4 Generation of New Solutions

The initial set is composed of solutions with different objective function values but often solution

common attributes. Those attributes are used in the TSVBA to modify the savings list of the CW-SD

and construct new – and different – solutions. Those edges that are common among all solutions in

the set are utilized to generate a sub-list calledsavings list of common edges. Like the CW savings

list, common edges are ordered according to their associated savings measure. Once generated and

ordered, both the savings list of the common edges and the CW savings list are combined to create

a final savings list with the common edges located in the top positions.

New solutions are generated using CW-SD and the final savings list. These solutions are im-

proved using Fast-VND followed by the route addition local search described below. The edges

included in the improved solution are stored in a short-term memory structure and considered tabu

for a fixed number of iterations. Edges(i, j) and(j, i) are considered equivalent in the memory

structure. Those edges with an active tabu status are ignored in Step 3 in Table7.3. The tabu tenure

is calculated deterministically and is equal to
√

n, wheren is the number of customers in the prob-

lem. This value was found satisfactory during preliminary experiments and was used during the

actual computational experiments.

7.4.1 Route Addition Local Search

Sometimes a customer demand appears in multiple routes. It may be possible to reduce the objective

function value by consolidating the customer demand into a new route that supplies the customer

exclusively. The TSVBA uses a local search based on this operator to reduce the objective function

value (similar to the Splitabu ofArchetti et al., 2006). For each split customer demand, this reduction

corresponds to the savings produced by removing the demand from all the visiting routes minus

twice the distance between the customer and the depot. To reduce the complexity of the local

search, the savings for each customer with split demand are pre-processed and the savings of those

customers involved in the route addition are updated if the objective function value is reduced.
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7.4.2 Appearing/Disappearing and Elite Edges

As the solution set evolves, solution attributes change. Edges in new solutions, but not in the best

solutions, are calledappearing edges. Edges in the best solutions, but not in new solutions, are

calleddisappearing edges. Both appearing and disappearing edges are managed in separate lists.

The degree of attractiveness of the appearing and disappearing edges is defined as the ratio between

the number of solutions containing the edge and the size of the solution set. Those edges with a

degree of attractiveness greater than 0.5 are included in anelite list. In contrast, those edges in new

solutions that already exist in the elite list but disappear when the new solutions are improved with

Fast-VND are removed from the elite list.

The elite list is then used to modify the final savings list of the CW-SD. The final savings list is

composed of the savings lists formed by the common edges, the elite edges, and the classical savings

list as inClarke and Wright (1964). In CW-SD, the common edges are the first edges inserted in

the solution under construction, followed by the elite edges, and finally those edges in the classical

savings list.

7.4.3 Conflicting Edges

When edges are added to both the list of common edges and elite list there may be conflicts with

the edges already included in the lists. The conflict occurs when one of the two customers, eitheri

or j, in the edge(i, j) to be added to the list are already in the list and have degree 2. The degree of

a customer corresponds to the number of edges where it appears in a solution excluding the edges

linking the depot. For example, in Figure7.2 customer 26 has degree 1 (linked to customer 8)

whereas customer 8 has degree 2 (linked to customers 26 and 48). Figure7.2illustrates some of the

common edges – in weighted lines – and the edges selected as elite – in regular lines – during the

execution of TSVBA to solve a problem with 50 customers.

In Figure7.2, the edge(23, 48), with the dashed line, has a degree of attraction greater than

0.5, but its addition to the elite list would conflict with edges(8, 48) and(27, 48). This conflict must
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Figure 7.2:Conflicting edges.

be resolved. TSVBA is a learning process so it assumes that the common edges among the solutions

in the set as well as the estimation of degree of attractiveness for elite edges are more reliable as the

search progresses. Therefore, the conflicting edge first added to the list is removed while the new

edge is added to the list. However, the TSVBA is more effective when a routine is used to remove

from the list the conflicting edge, including the new one, with the lowest degree of attractiveness.

This routine guarantees that common and elite edges are inserted in the solution under construction.

In contrast, edges coming from the classical savings list may be ignored by the CW-SD (see Step 3

in Table7.3) during the construction of solutions.

7.5 Split Savings List

Despite using a variety of local search and local improvement methods, search heuristics can still

have problems finding really good solutions to hard problems. A diversification scheme aims to

move the search process into new, hopefully unvisited, regions of the solution space. Once in those

new regions, the search process resumes. TheBoneRouteheuristic ofTarantilis and Kiranoudis

170



(2002)changes the number of solutions in the pool, or the bone-frequency, that must include an

edge in their routes in order to vary the level that the user wants to intensify/diversify the search in

the solution space. The short-term memory structure employed by TSVBA helps to use different

edges each iteration. Although this does diversify the search, TSVBA uses an additional mechanism

which consists of modifying the classical savings list of the CW-SD. When TSVBA commences, it

uses the classical savings list proposed byClarke and Wright (1964), adapted to the split demands,

but modifies the classical savings list when no more new solutions are found. In the modified savings

list, calledsplit savings list, the savings associated to the pair of customers(i, j) is given by:

sij =

{
c0i − c0j − cij , c0i > c0j

c0j − c0i − cij , c0i ≤ c0j

(7.2)

In the top case in Equation7.2, demand of customerj is split and the initial exclusive route for

servicing customerj is maintained after merging the two customers. In the lower case, demand of

customeri is split and its initial exclusive route is similarly maintained. If the vehicle capacity is

greater than the combined demand ofi andj, both routes are merged without splitting any demand.

As seen in Equation7.2, the savings measure depends upon the location of the customers with

respect to the depot. In this savings list, the TSVBA assumes a combined demand of customersi

andj greater than the vehicle capacity and thus the demand of the customer closest to the depot is

split. This assumption helps SDVRP in problems where the customer demands are at least 50% of

the vehicle capacity.

7.6 Computational Results

This section presents the computational results for the proposed TSVBA. All tests were conducted

on a P4, 2.8GHz, 512MB of RAM. The algorithm was implemented inC# and the problems sets of

Archetti et al. (2006), Belenguer et al. (2000), andChen et al. (2007)were used in the experiments.

Tested problems are named using the notationp-aaa-nnn , where the first field,p, is an alphabet-

ical character to identify the publication where the problem is presented (i.e.,a for Archetti et al.,
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b for Belenguer et al., andc for Chen et al.); the second field,aaa , is a string of variable length

corresponding to the name of the instance adopted in the original publication; and the third field is a

three-digit integer denoting the number of customers excluding the depot. Solutions obtained with

TSVBA are compared to those found with algorithms available in the literature. The size of the

solutions set is fixed tok = 10 (although the number of solutions can be smaller than this number,

as discussed previously in Section7.3.1); the critical angleθ∗ of the CA is generated in the range

[0.01 × θ∗, 2 × θ∗]. The predefined number of iterations without improvements is set to 5, and the

maximum number of iterations is set 40.

Tables7.4 and 7.5 show the results of TSVBA on the problems ofArchetti et al. (2006)

andChen et al. (2007). For each problem, these tables show the size of the set, the worst (zw)

and best (zb) solutions, the initial and final sets information, the number of iterations required to

obtain the final set from its initial version, the running times, and the final solution produced by

TSVBA. Running times correspond to those to produce the initial set, the final set after the initial

set is produced, and the time required to improve the final set with the Slow-VND and pick its best

solution. Note the difference in the set size from Table7.4to Table7.5; this is a consequence of the

problem type. Changing the critical angleθ∗ in the CA does not produce many different solutions

in the problems ofChen et al. (2007)due to the radial distribution of customers around the depot.

Since solutions with a common objective function value are not inserted into the set of solutions,

the size of the initial set is considerably lower than the expected size of 10 in these instances. Note

that the best solution in the final set improves its counterpart in the initial set in most cases (see bold

numbers in Tables7.4and7.5). In contrast, the worst solution in the final set is always better than

the worst solution in the initial set. This shows how the learning process in the TSVBA helps to

improve the population of solutions.

Table7.6 shows the best solution produced by TSVBA in the problem set ofArchetti et al.

(2006)and a comparison with other existing approaches. Results in this table and bold fonts show

a clear dominance of TSVBA over the iVNDiv ofAleman et al. (2008), the ICA+VND of Aleman

et al. (2007), and the scatter search (SS) ofMota et al. (2007)while the memetic algorithm with

172



Ta
bl

e
7.

4:
C

om
pu

ta
tio

na
lr

es
ul

ts
on

pr
ob

le
m

s
of

A
rc

he
tti

et
al

.
(2

00
6)

.

In
iti

al
S

et
F

in
al

S
et

F
in

al
S

ol
ut

io
n

P
ro

bl
em

D
em

an
d

S
et

S
iz

e
z w

z b
C

P
U

Ite
ra

tio
ns

z w
z b

C
P

U
z

C
P

U

a-
01

-0
50

6
57

7.
14

53
9.

29
12

.7
5

16
55

6.
27

52
7.

67
13

.8
3

52
7.

67
23

.2
7

a-
02

-0
75

9
91

5.
23

85
9.

14
25

.3
0

25
87

8.
75

85
3.

34
61

.3
6

85
3.

20
59

.1
3

a-
03

-1
00

8
96

8.
72

84
9.

55
66

.8
3

28
85

4.
72

84
4.

21
10

7.
72

84
4.

21
12

0.
67

a-
04

-1
50

9
12

66
.3

0
10

87
.2

0
13

4.
28

37
11

16
.1

0
10

84
.0

4
85

1.
28

10
79

.5
5

12
32

.1
1

a-
05

-1
99

10
15

76
.4

8
13

74
.0

2
36

5.
92

35
13

94
.7

8
13

53
.6

5
13

71
.9

1
13

39
.4

9
27

76
.4

5

a-
06

-1
20

9
12

57
.4

0
10

52
.9

6
36

2.
25

29
10

85
.9

6
10

52
.9

6
86

7.
63

10
51

.2
4

71
4.

31

a-
07

-1
00

8
11

62
.1

5
82

0.
27

13
.5

2
21

82
9.

20
81

9.
60

11
.0

5
81

9.
60

50
.7

7

a-
01

-0
50

[0
.0

1-
0.

10
]

4
48

2.
54

46
8.

79
2.

69
17

47
5.

06
46

6.
74

9.
05

46
6.

74
7.

95

a-
02

-0
75

[0
.0

1-
0.

10
]

6
64

2.
98

61
4.

09
33

.6
4

15
62

5.
00

61
4.

09
18

.3
8

61
4.

09
84

.1
3

a-
03

-1
00

[0
.0

1-
0.

10
]

8
81

6.
10

78
5.

92
45

5.
97

31
76

4.
51

74
1.

91
44

7.
70

74
1.

60
10

40
.4

2

a-
04

-1
50

[0
.0

1-
0.

10
]

9
98

7.
30

89
3.

23
37

2.
83

30
92

8.
59

89
1.

51
62

3.
02

89
1.

10
16

45
.1

1

a-
05

-1
99

[0
.0

1-
0.

10
]

10
12

03
.7

1
10

81
.7

2
12

67
.8

3
34

10
94

.9
6

10
73

.5
4

26
16

.7
7

10
69

.2
4

73
30

.9
2

a-
06

-1
20

[0
.0

1-
0.

10
]

8
12

63
.9

4
99

0.
59

34
8.

73
24

10
40

.2
3

99
0.

59
48

0.
41

99
0.

59
19

07
.2

0

a-
07

-1
00

[0
.0

1-
0.

10
]

5
97

0.
08

67
6.

60
23

9.
50

26
66

6.
40

65
8.

99
59

.6
7

65
8.

99
16

2.
58

a-
01

-0
50

[0
.1

0-
0.

30
]

10
85

3.
87

77
3.

49
3.

45
36

78
0.

47
75

3.
98

14
.7

7
75

3.
98

4.
95

a-
02

-0
75

[0
.1

0-
0.

30
]

8
11

98
.8

5
10

98
.5

6
10

.9
4

40
11

11
.5

7
10

96
.9

6
50

.9
5

10
85

.7
0

35
.2

8

a-
03

-1
00

[0
.1

0-
0.

30
]

9
14

92
.2

0
14

27
.6

6
20

.1
7

31
14

33
.5

5
14

20
.5

7
85

.9
8

14
16

.3
5

54
.8

0

a-
04

-1
50

[0
.1

0-
0.

30
]

10
21

14
.4

0
19

65
.3

9
97

.3
3

40
19

65
.3

9
19

33
.5

6
37

2.
22

19
29

.9
1

28
5.

53

a-
05

-1
99

[0
.1

0-
0.

30
]

9
27

49
.4

5
24

29
.1

7
22

0.
09

40
24

54
.5

0
24

16
.6

2
82

8.
42

24
08

.1
6

49
5.

84

a-
06

-1
20

[0
.1

0-
0.

30
]

10
33

01
.2

9
27

58
.7

2
49

.9
4

31
28

40
.6

5
27

58
.7

2
22

5.
28

27
44

.7
4

18
8.

75

a-
07

-1
00

[0
.1

0-
0.

30
]

9
17

02
.9

1
14

43
.3

5
14

.2
3

31
14

70
.2

1
14

43
.3

5
42

.6
3

14
41

.4
8

41
.4

5

a-
01

-0
50

[0
.1

0-
0.

50
]

9
10

87
.4

2
10

48
.7

8
2.

02
32

10
43

.3
6

10
26

.5
7

11
.3

4
10

23
.2

4
4.

36

a-
02

-0
75

[0
.1

0-
0.

50
]

10
16

16
.6

1
14

95
.3

9
11

.8
6

40
14

77
.0

3
14

58
.5

9
44

.8
4

14
58

.5
9

10
.9

5

a-
03

-1
00

[0
.1

0-
0.

50
]

10
20

41
.7

4
19

17
.3

3
17

.5
8

40
19

14
.8

9
18

93
.9

0
85

.3
8

18
86

.7
0

42
.0

9

a-
04

-1
50

[0
.1

0-
0.

50
]

10
30

29
.5

1
26

67
.6

6
54

.4
5

40
26

74
.7

1
26

51
.3

1
28

8.
16

26
47

.1
7

12
7.

73

a-
05

-1
99

[0
.1

0-
0.

50
]

10
37

11
.3

2
32

99
.4

2
17

9.
47

40
33

50
.6

8
32

99
.4

2
61

9.
73

32
96

.6
9

41
7.

48

a-
06

-1
20

[0
.1

0-
0.

50
]

10
44

01
.1

4
40

82
.9

5
70

.2
3

31
41

13
.2

6
40

10
.8

0
18

6.
11

40
10

.8
0

84
.1

9

a-
07

-1
00

[0
.1

0-
0.

50
]

10
26

02
.5

6
20

26
.1

4
11

.4
7

40
20

72
.7

3
20

11
.8

7
40

.8
4

20
10

.0
0

32
.1

9

C
o

n
tin

u
e

d
o

n
n

ex
tp

ag
e

173



Ta
bl

e
7.

4:
C

om
pu

ta
tio

na
lr

es
ul

ts
on

pr
ob

le
m

s
of

A
rc

he
tti

et
al

.
(2

00
6)

(
C

o
n

tin
u

e
d).

In
iti

al
S

et
F

in
al

S
et

F
in

al
S

ol
ut

io
n

P
ro

bl
em

D
em

an
d

S
et

S
iz

e
z w

z b
C

P
U

Ite
ra

tio
ns

z w
z b

C
P

U
z

C
P

U

a-
01

-0
50

[0
.1

0-
0.

90
]

9
15

89
.2

0
15

46
.3

4
1.

66
40

15
53

.2
1

15
32

.9
1

15
.1

9
15

30
.8

1
2.

27

a-
02

-0
75

[0
.1

0-
0.

90
]

10
22

59
.9

4
21

93
.2

3
6.

72
40

22
06

.6
0

21
78

.0
9

42
.0

2
21

64
.7

4
13

.0
8

a-
03

-1
00

[0
.1

0-
0.

90
]

9
30

64
.7

5
28

93
.7

7
16

.8
9

27
29

28
.2

0
28

93
.7

7
70

.2
7

28
74

.8
6

38
.1

3

a-
04

-1
50

[0
.1

0-
0.

90
]

10
44

72
.4

7
41

79
.4

0
71

.8
8

40
42

01
.9

1
41

79
.4

0
28

5.
41

41
51

.9
0

94
.6

7

a-
05

-1
99
†

[0
.1

0-
0.

90
]

10
63

16
.1

8
50

66
.2

4
3.

72
19

57
06

.2
9

50
66

.2
4

10
4.

91
50

66
.2

4
0.

00

a-
06

-1
20

[0
.1

0-
0.

90
]

10
72

20
.1

2
63

24
.8

0
14

0.
41

25
64

67
.8

0
63

24
.8

0
14

4.
98

63
08

.7
6

13
3.

59

a-
07

-1
00

[0
.1

0-
0.

90
]

10
37

67
.9

5
31

57
.4

8
9.

38
40

32
12

.2
9

31
57

.4
8

57
.9

2
31

57
.4

8
30

.2
8

a-
01

-0
50

[0
.3

0-
0.

70
]

10
16

05
.2

1
15

37
.7

2
1.

41
40

15
37

.7
2

15
06

.6
4

14
.7

3
15

05
.3

8
2.

95

a-
02

-0
75

[0
.3

0-
0.

70
]

10
23

05
.9

5
22

17
.5

9
6.

58
40

22
13

.2
3

21
89

.1
6

38
.2

5
21

82
.3

3
10

.3
4

a-
03

-1
00

[0
.3

0-
0.

70
]

10
31

46
.4

4
29

41
.4

1
17

.7
2

40
29

60
.6

3
29

37
.8

6
90

.0
9

29
29

.2
9

27
.0

3

a-
04

-1
50

[0
.3

0-
0.

70
]

10
44

72
.4

7
41

79
.4

0
69

.5
0

40
42

01
.9

1
41

79
.4

0
28

5.
80

41
51

.9
0

94
.0

5

a-
05

-1
99
†

[0
.3

0-
0.

70
]

10
64

93
.3

3
52

81
.5

5
3.

82
19

58
94

.3
5

52
81

.5
5

11
5.

23
52

81
.5

5
0.

00

a-
06

-1
20

[0
.3

0-
0.

70
]

10
76

97
.9

1
65

58
.1

8
13

0.
28

28
66

10
.4

2
65

36
.2

4
17

9.
14

65
11

.0
8

12
7.

38

a-
07

-1
00

[0
.3

0-
0.

70
]

10
39

83
.3

8
32

00
.6

2
8.

45
19

33
14

.8
1

32
00

.6
2

32
.9

8
32

00
.6

2
54

.9
5

a-
01

-0
50

[0
.7

0-
0.

90
]

9
23

03
.7

2
22

22
.1

1
1.

78
35

22
59

.9
0

22
22

.1
1

19
.9

2
22

19
.3

2
2.

70

a-
02

-0
75

[0
.7

0-
0.

90
]

10
34

38
.2

5
32

78
.3

3
6.

80
40

33
67

.9
8

32
78

.3
3

56
.0

8
32

78
.3

3
23

.3
9

a-
03

-1
00

[0
.7

0-
0.

90
]

9
45

58
.6

8
44

42
.7

6
15

.9
1

40
45

07
.7

2
44

42
.7

6
14

4.
55

44
35

.5
6

25
.0

9

a-
04

-1
50

[0
.7

0-
0.

90
]

10
67

06
.8

5
64

25
.3

1
58

.0
6

33
65

51
.7

6
64

25
.3

1
37

6.
91

64
16

.1
2

24
3.

97

a-
05

-1
99
†

[0
.7

0-
0.

90
]

10
87

54
.8

7
83

33
.6

1
5.

43
19

87
09

.9
9

83
33

.6
1

14
7.

69
83

33
.6

1
0.

00

a-
06

-1
20
†

[0
.7

0-
0.

90
]

10
11

93
1.

89
10

18
6.

06
1.

99
25

10
69

2.
57

10
18

6.
06

28
.3

3
10

18
6.

06
0.

00

a-
07

-1
00

[0
.7

0-
0.

90
]

10
56

14
.2

1
50

00
.1

1
14

.3
0

32
50

88
.8

7
50

00
.1

1
71

.4
1

49
96

.8
8

67
.2

2

z w
,z

b
,a

nd
z

de
no

te
w

or
st

,b
es

t,
an

d
fin

al
ob

je
ct

iv
e

fu
nc

tio
n

va
lu

e
ob

ta
in

ed
,r

es
pe

ct
iv

el
y.

C
P

U
de

no
te

s
ru

nn
in

g
tim

e
in

se
co

nd
s

on
a

P
4,

2.
8G

H
z,

51
2M

B
(0

.0
im

pl
ie

s
no

im
pr

ov
em

en
ta

pp
lie

d
to

th
e

fin
al

se
t)

.

†T
o

av
oi

d
m

em
or

y
ov

er
flo

w
,T

S
V

B
A

do
es

no
tu

se
V

N
D

to
im

pr
ov

e
an

y
of

th
e

co
ns

tr
uc

te
d

so
lu

tio
ns

.

174



Ta
bl

e
7.

5:
C

om
pu

ta
tio

na
lr

es
ul

ts
on

pr
ob

le
m

s
of

C
he

n
et

al
.

(2
00

7)
.

In
iti

al
S

et
F

in
al

S
et

F
in

al
S

ol
ut

io
n

P
ro

bl
em

S
et

S
iz

e
z w

z b
C

P
U

Ite
ra

tio
ns

z w
z b

C
P

U
z

C
P

U

c-
S

D
01

-0
08

2
29

72
1.

35
22

82
8.

43
0.

05
5

25
88

6.
35

22
82

8.
43

0.
03

22
82

8.
43

0.
00

c-
S

D
02

-0
16

1
70

82
8.

43
70

82
8.

43
0.

30
6

70
82

8.
43

70
82

8.
43

0.
08

70
82

8.
43

0.
02

c-
S

D
03

-0
16

3
49

54
3.

52
43

05
8.

22
0.

11
18

44
29

2.
76

43
05

8.
22

0.
33

43
05

8.
22

0.
03

c-
S

D
04

-0
24

3
71

83
0.

11
63

58
3.

52
0.

59
23

64
06

2.
14

63
10

4.
90

1.
20

63
10

4.
90

0.
08

c-
S

D
05

-0
32

2
14

36
09

.6
5

13
90

56
.8

3
0.

41
8

14
05

28
.6

0
13

90
56

.8
3

0.
48

13
90

56
.8

3
0.

13

c-
S

D
06

-0
32

3
90

54
3.

08
83

12
4.

14
0.

42
27

83
88

1.
10

83
12

4.
14

3.
16

83
12

4.
14

0.
14

c-
S

D
07

-0
40

1
36

40
00

.0
0

36
40

00
.0

0
0.

41
8

36
40

00
.0

0
36

40
00

.0
0

0.
30

36
40

00
.0

0
0.

09

c-
S

D
08

-0
48

1
50

68
28

.4
3

50
68

28
.4

3
0.

86
8

50
68

28
.4

3
50

68
28

.4
3

0.
44

50
68

28
.4

3
0.

14

c-
S

D
09

-0
48

2
21

27
22

.0
7

20
71

02
.7

9
3.

22
17

20
85

85
.6

2
20

71
02

.7
9

7.
13

20
71

02
.7

9
0.

36

c-
S

D
10

-0
64

2
29

00
16

.4
7

27
48

31
.7

2
2.

63
13

27
52

50
.1

8
27

48
31

.7
2

7.
30

27
47

83
.0

8
0.

89

c-
S

D
11

-0
80

1
13

28
00

0.
01

13
28

00
0.

01
1.

91
10

13
28

00
0.

01
13

28
00

0.
01

2.
38

13
28

00
0.

01
0.

41

c-
S

D
12

-0
80

2
72

79
97

.0
0

72
74

82
.0

0
2.

00
31

72
23

39
.5

0
72

13
62

.3
4

15
.4

2
72

13
62

.3
4

0.
84

c-
S

D
13

-0
96

2
10

17
17

8.
77

10
11

05
7.

51
2.

86
12

10
12

95
1.

58
10

11
05

7.
51

4.
81

10
11

05
7.

51
1.

20

c-
S

D
14

-1
20

2
10

89
34

9.
80

10
82

47
2.

32
11

.6
9

33
10

80
40

1.
49

10
80

28
7.

10
65

.1
1

10
80

28
7.

10
2.

31

c-
S

D
15

-1
44

2
15

23
23

9.
25

15
15

58
4.

56
18

.2
0

16
15

15
58

4.
56

15
15

34
5.

27
28

.6
1

15
15

34
5.

27
3.

20

c-
S

D
16

-1
44

3
36

34
22

.7
2

34
72

90
.7

9
45

.2
5

33
34

50
79

.1
6

34
46

43
.2

8
18

4.
80

34
46

43
.2

8
7.

59

c-
S

D
17

-1
60

2
26

55
99

2.
75

26
55

47
7.

75
12

.1
3

34
26

50
90

6.
21

26
49

35
8.

09
68

.1
3

26
49

35
6.

48
7.

27

c-
S

D
18

-1
60

2
14

44
51

3.
63

14
37

42
8.

11
38

.0
3

20
14

34
94

8.
74

14
34

78
7.

07
14

7.
34

14
32

30
4.

04
27

.9
5

c-
S

D
19

-1
92

3
20

29
50

7.
42

20
19

11
9.

29
25

.6
6

38
20

18
26

9.
12

20
15

70
9.

56
15

2.
42

20
15

70
9.

56
11

.9
5

c-
S

D
20

-2
40

2
39

81
34

8.
58

39
74

47
1.

10
52

.4
2

38
39

72
40

0.
27

39
72

28
5.

88
32

4.
23

39
72

28
5.

88
11

.0
2

c-
S

D
21

-2
88

3
11

92
37

5.
34

11
47

66
7.

29
68

0.
41

35
11

51
77

0.
98

11
47

66
7.

29
17

40
.8

31
14

58
75

.5
4

11
1.

56

z w
,z

b
,a

nd
z

de
no

te
w

or
st

,b
es

t,
an

d
fin

al
ob

je
ct

iv
e

fu
nc

tio
n

va
lu

e
ob

ta
in

ed
,r

es
pe

ct
iv

el
y.

C
P

U
de

no
te

s
ru

nn
in

g
tim

e
in

se
co

nd
s

on
a

P
4,

2.
8G

H
z,

51
2M

B
.Z

er
o

im
pl

ie
s

le
ss

th
an

0.
01

se
co

nd
s.

175



Ta
bl

e
7.

6:
C

om
pu

ta
tio

na
lr

es
ul

ts
of

T
S

V
B

A
on

in
st

an
ce

s
of

A
rc

he
tti

et
al

.
(2

00
6)

.

T
S

V
B

A
iV

N
D

iv
IC

A
+

V
N

D
S

S
M

A
|P

M

P
ro

bl
em

D
em

an
d

m
′

m
z

C
P

U(a
)

z
C

P
U(a

)
z

C
P

U(a
)

z
C

P
U(b

)
z

C
P

U(c
)

a-
01

-0
50

5
5

52
7.

67
49

.8
4

52
4.

61
54

.9
1

54
0.

82
10

.8
9

53
1.

02
24

.8
0

52
4.

61
8.

53

a-
02

-0
75

10
11

85
3.

20
14

5.
78

85
1.

24
83

.2
8

88
0.

28
9.

81
83

9.
75

61
.6

6
82

3.
89

35
.7

2

a-
03

-1
00

8
8

84
4.

21
29

5.
22

85
2.

74
31

9.
33

85
4.

13
43

.5
0

83
5.

82
10

8.
80

82
9.

44
34

.5
9

a-
04

-1
50

12
12

10
79

.5
5

22
17

.6
7

10
74

.1
1

13
61

.1
6

10
88

.9
1

12
9.

23
10

56
.9

2
26

1.
28

10
42

.3
7

10
3.

69

a-
05

-1
99

16
17

13
39

.4
9

45
14

.2
8

13
68

.6
7

32
84

.6
4

13
90

.5
5

53
4.

83
13

40
.4

4
35

2.
31

13
11

.5
9

35
3.

84

a-
06

-1
20

7
7

10
51

.2
4

19
44

.1
9

12
01

.8
3

34
14

.4
1

12
23

.2
8

25
7.

30
10

42
.9

7
13

1.
34

10
41

.2
0

50
.9

2

a-
07

-1
00

10
10

81
9.

60
75

.3
3

82
4.

78
12

6.
08

82
4.

82
21

.0
2

82
0.

92
10

8.
41

81
9.

56
42

.8
9

a-
01

-0
50

[0
.0

1-
0.

10
]

3
3

46
6.

74
19

.6
9

47
1.

92
33

.7
0

47
3.

22
4.

52
46

0.
79

26
.8

6
46

0.
79

12
.3

8

a-
02

-0
75

[0
.0

1-
0.

10
]

4
4

61
4.

09
13

6.
14

59
7.

46
30

3.
77

61
7.

65
51

.2
8

60
2.

67
68

.8
0

60
0.

06
18

.7
5

a-
03

-1
00

[0
.0

1-
0.

10
]

5
5

74
1.

60
19

44
.0

9
74

5.
35

21
94

.2
3

78
9.

16
41

5.
47

72
9.

67
12

5.
06

72
6.

81
37

.1
2

a-
04

-1
50

[0
.0

1-
0.

10
]

8
8

89
1.

10
26

40
.9

5
89

1.
98

34
61

.4
4

89
3.

49
66

6.
20

88
3.

05
35

2.
09

87
5.

61
10

0.
27

a-
05

-1
99

[0
.0

1-
0.

10
]

10
10

10
69

.2
4

11
21

5.
52

10
73

.5
5

15
50

5.
22

10
79

.0
4

37
50

.4
4

10
39

.5
1

96
3.

84
10

18
.7

1
35

6.
22

a-
06

-1
20

[0
.0

1-
0.

10
]

6
6

99
0.

59
27

36
.3

4
10

87
.8

0
39

52
.6

7
11

01
.1

4
34

1.
59

97
9.

57
16

3.
28

97
6.

57
72

.9
8

a-
07

-1
00

[0
.0

1-
0.

10
]

5
6

65
8.

99
46

1.
75

67
3.

54
12

07
.4

2
67

3.
54

22
2.

42
63

3.
80

80
.5

6
64

9.
73

34
.9

7

a-
01

-0
50

[0
.1

0-
0.

30
]

10
10

75
3.

98
23

.1
7

76
6.

19
19

.7
7

77
7.

75
1.

59
76

9.
60

26
.3

1
75

1.
41

10
.2

2

a-
02

-0
75

[0
.1

0-
0.

30
]

15
15

10
85

.7
0

97
.1

7
10

99
.4

7
73

.0
5

10
99

.4
7

13
.1

9
10

74
.0

1
86

.0
2

10
74

.4
6

34
.1

4

a-
03

-1
00

[0
.1

0-
0.

30
]

20
20

14
16

.3
5

16
0.

95
14

25
.9

0
19

0.
53

14
52

.5
2

34
.0

9
14

16
.4

8
98

.0
0

13
92

.8
5

78
.0

6

a-
04

-1
50

[0
.1

0-
0.

30
]

29
30

19
29

.9
1

75
5.

08
19

78
.0

1
87

8.
55

19
78

.0
1

16
4.

19
19

74
.7

0
10

.0
6

18
78

.7
1

14
7.

89

a-
05

-1
99

[0
.1

0-
0.

30
]

38
39

24
08

.1
6

15
44

.3
6

24
64

.6
5

14
57

.1
6

25
02

.5
4

24
8.

83
24

35
.0

8
19

.1
1

23
40

.1
4

34
7.

14

a-
06

-1
20

[0
.1

0-
0.

30
]

23
24

27
44

.7
4

46
3.

97
28

06
.9

2
55

8.
56

28
06

.9
2

54
.2

5
27

83
.1

0
11

.3
3

27
20

.3
8

14
4.

19

a-
07

-1
00

[0
.1

0-
0.

30
]

20
20

14
41

.4
8

98
.3

1
14

28
.2

7
12

3.
00

14
28

.2
7

22
.5

6
14

23
.4

9
15

1.
25

14
17

.2
8

43
.2

7

a-
01

-0
50

[0
.1

0-
0.

50
]

15
15

10
23

.2
4

17
.7

2
10

39
.8

9
18

.1
6

10
45

.9
3

2.
81

10
25

.9
1

3.
84

98
8.

31
12

.4
9

a-
02

-0
75

[0
.1

0-
0.

50
]

22
23

14
58

.5
9

67
.6

6
14

78
.6

7
67

.8
0

15
03

.0
2

11
.2

5
14

84
.6

2
6.

09
14

13
.8

0
37

.3
8

a-
03

-1
00

[0
.1

0-
0.

50
]

29
29

18
86

.7
0

14
5.

05
19

56
.1

3
15

4.
47

19
57

.5
5

25
.1

6
19

26
.1

5
7.

55
18

45
.3

0
28

.3
9

a-
04

-1
50

[0
.1

0-
0.

50
]

43
45

26
47

.1
7

47
0.

34
26

71
.6

2
62

5.
83

26
85

.3
3

11
1.

66
26

49
.9

7
16

.1
7

25
61

.6
5

22
4.

89

a-
05

-1
99

[0
.1

0-
0.

50
]

56
56

32
96

.6
9

12
16

.6
9

34
11

.3
8

21
73

.8
4

34
50

.8
4

33
9.

36
33

10
.7

1
20

.6
4

31
91

.2
5

43
6.

20

a-
06

-1
20

[0
.1

0-
0.

50
]

34
35

40
10

.8
0

34
0.

53
40

26
.5

3
35

8.
56

40
85

.3
6

40
.5

3
39

96
.2

9
63

.8
0

39
34

.3
9

16
3.

14

a-
07

-1
00

[0
.1

0-
0.

50
]

29
30

20
10

.0
0

84
.5

0
20

07
.1

1
10

7.
47

20
46

.1
5

11
.9

2
20

22
.3

0
41

.2
3

19
94

.5
9

51
.3

1

C
o

n
tin

u
e

d
o

n
n

ex
tp

ag
e

176



Ta
bl

e
7.

6:
C

om
pu

ta
tio

na
lr

es
ul

ts
of

T
S

V
B

A
on

in
st

an
ce

s
of

A
rc

he
tti

et
al

.
(2

00
6)

(
C

o
n

tin
u

e
d).

T
S

V
B

A
iV

N
D

iv
IC

A
+

V
N

D
S

S
M

A
|P

M

P
ro

bl
em

D
em

an
d

m
′

m
z

C
P

U(a
)

z
C

P
U(a

)
z

C
P

U(a
)

z
C

P
U(b

)
z

C
P

U(c
)

a-
01

-0
50

[0
.1

0-
0.

90
]

25
26

15
30

.8
1

19
.1

1
15

22
.4

3
16

.3
6

15
47

.3
2

2.
83

15
80

.7
7

3.
91

14
67

.0
6

21
.4

2

a-
02

-0
75

[0
.1

0-
0.

90
]

37
39

21
64

.7
4

61
.8

1
22

00
.5

1
71

.1
1

22
12

.9
3

10
.8

0
22

33
.0

8
6.

64
21

02
.5

8
46

.1
1

a-
03

-1
00

[0
.1

0-
0.

90
]

48
48

28
74

.8
6

12
5.

28
28

65
.8

6
12

6.
52

29
25

.1
3

19
.0

0
29

32
.3

4
9.

16
27

80
.9

5
84

.3
8

a-
04

-1
50

[0
.1

0-
0.

90
]

73
74

41
51

.9
0

45
1.

95
41

65
.1

8
67

1.
36

41
92

.5
0

14
1.

27
41

85
.6

8
25

.0
3

40
45

.8
7

24
4.

91

a-
05

-1
99
†

[0
.1

0-
0.

90
]

93
93

50
66

.2
4

10
8.

63
51

84
.5

7
36

50
.5

9
51

92
.0

6
66

2.
77

50
85

.6
4

71
.0

9
49

41
.2

2
72

5.
69

a-
06

-1
20

[0
.1

0-
0.

90
]

56
56

63
08

.7
6

41
8.

98
63

64
.8

7
45

8.
91

64
83

.0
6

42
.0

0
63

61
.4

6
15

.8
6

63
18

.3
7

19
6.

14

a-
07

-1
00

[0
.1

0-
0.

90
]

48
48

31
57

.4
8

97
.5

8
31

56
.3

1
96

.9
8

31
78

.2
8

12
.8

9
31

87
.4

4
9.

08
31

13
.7

2
52

.1
3

a-
01

-0
50

[0
.3

0-
0.

70
]

25
26

15
05

.3
8

19
.0

9
15

40
.3

9
15

.3
3

15
57

.5
2

2.
20

15
68

.0
4

4.
25

14
77

.0
1

24
.5

3

a-
02

-0
75

[0
.3

0-
0.

70
]

37
38

21
82

.3
3

55
.1

7
22

38
.9

8
80

.3
0

22
41

.5
9

11
.2

8
22

28
.9

0
7.

14
21

32
.1

6
51

.7
8

a-
03

-1
00

[0
.3

0-
0.

70
]

49
49

29
29

.2
9

13
4.

84
29

41
.6

4
10

3.
94

29
45

.1
9

15
.1

4
29

86
.3

3
10

.3
6

28
58

.8
7

10
0.

16

a-
04

-1
50

[0
.3

0-
0.

70
]

73
74

41
51

.9
0

44
9.

34
41

65
.1

8
67

5.
39

41
92

.5
0

14
3.

05
41

85
.6

8
19

.3
8

40
45

.8
7

24
4.

86

a-
05

-1
99
†

[0
.3

0-
0.

70
]

96
96

52
81

.5
5

11
9.

04
53

63
.6

5
30

26
.2

2
53

66
.0

6
34

9.
97

52
65

.0
1

12
0.

28
51

55
.3

6
74

9.
94

a-
06

-1
20

[0
.3

0-
0.

70
]

58
58

65
11

.0
8

43
6.

80
65

45
.5

0
46

9.
17

65
91

.4
0

59
.2

0
64

81
.0

9
17

.1
6

64
24

.7
1

27
1.

39

a-
07

-1
00

[0
.3

0-
0.

70
]

49
50

32
00

.6
2

96
.3

9
32

25
.6

3
11

0.
05

33
18

.0
8

13
.6

9
32

48
.7

6
9.

73
31

55
.6

9
91

.3
1

a-
01

-0
50

[0
.7

0-
0.

90
]

40
41

22
19

.3
2

24
.4

1
22

15
.3

4
18

.7
0

22
15

.3
4

2.
59

23
12

.4
8

4.
13

21
54

.3
5

22
.9

1

a-
02

-0
75

[0
.7

0-
0.

90
]

60
60

32
78

.3
3

86
.2

7
33

04
.2

4
58

.0
5

33
41

.2
6

10
.2

5
33

87
.8

6
7.

66
32

00
.3

5
27

.4
8

a-
03

-1
00

[0
.7

0-
0.

90
]

80
80

44
35

.5
6

18
5.

55
44

29
.2

1
94

.9
8

44
55

.1
4

14
.3

1
45

80
.9

8
12

.0
6

43
12

.9
5

55
.7

5

a-
04

-1
50

[0
.7

0-
0.

90
]

11
9

11
9

64
16

.1
2

67
8.

94
64

82
.1

1
58

4.
84

65
13

.3
6

93
.7

8
64

79
.4

6
13

1.
91

62
67

.4
8

40
1.

62

a-
05

-1
99
†

[0
.7

0-
0.

90
]

15
8

15
8

83
33

.6
1

15
3.

12
83

29
.5

5
21

24
.6

6
83

68
.3

5
46

0.
89

83
23

.7
2

16
5.

28
80

81
.5

8
57

1.
70

a-
06

-1
20
†

[0
.7

0-
0.

90
]

95
95

10
18

6.
06

30
.3

2
10

30
2.

16
63

6.
72

10
30

2.
16

59
.2

8
10

15
8.

32
20

.1
7

10
06

3.
47

29
8.

08

a-
07

-1
00

[0
.7

0-
0.

90
]

80
80

49
96

.8
8

15
2.

92
50

28
.7

8
17

8.
19

50
58

.7
6

20
.7

0
50

65
.2

6
9.

19
49

19
.4

8
18

0.
11

z
de

no
te

s
ob

je
ct

iv
e

fu
nc

tio
n

va
lu

e
ob

ta
in

ed

m
de

no
te

s
nu

m
be

r
of

ve
hi

cl
es

in
T

S
V

B
A

so
lu

tio
ns

.
m
′

de
no

te
s

nu
m

be
r

of
ve

hi
cl

es
in

iV
N

D
iv

,I
C

A
+

V
N

D
,S

S
,a

nd
M

A|P
M

so
lu

tio
ns

.

(a
) P

4,
51

2M
B

,2
.8

G
H

z;(b
) P

4,
1.

0G
B

,2
.4

G
H

z;(c
) P

C
3.

0
G

H
z.

†T
o

av
oi

d
m

em
or

y
ov

er
flo

w
,T

S
V

B
A

do
es

no
tu

se
V

N
D

to
im

pr
ov

e
an

y
of

th
e

co
ns

tr
uc

te
d

so
lu

tio
ns

.

177



population management (MA|PM) of Boudia et al. (2007)produces the best known solutions in

this problem set; TSVBA improves MA|PM in one case only. Results obtained with the tabu search

(Splitabu) ofArchetti et al. (2006)are not included in the table because there is no evidence about

the equivalence of the tested problems, in spite of the fact that the problems were generated with the

same code. In the case of the hybrid algorithm (EMIP+VRTR) ofChen et al. (2007), results were

omitted because they solved 30 instances for each problem and published just the median solution

values.

Except for iVNDiv, TSVBA is the approach with the largest processing times among those

presented. TSVBA is usually faster than iVNDiv which shows the benefits of using both closest

customers and neighboring routes to reduce the complexity of the variable neighborhood descent

without deteriorating solution quality. It is important to highlight the fact that TSVBA produces

more solutions than iVNDiv. For example, in problem a-04-150 with demands in the range [0.10-

0.30] TSVBA produces 60 solutions (i.e., 10 forming the initial solution set, 40 to obtain the final

solution set, and 10 after improving the final solution set, as shown in Table7.4) while iVNDiv

produces only 5 solutions (Aleman et al., 2008). The running times of TSVBA can be reduced

by coding the algorithm more efficiently and using a programming language with lower resource

requirements, but this is left for future work.

Tables7.7and7.8show the computational results on some TSPLIB instances and the random

problems ofBelenguer et al. (2000), respectively, using bold fonts to denote cases where TSVBA

performs better. In the problems shown in Table7.7, TSVBA finds better solutions than iVNDiv

in most cases, improves the upper bound produced by the column generation approach ofJin et al.

(2008), and dominates both ICA+VND and the branch-and-price (B&P) ofLiu (2005). Note that

the solutions values are calculated using integer inter-node distance in order to compare to the

bounds ofBelenguer et al. (2000)and the values obtained with (MA|PM). In the random problems

of Belenguer et al. (2000)shown in Table7.8, TSVBA improves the upper bounds ofBelenguer

et al. (2000)in most cases and dominates the solution values obtained with iVNDiv, ICA+VND,

B&P, and the column generation ofJin et al. (2008). Both MA|PM and the hybrid algorithm
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Table 7.7:Computational results of TSVBA on some TSPLIB instances.

TSVBA Belenguer et al. (2000) MA |PM

Problem z(a) CPU(b) UB(a) LB z(a) CPU(c)

b-eil22-021 375 2.58 375 375.00 375 4.11

b-eil23-022 570 1.59 569 569.00 569 5.47

b-eil30-029 503 7.45 510 508.00 503 5.70

b-eil33-032 844 8.38 835 833.00 835 5.19

b-eil51-050 526 49.84 521 511.57 521 7.28

b-eilA76-075 847 145.78 832 782.70 828 35.94

b-eilB76-075 1027 91.36 1023 937.47 1019 13.09

b-eilC76-075 754 151.13 735 706.01 738 14.75

b-eilD76-075 691 122.52 683 659.43 682 23.12

b-eilA101-100 834 295.22 817 793.48 818 25.25

b-eilB101-100 1104 173.13 1077 1005.85 1082 21.81

Continued on next page

(EMIP+VRTR) ofChen et al. (2007), however, perform better than TSVBA.

Finally, Table7.9 shows the results on the problems ofChen et al. (2007). TSVBA performs

well on these problems and improves over all the presented approaches. In this set, it is also evident

the difference in processing times, with TSVBA the fastest among all presented algorithms. In

all cases, TSVBA uses the minimum possible fleet size, a key benefit in actual vehicle routing

problems.

7.7 Conclusions

This chapter presented a learning procedure based on a population of solutions. The learning strat-

egy consists of generating an initial set of solutions and finding common attributes among those to

construct new solutions. New solutions contain those common attributes as well as new character-

istics that can lead to better solutions. The solution set is evolved by replacing solutions with large

objective function values with new solutions having lower values. The new solution characteristics

are evaluated for each solution in the set to determine their degree of attractiveness and then these

characteristics are included in an elite list of attributes if they are found attractive enough. The
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Table 7.8:Computational results of TSVBA on the random problems of Belenguer et al.

(2000).

TSVBA Belenguer et al. (2000) MA |PM

Problem z(a) CPU(b) UB(a) LB z(a) CPU(c)

b-S51D1-050 465 13.56 458 454 458 8.77

b-S51D2-050 715 31.66 726 676.63 707 7.44

b-S51D3-050 966 18.75 972 905.22 945 7.84

b-S51D4-050 1621 19.77 1677 1520.67 1578 11.98

b-S51D5-050 1357 15.39 1440 1272.86 1351 16.72

b-S51D6-050 2228 14.38 2327 2113.03 2182 9.92

b-S76D1-075 606 252.28 594 584.87 592 15.23

b-S76D2-075 1124 60.44 1147 1020.32 1089 30.50

b-S76D3-075 1466 51.13 1474 1346.29 1427 12.89

b-S76D4-075 2170 53.56 2257 2011.64 2117 8.76

b-S101D1-100 741 860.31 716 700.56 717 49.75

b-S101D2-100 1398 219.52 1393 †1270.97 1372 31.72

b-S101D3-100 1936 132.19 1975 †1739.66 1891 33.98

b-S101D5-100 2897 131.16 2915 †2630.43 2854 18.66

Continued on next page

search is intensified by using the common and elite attributes in the construction of new solutions,

while the diversification is based on the use of a short-term memory structure and a modified cost

function for the evaluation of candidates. Once a final solution set is obtained after a certain num-

ber of iterations, solutions are further improved with a variable neighborhood descent. The final

solution is the best one found overall. The proposed learning procedure was tested on benchmark

instances and performed well when its solutions were compared to those reported in the literature.
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Chapter 8

Summary

8.1 Summary

This dissertation presented a study on the SDVRP that includes a thorough literature review cov-

ering representative research on the VRP, the SDVRP, and the VRPSC. Various solution methods

are proposed to efficiently solve the SDVRP. Proposed techniques include a constructive approach

based on a novel route angle control mechanism that help to produce thin routes with the minimum

possible fleet size, an iterative constructive approach that uses adaptive memory concepts to modify

the rules of the constructive approach, a variable neighborhood descent that uses operators specific

to the SDVRP, a new diversification scheme based on concentric rings centered at the depot that

partitions the original problem and solves resulting subproblems independently, and a tabu search

with vocabulary building that creates an initial solution set to find attractive solution attributes and

then generate new solutions to evolve the set. An empirical analysis is performed to compare the

proposed techniques to existing solution techniques available in the literature. The results obtained

demonstrate their effectiveness on the tested problems.
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8.2 Contributions

The SDVRP is a variant of the classical VRP that allows to use multiple vehicles to supply the

demand of single customers. The SDVRP has received little attention from researchers. According

to the literature reviewed, only a few approaches prior to this study have been proposed to solve the

problem. This dissertation provides multiple contributions. PartI provides a focused yet thorough

literature review on the VRP, SDVRP, and VRPSC. The review includes problem properties, mod-

els, and solution algorithms. A new problem classification scheme is also presented in PartI useful

for categorizing modern routing problems. This classification scheme is based on three criteria:

staticism/dynamism of the problem parameters, the knowledge of the information relevant to the

design of its solution, and the method to model the unknown data. PartII presents new algorith-

mic contributions, including: 1) a novel constructive approach, an iterative constructive approach

that uses adaptive memory concepts, and a variable neighborhood descent found inAleman et al.

(2007); 2) a new solution diversification scheme found inAleman et al. (2008)based on concentric

rings centered at the depot that partitions the original problem and solves the resulting problems

using a constructive approach; and 3) a population-based search approach, called tabu search with

vocabulary building approach, that constructs an initial solution set and then uses the set of solutions

to find attractive solution attributes with which to construct new solutions and evolve the set.

8.3 Future Research

The route angle control mechanism proposed in Chapter5 is easy to implement and looks useful to

solve the SDVRP, specifically in problems with large customer demands. Although the constructive

approach tends to produce non-crossing routes, optimal solutions can have crossing as well as inner

routes so it may be helpful to guide the CA to design such routes. Other local searches that have

produced good results on the VRP, such as exchanging sequences of customer between routes, can

be investigated for robustness and to find better solutions to problems with small customer demands.
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Approaches presented in PartII can be implemented more efficiently and using a programming

language with lower resource requirements, such as C++.

187



Bibliography

Aleman, R. E. and R. R. Hill (2008, December). A tabu search with vocabulary building approach

for the vehicle routing problem with split demands.Submitted to Computers & Operations

Research.

Aleman, R. E., X. Zhang, and R. R. Hill (2007, November). An adaptive memory algorithm

for the split delivery vehicle routing problem.Accepted for publication in the Journal of

Heuristics.

Aleman, R. E., X. Zhang, and R. R. Hill (2008, June). A ring-based diversification scheme for

routing problems.To Appear in the International Journal of Mathematics in Operational

Research.

Altinkemer, K. and B. Gavish (1991, May). Parallel savings based heuristics for the delivery

problem.Operations Research 39(3), 456–469.

Ambrosino, D. and A. Sciomachen (2007, January). A food distribution network problem: a case

study.IMA Journal of Management Mathematics 18(1), 33–53.

Archetti, C., A. Hertz, and M. G. Speranza (2006, February). A tabu search algorithm for the

split delivery vehicle routing problem.Transportation Science 40(1), 64–73.

Archetti, C., R. Mansini, and M. G. Speranza (2001). The split delivery vehicle routing problem

with small capacity.To appear in Transportation Science.

Archetti, C., R. Mansini, and M. G. Speranza (2005, May). Complexity and reducibility of the

skip delivery problem.Transportation Science 39(2), 182–187.

188



Archetti, C., M. W. P. Savelsbergh, and M. G. Speranza (2006, May). Worst-case analysis for

split delivery vehicle routing problems.Transportation Science 40(2), 226–234.

Archetti, C., M. W. P. Savelsbergh, and M. G. Speranza (2008). To split or not to split: That is

the question.Transportation Research. Part E 44(1), 114–123.

Archetti, C. and M. G. Speranza (2007, August). An overview on the split delivery vehicle rout-

ing problem. InOperations Research Proceedings 2006, Volume 2006 ofOperations Re-

search Proceedings, pp. 123–127. Springer Berlin / Heidelberg.

Archetti, C., M. G. Speranza, and M. W. P. Savelsbergh (2008, February). An optimization-based

heuristic for the split delivery vehicle routing problem.Transportation Science 42(1), 22–31.

Baker, B. M. and M. A. Ayechew (2003, April). A genetic algorithm for the vehicle routing

problem.Computers & Operations Research 30(5), 787–800.

Baldacci, R., E. Hadjiconstantinou, and A. Mingozzi (2004, September). An exact algorithm for

the capacitated vehicle routing problem based on a two-commodity network flow formula-

tion. Operations Research 52(5), 723–738.

Beasley, J. E. (1983). Route-first cluster-second methods for vehicle routing.Omega 11(4), 403–

408.

Belenguer, J., M. Martinez, and E. Mota (2000, Sept/Oct). A lower bound for the split delivery

vehicle routing problem.Operations Research 48(5), 801–810.

Belfiore, P., H. Tsugunobu, and Y. Yoshizaki (2006, Sept/Dec). Scatter search for heteroge-

neous fleet vehicle routing problems with time windows and split deliveries.Produç̃ao: uma
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