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The two-echelon vehicle routing problem (2E-VRP) is a variant of the classical vehicle routing problem (VRP) arising in two-
level transportation systems such as those encountered in the context of city logistics. In the 2E-VRP, freight from a depot is
compulsorily delivered through intermediate depots, named satellites. The first echelons are routes that distribute freight from
depot to satellites, and the second are those from satellites to customers. This problem is solved by a hybrid heuristic which is
composed of a greedy randomized adaptive search procedure (GRASP) with a route-first cluster-second procedure embedded
and a variable neighborhood descent (VND), called GRASP+VND hereafter. Firstly, an extended split algorithm in the GRASP
continuously splits randomly generated permutations of all customers and assigns customers to satellites reasonably until a feasible
assignment appears, and a complete 2E-VRP feasible solution is obtained by solving the first echelon problem subsequently and,
secondly, a VND phase attempts to improve this solution until no more improvements can be found. The process above is iterated
until the maximum number of iterations is reached. Computational tests conducted on three sets of benchmark instances from the
literature show that our algorithm is both effective and efficient and outperforms the best existing heuristics for the 2E-VRP.

1. Introduction

The transportation of freight constitutes an extremely impor-
tant activity taking place in urban areas, but it is also very dis-
turbing. The increase in the number of freight transportation
trucks using urban roads makes a more and more significant
contribution to traffic congestion and many associated nega-
tive environmental impacts, such as air pollution and noise.
For the purpose of preventing the urban environment from
getting worse, many municipalities place restrictions on these
big trucks to keep them out of their city centers by creating
peripheral intermediate facilities, called satellites. External
carriers need to supply these satellites from central depots and
then smaller and environmentally friendly vehicles would
distribute the freight downtown from these satellites [1-3].
Therefore, two distribution echelons are involved in city logis-
tics. With the customer demands, satellite capacities, and
vehicle capacities from the two levels known in advance, the
two-echelon vehicle routing problem (2E-VRP) [4, 5] consists
in building a set of the least-cost trips (the fewest number

of vehicles used and least vehicle traveling cost) for the two
echelons.

The 2E-VRP is a new two-echelon variant of the well-
known vehicle routing problem (VRP). Several models have
been proposed and different kinds of algorithms have been
designed, including both exact algorithms [4-7] and heuristic
algorithms [8-11].

Perboli et al. [4] introduced a family of two-echelon vehi-
cle routing problems and proposed a three-index flow-based
formulation for the 2E-VRP. The authors also introduced
some valid inequalities and two math-heuristics based on the
2E-VRP model, which were used within a branch-and-cut
framework. They were able to solve to optimality instances
containing up to 21 customers.

Perboli and Tadei [5] proposed several new classes of
valid inequalities based on the traveling salesman problem
(TSP) and the VRP and strengthened the previous 2E-VRP
formulation with new cuts (including capacity cuts), which
allowed their algorithm to solve seven new instances to



optimality and reduce the optimality gap on several other
instances.

Jepsen et al. [6] presented an edge flow based model for
the 2E-VRP and employed a specialized branching scheme to
branch on infeasible integer solutions in their branch-and-cut
algorithm to obtain feasible solutions. Their algorithm was
able to solve 47 instances to optimality, surpassing previous
exact algorithms. They found that the coupling between the
two echelons in the 2E-VRP would pose a challenge to
incorporate.

Baldacci et al. [7] proposed a new mathematical formu-
lation of the 2E-VRP (used to derive valid lower bounds)
and a new exact method. They decomposed the 2E-VRP
into a limited set of multidepot vehicle routing problems
(MDVRPs) with side constraints. Computational results on
extensive benchmark instances showed that their exact algo-
rithm outperformed the state-of-the-art exact methods in
terms of size, number of problems solved to optimality, and
computing time.

Since exact algorithms are usually computationally
expensive for large-scale combinatorial optimization prob-
lems, approximate solutions with sufficient accuracy that can
be obtained fast are often desired in practice.

Crainic et al. [8] developed a family of multistart heuris-
tics, based on separating the depot-to-satellite transfer and
the satellite-to-customer delivery by iteratively solving the
two resulting routing subproblems, while adjusting the satel-
lite workloads that linked them. Besides, an intensification
phase aiming at improving feasible solutions by local search
was followed by a diversification phase to avoid local opti-
mum in their algorithms. Their ideas are very useful to handle
the 2E-VRP; however, they obtained relatively poor results
even in small-scale instances.

Meihua et al. [9] proposed a hybrid ant colony opti-
mization algorithm which combined three heuristics for the
2E-VRP. They firstly divided the problem into several VRPs
by a separation strategy and then applied improved ant
colony optimization with multiple neighborhood descent to
build better feasible solutions. Computational tests on 22
benchmark instances from the literature showed that their
algorithm was better than previous published algorithms.

Hemmelmayr et al. [10] developed an adaptive large
neighborhood search (ALNS) heuristic for the 2E-VRP, based
on the destroy-and-repair principle in which two different
sets of operators (destroy operators and repair operators) are
alternated. They used existing operators and new operators
designed specifically for the 2E-VRP. Their algorithm was
shown to provide better solutions and outperform existing
heuristic methods for the 2E-VRP but is much complicated
to implement in practice because of adopting too many kinds
of operators (8 kinds of destroy operators, 5 kinds of repair
operators, and 5 kinds of local search operators) and many
parameters.

Crainic et al. [11] proposed a heuristic algorithm based
on greedy randomized adaptive search procedure (GRASP)
combined with path relinking to address the 2E-VRP. The
problem was treated by separating the depot-to-satellite
transfer and the satellite-to-customer delivery and iteratively
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solving the two resulting routing subproblems, while adjust-
ing the satellite workloads that link them; this idea is the
same as Crainic et al. [8]. The path relinking procedure with
feasibility search was applied to link current solution to elite
one. The computational results on instances with up to 50
customers and 5 satellites showed that the proposed heuristic
can improve literature results, in both efficiency and accuracy,
but their solution quality cannot outperform the ALNS of
Hemmelmayr et al. [10].

According to the published computational results of these
heuristic methods mentioned above, we can retrieve that the
best existing heuristic for the 2E-VRP is the ALNS algorithm
of Hemmelmayr et al. [10].

Greedy randomized adaptive search procedure (GRASP)
is one of the most well-known multistart heuristics for com-
binatorial optimization problems. It was introduced by Feo
and Resende [12]. Each GRASP iteration consists basically
of constructing a feasible solution and then applying a local
search procedure to improve it until a local optimum is found,
and the best overall solution is kept as the final result [12, 13].

Variable neighborhood descent (VND) is a deterministic
version of variable neighborhood search (VNS), originally
proposed by Mladenovi¢ and Hansen [14]. VNS is a meta-
heuristic for solving combinatorial optimization problems,
whose basic idea is a systematic change of neighborhoods,
both within a descent phase to find a local optimum and in
a perturbation phase to get out of the corresponding valley
[14, 15]. VNS explores an ordered list of neighborhoods. It
starts with a given neighborhood and switches to the next
one in the list when it finds a local minimum. The search
is reinitialized from the first neighborhood whenever a new
better solution is found or when all neighborhoods have been
checked. VND also changes the neighborhood operators once
the search is stuck in a local optimum, but it differs from VNS
that no random perturbation is applied.

The hybrid of GRASP and VND has successfully solved
several kinds of routing problems, such as pickup-and-
delivery traveling salesman problem [16], truck and trailer
routing problem [17], traveling repairman problem [18],
three-dimensional bin packing problem [19], and school bus
routing problem [20]. Because the combinations of GRASP
and VND are not only effective and efficient in solving
combinatorial optimization problems but also very simple to
implement, we design a hybrid GRASP+VND heuristic for
the 2E-VRP based on the characteristics of this problem to
meet the practical requirements arising in city logistics.

The remainder of this paper is organized as follows.
Section 2 first describes the 2E-VRP and its mathematical
model. Section 3 gives the details of our hybrid heuristic
for the 2E-VRP. Section 4 presents computational results on
three sets of instances. Section 5 contains the discussion and
Section 6 gives the conclusion.

2. Problem Description and
Mathematical Formulation

The definition of 2E-VRP provided here follows those in
[4, 7, 10]. 2E-VRP can be defined on a weighted, complete,
and undirected graph G = (V, A) with node set V and arc set
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FIGURE 1: A solution to the 2E-VRP.

A. Node set V is composed of three kinds of nodes: a depot
Vi, a subset V; of n satellites, and a subset V; of n. customers.
In the arc set A, each arc (i, j) represents the shortest path in
the actual road network, with a known traveling cost ¢;;. Costs
in both levels are assumed to satisfy the triangle inequalities.
Each customer i € V_ has an associated demand d;, known
in advance, and cannot be split. The demand should not
be delivered by direct shipping from the depot but must be
consolidated in a satellite. The deliveries to the satellites on
the first echelon can be split. Each vehicle has a capacity
constraint that has to be respected. This capacity is the same
for all vehicles belonging to the same level but may differ for
each level. The capacities of the first- and the second-level
vehicles are denoted by Q; and Q,, respectively. The total
number of vehicles available is given by m' for the first level
and m” for the second. Each satellite k € Vg has a capacity
B, that limits the total amount of customers’ demands that
can be delivered to it by first-level routes. Moreover, there are
my, first-level vehicles available at each satellite k € V. No
additional limitation on the route size, neither in length nor
in number of visited customers, is introduced.

Figure 1 illustrates a 2E-VRP solution with a depot, three
satellites, and nine customers. The satellites are represented
by five-pointed stars and customers by circles and the depot
by a square. The routes that serve the satellites from the depot
are called the first-level routes. The second-level routes are
those that start from a satellite, visit the customers, and return
to the same satellite. Vehicle routes of the first and the second
echelon are represented by continuous thick lines and dashed
thin lines, respectively.

2.1. Mathematical Formulation. Based on the above descrip-
tion, the 2E-VRP can be formulated as follows [7]. Let ./ be
the index set of all first-level routes, and let /%, < . be the
subset of first-level routes serving satellite k =€ V. Let R,
and A(r) be the subset of satellites visited and subset of arcs
traversed by a first-level route r € ./, respectively. Let %, be
the index of the second-level routes passing through satellite
k € Vg, and let R, € %, be the subset of routes passing
through satellite k € Vg and customer i € V.. The subset
of customers visited and the subset of arcs traversed by

a second-level route I € %, are represented by R;; and A(l),
respectively. Let y, be a binary variable equal to 1 if and only if
router € ./ isin 2E-VRP solution, x; a binary variable equal
to lif and only if route I € &, of satellite k € Vg is in 2E-VRP
solution, and d, a nonnegative integer variable representing
the quantity delivered by first-level route r €  to satellite
k € R,. And the mathematical model of the 2E-VRP can be
stated as follows [7]:

min Z Z Z GijXpg + Z Z GiYr (1)
)

keVg ey (i,j)€A( redl (i,j)eA(r)
subject to: Z Z xu=1 i€V, )

keVsle Ry

Z xkl < mk, k € VS’ (3)
leRy

2

2, D xu<m, (4)
keVsle Ry,

Z z dixkl < Bk’ k€ VS’ (5)
le R i€Ry

1

Z Yrsm, (6)
redl

Z diy = Z Z dixg, k eV (7)
reM leR i€Ry

Z diy <Quyy, T EM, (8)
r€R,

xq €{0,1}, keVs, le%R, )
vy, €{0,1}, red, (10)

dy,e€Z,, keR, rel. o)

The objective function (1) aims to minimize the total cost
of two echelons. Constraints (2) ensure that each customer
i € V must be visited by exactly one second-level route.
Constraints (3), (4), and (6) impose the upper bounds on
the number of first- and second-level routes in the solution.
Constraints (5) specify the capacities of each satellite. The
balance between the quantity delivered by first-level routes
to every satellite and the customers demands supplied from
this satellite is ensured by constraints (7). Constraints (8)
impose that the vehicle capacity of the first-level vehicles is
not exceeded.

Each second-level route must begin and end at the same
satellite, and each customer must be served by exactly one
second-level vehicle. The demand of each satellite is the total
demand of its assigned customers, so each satellite must
receive enough freight from the depot to satisfy the cus-
tomers of its second-level routes. Besides, any change to the
customer-to-satellite assignment affects the first-level routing
and therefore has an impact on the first-level transportation
costs. The objective function to be minimized is the global
transportation costs in both levels. 2E-VRP can be easily seen
to be areduction to the vehicle routing problem (VRP), which



is a special case of 2E-VRP arising when just one satellite is
considered, so it is also NP-hard [10].

3. The Hybrid GRASP+VND Heuristic

The proposed algorithm is a memoryless multistart heuristic
method in which each iteration consists of two phases: a
greedy randomized adaptive search procedure (GRASP) con-
struction phase and a variable neighborhood descent (VND)
improvement phase. Since the solutions generated by the
GRASP construction phase are not guaranteed to be locally
optimal, it may be very beneficial to apply a local search to
further improve each constructed solution [12, 17]. We use
the term GRASP+VND to symbolize this hybrid algorithm.
GRASP+VND independently creates and improves a number
of initial solutions and in the end returns the best solution
obtained during the entire search.

3.1. Search Space. 'The search is restricted to feasible solutions.
We do not allow any violations of the constraints on the
vehicle capacity, number of vehicles available, and the capac-
ity constraints of the satellites. The reason that we always
maintain the feasibility of solutions is that it is quite difficult
and time consuming to perform feasibility repairing (due to
the constraints of the number and capacity of the second-level
vehicles) after the solutions are infeasible in the search.

The initial solutions of GRASP+VND are generated
from solutions encoded as random permutations (TSP tours
covering the entire 7, customers). Any random permutation
T can be converted into a 2E-VRP solution S (with respect to
the orders of customers in T') using an extended version of
the splitting procedure split of Nguyen et al. [21]. Customers
are assigned to satellites by this extended split according to
their orders in T in a relatively reasonable manner and then
the demand of each satellite is obtained by the summation of
the demands of all its assigned customers.

With the obtained demands of all the satellites, the first-
level routes are constructed as follows [10, 22]: we first create
as many full-load direct trips from the depot to each satellite
as possible until the remaining demand of each satellite is less
than the capacity Q, of the first-level vehicle and then solve
a TSP tour using the saving algorithm of Clarke and Wright
[23], as it was handled by Hemmelmayr et al. [10].

3.2. Initial Solution Construction Phase. The goal of GRASP
is to create initial feasible solutions for the second phase to
further improve them. For the hybrid GRASP+VND algo-
rithm to work well, it is essential that solutions of relatively
high quality are constructed during the solution construction
phase.

The idea of splitting a good TSP tour to a VRP solution
was first introduced by Beasley [24], as a route-first cluster-
second heuristic for the VRP. A random permutation T of all
customers is first cut into second-level routes by an extended
version of the split algorithm of Nguyen et al. [21]. The
first stage of our extended algorithm consists of minimizing
the number of second-level routes, that is, the number of
second-level vehicles used. This extension [25] of split defines
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(1) Initialize random generator;

(2) repeat

3) T « RandomPermutation(V,);

(4) Trips « Split(T);

(5) until Trips are feasible

(6) S — CompleteSolution(Trips);

(7) return the feasible solution S generated;

ALGORITHM 1: GRASP for the construction of an initial solution.

a second label N; for the number of arcs on the shortest path
(i.e., the number of second-level vehicles used up to j), sets
N, = 0 at the beginning, and tests N; before L; (the cost
of the shortest path up to j) to minimize first the number of
second-level vehicles.

The adoption of this extension is because the number of
routes is often considered as the primary objective of VRP
and we also need to obtain feasible solutions concerning the
upper bound on the number of the second-level vehicles.

Algorithm 1 gives the framework of the initial solution
construction procedure in our GRASP+VND.

Algorithm 2 implements the extended split for a random
permutation T of all the #n. customers. SA; records the
assigned satellite of the jth customer in T' and P; records the
predecessor of this customer on the shortest path. 7" c(k, V)
represents the additional penalty for each second-level route
according to the distance between its assigned satellite and
the depot. 7" is a nonnegative value, it can be adjusted to
change the impact of the first-level routes on the complete
initial solution, and, as it increases, the first-level routes are
given more importance. It is set to 1 as a default value to obtain
a compromised consideration on routes of both echelons.

3.3. Solution Improvement Phase. After an initial feasible
solution is generated, an attempt is made to improve it
exhaustively. We apply a VND approach to perform the solu-
tion improvement procedure until no more improvements
can be found. VND is a simplified variant of the VNS
heuristic, in which the shaking phase is omitted. Therefore,
VND is usually completely deterministic contrary to VNS.

The neighborhoods of our VND can be classified into two
types: intersecond-level-route and intrasecond-level-route.
Traditional VRP local search operators contain interroute
and intraroute operators. Intraroute operators search and
improve a single route at a time, while interroute operators
deal with several routes simultaneously. When handling the
2E-VRP, we slightly modify the name of this classification
for the second-level routes. The existing three interroute
neighborhood structures Shift, Swap, and Cross and three
intraroute neighborhood structures 2-Opt, Or-Opt, and
Exchange of Subramanian et al. [26-28] are employed, and we
also propose two new neighborhoods Satellites-Change and
Satellites-Swap specially for the 2E-VRP.

Following the representation of Subramanian et al. [26-
28], we consider Shift (A,0), A € {1,2, 3}, and Swap (A, A,),
A A, € {1, 2,3}, We restrict that Shift moves at most 3 adja-
cent customers from a second-level route to another; Swap
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(1) Ly« 0; N, < 0;
(2) fori«— 1ton, do
3) L; « +00; N; « i;SA; «— @;
(4) end for
(5) fori«—1ton, do
(6) load «— 0; costl «— 0; j « i;
(7) repeat
(8) load « load + d(T));
9) if j =i then
(10) costl < 0;
(11) else
(12) costl « costl + C(ijp T]-);
(13) end if
(14) cost « costl + min{c (k,T.)+c (Tj, k) +W -c(k,V,) | ke VS}; Record the best satellite S;;
(15) if load < W, then
(16) if N; > N;_; +1 then
(17) N; = N+ LL; « L, +cost;
(18) P, —i-1;8A; < §;
(19) end if
(20) if (Nj =N, +1)and (L, ; + cost < Lj) then
(21) Lj «— L, | + cost; Pj —i-1 SAJ- —S;;
(22) end if
(23) je i+l
(24) end if
(25) until (j > n,) or (load > W,)
(26) end for
(27) Using vectors P; and SA, return the resulting set Trips of second-level routes

ALGORITHM 2: Procedure split for a random permutation T of all n, customers.

swaps at most 3 adjacent customers from a second-level route
with 3 adjacent customers from another. As a result, nine
distinct neighborhood structures can be identified, that is,
Shift (1,0), Shift (2,0), Shift (3,0), Swap (1, 1), Swap (1, 2),
Swap (1, 3), Swap (2,2), Swap (2,3), and Swap(3,3). The
neighborhoods of Swap (A,,1,) and Shift(A,0) are shown
in Figures 2 and 3, respectively. In Shift (A, 0), A consecutive
customers in a second-level route are moved from a route
r, to another route r,. In Swap (A, A,), A, consecutive cus-
tomers from a second-level route r, are interchanged with
A, consecutive customers from another second-level route
r,. The Cross operator is also called 2-Opt™ in the literature,
firstly proposed by Potvin and Rousseau [29], consisting of
replacing arc (i,i + 1) from a route r, and arc (j, j+ 1) from a
route r, by arcs (i, j+ 1) and (j, i+ 1) (see Figure 4) or by arcs
(i, j) and (i + 1, j + 1) (see Figure 5).

The Satellites-Change neighborhood changes the assigned
satellite of a second-level route at a time, while Satellites-Swap
neighborhood swaps the assigned satellites of two distinct
second-level routes if they belong to different satellites. Both
of them may modify the demands of the satellites and hence
may change the total cost of the 2E-VRP. The Satellites-
Change can be seen as a special case of Satellites-Swap when a
second-level route swaps its satellite with an empty second-
level route. We define both of them as intersecond-level-
route neighborhoods. Neighborhoods of Satellites-Swap and
Satellites-Change are shown in Figures 6 and 7, respectively.

Once a new initial feasible solution is generated, an
intersecond-level-route move is performed to modify the
second-level routes first and then an intrasecond-level-
route improvement procedure that uses 2-Opt, Or-Opt, and
Exchange neighborhoods sequentially is triggered to improve
the modified routes if they are feasible. Details of the three
neighborhoods can be found in the survey of Brdysy and
Gendreau [30]. 2-Opt moves delete two nonadjacent arcs and
add two new arcs to generate a new route (see Figure 8);
Or-Opt moves at most two adjacent customers back and
forth in the current second-level route (see Figure 9), while
Exchange exchanges the positions of two customers or the
positions of a customer and two adjacent customers in the
same second-level route (see Figure 10). Or-Opt used in this
paper can be seen as the intraroute version of Shift (1,0)
and Shift (2, 0), while Exchange can be seen as the intraroute
version of Swap (1, 1) and Swap (1, 2).

All the neighborhoods are searched until no more
improvements can be obtained, in a first-accept manner, and
infeasible move against the capacity of each echelon vehicles
is never allowed. When no more moves that improve the
current solution can be found in a neighborhood, the search
continues with the next neighborhood. VND ends when the
current solution is a local optimum with respect to all the
applied neighborhoods. The framework of VND [31, 32] is
briefly shown in Algorithm 3. Each N}, (h < h,,,) is actually
a combination of an intersecond-level-route neighborhood
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(1) Define the neighborhood N, = Shift, Swap, Cross, ...
2) §* «S;
(3) repeat
(4) improve_flag — false;
(5) he1;
(6) while h < h_, do
(7) S « LocalSearch(S, N;,);
(8) if Cost(S) < Cost(S™) then
9) improve_flag — true;
(10) AR
(11) he—h+1;
(12) end if
(13) end while
(14) until improve_flag = false
(15) return the local optimum S* found;

ALGORITHM 3: VND for the improvement of a solution S.

(1) S* « @, Cost(S™) « +o0

(2) for i < 1 to maxi do

3) S «— GRASP();

(4) S «— VND(S);

(5) if Cost(S) < Cost(S™) then

(6) S* < S;
(7) end if
(8) end for

(9) return the best solution §* found;

ALGORITHM 4: GRASP+VND for 2E-VRP outline.

and the three intrasecond-level-route neighborhoods. But the
neighborhood N, placed at the end is an exception and
it is only composed of the above three intrasecond-level-
route neighborhoods, which are searched circularly until
none of them can improve every second-level route of current
solution. Every time the solution is modified due to a feasible
intersecond-level-route move, the three intrasecond-level-
route operators are performed sequentially to improve the
newly generated second-level routes.

3.4. Framework of the Resulting GRASP+VND. Our hybrid
GRASP+VND heuristic for the 2E-VRP combines a GRASP
construction phase with a VND improvement phase. Both
of them are iterated maxi times, and the best solution found
of all iterations is kept as the final result. An outline of the
proposed hybrid algorithm is shown in Algorithm 4. The
term S* stands for the global best solution found.

4. Numeric Verification

We conducted computational study on three sets of bench-
mark instances in order to assess the proposed hybrid
GRASP+VND algorithm with respect to solution quality
and computing times. Our hybrid algorithm was coded in
C++, compiled by Microsoft Visual C++ 6.0, and run on a
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FIGURE 3: Shift(A,0) neighborhoods.

single core of an Intel Pentium Dual-Core E5500 processor
(2.8 GHz) and 2 GB of memory.

4.1. Instance Description. The proposed hybrid algorithm was
tested on the 2E-VRP benchmark instances Set 2, Set 3, and
Set 4. Instances Set 2 and Set 3 were proposed by Perboli
et al. [4] and they are based on the following VRP instances
of Christofides and Eilon: E-n22-k4, E-n33-k4, and E-n51-k5.
The cost matrix of each instance is given by the corresponding
VRP instance. The capacity of the first-level vehicles is 2.5
times the capacity of the second. The capacity and the
available number of the second-level vehicles are equal to the
corresponding VRP instance. The satellites are located at sev-
eral randomly chosen customers. Instances in this set range
between 21 and 50 customers and consider 2 or 4 satellites.
Set 4 was proposed by Crainic et al. [33] and contains 54
instances. Each instance has 50 customers and the number
of available satellites is 2, 3, or 5. They were generated using
three different customer distributions (Random, Centroids,
and Quadrants) and three satellite location patterns (Random,
Sliced, and Forbidden Zone). A summary of the characteristics
of these instances can be found in Hemmelmayr et al. [10].

4.2. Parameter Setting. The nonnegative weight 7 in
Algorithm 2 is set to 1 as default, which has been determined
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by experience. The maximum number of iterations maxi
(i.e., the number of initial feasible solutions generated and
improved by VND) is set to 500, and each instance is
conducted on five independent runs, as it was done in [10].
We record the best and average solutions, as well as the
average time needed to find the best solution of five runs for
each instance.

4.3. Computational Results. In this section, we compare the
computational results of our hybrid GRASP+VND heuristic
with the best existing heuristic method for the 2E-VRP, that
is, the ALNS algorithm of Hemmelmayr et al. [10].

The results of instances Set 2, Set 3, and Set 4 obtained
by the two compared heuristics are shown in Tables 1, 2, and
3, respectively. The column instance name gives the names
of these instances. The column BKS gives the best-known
results of these 2E-VRP instances (published in Baldacci et
al. [7]). The columns ALNS and GRASP+VND report the
computational results of the two algorithms, respectively.
The ALNS algorithm [10] and our GRASP+VND algorithm
both report the best and average solutions (containing their
percentage deviation from the best-know solutions), as well
as the average time (in seconds) needed to find the best
solutions of five runs.

The two heuristics were both implemented in C++ but
used different workstations. The ALNS heuristic was tested
on a single core of an AMD Opteron 275 processor (2.2 GHz).
In order to make a fair comparison, we choose the running
times of ALNS as a benchmark and scale the running times

NG ()
/ /

FIGURE 7: Satellites-Change neighborhoods.

of our GRASP+VND according to the CPU performances
reported at http://www.cpubenchmark.net/cpu_list.php. Our
machine is 1.34 times faster than the AMD Opteron 275 pro-
cessor (2.2 GHz) used by Hemmelmayr et al. [10]; therefore,
our running times are multiplied by 1.34. The times shown
in Tables 1, 2, and 3 are already the scaled value of actual
running times. Values in bold fonts correspond to those that
our GRASP+VND outperforms the ALNS, while those italic
mean that our algorithm is worse than the ALNS.

5. Discussion

As seen from Tables 1, 2, and 3, our GRASP+VND and the
ALNS can both find the best-known solutions for all the 39
instances in Set 2 and Set 3, and the ALNS can find the
best-known 44 solutions for instances in Set 4, while the
GRASP+VND can find 52; besides, there are ten better results
in the best values found by our GRASP+VND. In terms of
the average solutions, the two heuristics obtained the same
results in Set 2 and Set 3, but we can see from Table 3 that
our GRASP+VND is much better than the ALNS. In regard to
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TaBLE 1: Computational results comparison for Set 2 for the 2E-VRP.

Number  Instance name n, BKS [7] ALNS GRASP+VND
Best % dev. Average %dev. Time(s) Best % dev. Average % dev. Time (s)

1 E-n22-k4-s6-17 2 41707 41707  0.00 417.07 0.00 0 41707  0.00 417.07 0.00 0
2 E-n22-k4-s8-14 2 38496 38496 0.00 384.96 0.00 0 384.96 0.00 384.96 0.00 0
3 E-n22-k4-59-19 2  470.60 470.60 0.00 470.60 0.00 0 470.60 0.00 470.60 0.00 0
4 E-n22-k4-510-14 2 37150 37150 0.00 371.50 0.00 0 371.50  0.00 371.50 0.00 0
5 E-n22-k4-s11-12 2 42722 42722  0.00 42722 0.00 0 42722  0.00 427.22 0.00 0
6 E-n22-k4-s12-16 2 39278 39278 0.00 392.78 0.00 0 392.78 0.00 392.78 0.00 0
7 E-n33-k4-s1-9 2 73016 730.16 0.00 730.16 0.00 0 730.16  0.00 730.16 0.00 0
8 E-n33-k4-s2-13 2 714.63 714.63 0.00 714.63 0.00 0 714.63  0.00 714.63 0.00 0
9 E-n33-k4-s3-17 2 70748 70748 0.00 707.48 0.00 0 70748  0.00 707.48 0.00 0
10 E-n33-k4-s4-5 2 77874 778.74 0.00 778.74 0.00 3 778.74  0.00 778.74 0.00 1
1 E-n33-k4-s7-25 2 756.85 756.85 0.00 756.85 0.00 0 756.85  0.00 756.85 0.00 0
12 E-n33-k4-s14-22 2 779.05 779.05 0.00 779.05 0.00 0 779.05  0.00 779.05 0.00 0
13 E-n51-k5-s2-17 2 59749 59749 0.00 597.49 0.00 7 59749  0.00 597.49 0.00 1
14 E-n51-k5-s4-46 2 530.76 530.76  0.00 530.76 0.00 0 530.76  0.00 530.76 0.00 0
15 E-n51-k5-s6-12 2 55481 554.81 0.00 554.81 0.00 2 554.81 0.00 554.81 0.00 2
16 E-n51-k5-s11-19 2 58164 58164 0.00 581.64 0.00 6 581.64 0.00 581.64 0.00 5
17 E-n51-k5-s27-47 2 538.22 538.22 0.00 538.22 0.00 1 538.22  0.00 538.22 0.00 1
18 E-n51-k5-s32-37 2 55228 552.28 0.00 552.28 0.00 1 552.28 0.00 552.28 0.00 1
19 E-n51-k5-s2-4-17-46 4 530.76 530.76  0.00 530.76 0.00 1 530.76  0.00 530.76 0.00 1
20 E-n51-k5-s6-12-32-37 4 531.92 531.92  0.00 531.92 0.00 0 531.92  0.00 531.92 0.00 1
21 E-n51-k5-s11-19-27-47 4 52763 52763  0.00 527.63 0.00 1 527.63  0.00 527.63 0.00 1
Average 565.55 565.55 0.00 565.55 0.00 1 565.55 0.00 565.55 0.00 0.67

TaBLE 2: Computational results comparison for Set 3 for the 2E-VRP.

Number Instance name #n, BKS [7] ALNS ) GRASP+VND )
Best % dev. Average %dev. Time(s) Best %dev. Average % dev. Time (s)

1 E-n22-k4-s13-14 2 526.15 526.15 0.00 526.15 0.00 0 526.15 0.00 526.15 0.00 0
2 E-n22-k4-s13-16 2 521.09  521.09 0.00 521.09 0.00 0 521.09 0.00 521.09 0.00 0
3 E-n22-k4-s13-17 2 496.38 49638  0.00 496.38 0.00 0 496.38  0.00 496.38 0.00 0
4 E-n22-k4-s14-19 2 498.80 498.80 0.00 498.80 0.00 0 498.80  0.00 498.80 0.00 0
5 E-n22-k4-s17-19 2 512.81 512.81 0.00 512.81 0.00 0 512.81 0.00 512.81 0.00 0
6 E-n22-k4-s19-21 2 520.42 520.42 0.00 520.42 0.00 0 520.42  0.00 520.42 0.00 0
7 E-n33-k4-s16-22 2 67217 67217  0.00 672.17 0.00 3 672.17 0.00 672.17 0.00 0
8 E-n33-k4-s16-24 2 666.02 666.02 0.00 666.02 0.00 0 666.02  0.00 666.02 0.00 0
9 E-n33-k4-s19-26 2 680.37 680.37 0.00 680.37 0.00 0 680.37  0.00 680.37 0.00 0
10 E-n33-k4-s22-26 2 680.37 680.37 0.00 680.37 0.00 0 680.37  0.00 680.37 0.00 0
11 E-n33-k4-s24-28 2 670.43 670.43 0.00 670.43 0.00 0 670.43  0.00 670.43 0.00 0
12 E-n33-k4-s25-28 2 650.58 650.58  0.00 650.58 0.00 0 650.58  0.00 650.58 0.00 0
13 E-n51-k5-s12-18 2 690.59 690.59  0.00 690.59 0.00 4 690.59  0.00 690.59 0.00 1
14 E-n51-k5-s12-41 2 683.05 683.05 0.00 683.05 0.00 38 683.05 0.00 683.05 0.00 1
15 E-n51-k5-s12-43 2 710.41  710.41 0.00 710.41 0.00 1 710.41 0.00 710.41 0.00 1
16 E-n51-k5-s39-41 2 72854 72854  0.00 728.54 0.00 18 728.54  0.00 728.54 0.00 6
17 E-n51-k5-s40-41 2 72375 723.75  0.00 723.75 0.00 17 723.75  0.00 723.75 0.00 4
18 E-n51-k5-s40-43 2 75215 75215 0.00 752.15 0.00 15 752.15 0.00 752.15 0.00 12
Average 632.45 632.45 0.00 632.45 0.00 5 632.45 0.00 632.45 0.00 1.44
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TaBLE 3: Computational results comparison for Set 4 for the 2E-VRP.

Number Instance name n, BKS [7] ALNS . GRASP+VND .
Best % dev. Average %dev. Time(s) Best %dev. Average % dev. Time (s)

1 Instance50-s2-01 2 1569.42 1569.42 0.00 1569.42  0.00 6 1569.42  0.00 1569.42  0.00 2
2 Instance50-s2-02 2 1438.33 1438.33  0.00 1441.02 0.19 43 1438.33 0.00 1438.33 0.00 53
3 Instance50-s2-03 2 1570.43 1570.43 0.00 1570.43  0.00 3 1570.43  0.00 1570.43  0.00 2
4 Instance50-s2-04 2 1424.04 1424.04 0.00 1424.04 0.00 1 1424.04 0.00 1429.04 0.35 98
5 Instance50-s2-05 2 2193.52 2194.11 0.03 2194.11 0.03 63 2193.52 0.00 2193.95 0.02 46
6 Instance50-s2-06 2 1279.87 1279.87 0.00 1279.87  0.00 2 1279.87 0.00 1279.87 0.00 1
7 Instance50-s2-07 2 1408.57 1458.63  3.55 1458.63 3.55 6 1408.57 0.00 1408.57 0.00 22
8 Instance50-s2-08 2 1360.32 1360.32 0.00 1360.32  0.00 5 1360.32  0.00 1360.32  0.00 5
9 Instance50-s2-09 2 1403.53 1450.27 3.33  1450.27 3.33 46 1403.53 0.00 1403.53 0.00 6
10 Instance50-s2-10 2 1360.56 1360.56 0.00 1360.56  0.00 1 1360.56  0.00 1360.56  0.00 2
1 Instance50-s2-11 2 204746 2059.88 0.61  2059.88 0.61 101 2059.41 0.58 2059.41 0.58 5
12 Instance50-s2-12 2 1209.42 1209.42 0.00 1209.42 0.00 44 1209.42  0.00 120942 0.00 8
13 Instance50-s2-13 2 1450.93 1481.83 2.13 1481.83 2.13 25 1450.93 0.00 1450.93 0.00 3
14 Instance50-s2-14 2 1393.61 1393.61 0.00 1393.61 0.00 6 1393.61 0.00 1393.61 0.00 2
15 Instance50-s2-15 2 1466.83 1489.94 1.58 1489.94 1.58 9 1466.83 0.00 1466.83 0.00 1
16 Instance50-s2-16 2 1387.83 1387.83 0.00 1387.83 0.00 6 1387.83 0.00 1387.83 0.00 8
17 Instance50-s2-17 2 2088.49 2088.49 0.00 2088.49 0.00 165 2088.49 0.00 2088.49 0.00 36
18 Instance50-s2-18 2 1227.61 122761 0.00 1227.61 0.00 3 1227.61 0.00 1227.61 0.00 2
19 Instance50-s3-19 3 1546.28 1546.28 0.00 1546.28 0.00 25 1546.28 0.00 1546.28 0.00 34
20 Instance50-s3-20 3 1272.97 127297 0.00 1272.97 0.00 12 1272.97  0.00 1272.97  0.00 76
21 Instance50-s3-21 3 157782 1577.82 0.00 1577.82 0.00 61 1577.82 0.00 1577.82 0.00 25
22 Instance50-s3-22 3 1281.83 1281.83 0.00 1281.83 0.00 2 1281.83 0.00 1281.83 0.00 37
23 Instance50-s3-23 3 1652.98 165298 0.00 165298 0.00 5 1652.98 0.00 165298 0.00 4
24 Instance50-s3-24 3 1282.68 1282.68 0.00 1282.68 0.00 2 1282.68 0.00 1282.68 0.00 2
25 Instance50-s3-25 3 1408.57 1440.68 2.28 1440.84 2.29 53 1408.57 0.00 1408.57 0.00 23
26 Instance50-s3-26 3 116746 116746  0.00 116746  0.00 0 116746  0.00 116746  0.00 9
27 Instance50-s3-27 3 1444.51 144451 0.00 1447.79 0.23 12 1444.51 0.00 1454.63 0.70 52
28 Instance50-s3-28 3 1210.44 1210.44 0.00 1210.44  0.00 7 1210.44 0.00 1210.44 0.00 3
29 Instance50-s3-29 3 1552.66 1559.82  0.46 1561.81 0.59 102 1552.66 0.00 1555.56 0.19 40
30 Instance50-s3-30 3 1211.59  1211.59 0.00 1211.59 0.00 5 1211.59 0.00 1211.59 0.00 2
31 Instance50-s3-31 3 1440.86 1440.86 0.00 1440.86 0.00 37 1440.86  0.00 1441.07 0.01 39
32 Instance50-s3-32 3 1199.00 1199.00  0.00 1199.00 0.00 1 1199.00 0.00 1199.00 0.00 13
33 Instance50-s3-33 3 1478.86 1478.86 0.00 1478.86  0.00 16 1478.86  0.00 1478.86  0.00 19
34 Instance50-s3-34 3 1233.92 1233.92 0.00 123392 0.00 4 1233.92 0.00 1233.92 0.00 15
35 Instance50-s3-35 3 1570.72 1570.72 0.00  1570.80 0.01 116 1570.72 0.00 1570.72 0.00 6
36 Instance50-s3-36 3 1228.89 1228.89 0.00 1228.89  0.00 6 1228.89  0.00 1228.89 0.00 3
37 Instance50-s5-37 5 1528.73 1528.73  0.00 1528.81 0.01 55 1528.73 0.00 1528.98 0.02 58
38 Instance50-s5-38 5 1163.07 1163.07  0.00 1163.07 0.00 15 1163.07 0.00 1163.07 0.00 2
39 Instance50-s5-39 5 1520.92 1520.92 0.00 1520.92  0.00 33 1520.92  0.00 1520.92  0.00 21
40 Instance50-s5-40 5 1163.04 1163.04  0.00 1165.24 0.19 20 1163.04 0.00 1163.04 0.00 9
41 Instance50-s5-41 5 165298 1652.98 0.00 1652.98 0.00 12 1652.98 0.00 1652.98  0.00 12
42 Instance50-s5-42 5 1190.17 1190.17 0.00 1190.17 0.00 31 1190.17 0.00 1190.17 0.00 95
43 Instance50-s5-43 5 1406.11 140611 0.00 1408.95 0.20 60 1406.11  0.00 1406.11  0.00 32
44 Instance50-s5-44 5 1035.03 1035.03 0.00 103532  0.03 30 1035.03  0.00 1035.03 0.00 9
45 Instance50-s5-45 5 1401.87 1403.10 0.09 1406.43  0.33 104 1402.03 0.01 1402.03 0.01 36
46 Instance50-s5-46 5 1058.11  1058.11 0.00 1058.97  0.08 17 1058.11 0.00 1058.11 0.00 9
47 Instance50-s5-47 5 1552.66 1559.82  0.46 1564.41 0.76 103 1552.66 0.00 1557.04 0.28 33
48 Instance50-s5-48 5 1074.50 107450 0.00 1074.50  0.00 2 1074.50  0.00 1074.50  0.00 1
49 Instance50-s5-49 5 1434.88 1434.88 0.00 1435.28 0.03 81 1434.88 0.00 1434.88 0.00 51
50 Instance50-s5-50 5 1065.25 1065.25 0.00 1065.25 0.00 16 1065.25 0.00 1065.25  0.00 3
51 Instance50-s5-51 5 138751 138751 0.00 1387.72 0.02 46 1387.51 0.00 138751 0.00 4
52 Instance50-s5-52 5 1103.42 1103.42  0.00 1103.76 0.03 47 1103.42 0.00 1103.42 0.00 30
53 Instance50-s5-53 5 1545.73 1545.73 0.00 1545.73  0.00 37 1545.73 0.00 1545.73  0.00 6
54 Instance50-s5-54 5 1113.62  1113.62 0.00 1113.62 0.00 2 1113.62 0.00 1113.62 0.00 16
Average 1397.04 1400.96 0.28 1401.39 0.31 32 1397.27 0.02 1397.70 0.05 21
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the deviations of the solutions from the best-known results,
we can find that our GRASP+VND is as good as the ALNS
in Set 2 and Set 3 but outperforms the ALNS in Set 4.
With respect to the running times, our GRASP+VND is
as fast as the ALNS in Set 2, a little faster than the ALNS
in Set 3 and much faster in Set 4; besides, the running
times of our GRASP+VND are limited and reasonable. Our
GRASP+VND adopted 8 kinds of local search operators,
while the ALNS used 8 kinds of destroy operators, 5 kinds
of repair operators, and 5 kinds of local search operators;
besides, our GRASP+VND used only 2 parameters, but the
ALNS employed 9 parameters, so the GRASP+VND is much
easier to implement and tune. From the comparisons above,
we can retrieve that our GRASP+VND is both effective and
efficient and outperforms the best existing heuristics for the
2E-VRP.

6. Conclusion

This paper has presented a very simple hybrid GRASP+VND
heuristic to address the two-echelon vehicle routing problem
(2E-VRP), a newly defined multiechelon variant of the classi-
cal vehicle routing problem (VRP). The heuristic is composed
of a GRASP construction phase (embedding an extended split
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algorithm) to generate feasible and relatively good solutions
and a VND phase to improve them.

Computational experiments on three sets of benchmark
instances from the literature showed the effectiveness and
efficiency of the proposed algorithm, and it outperformed
the best existing heuristic methods for the 2E-VRP in
both solutions quality and computing times. Moreover, the
implementation of the hybrid heuristic is much easier than
other heuristics. As a result, the proposed hybrid heuristic is
more suitable for handling practical 2E-VRP and its relative
variants arising in city logistics.
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