22 research outputs found

    Parallel LQP alternating direction method for solving variational inequality problems with separable structure

    Get PDF
    In this paper, we propose a logarithmic-quadratic proximal alternating direction method for structured variational inequalities. The predictor is obtained by solving series of related systems of nonlinear equations, and the new iterate is obtained by a convex combination of the previous point and the one generated by a projection-type method along a new descent direction. Global convergence of the new method is proved under certain assumptions. Preliminary numerical experiments are included to verify the theoretical assertions of the proposed method.Qatar University Start-Up Grant: QUSG-CAS-DMSP-13/14-8.Scopu

    Research on closed-loop supply chain network equilibrium with two-type suppliers, risk-averse manufacturers and capacity constraints

    Get PDF
    Purpose: the aim of this paper is to investigate the closed-loop supply chain (CLSC) network equilibrium wiht the consideration of three practical factors: two complementary types of suppliers, risk-averse character of the manufacturer and capacity constraints of the suppliers. Design/methodology/approach: The equilibrium of various decision makers including the suppliers, the manufacturers, the retailers, the collectors and the demand markets are modeled via finite-dimensional variational inequality, respectively. Then the governing CLSC network equilibrium model is established. The logarithmic-quadratic proximal prediction-correction algorithm is designed to solve the variational inequality model. Numerical examples are given to analyze the impact of return rate, risk-averse degree and capacity constraints on the network equilibrium under different product BOMs. Findings: with the increase of return rate, the profits of various channel members and the performance of the CLSC system will improve. There is a contradiction between profit maximization and risk minimization for the manufacturers. Moreover, the economic behavior of the CLSC is likely to be limited by the capacity constraints of the suppliers. Originality/value: Prior to this paper, few papers have addressed with the CLSC network equilibrium considering some practical factors. They assume all the suppliers are identical and all the decision-makers are risk neutral. Furthermore, the production capacities of all suppliers are assumed to be infinite or large enough. To fill the gap, this paper examines the influences of two-type suppliers, risk aversion and capacity constraints upon the CLSC network equilibrium.Peer Reviewe

    Analysis of the supply chain design and planning issues: Models and algorithms

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Nonmonotone hybrid tabu search for Inequalities and equalities: an experimental study

    Get PDF
    The main goal of this paper is to analyze the behavior of nonmonotone hybrid tabu search approaches when solving systems of nonlinear inequalities and equalities through the global optimization of an appropriate merit function. The algorithm combines global and local searches and uses a nonmonotone reduction of the merit function to choose the local search. Relaxing the condition aims to call the local search more often and reduces the overall computational effort. Two variants of a perturbed pattern search method are implemented as local search. An experimental study involving a variety of problems available in the literature is presented.Fundação para a Ciência e a Tecnologia (FCT

    A variational approach to linear control structure problems

    Get PDF
    Imperial Users onl

    Geometry–aware finite element framework for multi–physics simulations: an algorithmic and software-centric perspective

    Get PDF
    In finite element simulations, the handling of geometrical objects and their discrete representation is a critical aspect in both serial and parallel scientific software environments. The development of codes targeting such envinronments is subject to great development effort and man-hours invested. In this thesis we approach these issues from three fronts. First, stable and efficient techniques for the transfer of discrete fields between non matching volume or surface meshes are an essential ingredient for the discretization and numerical solution of coupled multi-physics and multi-scale problems. In particular L2-projections allows for the transfer of discrete fields between unstructured meshes, both in the volume and on the surface. We present an algorithm for parallelizing the assembly of the L2-transfer operator for unstructured meshes which are arbitrarily distributed among different processes. The algorithm requires no a priori information on the geometrical relationship between the different meshes. Second, the geometric representation is often a limiting factor which imposes a trade-off between how accurately the shape is described, and what methods can be employed for solving a system of differential equations. Parametric finite-elements and bijective mappings between polygons or polyhedra allow us to flexibly construct finite element discretizations with arbitrary resolutions without sacrificing the accuracy of the shape description. Such flexibility allows employing state-of-the-art techniques, such as geometric multigrid methods, on meshes with almost any shape.t, the way numerical techniques are represented in software libraries and approached from a development perspective, affect both usability and maintainability of such libraries. Completely separating the intent of high-level routines from the actual implementation and technologies allows for portable and maintainable performance. We provide an overview on current trends in the development of scientific software and showcase our open-source library utopia

    Distributed Optimization with Application to Power Systems and Control

    Get PDF
    In many engineering domains, systems are composed of partially independent subsystems—power systems are composed of distribution and transmission systems, teams of robots are composed of individual robots, and chemical process systems are composed of vessels, heat exchangers and reactors. Often, these subsystems should reach a common goal such as satisfying a power demand with minimum cost, flying in a formation, or reaching an optimal set-point. At the same time, limited information exchange is desirable—for confidentiality reasons but also due to communication constraints. Moreover, a fast and reliable decision process is key as applications might be safety-critical. Mathematical optimization techniques are among the most successful tools for controlling systems optimally with feasibility guarantees. Yet, they are often centralized—all data has to be collected in one central and computationally powerful entity. Methods from distributed optimization control the subsystems in a distributed or decentralized fashion, reducing or avoiding central coordination. These methods have a long and successful history. Classical distributed optimization algorithms, however, are typically designed for convex problems. Hence, they are only partially applicable in the above domains since many of them lead to optimization problems with non-convex constraints. This thesis develops one of the first frameworks for distributed and decentralized optimization with non-convex constraints. Based on the Augmented Lagrangian Alternating Direction Inexact Newton (ALADIN) algorithm, a bi-level distributed ALADIN framework is presented, solving the coordination step of ALADIN in a decentralized fashion. This framework can handle various decentralized inner algorithms, two of which we develop here: a decentralized variant of the Alternating Direction Method of Multipliers (ADMM) and a novel decentralized Conjugate Gradient algorithm. Decentralized conjugate gradient is to the best of our knowledge the first decentralized algorithm with a guarantee of convergence to the exact solution in a finite number of iterates. Sufficient conditions for fast local convergence of bi-level ALADIN are derived. Bi-level ALADIN strongly reduces the communication and coordination effort of ALADIN and preserves its fast convergence guarantees. We illustrate these properties on challenging problems from power systems and control, and compare performance to the widely used ADMM. The developed methods are implemented in the open-source MATLAB toolbox ALADIN-—one of the first toolboxes for decentralized non-convex optimization. ALADIN- comes with a rich set of application examples from different domains showing its broad applicability. As an additional contribution, this thesis provides new insights why state-of-the-art distributed algorithms might encounter issues for constrained problems
    corecore