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SUMMARY 

As organizations globalize to reach new markets and achieve higher production 

and sourcing efficiencies in recent decades, supply chain design and planning play an 

increasingly important role in moving materials and products throughout the 

organizations’ supply chains. An appropriate design and planning of supply chains for 

an organization can squeeze out the inefficiencies of the activities in the supply chain 

and an amount of savings is achieved consequently. Therefore, it is significant to carry 

out a deeper investigation in model development and algorithm design for supply 

chain design and planning to enhance the efficiencies of the activities in supply chains. 

It thus forms the focus of this thesis.  

First of all, this thesis reviews the state of art on the supply chain design and 

planning. This literature review is classified into domestic supply chain design and 

planning, which includes supply chain network equilibrium models and competitive 

facility location problems, and global supply chain planning.  

With respect to the domestic supply chain design and planning, the research of 

this thesis starts from supply chain network equilibrium (SCNE) models. An alterative 

formulation is provided for the SCNE models (Nagurney et al., 2002; Dong et al., 

2004) which are formulated by variational inequalities (VIs) and solved by the 

modified projection method. It overcomes the difficulty in obtaining an appropriate 

step size for the projection method to ensure convergence. Subsequently, an SCNE 

model with production capacity constraints is developed. This is an important 
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extension to SCNE model since production capacities do have significant impacts on 

the decisions of manufacturers. A Mathematical Program with Equilibrium 

Constraints (MPEC) model is subsequently developed for a competitive facility 

location problem, applying the SCNE model with production capacity constraints to 

derive the equilibrium state of the market. It is a novel application of SCNE model. 

Moreover, it is the first time a study is done on competitive facility location for a three 

level supply chain.  

With respect to the global supply chain planning, a chance constrained 

programming model is established for a multiperiod global supply chain planning 

with consideration of transfer pricing and demand uncertainty. This model can capture 

the impact of fluctuation of international characteristics such as exchange rates and 

demand uncertainty on decisions such as transfer pricing and the after-tax profit of a 

multinational company (MNC). It should be pointed out that this chance constrained 

programming model is for only one MNC. Hence, in the last part of this thesis, a 

generalized Nash game model is developed for studying the competition of several 

MNCs that produce substitutable products. To our best knowledge, it is the first game-

theoretical model that considers transfer pricing, different gradual tax brackets of 

different countries and other international characteristics which do affect the decisions 

of global supply chains.  
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CHAPTER 1 INTRODUCTION 

1.1 Background 

Developments in the field of production management since World War II have 

been limited to the improvement of activities related to production control and design 

in individual functional areas such as inventory management, planning and scheduling 

of manufacturing activities, modeling and evaluation of manufacturing systems, 

layout problems, group technology, system design approaches, and design and control 

of information flows. In those years, manufacturers mainly concentrated on the 

production technology revolutions. In recent decades, as organizations globalize to 

reach new markets and achieve higher production and sourcing efficiencies, supply 

chain management have played an increasingly important role in moving materials 

and products throughout the organizations’ supply chains. Effective decisions of 

supply chain can give an organization benefits such as distribution savings, greater 

control of business, better customer service and satisfaction, and reduction in capital 

investment in facilities, equipment and information technology.  

Nowadays, the definition of a supply chain can legitimately be broad or narrow, 

depends on the perspective of the “definer”. In this dissertation, a supply chain is 

defined as an integrated process wherein a number of various business entities, such 

as suppliers, manufacturers, distributors, customers, work together in an effort to: (1) 

acquire raw materials, (2) convert these raw materials into specified final products, 

and (3) deliver these final products to customers (Beamon, 1998). This chain, as 
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shown in figure 1.1, is traditionally characterized by a forward flow of materials and a 

backward flow of information. 

 

Figure 1.1 An example of supply chains 
 

Generally, decisions of supply chain can be divided into three levels in terms of 

planning horizon: strategic level, tactical level and operational level (Goetschalckx et 

al., 2002). The strategic level usually considers time horizons of more than one year, 

including the determination of facility locations, production technologies and facility 

capacities. Normally it is denoted as supply chain design. The tactical level focuses on 

material flow management policies such as production levels at each plant, assembly 

policy, inventory levels and lot sizes. Normally it is termed as supply chain planning. 

The operational level, which is always denoted as supply chain execution or 

implementation, schedules operations to assure in-time delivery of final products to 
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customers, coordinating the logistics network to be responsive to customer demands. 

This thesis only studies strategic level and tactical level decisions of supply chain, 

namely, supply chain design and planning. Up to date, mathematical models are 

widely used in supply chain decisions. For example, they are widely used in demand 

forecasting and data mining. Model practitioners always develop optimization models 

to better understand functional relations in the company and the outside world 

(Shapiro, 2007). An appropriate design and planning of supply chains for an 

organization can squeeze out the inefficiencies of the activities in the supply chain and 

a certain amount of savings is achieved consequently. As such, it is worth conducting 

research on the models and algorithms of supply chain design and planning.  

1.2 Objectives 

This thesis focuses on the supply chain design and planning, which are 

approached broadly from two perspectives, domestic supply chain and global supply 

chain. The former one refers to supply chain design and planning without 

consideration of international characteristics such as currency exchange rates, import 

duties and local contents, while the later one refers to supply chain planning taking 

those international features into account.  

1.2.1 Domestic supply chain 

The study on domestic supply chain in this thesis focuses on the models, 

algorithms and applications of supply chain network equilibrium (SCNE) models. 

SCNE models are originally proposed by Nagurney and her collaborators in 2002. 
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They have been widely used in supply chain studies such as reverse logistics 

(Nagurney and Toyasaki, 2005) and global supply chain planning (Nagurney et al, 

2003). Therefore, it is worth exploring the alternative formulation and algorithm for 

the SCNE models.  

The SCNE models (Nagurney, et al., 2002; Dong et al., 2004) are formulated by 

variational inequalities (VIs) and solved by the modified projection method. At each 

iteration of the modified projection method a predetermined step size is needed to 

implement the projection. However, a universal step size guaranteeing the 

convergence of the modified projection method does not exist because it relies on the 

unknown Lipschitz constant of the vector function entering a VI formulation. In other 

words, while implementing the modified projection method, it is a challenging issue 

to obtain a desirable step size. Therefore, Chapter 3 transforms the SCNE models to 

unconstrained minimization problems by using Fischer function (Fischer, 1992).  

Hence quasi-Newton algorithm can be applied to solve this problem. It should be 

pointed out that the technique proposed in Chapter 3 is not only applicable to the two 

cases studied in Chapter 3, but to all of the other SCNE models because all of these 

SCNE models were formulated by VIs defined on nonnegative orchant (e.g. Nagurney, 

et al., 2003 and Nagurney and Toyasaki, 2005).  

In addition, a manufacturing facility, in fact, should have the production capacity 

constraint, i.e., a limit on the amount of the product produced during a time period, 

due to the limited resources. However, the SCNE model (Nagurney et al., 2002) does 

not take into account production capacities for manufacturers. Hence, Chapter 4 
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extends the SCNE model to an SCNE model with production capacity constraints.  

Competitive facility location problems are to make decisions on facility locations 

for companies while taking into account the interactions between location decisions 

and market forces. Up to now only the spatial price equilibrium (SPE) (Nagurney, 

1999) model or Cournot-Nash Oligopolistic equilibrium model is applied in 

competitive facility location problems to describe the economic equilibrium state of 

the market. Tobin and Friesz (1986) proposed the competitive facility location issue 

that is able to quantitatively take into account the market competition to some extent. 

They developed a generalized bilevel programming model for the competitive facility 

location problem, in which the lower level problem is the SPE model or Cournot-

Nash Oligopolistic equilibrium model that characterizes the economic equilibrium 

state of the market in response to the facility location decision of an entering firm.  

After a series of explorations in depth (Friesz et al., 1988 and 1989; Miller et al. 

1992), Miller et al. (1996) contributed a monograph on the competitive facility 

location problems with SPE constraints, and pointed out that bilevel programming 

models and sensitivity analysis based heuristic methods can provide a solution to the 

competitive facility location problem. However, although the SPE model or Cournot-

Nash Oligopolistic equilibrium model can quantify the supply and demand 

equilibrium conditions, it is incompetent on capturing economic equilibrium 

conditions of a supply chain comprising manufacturers, retailers and consumers with 

free-market competition. As such, a novel and interesting research issue regarding the 

competitive facility location on the decentralized supply chains has emerged. In 
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Chapter 4, after obtaining the SCNE model with production capacity constraints, a 

Mathematical Programming with Equilibrium Constraints (MPEC) model for a 

competitive facility location problem was developed, applying the SCNE model with 

production capacity constraints to derive the economic equilibrium state of a supply 

chain comprising manufacturers, retailers and demand markets.  

1.2.2 Global supply chain  

The objective of study on global supply chain in this thesis is to conduct research 

on some new global supply chain planning issues.  

As is known, transfer pricing and the allocation of overhead of a multinational 

company (MNC) can shift profit of its subsidiaries located in high-tax countries to its 

subsidiaries located in low-tax countries. These thus would increase the after-tax 

profit of this MNC. Transfer price here is defined as the price that a selling 

department, division, or subsidiary of a company charges for a product or service 

supplied to a buying department, division or subsidiary of the same company 

(Abdallah, 1989). Although some articles conducted research on this issue (Cohen et 

al, 1989; Vidal and Goetschalckx, 2001 and Wilhelm et al., 2005), they ignore that 

currency exchange rates may fluctuate over a taxation period. This fluctuation may 

affect the decisions of MNCs. Moreover, the market demand considered in the three 

articles was assumed to be deterministic. Therefore, in Chapter 5 a chance constrained 

programming model was proposed for a multiperiod production- distribution planning 

for an MNC with consideration of transfer pricing and demand uncertainty.  
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In reality, MNCs that produce substitutable products may compete with each 

other. For instance, in the personal computer industry, three giant MNCs - Dell, 

Hewlett-Packard and Lenovo - are competing with each other worldwide because they 

assemble highly substitutable desktop computers in their plants and sell them to 

consumers via their distribution centers (DCs). To be more competitive, these 

companies have already put their plants and DCs in different countries or territories, 

which form a two-echelon global supply chain concerning international features such 

as currency exchange rates, import duties, transfer prices, tax brackets and 

transportation cost allocation. However, to the best of our knowledge, up to now no 

academic research has been conducted on the competition of the MNCs that minimize 

their respective after-tax profit through transfer pricing and allocating the 

transportation cost among their respective subsidiaries. Hence, in Chapter 6 a 

generalized Nash game model is proposed to analyze the competition among MNCs 

that produce substitutable products with consideration of transfer pricing, allocation 

of transportation cost and gradual tax brackets.  

1.3 Outline of the Thesis 

This thesis is organized as follows: 

Chapter 2 gives a comprehensive literature review of the SCNE models, 

competitive facility location problems and global supply chain planning.  

Chapter 3 transforms the VI formulation for the SCNE models into unconstrained 

minimization problems. Subsequently, the quasi-Newton algorithm is applied to solve 
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them. An illustrative numerical example is presented to evaluate the convergence of 

quasi-Newton algorithm and the modified projection method. Furthermore, ten 

benchmark numerical examples are applied to compare the computational time of 

quasi-Newton method and the modified projection method.  

Chapter 4 first proposes an SCNE model with production capacity constraints. 

Based on this model, it develops an MPEC model for a competitive facility location 

problem. GA incorporated with LQP P-C method is designed to solve this MPEC 

model. Finally, sensitivity analysis of the facility investment budget is studied.  

Chapter 5 focuses on a multiperiod production-distribution planning for an MNC 

taking into consideration of transfer pricing and demand uncertainty. A chance-

constrained programming model is developed to formulate this problem. Since the 

objective function is nondifferentiable and it is difficult to evaluate the violation of 

chance constraints, a heuristic that is a penalty method embedded with simulated 

annealing procedure is proposed to solve this model. Furthermore, a numerical 

example is employed to evaluate the impact of demand uncertainty and confidence 

levels of chance constraints on the after-tax profit, and ten randomly generated 

numerical examples are used to access the computational time of the heuristic.  

Chapter 6 presents a generalized Nash game model to analyze the competition of 

MNCs that produce substitutable products by taking into account transfer pricing, 

allocation of transportation cost and gradual tax brackets for each MNC. Two 

heuristic algorithms are proposed to solve this model. The impact of change of 

currency exchange rates and gradual tax brackets on the equilibrium state are studied. 
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Furthermore, the convergence of these two heuristic algorithms is investigated by 

using 20 numerical examples.  

Chapter 7 gives conclusions of this study, contribution of this thesis, and some 

possible research directions for further study.  
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CHAPTER 2 LITERATURE REVIEW 

In this chapter, a comprehensive literature review of the researches in this thesis 

is presented. The review is classified into two sections: the review of domestic supply 

chain and the review of global supply chain. The review of domestic supply chain 

includes the models and algorithms of SCNE models and competitive facility location 

problems, while the review of global supply chain focuses on the models and 

algorithms for global supply chain design and planning.  

2.1 Domestic Supply Chain  

In this thesis, the research of domestic supply chain design and planning focuses 

on the models, algorithms and the application of SCNE models. With reference to the 

application of SCNE models, SCNE models was applied to study competitive facility 

location problems. Therefore, firstly, a literature review of SCNE models is presented 

in 2.1.1. Subsequently, a literature review of competitive facility location problems is 

presented in 2.1.2.   

2.1.1 Supply chain network equilibrium models 

The definition of SCNE was originally proposed by Nagurney and her 

collaborators in 2002. It describes an equilibrium state for a three-echelon supply 

chain comprising manufacturers, retailers and the customers. The manufacturers 

produce substitutable products and supply them to the retailers. In order to maximize 
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his profit, each manufacturer makes decision on the production amount and the 

amount of shipment supplied to each retailer. The retailers, in turn, receive the 

products from the manufacturers and supply them to demand markets. In order to 

maximize his profit, each retailer also makes decision on the amount of shipment 

supplied to each demand market. The customers, finally, at each demand market will 

determine the amount of products bought from each retailer according to the price that 

they are willing to pay, the price charged by the retailers and the transaction cost. 

These noncooperative behaviors of manufacturers, retailers and the customers at 

demand markets drive the supply chain to an equilibrium state, namely, the SCNE. At 

equilibrium, each entity of the three-echelon supply chain cannot increase his own 

profit by changing his decision unilaterally. A VI formulation was developed to obtain 

the SCNE solution. The sufficient condition of the existence and uniqueness of the 

equilibrium was obtained and the modified projection method was applied to solve 

this SCNE model.  

Subsequently, SCNE model is widely used for analyzing various supply chain 

issues. Nagurney et al. (2003) applied it in global supply chain by incorporating 

currency exchange rate into the VI formulation. Nagurney and Toyasaki (2003) 

obtained the SCNE solution for a supernetwork in which manufacturers not only 

supply products to retailers through physical links, but also supply products to 

demand markets directly through internet links. Also the environmental criteria were 

considered in this model, namely, the generated emission was incorporated into the 

objective function of manufacturers and retailers by assigning a negative weight. In 
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addition, Nagurney and Toyasaki (2005) applied the idea of SCNE for a reverse 

supply chain management and electronic waste recycling problem in which the 

reverse supply chain consists of four tiers: sources, recyclers, processors and demand 

market.  

Moreover, the idea of SCNE was also applied in studying electric power supply 

chain instead of traditional supply chain which always consists of such as 

manufacturers, retailers and demand markets (Wu et al., 2006, Nagurney et al.,2006, 

Nagurney et al.,2007), studying internet advertising (Zhao et al., 2008) as well as 

studying financial networks (Nagurney and Ke, 2006, Cruz et al., 2006).  

It should be pointed out that the market demands in the above articles about 

SCNE are assumed to be deterministic. However, sometimes the demand cannot be 

predicted precisely. Therefore, it is necessary to study the SCNE with demand 

uncertainty. Dong et al. (2004) addressed an SCNE model with random demands. 

They assumed that the demand faced by each retailer is uncertain and developed a VI 

formulation for the SCNE model with random demands. Moreover, Dong et al. (2005) 

derived the SCNE solution of a four-echelon supply chain consisting of manufacturers, 

distributors, retailers and demand markets. This is the first SCNE model that captured 

both multicriteria decision-making and decision-making under uncertainty. More 

specifically, each manufacturer is not only focused on the profit, but also on the 

market share. Nonnegative weights were assigned to the market share and the 

objective of each manufacturer was to maximize a combination of profit and market 

share. The distributor was concerned with the profit, the transportation time and the 



CHAPTER 2 LITERATURE REVIEW 

 13

service level and wanted to maximize a combination of these three objectives by 

assigning weights to these objectives. The retailers, in turn, wanted to maximize their 

respective profit while facing demand uncertainty at demand markets. Subsequently, 

Nagurney and Matsypura (2005) obtained the equilibrium solution of a four-echelon 

supply chain: manufacturers, distributors, retailers and demand markets. They 

considered not only the uncertainty of demand, but also the supply risk of 

manufacturers and distributors.  

Overall, SCNE models have been being an interesting research topic nowadays. 

However, these SCNE models were formulated by VI formulations and solved by the 

modified projection method. While implementing the modified projection method, a 

predetermined step size is needed to guarantee the convergence of it. Up to now no 

efficient strategy but trial-and-error can derive such a step size. Furthermore, in some 

cases the required step size does not exist. In other words, a universal step size for 

guaranteeing the convergence of the modified projection method for solving the 

SCNE models is difficult to derive.  

In addition, production capacities of manufacturers are necessary constraints in 

supply chain design and planning. They may affect the SCNE solution. However, the 

SCNE models have not taken into account the production capacity constraints.  

2.1.2 Competitive facility location problems 

Competitive facility location problems aim to make decisions on facility location 

for companies while taking into account the interactions between location decisions 
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and market forces. A common assumption of it is that all of the facilities, whether 

newly located or already existed, are producing one homogeneous or substitutable 

product and compete with each other. In general, in competitive facility location 

problems, the decision variables include the location of facilities and the outputs of 

each facility. Sometimes the prices of these outputs at each facility are taken as 

decision variables.  

Generally speaking, there are four major components for competitive facility 

location problems. The first component is the space, namely, whether the space 

available to the companies for locating a facility is discrete or continuous. Discrete 

spaces are always represented by the nodes of a supply chain or transportation 

network, while continuous spaces are always described by a space in a coordinate 

system whose dimension is no more than 3. The second component specifies the 

market rules which indicate whether the market is initially empty and all competitors 

enter the market simultaneously, or there already exist some competitors and an 

entering firm dedicates to enter the market. In Table 2.1 these two rules were termed 

as “simultaneously” and “sequentially”, respectively.  

The third component considered in competitive facility location problems is the 

behaviors of customers. This term refers to how customers choose products. For 

instance, some customers may choose the cheapest products, some may choose the 

products which are nearest to them. The fourth and the last major descriptor is that of 

the objectives such as profits, market shares, investment ratio and service level of the 

decision makers. The history of competitive facility location problems dates back to 
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the seminal paper authored by Hotelling in 1929. It sparked a good deal of activity at 

that time, including the papers authored by Hoover (1936), Lerner and Singer (1937) 

and Smithies (1941). After an ebb in the following three decades, up until the early 

1970s, a resurgence of interest in competitive facility location problems appears from 

late 1970s to date. To summarize, a considerable body of representative articles for 

competitive facility location problems is presented in Table 2.1 according to the four 

major components presented above. 
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Table 2.1 Major components considered in selected competitive facility location 
models  

Paper Space Market rules Customers Objectives 

Hotelling 

(1929) 

Continuous Simultaneously Price Profit 

Hakimi 

(1983) 

Discrete Sequentially Distance Market 

share 

Revelle 

(1986) 

Continuous Sequentially Distance Market 

share 

Hurter and 

Lederer 

(1985) 

Continuous Simultaneously Price Profit 

Lederer and 

Hurter (1986) 

Continuous Simultaneously Price Profit 

Lederer and 

Thisse (1990) 

Discrete Simultaneously Price and 

marginal cost 

Profit 

Zhang (2001) Continuous Sequentially Price Profit 

Garcia Perez 

and Pelegrin 

(2003) 

Discrete Simultaneously Price and 

transportation 

cost 

Profit 

Fernandez et 

al. (2007) 

Discrete Simultaneously Price and 

distance 

Profit 

 

In the models listed in Table 2.1, customers choose the products according to the 

factors such as prices, distances and costs. On the other hand, there is another way to 
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describe the behaviors of the customers and the supply entities in supply chains, 

namely, to integrate or link an economic equilibrium model with a fixed demand 

facility location model to create a bilevel programming model or an MPEC model for 

competitive facility location problems.  

Tobin and Friesz proposed a bilevel programming model in 1986 to formulate a 

competitive facility location problem for a firm who wants to locate its supply 

facilities to maximize his profit. After locating the facilities, the market, which 

consists of suppliers and customers, followed SPE or Cournot-Nash Oligopolistic 

equilibrium (Nagurney, 1999). A heuristic algorithm that is to transfer the bilevel 

programming model to a single level programming model by using sensitivity 

analysis was developed to solve this model. Subsequently, Friesz et al. (1988) 

developed another exact algorithm to solve the model and the existence theory for the 

model was studied by Friesz et al. in 1989. Finally, Miller et al. (1992) expands the 

competitive facility location model developed by Friesz in 1986 by introducing some 

transshipment nodes. It should be pointed out that these competitive facility location 

problems are concerned with a supply chain with only two levels: sellers and buyers. 

Nowadays, as companies globalize, supply chain becomes more and more complex. It 

does not include only sellers and buyers. Therefore, it is worth conducting research on 

the competitive facility location problems by linking the SCNE model (Nagurney et 

al., 2002) and the fixed demand location models.  
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2.2 Global Supply Chain  

In recent years, decision makers of companies have been seeking out 

international manufacturing sources because of reduced cost, increased revenues and 

improved reliability. For instance, manufacturers set up factories in foreign countries 

to benefit from tariff and trade concessions, low cost direct labor, capital subsidies 

and reduced logistics cost. Comparing to domestic supply chain, global supply chain 

is more difficult to manage because many international components such as corporate 

income taxes (Hodder and Dincer, 1986; Arntzen et al., 1995), duties (Breitman and 

Lucas, 1987; Cancel and Khumawala, 1996; Lowe et al., 2002), currency exchange 

rates (Cohen and Lee, 1989; Haug, 1992; Nagurney et al., 2003), trade barriers 

(Breitman and Lucas, 1987; Munson and Rosenblatt, 1997;) and transfer prices 

(Cohen et al, 1989; ; Vidal and Goetschalckx, 2001; Wilhelm et al, 2005) need to be 

taken into account.  

From modeling point of view, mixed integer programming (MIP) is the most 

useful approach for global supply chain design and planning. They are always solved 

by applying branch-and-bound algorithm or meta-heuristics such as GA. In addition, 

there are some other approaches which are applied in global supply chain design and 

planning, e.g. dynamic programming for multiperiod problems, solved by forward or 

backward recursion, VI formulation solved by the modified projection method and 

game-theoretical approach (Tombak, 1995; Dasu and de la Torre, 1997) for analyzing 

competition in global supply chains.  

The objectives that are considered in global supply chain design and planning are 
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also diversified. Since different tax authorities gain different corporate income tax 

rates, a typical objective function in global supply chain design and planning is to 

maximize the after-tax, even is to maximize the mean-variance of the after-tax profit 

while involving stochastic issue in global supply chain design and planning. In 

addition, lead time is another important issue in global supply chain design and 

planning because the shipments always move across borders for such a long distance. 

Hence, in some cases the objective is to minimize the weighted activity time. Besides, 

the other objectives in global supply chain design and planning are more or less the 

same as the objectives in domestic supply chain design and planning, for instance, to 

minimize sum of various costs. 

Table 2.2 summarizes the approaches used in global supply chain design and 

planning, and the objectives of the models for some typical articles. It should be 

pointed out that for modeling approach in Table 2.2, MIP refers to mixed integer 

programming, Dynamic refers to dynamic programming, Game theory refers to game-

theoretical model and VI refers to variational inequality.  
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Table 2.2 Approaches and objectives of global supply chain design and planning 
Article Modeling approach Objective 

Hodder and Dincer, 1986 MIP Maximize mean-variance 

of the after-tax profit 

Breitman and Lucas, 1987 MIP Maximize profit 

Haug, 1992 MIP Minimize sum of various 

costs 

Kougut and Kulatilaka, 1994 Dynamic Minimize sum of various 

costs 

Arntzen et al., 1995 MIP Minimize the 

combination of weighted 

cost and transportation 

time 

Tombak, 1995 Game theory Maximize profit 

Canel and Khumawala, 1996 MIP Maximize after-tax profit 

Huchzermeier and Cohen, 1996 Dynamic Maximize after-tax profit 

Dasu and de la Torre, 1997 Game theory Maximize profit 

Munson and Rosenblatt, 1997 MIP Minimize sum of 

production and purchase 

cost 

Kouvelis et al., 2001 Dynamic Maximize profit 

Nagurney et al., 2003 VI Maximize profit 

Souza et al., 2004 MIP Maximize profit 

Nagurney and Matsypura, 2005 VI Maximize profit 
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From the point of view of the factors that may affect global supply chain design 

and planning, there are two kinds of factors, deterministic factors and stochastic 

factors. Deterministic factors include such as production costs, transportation costs, 

transportation modes, inventory costs and capacities while stochastic factors include 

such as market demands, currency exchange rates and market prices. Early research 

on the stochastic issues of global supply chain appears in Hodder and Jucker (1982 & 

1985) and Hodder and Dincer (1986). They stated that the market price of the 

products and the currency exchange rates are uncertain and utilize mean-variance 

approach to measure the decision maker’s risk. Since the problems in these papers are 

single period problem, they cannot measure the impact of the fluctuation of currency 

exchange rate on global supply chain design and planning. Other articles taking into 

account uncertain currency exchange rates in global supply chain design and planning 

include such as Kogut and Kulatilaka (1994) and Huchzermeier and Cohen (1996). 

Both of them assume that currency exchange rate follows a Wiener process and hence 

the currency exchange rate in each discrete time depends on the currency exchange 

rate in the previous period. Except for the exchange rate and price, many other 

random features such as uncertain demand (Sodhi, 2005) and political risk (Nagurney 

and Matsypura, 2005) have been explored in global supply chain design and planning.  

In general, there are two savings potential while planning a global supply chain. 

One is the difference of cost, such as production cost, labor cost and transportation 

cost, in different countries or territories (e.g. Hodder and Dincer, 1986; Arntzen et al., 

1995; Huchzermeier and Cohen, 1996; Kouvelis et al., 2001 and Souza et al., 2004). 
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These factors may help to decrease the cost much more than in domestic issues 

because the costs between countries, especially developing countries and developed 

countries, are quite different. Another saving originates from the tax savings. More 

specifically, since the tax rates in different countries are different, it is possible to shift 

the profit from the subsidiaries in high-tax countries to the subsidiaries in low-tax 

countries through transfer pricing and allocating overhead of an MNC (Cohen et al, 

1989, Vidal and Goetschalckx, 2001). In 2005, Wilhelm and his collaborators stated 

that corporate tax rate of the profit is not a constant, but a step-wise function of the 

profit. Namely, it is more applicable to include gradual tax brackets in global supply 

chain planning while considering transfer pricing and allocation of transportation cost 

to reduce income tax. 

The three articles studying transfer pricing for an MNC cannot capture the 

fluctuation of currency exchange rate on global supply chain planning. Moreover, 

they assumed that the demand at the demand market was deterministic. However, in 

most of the cases the demand cannot be predicted precisely. Therefore, it is worth 

conducting research on a multiperiod supply chain planning for an MNC with the 

consideration of transfer pricing and demand uncertainty. 

On the other hand, so far the global supply chain planning with consideration of 

transfer pricing is for only one MNC. In other words, it is for a centralized supply 

chain. In reality, MNCs that produce substitutable products always compete with each 

other. In other words, the global supply chain is decentralized. To the best of our 

knowledge, the first result on competition for the global supply chain planning was 
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developed by Tombak (1995). With linear demand assumption, Tombak (1995) 

proposed a deterministic differentiable game-theoretical model to analyze when 

MNCs would switch from exporting to producing at an onshore plant for the case of 

two MNCs. It aims to determine Nash equilibrium timing patterns with resorting to 

Cournot equilibrium production quantity and selling price at each period. However, 

Tombak (1995) disregarded the unique and important international features that 

definitely have vital impact on planning a global supply chain. With currency 

exchange rates, tariff rates and transfer prices, Dasu and Torre (1997) developed a 

static Nash game model to characterize the equilibrium solution of the decentralized 

global supply chain in the context of textile fiber producers in Latin American, in 

which each MNC attempted to maximize his own profit without consideration of tax 

issues. These two game models unfortunately ignore the income tax rates published 

by countries involved in the decentralized global supply chain and transportation cost 

allocation ratios between plants and DCs belonged to the same MNC. These two 

international features not only affect after-profit of an MNC but also make global 

supply chain planning fairly different in model development and algorithm design. 

Overall, it is necessary to propose a game-theoretical model for MNCs that produce 

substitutable products and compete with each other with the consideration of transfer 

pricing, allocation of transportation cost and gradual tax brackets.  
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CHAPTER 3 REFORMULATING SUPPLY CHAIN NETWORK 

EQUILIBRIUM MODELS 

3.1 Introduction 

In this chapter, an alternative formulation and solution algorithm for the SCNE 

model (Nagurney et al., 2002) and the SCNE model with demand uncertainty (Dong 

et al., 2004) are provided. Moreover, 11 numerical examples are used to evaluate this 

solution algorithm suggested in this chapter.  

3.2 Supply Chain Network Equilibrium Models  

In this section, the SCNE model (Nagurney et al., 2002 & Dong et al., 2004) are 

introduced. Let us consider a three-tier decentralized supply chain network 

comprising manufacturers, retailers and consumers for a homogenous or substitutable 

product, depicted by Figure 3.1 (Nagurney et al., 2002). In the network, nodes in the 

top tier represent manufacturer producing the product, and nodes in the middle tier 

denote retailers who purchase a certain amount of the product from the manufacturers 

and then sell them to consumers located at the demand markets shown in the bottom 

tier. Directed links indicate transportation and/or transaction relations of the product 

among the decision-makers in the supply chain. Assume that there are m 

manufacturers, n retailers and o demand markets in the supply chain. Without loss of 

generality, a typical manufacturer, retailer and demand market are denoted by 

notations i, j, k, respectively. 
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1 i m

1 j n

Manufacturers

Retailers

1 k o Demand Markets
 

Figure 3.1 Network structure of the supply chain with deterministic demands 
 

The aim of manufacturer i is to maximize his profit by determining his production 

output denoted by iq , shipment of the product shipped or transacted to retailer j  

denoted by ijq . Cost for producing the product of manufacturer i  can be in general 

described by function ( )if q , where ( )1, , mq q q=  is the row vector of production 

outputs of all manufacturers in the supply chain. The transaction cost of the product 

between manufacturer i  and retailer j  is characterized by function ( )ij ijc q . It is 

assumed that the quantity of the product produced by manufacturer i  is equal to the 

sum of the quantities shipped from the manufacturer to all retailers, namely: 

 
1

, 1, ,
n

i ij
j

q q i m
=

= =∑  (3.1) 

For the notational convenience, let 1Q  be the mn-dimensional row vector of all 

product shipments between manufacturers and retailers, i.e., ( )1 , ,ijQ q= , 

1, ,i m=  and 1, ,j n= . As such, production cost function ( )if q  for manufacturer 

i  can be alternatively regarded as a function of vector 1Q , i.e. ( )1
if Q , according to 

eqn. (3.1).  
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It is assumed that the manufacturers as the profit-maximizers in the supply chain 

compete in a noncooperative fashion (Nash game) and that supply price of the product 

is identified according to the marginal-cost pricing principle. Furthermore, Assumed 

that the production cost function and the transaction cost function for each 

manufacturer are continuously differentiable and convex. The product quantities and 

shipments of all manufacturers in the equilibrium state following the Nash game-

theoretical principle can be thus determined by solving the VI (Nagurney et al., 2002): 

Find a vector 1* mnQ +∈ℜ  satisfying the inequality:  

 
( ) ( )1* *

* * 1
1

1 1

0,   
m n

i ij ij mn
ij ij ij

i j ij ij

f Q c q
q q Q

q q +
= =

⎡ ⎤∂ ∂
⎡ ⎤⎢ ⎥+ − × − ≥ ∀ ∈ℜ⎣ ⎦∂ ∂⎢ ⎥⎣ ⎦

∑∑ ρ  (3.2) 

where mn
+ℜ  is the nonnegative orthant in the mn-dimensional real space mnℜ .  

3.2.1 Deterministic demand case 

Consumers grouped into different demand markets in the supply chain consume 

the product according to their own consumption behaviors. With regard to demand 

market k, the consumers’ consumption behavior for the product is assumed to be 

governed by deterministic demand function ( )3kd ρ  , where the o-dimensional row 

vector ( )3 31 3 3, , , ,k o=ρ ρ ρ ρ  in which 3kρ  denotes unit price of the product that 

consumers in demand market k ( 1, ,k o= ) are willing to pay. Under the supply 

chain network structure shown in Figure 3.1, consumers purchase the product from 

retailers. Let jkq  be the quantity of the product bought from retailer j  by consumers 

in demand market k , and let 2Q  be the no-dimensional row vector of all product 

flows between retailers and demand markets, i.e., ( )2 , ,jkQ q= , 1, ,j n=  and 
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1, ,k o= . When the consumers make their consumption decisions on the product, 

the transaction cost to obtain the product from a retailer should be also considered. 

Let function ( )2
jkc Q  denote unit transaction cost of the product from retailer j to 

consumers in the demand market k. The spatial price equilibrium conditions for 

consumers located at all demand markets in the supply chain, thus, can be governed 

by the following VI (Nagurney et al., 2002):  

Find a vector ( )2*
3, no oQ +

+ρ ∈ℜ  such that  

 
( )

( ) ( )

* 2* * *
2 3

1 1

* * * 2
3 3 3 3

1 1

0, ,

n o

j jk k jk jk
j k

o n
no o

jk k k k
k j

c Q q q

q d Q

= =

+
+

= =

⎡ ⎤ ⎡ ⎤ρ + −ρ × − +⎣ ⎦⎣ ⎦

⎡ ⎤
⎡ ⎤− ρ × ρ −ρ ≥ ∀ ρ ∈ℜ⎢ ⎥ ⎣ ⎦

⎣ ⎦

∑∑

∑ ∑
 (3.3) 

where no o+
+ℜ  is the nonnegative orthant in the (no+o)-dimensional real space no o+ℜ , 

and *
2 jρ  is the price charged for the product by retailer j.  

Retailer j  has to simultaneously face with the manufacturers and the consumers 

in the process of transacting the product. He obtains the product from the 

manufacturers for his retail outlets from which the consumers will purchase the 

product. Nevertheless, the quantity of the product sold by retailer j does not exceed 

the total products obtained from all of the manufacturers, namely: 

 
1 1

, 1, ,
o m

jk ij
k i

q q j n
= =

≤ =∑ ∑  (3.4) 

Various costs involved in handling the product for the retailer are called the 

handling cost described as function ( )1
jc Q . Retailer j  aims to maximize its profit, 

which can be modeled by the optimization problem:  

 ( )* 1 *
2 1

1 1

maximize 
o m

j jk j ij ij
k i

q c Q q
= =

ρ − − ρ∑ ∑  (3.5) 
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subject to constraint (3.4). 

Assume that all retailers compete in a noncooperative manner in the retailing 

market of the product, and that the handling cost function for each retailer is 

continuously differentiable and convex. The Nash equilibrium solution for the 

retailers is thus equivalent to solving the following VI (Nagurney et al., 2002):  

Find a vector ( )1* 2* *, , mn no nQ Q + +
+γ ∈ℜ  such that 

 

( )

( )

1*
* * * * * *
1 2

1 1 1 1

* * * 1 2

1 1 1

  0,     , ,

m n n o
j

ij j ij ij j j jk jk
i j j kij

n m o
mn no n

ij jk j j
j i k

c Q
q q q q

q

q q Q Q

= = = =

+ +
+

= = =

⎡ ⎤∂
⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥+ρ − γ × − + −ρ + γ × −⎣ ⎦ ⎣ ⎦ ⎣ ⎦∂⎢ ⎥⎣ ⎦

⎡ ⎤ ⎡ ⎤+ − × γ − γ ≥ ∀ γ ∈ℜ⎢ ⎥ ⎣ ⎦⎣ ⎦

∑∑ ∑∑

∑ ∑ ∑
 (3.6) 

where mn no n+ +
+ℜ  is the nonnegative orthant in (mn+no+n)-dimensional real space 

mn no n+ +ℜ , and n-dimensional row vector ( )1, , ,j nγ = γ γ γ  in which jγ  is 

Lagrangian multiplier with respect to constraint (3.4) in the optimization problem 

(3.5).  

The supply chain network involves three kinds of decision-makers: manufacturers, 

retailers and consumers, and they are interacted and highly correlated in the supply 

chain of the product, respectively. Nagurney et al. (2002) proposed a novel 

equilibrium concept from the point of view of entire supply chain network. The SCNE 

model with deterministic demands means that the production flows between the 

distinct tiers of the decision-makers coincide and the product flows and prices satisfy 

the sum of optimality conditions (3.2), (3.3) and (3.6). They further demonstrated that 

the SCNE model can be formulated by the following VI formulation:  

Determine a vector ( )1* 2* * *
3, , , mn no n oQ Q + + +

+γ ρ ∈ℜ   such that         
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( ) ( ) ( )

( )

( )

1* * 1*
* *

1 1

2* * * * * * *
3

1 1 1 1 1

* * *
3 3 3

1 1

0,   

n m
i ij ij j

j ij ij
i j ij ij ij

n o n m o

jk j k jk jk ij jk j j
j k j i k

o n

jk k k k
k j

f Q c q c Q
q q

q q q

c Q q q q q

q d

= =

= = = = =

= =

⎡ ⎤∂ ∂ ∂
⎡ ⎤⎢ ⎥+ + − γ × −⎣ ⎦∂ ∂ ∂⎢ ⎥⎣ ⎦
⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ + γ −ρ × − + − × γ − γ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

⎡ ⎤
⎡ ⎤+ − ρ × ρ −ρ ≥ ∀⎢ ⎥ ⎣ ⎦

⎣ ⎦

∑∑

∑∑ ∑ ∑ ∑

∑ ∑ ( )1 2
3, , , mn no n oQ Q + + +

+γ ρ ∈ℜ

  (3.7) 

where mn no n o+ + +
+ℜ  is the nonnegative orthant in the (mn+no+n+o)-dimensional real 

space mn no n o+ + +ℜ . 

Having obtained the solution for the VI (3.7), the relevant equilibrium prices for the 

product can be identified by the formulae below: 

 
( ) ( )1* *

* *
1 , if 0ij ij
ij ij

ij ij

f Q c q
q

q q
∂ ∂

ρ = + >
∂

 (3.8) 

 * * *
2

1

, if 0
o

j j jk
k

q
=

ρ = γ >∑  (3.9) 

3.2.2 Random demand case 
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Manufacturers

Retailers

Consumers
 

Figure 3.2 Network structure of the supply chain with random demands 
 

Compared to the assumption of deterministic demand function utilized in the 

preceding SCNE model, it is more reasonable to assume that the demand for the 
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product at a retailer outlet is a random variable. Moreover, it is not necessary to 

differentiate the consumers across the demand markets shown in Figure 3.1. In other 

words, the supply chain network with random demands explicitly considers two tiers 

of decision-makers: manufacturers and retailers, which are intuitively illustrated in 

Figure 3.2. Let ( )2
ˆ

j jd ρ  be the demand for the product with the price 2 jρ  at retailer j, 

where ( )2
ˆ

j jd ρ  is a random variable with probability density function ( )2,j jxξ ρ . 

Therefore, the stochastic economic equilibrium conditions for all consumers in the 

market can be expressed by the following VI (Dong et al., 2004): 

Find a vector *
2

n
+ρ ∈ℜ  such that  

 ( ) ( )* * *
2 2 2 2

1 1
0,   

n m
n

ij j j j j
j i

q d +
= =

⎛ ⎞− ρ × ρ −ρ ≥ ∀ρ ∈ℜ⎜ ⎟
⎝ ⎠

∑ ∑  (3.10) 

where ( )2 21 2 2, , ,j nρ = ρ ρ ρ  is the n-dimensional row vector of prices charged for 

the product by all the retailers, and ( )2j jd ρ  is the mean value of the random variable 

( )2
ˆ

j jd ρ , namely: 

 ( ) ( )2 2
ˆ , 1, ,j j j jd E d j n⎡ ⎤ρ = ρ =⎣ ⎦  (3.11) 

In the case of considering the random demands, one of two cases about excess 

supply and excess demand may happen with a certain probability. Let j
+λ  be the unit 

penalty of having excess supply at retailer j and j
−λ  be the unit penalty of having 

excess demand. It is assumed that each retailer is a profit-maximizer and that all 

retailers in the supply chain compete in a noncooperative manner. The Nash 

equilibrium conditions for the retailers thus can be expressed by the VI (Dong et al., 

2004): 

Find a 1* mnQ +∈ℜ  such that 
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( ) ( )1*

* *
2 2 2 1

1 1 1 1

* 1

, 1 ,

        0,   

m n m m
j

j j ij j j j j ij j ij
i j i i ij

mn
ij ij

c Q
P q P q

q

q q Q

+ −

= = = =

+

⎡ ⎤∂⎛ ⎞⎛ ⎞ ⎛ ⎞⎢ ⎥λ ρ − λ +ρ − ρ + +ρ⎜ ⎟⎜ ⎟ ⎜ ⎟ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦
⎡ ⎤× − ≥ ∀ ∈ℜ⎣ ⎦

∑∑ ∑ ∑
(3.12) 

where 2
1

,
m

j ij j
i

P q
=

⎛ ⎞
ρ⎜ ⎟

⎝ ⎠
∑  is the probability that the demand for the product at retailer j is 

not greater than the supply 
1

m

ij
i

q
=
∑ , namely: 

 ( ) ( )12 2 20
1 1

ˆ, Pr ,
m

ij
i

m m q

j ij j j j ij j j
i i

P q d q x dx=

= =

⎛ ⎞ ⎛ ⎞ ∑ρ = ρ ≤ = ξ ρ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
∑ ∑ ∫  (3.13) 

Dong et al. (2004) defined the SCNE conditions with random demands, which is 

an extension of the preceding the SCNE models with the deterministic demands. They 

pointed out that the equilibrium state of the supply chain with random demands is one 

where the product flows between the two tiers of the manufacturers and the retailers 

coincide and the product shipments and prices satisfy the sum of the optimality 

conditions (3.2), (3.10) and (3.12). The relevant SCNE model can be formulated as 

the VI: 

Determine a vector ( )1* *
2 , mn nQ +

+ρ ∈ℜ  such that 

 

( ) ( ) ( )

( )

( ) ( )

1* * 1*
* *

2
1 1 1

* * * *
2 2

1

* * * 1
2 2 2 2

1 1

,

          1 ,

0,   ,

m n m
i ij ij j

j ij j
i j iij ij ij

m

j j j ij j ij ij
i

n m
mn n

ij j j j j
j i

f Q c q c Q
P q

q q q

P q q q

q d Q

+
+

= = =

−

=

+
+

= =

⎡∂ ∂ ∂ ⎛ ⎞⎢ + + + λ ρ⎜ ⎟∂ ∂⎢ ⎝ ⎠⎣
⎤⎛ ⎞⎛ ⎞ ⎡ ⎤− λ +ρ − ρ × − +⎥⎜ ⎟⎜ ⎟ ⎣ ⎦⎝ ⎠⎝ ⎠⎦

⎡ ⎤ ⎡ ⎤− ρ × ρ −ρ ≥ ∀ ρ ∈ℜ⎢ ⎥ ⎣ ⎦⎣ ⎦

∑∑ ∑

∑

∑ ∑

 (3.14) 

where mn n+
+ℜ  is the nonnegative orthant in (mn+n)-dimensional real space mn n+ℜ . 

After getting the solution for eqn. (3.14), the equilibrium price of the product 

supplied to a retailer by a manufacturer can be calculated by using eqn. (3.8). 
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Investigating the existence and uniqueness of the solutions for VIs (3.7) and (3.14) is 

not the purpose of this study, but interested readers can refer to Nagurney et al. (2002) 

and Dong et al. (2004).  

3.3 Unconstrained Minimization Formulations  

According to eqns. (3.7) and (3.14), it can be easily concluded that the SCNE 

model with either deterministic demands or random demands can be formulated as a 

VI defined on a nonnegative orthant. Proposition 1.4 in Nagurney (1999) indicates 

that this kind of VI can be equivalently transformed into a nonlinear complementary 

problem (NCP). Hence, the corresponding NCP formulation for the SCNE model with 

deterministic demands is of the form: 

Find a row vector * 0X ≥  such that  

 ( ) ( )* * *0 and 0TF X F X X≥ =  (3.15) 

where row vector ( )1 2
3, , , mn no n oX Q Q + + +

+= γ ρ ∈ℜ ,  and the row vector function ( )F X : 

 ( ) ( ) ( ) ( ) ( )( )1 2 3 4, , , : mn no n o mn no n oF X F X F X F X F X + + + + + +
+= ℜ ℜ  (3.16) 

where vector functions: ( ) ( )( )1 1, , mn
ijF X F X= ∈ℜ  , 

( ) ( )( )2 2, , no
jkF X F X= ∈ℜ , ( ) ( )( )3 3, , n

jF X F X= ∈ℜ  and 

( ) ( )( )4 4, , o
kF X F X= ∈ℜ . The individual entity in these four vector functions 

above is defined as follows.  

 ( ) ( ) ( ) ( )1 1
1 ,   1, , ; 1, ,i jij ij

ij j
ij ij ij

f Q c Qc q
F X i m j n

q q q
∂ ∂∂

= + + − γ = =
∂ ∂ ∂

 (3.17) 

 ( ) ( )2 2
3 ,    1, , ; 1, ,jk jk j kF X c Q j n k o= + γ −ρ = =  (3.18) 
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 ( )3

1 1
,    1, ,

m o

j ij jk
i k

F X q q j n
= =

= − =∑ ∑  (3.19) 

 ( ) ( )4
3

1
,    1, ,

n

k jk k
j

F X q d k oρ
=

= − =∑  (3.20) 

With regard to VI (3.14) for the SCNE model with random demands, its NCP 

formulation takes the form: 

Find a row vector *ˆ 0X ≥  such that  

 ( ) ( )* * *ˆ ˆ ˆ ˆ ˆ0 and 0TF X F X X≥ =  (3.21) 

where row vector ( )1
2

ˆ , mn nX Q ρ +
+= ∈ℜ  , and row vector function ( )ˆ ˆF X  is defined 

below. 

 ( ) ( ) ( )( )1 2ˆ ˆ ˆ ˆ ˆ ˆ, : mn n mn nF X F X F X + +
+= ℜ ℜ  (3.22) 

where ( ) ( )( )1 1ˆ ˆ ˆ ˆ, , mn
ijF X F X= ∈ℜ  with elements ( )1ˆ ˆ

ijF X , 1, ,i m=  and 

1, ,j n= : 

 
( ) ( ) ( ) ( )

( )

1 1
1

2
1

2 2
1

ˆ ˆ ,

               1 ,

m
i jij ij

ij j ij j
iij ij ij

m

j j j ij j
i

f Q c Qc q
F X P q

q q q

P q

+
+

=

−

=

∂ ∂∂ ⎛ ⎞= + + + λ ρ⎜ ⎟∂ ∂ ⎝ ⎠

⎛ ⎞⎛ ⎞− λ +ρ − ρ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∑

∑
 (3.23) 

and ( ) ( )( )2 2ˆ ˆ ˆ ˆ, ,jF X F X=  with the elements ( )2 ˆ
jF X , 1, ,j n= : 

 ( ) ( )2
2

1

ˆ ˆ
m

j ij j j
i

F X q d ρ
=

= −∑  (3.24) 

The merit function approach transforming an NCP into an unconstrained 

minimization problem is one of the efficient methods for solving NCPs (Kanzow et al., 

1997). Notice that a function which can constitute an equivalent minimization 

problem for an NCP is called a merit function. It is very surprising that the following 

simple function with two variables, introduced by Fischer (1992), plays a vital role in 



  CHAPTER 3 REFORMULATING SUPPLY CHAIN NETWORK EQUILIBRIUM MODELS    

 34

constructing a merit function. 

 ( ) ( )
2

2 2 2, :a b a b a b +
⎡ ⎤φ = + − + ℜ ℜ⎣ ⎦  (3.25) 

It is easy to verify that this function is continuously differentiable and it has a 

favorable property: 

 ( ), 0 if and only if 0, 0, 0a b a b a bφ = ≥ ≥ × =  (3.26) 

With regard to NCP formulation (3.15) for the SCNE model with deterministic 

demands, the nonnegative real function can be constructed as follows: 

 
( ) ( )( ) ( )( )

( )( ) ( )( )

1 2
1

1 1 1 1

3 4
3

1 1

, ,

               , ,

m n n o

ij ij jk jk
i j j k

n o

j j k k
j k

X q F X q F X

F X F X

= = = =

= =

Ψ = φ + φ +

φ γ + φ ρ

∑∑ ∑∑

∑ ∑
 (3.27) 

The following proposition is directly derived from the eqn. (3.26).  

Proposition 3.1.  ( )*
1 0XΨ =  if and only if *X  is the solution of NCP 

formulation (3.15).  

Proposition 3.1 actually shows that function ( )1 XΨ  is a merit function of NCP 

formulation (3.15). As ( )1 0XΨ ≥ , thus determining a solution for NCP formulation 

(3.15) is equivalent to finding a global minimum for the unconstrained minimization 

problem: 

 ( )1minimize  
mn no n oX

X
+ + +∈ℜ

Ψ  (3.28) 

In other words, the SCNE model with deterministic demands indeed has an 

unconstrained minimization formulation defined in eqn. (3.28). Using the same 

arguments, the SCNE model with random demands is also of the unconstrained 

minimization formulation: 
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 ( )2ˆ
ˆminimize  

mn nX
X

+∈ℜ
Ψ  (3.29) 

where the merit function ( )2 XΨ  is defined as follows. 

 ( ) ( )( ) ( )( )1 2
2 2

1 1 1

ˆ ˆ ˆ ˆ ˆ, ,
m n n

ij ij j j
i j j

X q F X F X
= = =

Ψ = φ + φ ρ∑∑ ∑  (3.30) 

Proposition 3.2.  The conditions in Theorem 2 of Nagurney et al. (2002) can also 

make sure that the unconstrained minimization problem (3.28) at least admits one 

solution.  

Proof.  The conditions in Theorem 2 of Nagurney et al. (2002) illustrate that there 

exists a nonnegative vector mn no n oB + + +∈ℜ  such that the following VI formulation has 

a solution, denoted by BX  , satisfying the condition: 0 BX B≤ < . 

Find a *0 X B≤ ≤  such that  

 ( )( )* * 0,  0
T

F X X X X B− ≥ ∀ ≤ ≤  (3.31) 

Since 0 BX B≤ < , there exists a sufficient small but positive number 1δ   and a 

row vector ( )2 2, , mn no n oY δ δ + + += ∈ℜ   with element 2 0δ >  such that  

 ( )10 1 BX B≤ + ≤δ  (3.32) 

 0 BX Y B≤ + ≤  (3.33) 

Let us take three vectors: ( )1 11 BX Xδ= + , 2 0.5 BX X=  and 3
BX X Y= + , it 

follows that 1 2 30 , ,X X X B≤ ≤ . Substituting these three vectors into eqn. (3.31) in 

turn and then rearranging the induced inequalities, eqn. (3.34)  can be derived as 

 ( )( ) 0
TB BF X X =  (3.34) 

 ( ) 0BF X ≥  (3.35) 

Thus, it can be seen that BX   fulfills ( )1 0BXΨ =  according to eqn. (3.26). In 

other words, BX  is a global minimum for the unconstrained minimization problem 
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(3.28).  

Similarly, it can be demonstrated that the conditions in Theorem 3 of Dong et al. 

(2004) can also guarantee the existence of a global minimum for the unconstrained 

minimization formulation (3.29). It should be pointed out that seeking a global 

minimum for an unconstrained minimization problem is not easy because the 

minimization problem can have stationary points which are not global solutions. 

Fortunately, Theorem 3.5 of Geiger and Kanzow  (1996) can yield: 

Proposition 3.3. If function ( )F X and ( )ˆ ˆF X are monotone and continuously 

differentiable, then any stationary point of the unconstrained minimization problems 

(3.28) and (3.29) are their respective global minimums.  

Proposition 3.3 provides the confidence to implement an efficient algorithm for 

the unconstrained minimization problems for solving the SCNE models.   

3.4 Quasi-Newton Algorithm vs. the Modified Projection Method  

Quasi-Newton algorithm is one of the most efficient methods for solving the 

unconstrained minimization problems. It mainly consists of two components: 

updating an approximation of the inverse matrix of Hessian matrix of the objective 

function and performing a line search. More precisely, the genetic iterative schemes of 

quasi-Newton algorithm for the unconstrained minimization problems (3.28) and 

(3.29) can be presented as follows. 

 ( ) ( ) ( )( )1
1

N N N
N NX X D X+ = − ∇Ψα  (3.36) 

 ( ) ( )( )1 1( )
2

ˆ ˆ ˆ ˆˆN NN
N NX X D X+ += − ∇Ψα  (3.37) 
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where N  is the number of iterations; ND  and ˆ
ND  are the approximations of inverse 

matrices of Hessian matrices, respectively; Nα  and ˆNα  are the step sizes.  

In reality, there are a few successful schemes such as the well-known BFGS 

method that can update matrices ND  and ˆ
ND  efficiently. The step sizes in eqns. (3.36) 

and (3.37) can be estimated by implementing a line search procedure. Here, the 

detailed description and the numerical examples of quasi-Newton method are not 

presented. Interesting reader can refer to Bazaraa et al. (1993) for details.  

A projection method for solving a VI is akin to a gradient project method for 

solving a nonlinear programming problem to some extent. It aims at generating the 

iterative points closer and closer to a solution for a VI. Nagurney et al. (2002) and 

Dong et al. (2004) adopted the modified projection method to solve their respective 

VI formulations for the SCNE models. The iterative schemes of the modified 

projection method for VIs (3.7) and (3.14) can be stated as follows. 

 ( ) ( ) ( ) ( )( )( )( )1
mn no n o mn no n o

N N N NX P X F P X F Xα α+ + + + + +
+ +

+

ℜ ℜ
⎡ ⎤= − −⎢ ⎥⎣ ⎦

 (3.38) 

 ( ) ( ) ( ) ( )( )( )( )1ˆ ˆ ˆ ˆ ˆ ˆˆ ˆmn n mn n
N N N NX P X F P X F Xα α+ +

+ +

+

ℜ ℜ
⎡ ⎤= − −⎢ ⎥⎣ ⎦

 (3.39) 

where α  and α̂  are two predetermined parameters called step sizes, and [ ]P YΩ  is the 

orthogonal projection of vector Y  on the set Ω  with respect to Euclidean norm, 

namely: 

 ( ) arg min
X

P Y X YΩ ∈Ω
= −  (3.40) 

where X Y−  denotes the Euclidean norm of vector X Y− . 

In the case of mn no n o+ + +
+Ω =ℜ  or mn n+

+Ω =ℜ , the projection operation (3.40) can be 

implemented easily. However, a universal step size guaranteeing the convergence of 
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the modified projection method does not exist since it relies on the unknown Lipschitz 

constant of the vector function entering a VI. In other words, when implementing the 

modified projection method for a SCNE model, it is a challenging issue to obtain a 

desirable step size. Conversely, the quasi-Newton algorithm does not have such a 

limitation as a line search procedure is able to figure out the step size. Although 

performing a line search will use additional computational time, the super-linearly 

convergence property of the quasi-Newton algorithm may remedy it. 

3.5 Numerical Examples  

Up to now, this chapter has derived two unconstrained minimization formulations  

(3.28) and (3.29) for the SCNE models. Compared to the modified projection method, 

it has qualitatively shown that the quasi-Newton algorithm is more suitable to solve 

the SCNE models based the unconstrained minimization formulations. To evaluate the 

performances of these two solution methods, benchmark examples are essential. To do 

so, eleven examples for the SCNE models will be employed. The first benchmark 

example that will be constructed is a variation of Example 1 in Nagurney et al. (2002). 

The other ten examples those will be utilized are the same as that given by Nagurney 

et al. (2002) and Dong et al. (2004).  

To compare the two solution methods fairly, the same initial solutions and the 

same stopping criterion in them for these eleven examples are adopted, which are 

shown as follows. 

Five benchmark examples with deterministic demands: 
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 ( )(0)Initial solution: 10,10, ,10 mn no n oX + + += ∈ℜ  (3.41) 

 ( ) ( )1Stopping criterion: 0.0001N NX X+ − ≤  (3.42) 

Six benchmark examples with random demands: 

 ( )(0)ˆInitial solution: 10,10, ,10 mn nX += ∈ℜ  (3.43) 

 ( ) ( )1ˆ ˆStopping criterion: 0.0001N NX X+ − ≤  (3.44) 

The modified projection method is programmed using Matlab version 6.0, and the 

quasi-Newton algorithm in the optimization tool box of the Matlab is invoked directly. 

These two solution methods are run on a personal computer with the CPU of Intel 

Pentium IV 1.6GMHZ and RAM of 256M.  

3.5.1 A modified example  

Let us consult Example 1 for the SCNE model with deterministic demands, given 

by Nagurney et al. (2002). Based on this example, a new numerical example is 

constructed as follows. It keeps all data in the original example except for the 

production cost functions, which now take the new expressions: 

 3
1 1 1 2( )f q q q q= +  (3.45) 

 3
2 2 1 2( )f q q q q= +  (3.46) 

Applying the quasi-Newton algorithm for the relevant constrained minimization 

model (3.28) with respect to the modified example yields the solution: 

( )* 1* 2* * *
3, , ,X Q Q= γ ρ  with individual components: ( )1* 2* 4.54, 4.54, 4.54, 4.54Q Q= =  , 

( )* 273.58, 273.58γ =  and ( )*
3 283.12,283.12ρ =  

Figure 3.3 illustrates the change of value of the merit function within the last 
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fifteen iterations of the quasi-Newton algorithm in solving the modified example. It 

clearly indicates that the value of the merit function at the iterative point is almost 

equal to zero after 61 iterations. In other words, the above solution *X  is indeed the 

solution of this example according to Proposition 3.1. 
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Figure 3.3 Change of value of merit function with respect to the number of iterations 

for the modified example 
 

Since the second-order derivatives for production cost functions (3.45) and (3.46) 

are unbounded, Lipschitz continuity condition for the vector function ( )F X  

associated with this example does not hold.  It thus means that the modified projection 

method may not be convergent for the example according to Theorem 4 of Nagurney 

et al. (2002). However, by trial and error on step size α  in iterative scheme (3.38), it 

is found that find that when step size α  in the effective interval (0, 0.005] the 

modified projection method is workable. Figure 3.4 evidences the convergent trend of 
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the modified projection method with three different predetermined step sizes for the 

example. It can be seen that the modified projection method is divergent in the case of 

that step size 0.01α = . In addition, the modified projection method will reach the 

stopping criterion (3.42) after 2315 iterations when step size 0.005α = , but it will 

terminate after 9820 iterations when step size 0.001α = . Hence, the performance of 

the modified projection method heavily depends on the value of the predetermined 

step size. Unfortunately, it is not an easy task to seek an appropriate step size for a 

SCNE problem.  
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Figure 3.4 The convergent performance of the modified projection method 

 

In terms of CPU times used by these two solution methods for the modified 

example, the quasi-Newton algorithm has spent 0.37 seconds, and the modified 

projection method with step size ˆ 0.05α =  has used 0.73 seconds. While both of these 

two numbers are acceptable in finding a solution, they explicitly imply that 

performance of the quasi-Newton method for this example is better than that of the 
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modified projection method. 

3.5.2 The other ten examples 

Nagurney et al. (2002) provided four examples about the supply network 

equilibrium model with deterministic demands, and Dong et al. (2004) gave six 

examples for the supply network equilibrium model with random demands. They 

merely employed these ten examples to verify that the modified projection method is 

capable of solving their variational inequality formulations (3.7) and (3.14). The 

predetermined step sizes guaranteeing the convergence of the modified projection 

method expressed in eqns. (3.38)-(3.39) for these ten examples do theoretically exist. 

However, there is no practical guide to obtain these step sizes. By trial and error, an 

effective interval of the step size for each example can be estimated, which is 

tabulated in Tables 3.1 and 3.2, respectively.  According to these two tables, it can be 

seen that the effective interval of the step size is varied over the ten examples.  

With regard to these ten examples, both the quasi-Newton algorithm and the 

modified projection method with a step size in the corresponding effective interval 

shown in Tables 3.1 and 3.2 can generate the same solution. The CPU times they used 

for each example, however, are quite different. They can be compared by calculating 

ratio of the CPU time used by the quasi-Newton algorithm to the least CPU time used 

by the modified projection method, which are obtained by enumerating all possible 

effective step sizes. These ratios are listed in Tables 3.3 and 3.4. From these two 

tables, it can be seen that there are 6 cases out of the ten examples, among which the 
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performance of the quasi-Newton algorithm is better than the modified projection 

method. If the predetermined step size in the modified projection method is equal to 

0.01, the number of examples for which the CPU time used by the quasi-Newton is 

less than that used by the modified projection method will rise to 8.  

 

Table 3.1 Effective intervals of step size α  for the four examples in Nagurney et al. 
(2002) 

Example 1 Example 2 Example 3 Example 4 

(0, 0.06]  (0, 0.06] (0, 0.04] (0, 0.06] 

 
Table 3.2 Effective intervals of step size α̂  for the six examples in Dong et al. (2004) 

Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 

(0, 0.01] (0, 0.02] (0, 0.03] (0, 0.03] (0, 0.03] (0, 0.02] 

 
Table 3.3 Ratios of CPU time in seconds used by the quasi-Newton algorithm to the 

least CPU time used by the modified projection method for the four examples of 
Nagurney et al. (2004) 

Example 1 Example 2 Example 3 Example 4 

11.90 2.16 62.36 4.38 

 
Table 3.4 Ratios of CPU time in seconds used by the quasi-Newton algorithm to the 

least CPU time used by the modified projection method for the six examples of Dong 
et al. (2004) 

Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 

0.01 0.16 0.23 0.54 0.51 0.17 

3.6 Discussion and Summary 

This chapter has developed the unconstrained minimization formulation for the 

SCNE model with two cases: deterministic demands and random demands. It further 

shows that any stationary solution of the unconstrained minimization model derived is 
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indeed the solution for the relevant SCNE model. In view of the difficulty that 

implementing the modified projection method must take an appropriate step size in 

advance, the well-known quasi-Newton algorithm is applied for solving the SCNE 

models. Numerical results from the benchmark examples not only reveal the 

limitation of the modified projection method but also confirm the advantage and 

flexibility of the quasi-Newton algorithm. Hence, this chapter has successfully 

provided the alternative formulation and solution method for the SCNE models. 

Finally, it should be pointed out that the idea of transferring VI formulations to 

unconstrained minimization problems can be not only used for the two SCNE models 

stated in this chapter, but also for all of the other SCNE models (Nagurney and 

Toyasaki, 2003, Nagurney and Toyasaki,2003, Nagurney and Toyasaki, 2005, Dong et 

al., 2005 and Nagurney and Matsypura, 2005) and even the other VI formulations 

defined on nonnegative orchant. 
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CHAPTER 4 COMPETITIVE FACILITY LOCATION ON 

DECENTRALIZED SUPPLY CHAINS 

4.1 Introduction 

This chapter is focused on a competitive facility location problem. When a firm 

locates a new manufacturing facility, and begins producing and shipping products to 

demand markets, it typically stimulates certain reactions in markets. For example, the 

introduction of a new facility increases the overall capacity of an industry, and hence 

can perturb the established economic equilibrium status of supplies, demands and 

product flows, which is actually a long-term steady market state due to competition. 

The introduction of this new capacity, and in the case of an “entering” firm, the 

introduction of an entirely new competitor on the market, will trigger some form of 

competitive response from existing firms in the industry. This would suggest that to 

truly make a profit maximizing location decision, the firm must anticipate the 

market’s reaction to a potential location decision, in its actual location decision-

making process. It is this need to anticipate the market’s reaction that motivates the 

authors’ objective to develop facility location models that somehow include projected 

market reactions endogenously within the firm’s profit maximizing facility location 

objective function. 

In this chapter, a SCNE model with production capacity constraints, which is an 

extension of the SCNE model developed by Nagurney et al. (2002), is proposed firstly. 

After successfully deriving the SCNE model with production capacity constraints, this 
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chapter proceeds to build an MPEC model for a competitive facility location problem 

on decentralized supply chains. The proposed MPEC model involves binary (0-1) 

decision variables representing whether or not a candidate site is chosen and the 

parameterized VI constraint that formulates the SCNE  model with the production 

capacity constraints in the case of a given feasible facility location solution. 

4.2 Supply Chain Network Equilibrium Model with Production Capacity Constraints 

and Solution Method 

For convenience, the notations and equations for the supply chain network 

equilibrium model introduced in Chapter 3 are continued to be used in this chapter.  

4.2.1 Supply chain network equilibrium model with production capacity constraints  

Let us consider the deterministic case of the SCNE model introduced in Chapter 3. 

In view of limited resources, such as financial budgets, equipment, space and 

available raw materials, managed or owned by manufacturers in the decentralized 

supply chain, it is more rational and practical to assume that quantities of the product 

produced by the manufacturers during a planning period should have upper bounds, 

namely,  

 
1

, 1, ,
n

ij i
j

q C i m
=

≤ =∑  (4.1) 

where iC  is the upper bound of the production level for manufacturer i .  Inequalities 

expressed by  (4.1) are cast as the production capacity constraints of manufacturers in 

this chapter.  
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Having taken the production capacity constraints into consideration, the set of all 

the feasible shipment patterns, i.e., shipment patterns that satisfy the constraints (3.4) 

and (4.1), for the decentralized supply chain can be expressed below.  

( )1 2

1 1 1

, , 1, ,  and , , 1, ,
n o m

mn no
ij i jk ij

j k i

Q Q q C i m q q j n+
+

= = =

⎧ ⎫⎪ ⎪Ω = ∈ℜ ≤ = ≤ =⎨ ⎬
⎪ ⎪⎩ ⎭

∑ ∑ ∑  (4.2) 

It is now ready to derive an SCNE model with production capacity constraints. 

Following the similar derivation in Nagurney et al. (2002), the SCNE  conditions in 

the case of the production capacity constraints can be characterized as: finding a row 

vector ( )1* 2* *
3, , oQ Q +ρ ∈Ω×ℜ  such that 

 

( ) ( ) ( )

( )

( ) ( )

1* * 1*
*

1 1

2* * *
3

1 1

* * * 1 2
3 3 3 3

1 1

0,    , ,

m n
i ij ij j

ij ij
i j ij ij ij

n o

jk k jk jk
j k

o n
o

jk k k k
k j

f Q c q c Q
q q

q q q

c Q q q

q d Q Q

= =

= =

+
= =

⎡ ⎤∂ ∂ ∂
⎡ ⎤⎢ ⎥+ + × −⎣ ⎦∂ ∂ ∂⎢ ⎥⎣ ⎦

⎡ ⎤ ⎡ ⎤+ −ρ × − +⎣ ⎦⎣ ⎦

⎡ ⎤
⎡ ⎤− ρ × ρ −ρ ≥ ∀ ρ ∈Ω×ℜ⎢ ⎥ ⎣ ⎦

⎣ ⎦

∑∑

∑∑

∑ ∑

 (4.3) 

Existence and uniqueness of the solution of VI (4.3) can be easily proved under 

the same assumptions in the SCNE model without considering the production 

capacity constraints by means of mathematical techniques used in Nagurney et al. 

(2002).  

According to the Lagrangian duality for VIs (Auslender and Teboulle, 2000), 

there are optimal Lagrangian multipliers, *
iλ , 1, ,i m= , and *

jγ , 1, ,j n= , with 

respect to the production capacity constraints (4.1) and the stock capacity constraints 

(3.4), respectively, which defines set Ω  as well, for the solution ( )1* 2* *
3, ,Q Q ρ  of the 

above VI. These nonnegative optimal Lagrangian multipliers together with the 

solution of VI (4.3) should fulfill the slackness complementary conditions: 
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 * *

1
0, 1, ,

n

i ij i
j

q C i m
=

⎛ ⎞
λ − = =⎜ ⎟
⎝ ⎠
∑  (4.4) 

As such, the equilibrium price charged by a manufacturer for a retailer can be 

evaluated by  

 
( ) ( )1* *

* *
1 , 1, , , 1, ,i ij ij
ij i

ij ij

f Q c q
i m j n

q q
∂ ∂

ρ = + + λ = =
∂ ∂

 (4.5) 

Similarly, the equilibrium unit price of the product charged by a retailer can be 

calculated by 

 * *
2 , 1, ,j j j nρ = γ =  (4.6) 

Eqns. (4.3)-(4.6) indicate that the SCNE model with production capacity 

constraints will be identical to the original SCNE model when the production capacity 

constraints become unbinding, namely, * 0iλ = , 1, ,i m= .  Because the set of 

feasible solutions for VI (4.3) , o
+Ω×ℜ , is a proper subset of the nonnegative orchant, 

the modified projection method suggested by Nagurney et al. (2002) is no longer 

available for solving VI (4.3). Thus, it urges us to seek an efficient and effective 

solution method for solving the SCNE model with production capacity constraints. 

Besides, the solution method is able to find the relevant optimal Lagrangian 

multipliers.  

4.2.2 Logarithmic-quadratic proximal prediction-correction method  

In the context of optimization, the classical proximal method replaces a 

minimization problem by a sequence of better behaved problems with a quadratic 

regularization term added to the objective function (Rockafellar, 1976). Many 
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generalizations of this classical proximal method have been proposed recently after 

the success of interior point methods for linear programming. One of the main 

objectives is to replace the squared Euclidean norm by coercive regularizations that 

are able to implicitly deal with simple constraints such as box and linear constraints, 

giving raise to interior proximal methods (e.g., Auslender and Haddou, 1995; Teboulle, 

1997).  

Auslender et al. (1999) developed a logarithmic-quadratic proximal (LQP) 

method for monotone VIs defined on polyhedral sets, which is an interior proximal 

method with the global convergent property. However, the LQP method is merely an 

iterative solution framework without a tractable procedure in calculating an iterative 

point that is a solution of the inclusion equations generated at each iteration. He et al. 

(2006) successfully tackled such a flaw, and they created a notable LQP P-C method 

that includes the prediction and correction procedures to effectively solving the 

inclusion equations induced in LQP. Besides, the LQP P-C method can also attain the 

optimal Lagrangian multipliers. It thus fits all the requirements of a solution method 

for the SCNE model with the production capacity constraints. To customize the LQP 

P-C method for the SCNE model with the production capacity constraints, the LQP P-

C method is elaborated below.  

For the sake of presentation, VI (4.3) can be rewritten by vector notations as 

follows. 

Find a row vector ( )1* 2* *
3, , oQ Q +ρ ∈Ω×ℜ  such that 
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( )( ) ( )( )
( )( ) ( )

1* 1 1* 2* * 2 2*
1 2 3

2* * * 1 2
3 3 3 3 3

,

, 0, , ,

T T

T o

F Q Q Q F Q Q Q

F Q Q Q +

− + ρ −

+ ρ ρ −ρ ≥ ∀ ρ ∈Ω×ℜ
 (4.7) 

where the row vector functions:  

 ( ) ( ) ( ) ( )1 1
1

1 , , , 

where 1, , , 1, ,

i jij ij mn

ij ij ij

f Q c Qc q
F Q

q q q

i m j n

⎛ ⎞∂ ∂∂
⎜ ⎟= + + ∈ℜ
⎜ ⎟∂ ∂ ∂⎝ ⎠
= =

 (4.8) 

 ( ) ( )( )2 2
2 3 3, , , ,  where 1, , , 1, ,no

jk kF Q c Q j n k oρ = −ρ ∈ℜ = =  (4.9) 

 ( ) ( )2
3 3 3

1
, , , ,  where 1, ,

n
o

jk k
j

F Q q d k o
=

⎛ ⎞
ρ = − ρ ∈ℜ =⎜ ⎟

⎝ ⎠
∑  (4.10) 

In terms of vector notations, production capacity constraints (4.1) of the 

manufacturers and stock constraints (3.4) of retailers can be concisely rewritten as 

 1
1Q A C≤  (4.11) 

 2 1
2 3Q A Q A≤  (4.12) 

where row vector ( ), , m
iC C= ∈ℜ  and matrices 

 

1 1
1

2 2
1 2 3, and 

m mn n
m nmn m no n

I J
E

I J
A A A

E
I J ×

× ×

⎡ ⎤ ⎡ ⎤
⎡ ⎤⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥= = = ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦

⎣ ⎦ ⎣ ⎦

0 0 0 0
0 0 0 0

0 0
0 0 0 0

 (4.13) 

where column vectors: ( )1 1,1, 1 T m
mI I= = = ∈ℜ ,  ( )1 1,1, 1 T n

nJ J= = = ∈ℜ , 

and all the iE , 1, ,i m= , are identical to a n n×  dimensional unit matrix . 

Let 
∞
⋅  and ⋅  denote the infinity- and 2-norms of a vector, respectively. The 

LQP P-C method for solving VI (4.3) is elaborated below.  

LQP P-C method 

Step 0. (Initialization) Let parameters  0 1β = , 1( 0)v = > , 0.9( 1)η = < , 0.1µ = , 

2.0 1σ = > , an initial solution, ( ) ( )( )2 0 01(0)
3, , mn no oQ Q +

+ +ρ ∈ℜ ×ℜ , and initial 
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Lagrangian multipliers, (0) m
+λ ∈ℜ , ( )0 n

+γ ∈ℜ . Set the number of iteration 0τ = .  

Step 1. (Stopping criterion) If ( ) ( ) ( ) ( ) ( )( )1 2
3, , , ,e Q Qτ τ τ τ τ

∞
ρ λ γ ≤ ε , in which ε  is a 

predetermined tolerance, then stop; otherwise, continue; where vector  

( ) ( ) ( ) ( ) ( )( )1 2
3, , , , mn nk o m ne Q Qτ τ τ τ τ + + + +ρ λ γ ∈ℜ  defined as follows: 

 

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( ) ( )( ) ( )( )
( ) ( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2
3

1 1 1
1 1 3

2 2 2
2 3 2

2 1
3 3 3 3 1

2 1
1 3

, , , ,

,

, ,

, , ,

T T

T

e Q Q

Q Q F Q A A

Q Q F Q A

F Q Q A C

Q A Q A

τ τ τ τ τ

+
τ τ τ τ τ

+
τ τ τ τ τ

+
τ τ τ τ τ τ τ

+τ τ τ τ

ρ λ γ =

⎛ ⎡ ⎤− − + λ − γ⎜ ⎢ ⎥⎣ ⎦⎝

⎡ ⎤− − ρ + γ⎢ ⎥⎣ ⎦

⎡ ⎤ ⎡ ⎤ρ − ρ − ρ λ − λ + −⎣ ⎦⎣ ⎦
⎞⎡ ⎤γ − γ + − ⎟⎣ ⎦ ⎠

 (4.14) 

where [ ]y +  is the projection operator of vector y onto the nonnegative orthant. 

Namely, assuming that ( )1, , N
Ny y y= ∈ℜ , a vector of N-dimensional real 

space, then [ ] ( )1 , , N
Ny y y+ + +

+= ∈ℜ  with elements: 

 
,  if 0

, 1, ,
0,  otherwise

l l
l

y y
y l N+ ≥⎧

= =⎨
⎩

 (4.15) 

Step 2. (Prediction step) Produce a predictor, ( ) ( ) ( ) ( ) ( )( )1 2
3

ˆ ˆ ˆˆ ˆ, , , ,Q Qτ τ τ τ τρ λ γ , that well 

approximates a solution of the inclusion equations, by executing the efficient 

manipulations: 

 Step 2.1. Choose a predictor in light of step size τβ  as follows. 

 ( ) ( ) ( )( )1
1

ˆ ˆ k Q A C
+

τ τ τβ⎡ ⎤λ = λ + −⎢ ⎥ν⎣ ⎦
 (4.16) 

 ( ) ( ) ( ) ( )( )2 1
2 3ˆ ˆ k Q A Q A

+
τ τ τ τβ⎡ ⎤γ = γ + −⎢ ⎥ν⎣ ⎦

 (4.17) 

 ( ) ( ) ( )( )22
ˆ 4 / 2, 1, , , 1, ,ij ij ij ijq s s q i m j nτ τ⎛ ⎞

= + + µ = =⎜ ⎟
⎝ ⎠

 (4.18) 
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 ( ) ( ) ( )( )22
ˆ 4 / 2, 1, , , 1, ,jk jk jk jkq s s q j n k oτ τ⎛ ⎞

= + + µ = =⎜ ⎟
⎝ ⎠

 (4.19) 

 ( ) ( ) ( )( )22
3 3ˆ 4 / 2k k k kt tτ τ⎛ ⎞

ρ = + + µ ρ⎜ ⎟
⎝ ⎠

 (4.20) 

where ijs , 1, ,i m= , 1, ,j n= , jks , 1, ,j n= , 1, ,k o=  and kt , 

1, ,k o=  are the elements of the following three vectors: 

 ( ) ( ) ( ) ( )( ) ( ) ( )( )1 1
1 1 3

ˆ ˆ, 1 T T mn
ijs Q F Q A Aτ τ τ τ

τ= −µ −β + λ − γ ∈ℜ  (4.21) 

 ( ) ( ) ( ) ( ) ( )( ) ( )( )2 2
2 3 2ˆ, 1 , T nk

jks Q F Q Aτ τ τ τ
τ= −µ −β ρ + γ ∈ℜ  (4.22) 

 ( ) ( ) ( ) ( ) ( )( )2
3 3 3, , 1 , o

kt F Qτ τ τ
τ= −µ ρ −β ρ ∈ℜ  (4.23) 

Step 2.2. Seek a step size, τβ , fulfilling a certain condition 

Let us calculate 

 
( ) ( ) ( )

( ) ( ) ( ) ( )

2 2

1 2

2 22 2
1 2

1

1 1
r

τ τ

τ
τ τ

ν ξ + +µ ξ
=

ν −µ π + ν −µ π
 (4.24) 

 where vectors ( )
1

mn nk oτ + +ξ ∈ℜ , ( )
2

m nτ +ξ ∈ℜ , ( )
1

mn nk oτ + +π ∈ℜ  and 

( )
2

m nτ +π ∈ℜ  with 

 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )( )
( )( ) ( ) ( )( ) ( ) ( )( )( )

1 1 1 2 2 3 3 2 3

1 1 2 2 3 3 2 3

ˆ ˆ ˆˆ ˆ, , , ,

            , , , ,

F Q F Q F Q

F Q F Q F Q

τ τ τ τ τ τ
τ

τ τ τ τ τ

⎡ξ = β ρ ρ −⎢⎣
⎤ρ ρ ⎥⎦

 (4.25) 

 ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )1 1 2 2 1 1
2 1 2 3

ˆ ˆ ˆ,Q Q A Q Q A Q Q Aτ τ τ τ τ τ τ
τ
⎡ ⎤ξ = β − − − −⎣ ⎦  (4.26) 

 ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )1 2 1 2
1 3 3

ˆ ˆ ˆ, , , ,Q Q Q Qτ τ τ τ τ τ τπ = ρ − ρ  (4.27) 

 ( ) ( ) ( )( ) ( ) ( )( )2
ˆ ˆ, ,τ τ τ τ τπ = λ γ − λ γ  (4.28) 

If rτ > η , then reduce τβ  by setting 0.8 / krτ τβ = β × , and go to Step 

2.1. Otherwise, go to Step 3.  

Step 3. (Adjust step size τβ   and parameter ν  for the next iteration if necessary). 
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Enlarge τβ  for the next iteration if rτ  is small enough by  

 1

0.7 / ,  if 0.5
,otherwise

r rτ τ τ
τ+

τ

β × ≤⎧
β = ⎨β⎩

 (4.29) 

 Reduce or increase parameter ν  according to the formula: 

 

( ) ( )

( ) ( )

1 2

1 2

0.5 ,if / 1+ 4 /  

2 , if 4 / 1+ /

,otherwise

τ τ

τ τ

⎧ ν ξ µ > ξ ν
⎪
⎪ν = ν ξ µ < ξ ν⎨
⎪
ν⎪
⎩

 (4.30) 

Step 4. (Calculate the step size of the correction step). Set the step size,  

 * 1
1τ τ τ

⎛ ⎞−µ
α = σα β ⎜ ⎟+µ⎝ ⎠

 (4.31) 

 where  

 
( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )
1 1 1 2 2 2*

1 1
1 1 1 1 2 2 2 2/ 1 1 /

T T

TT

τ τ τ τ τ τ

τ
τ+ τ τ+ τ τ τ τ τ

π π + ξ + π νπ + ξ
α =

⎡ ⎤ ⎡ ⎤π + ξ +µ +µ π + ξ + π + ξ ν νπ + ξ⎣ ⎦ ⎣ ⎦

 (4.32) 

Step 5. (Correction step) Calculate the new iterative solution, 

( ) ( ) ( ) ( ) ( )( )1 1 2 1 1 1 1
3, , , ,Q Qτ+ τ+ τ+ τ+ τ+ρ λ γ , by performing the operations: 

 ( ) ( ) ( )( )1 1
1Q̂ A C

+
τ+ τ ττα⎡ ⎤λ = λ + −⎢ ⎥ν⎣ ⎦

 (4.33) 

 ( ) ( ) ( ) ( )( )1 1 2
1 3Q A Q A

+
τ+ τ τ ττα⎡ ⎤γ = γ + −⎢ ⎥ν⎣ ⎦

 (4.34) 

 ( ) ( ) ( )( )221 ˆ ˆ 4 / 2, 1, , , 1, ,ij ij ij ijq s s q i m j nτ+ τ⎛ ⎞
= + + µ = =⎜ ⎟
⎝ ⎠

 (4.35) 

 ( ) ( ) ( )( )221 ˆ ˆ 4 / 2, 1, , , 1, ,jk jk jk jkq s s q j n k oτ+ τ⎛ ⎞
= + + µ = =⎜ ⎟
⎝ ⎠

 (4.36) 

 ( ) ( ) ( )( )221
3 3

ˆ ˆ 4 / 2k k k kt tτ+ τ⎛ ⎞
ρ = + + µ ρ⎜ ⎟

⎝ ⎠
 (4.37) 
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where îjs , 1, ,i m= , 1, ,j n= , ˆ jks , 1, ,j n= , 1, ,k o=  and k̂t , 

1, ,k o=  are the elements of the three vectors as follows. 

 ( ) ( ) ( ) ( )( ) ( ) ( )( )1 1
1 1 3

ˆ ˆ ˆˆ, 1 T T mn
ijs Q F Q A Aτ τ τ τ

τ= −µ −α + λ − γ ∈ℜ  (4.38) 

 ( ) ( ) ( ) ( ) ( )( ) ( )( )2 2
2 3 2

ˆ ˆ ˆˆ, 1 , T nk
jks Q F Q Aτ τ τ τ

τ= −µ −α ρ + γ ∈ℜ  (4.39) 

 ( ) ( ) ( ) ( ) ( )( )2
3 3 3

ˆˆ ˆ, , 1 , o
kt F Qτ τ τ

τ= −µ ρ −α ρ ∈ℜ  (4.40) 

 Let 1τ = τ+ , and go to Step 1. 

It has already been recognized that ( )1* 2* * * *
3, , , ,Q Q ρ λ γ  is the solution of VI (4.3) 

if and only if  ( )1* 2* * * *
3, , , , 0e Q Q

∞
ρ λ γ =  (He et al, 2004 or 2006). Hence, the 

stopping criterion in Step 1 adopted by the LQP P-C method is rational. He et al. 

(2006) demonstrated that the procedure comprising Steps 2.1 and 2.2 to obtain an 

appropriate step size τβ   will be terminated after limited iterations. They further 

rigorously proved the convergence of the LQP P-C method for any monotone VI 

defined on a polyhedral set.  

With respect to the LQP P-C method, the computational burden of manipulations 

shown in eqns. (4.16)-(4.40) is very tiny because it merely needs to perform 

fundamental mathematical operations such as comparisons, additions, multiplications 

and square-root. Other than that, Step 3 that aims to automatically adjust the step size 

and the algorithmic parameter according to changes of some merit indices will make 

the method more effective and robust.   

Finally, it should be pointed out that this idea and solution method of SCNE 

model with capacity constraints can also be used in other SCNE models except for the 

SCNE model developed by Nagurney and her colleagues in 2002.  
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4.3 MPEC Model for Competitive Facility Location Problem 

The competitive facility location problem on a decentralized supply chain is a 

strategic level decision problem of a firm. It is to maximize an objective such as the 

firm’s profit through determining locations of its facilities as well as the production 

levels of these facilities, taking into account the market competition existing in the 

decentralized supply chain which can be captured by the SCNE model with 

production capacity constraints.  

Suppose that there are m  manufacturers, n  retailers and o  demand markets for 

an existing decentralized supply chain. All of these manufacturers produce 

substitutable products and supply them to the demand markets via the retailers. Let L  

be the number of candidate sites where the entering firm’s facilities can be built, and 

they are numbered by 1, 2, , L , respectively. Moreover, it is assumed that the newly 

built facilities are treated as additional manufacturers joining the existing 

decentralized supply chain, and consequently competition arises among these new 

manufacturers as well as the existing manufacturers. It is further assumed that the 

entering firm is able to predict SCNE shipment and prices patterns between the 

manufacturers and the retailers after the new facilities joining the decentralized supply 

chain. Note that the latter assumption is available for the situation in which the 

existing market is made up of a large number of small firms; by contrast, the entering 

firm is a large one with the ability to influence market prices (Miller et al., 1992). It 

should be pointed out that these two assumptions were made by Tobin and Friesz 

(1986) on studying the competitive facility location problem with the SPE constraints.  
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Let lx  be the binary decision variable to represent whether or not location l  will 

be selected by the entering firm, namely: 

 
1,   a facility is built at site 

,  1, ,
0,  otherwisel

l
x l L

⎧
= =⎨
⎩

 (4.41) 

Let lC  be the production capacity of the facility located at candidate site l  

( 1, 2...l L= ). The entering firm’s objective should be a function of the SCNE shipment 

and prices patterns between manufacturer and retailers of the decentralized supply 

chain involving the new facilities. To distinguish notations of decision variables used 

in Sections 4.2.1 and 4.2.2, let ( ), ,lx x=  be a row vector of all the binary 

decision variable; ( ) ( )( )1 1, ,ijQ x q x=   and ( ) ( )( )1 1, ,ijx xρ = ρ  be the row 

vectors of all the SCNE shipments and prices between manufacturers, ( )i M x∈ , and 

retailers, 1, ,j n= , where ( )M x  is set of all manufacturers associated with a 

decision variable x, namely 

 ( ) { } { }1, 1, , 1, ,lM x l x l L L L m= = = + +∪  (4.42) 

In addition, let ( ) ( )( )1
1, ,h x Q x xρ  denote the generic objective function concerned in 

the competitive facility location problem. 

The competitive facility location problem sometimes has to consider a few 

constraints such as a limited investment budget. Without loss of generality, it is 

assumed that there are  P  constraints denoted by functions, ( ) ( )( )1
1, ,pg x Q x xρ , 

1, 2, ,p P= . Obviously, 0P =  means that there is no constraint. Therefore, the 

competitive facility location problem with the SCNE constraints can be formulated by 

the MPEC model: 
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 ( ) ( )( )1
1max , ,

x
h x Q x xρ  (4.43) 

subject to 

 ( ) ( )( )1
1, , 0, 1, ,pg x Q x x p Pρ ≤ =  (4.44) 

 

( )( ) ( )( ) ( )( )
( )

( )

( )( ) ( ) ( )

( ) ( )( ) ( )

( ) ( )

1 1

1

2
3

1 1

3 3 3
1 1

1 2
3

0

,   , ,

n
i jij ij

ij ij
i M x j ij ij ij

n o

jk k jk jk
j k

o n

jk k k k
k j

o

f Q x c Q xc q x
q q x

q q q

c Q x x q q x

q x d x x

Q Q x R

∈ =

= =

= =

+

⎡ ⎤∂ ∂∂
⎢ ⎥ ⎡ ⎤+ + × − +⎣ ⎦∂ ∂ ∂⎢ ⎥⎣ ⎦

⎡ ⎤ ⎡ ⎤−ρ × − +⎣ ⎦⎣ ⎦

⎡ ⎤
− ρ × ρ −ρ ≥⎡ ⎤⎢ ⎥ ⎣ ⎦

⎣ ⎦

∀ ρ ∈Ω ×

∑ ∑

∑∑

∑ ∑

 (4.45) 

 0 or 1   1, ,lx l L= =  (4.46) 

 where ( )xΩ , the set of all feasible shipment patterns for the decentralized supply 

chain involving the new built facilities , can be expressed by 

 ( ) ( ) ( )
( )

1 2

1 1
, , , , 1, ,x

n o
m n no

ij i jk ij
j k i M x

x Q Q q C i M x q q j n+
+

= = ∈

⎧ ⎫⎪ ⎪Ω = ∈ℜ ≤ ∈ ≤ =⎨ ⎬
⎪ ⎪⎩ ⎭

∑ ∑ ∑ (4.47) 

where xm  is the cardinality of set ( )M x  defined by eqn. (4.42). Note that 

( ) ( )( )1 1..., ,...ijx xρ = ρ , which is a row vector of ( )1ij xρ , involved in eqns. (4.43)-

(4.44) has the following analytical expressions according to eqn. (4.5). 

 ( )
( )( ) ( )( ) ( ) ( )

1

1 , , 1, ,i ij ij
ij i

ij ij

f Q x c q x
x x i M x j n

q q
∂ ∂

ρ = + + λ ∈ =
∂ ∂

 (4.48) 

where ( )i xλ , ( )i M x∈ , is the optimal Lagrangian multiplier of the parameterized VI 

(4.45).  

It can be seen that the above MPEC model is an integer programming-like 

optimization problem. However, its constraints include VI (4.45) that describes the 

SCNE conditions with the production capacity constraints associated with the 
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decision variable x. Note that the MPEC model (4.43)-(4.46) is more generic. It can 

be customized by specifying the objective function (4.43) and constraints (4.44) 

according to different requirements in a competitive facility location problem. The 

following two instances demonstrate the flexibility of the above MPEC model.  

Instance 1. The profit maximization with budget constraints  

Most facility location problems aim to maximize the profit subject to limited 

budget. Let lF  be the fixed cost of setting up a facility with certain production 

capacity at site l , 1, ,l L= , and B be the maximum investment budget of the 

entering firm. Hence, the objective function of the preceding MPEC model for the 

competitive facility location problem with budget constraints can be specified below.  

( ) ( )( ) ( ) ( ) ( )( ) ( )( )
( )1

1 1 1
1 1

1 1

max , ,
n L

ij lj ij i l l
i M x j l

h x Q x x x q x c Q x f Q x x F
∈ = =

⎡ ⎤ρ = ρ − − −⎣ ⎦∑ ∑ ∑

 (4.49) 

where ( )1M x , the set of facility locations chosen by the entering firm, is defined by 

 ( ) { }1 1, 1, ,lM x l x l L= = =  (4.50) 

The first term in the right hand side of eqn. (4.49) is the revenue the entering firm can 

gain from the built facilities, and the send term is the total cost of setting up these 

facilities.  In addition, the budget constraint can be expressed by 

 
1

L

l l
l

x F B
=

≤∑  (4.51)  

Instance 2. The return ratio maximization  

Maximizing a return ratio such as return on logistics assets (ROLA) is also an 

important objective adopted in facility location decisions (Ballou, 2001). In this case, 

there is no restriction on the entering firm’s budget. However, the objective has 
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become maximization of the return ratio. Hence, the objective function (4.43) of the 

MPEC model has the following analytical expression:  

 ( ) ( )( )
( ) ( ) ( )( ) ( )( )

( )1

1 1
1

11
1

1

max , ,

n

ij lj ij i
i M x j

L

l l
l

x q x c Q x f Q x
h x Q x x

x F

∈ =

=

⎡ ⎤ρ − −⎣ ⎦
ρ =

∑ ∑

∑
 (4.52) 

4.4 Solution Algorithm  

The preceding competitive facility location problem is an NP-complete problem. 

The well-known branch-and-bound or branch-and-cut algorithm for integer 

programming problems is no longer available for solving the above MPEC model due 

to the parameterized VI (4.45). The method of exhaustive enumeration is able to find 

the optimal solution of the MPEC model. Nonetheless, it can only solve the small-

scale problems due to computer capacity.  Hence, GA as one of the well-recognized 

meta-heuristic method can be adopted for solving the MPEC model.  

GAs start with a population of individuals represented by chromosomes. 

Chromosomes from one population are taken and used to form a new generation of 

population according to their fitness – the more suitable they are, the more chance 

they can be selected to reproduce. Encoding of chromosome and choice of fitness 

function heavily depend on the nature of an optimization problem. With respect to the 

forgoing MPEC model, a chromosome is encoded by the row vector of binary 

decision variables, namely, ( )1, , Lx x x= . Apart from the parameterized VI (4.45), 

the MPEC model has another group of constraints shown in eqn. (4.44) that leads to 

the computational difficulty for GA to check the feasibility of a chromosome. 
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Fortunately, the penalty function approach arising from the nonlinear programming 

(Bazaraa et al., 1993) can be employed to tackle the problem. In other words, the 

fitness function of the GA is defined by the following function including a penalty 

term related to the constraint (4.44): 

 ( ) ( ) ( )( ) ( ) ( )( ){ }1 1
1 1

1
, , max 0, , ,

P

p
p

H x h x Q x x g x Q x xρ ω ρ
=

= − ∑  (4.53) 

where ω  is a suitable positive penalty parameter such that the function value of 

( )H x  at any infeasible solution is less than that at any feasible solution. Having 

transformed the constraint (4.44) into the objective function by using a penalty term, 

given the chromosome x , the parameterized VI (4.45) can be solved by the LQP P-C 

method.   

A conventional GA consists of three main steps: selection, crossover and 

mutation. The selection step attends to select chromosomes from the population to be 

parents for crossover. The stronger the chromosomes, i.e., chromosomes with the 

better fitness function values, the higher the probability which will be chosen to be the 

parents to generate a new chromosome. Note that there are a few schemes, including 

roulette wheel selection (Golberg, 1989), rank selection (Grefenstette and Baker, 

1989), Boltzman selection (Goldberg, 1990) and tournament selection (Goldberg and 

Deb, 1991), to select the better chromosomes. The crossover step is the process of 

combining the genes of a selected chromosome with those of another to create 

offspring that inherit traits of both parents. As the binary encoding scheme of a 

chromosome is chosen in this study, several crossover methods such as single point 

crossover, two point crossover over, uniform crossover and arithmetic crossover can 
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be used. The mutation step is a gene operator used to maintain genetic diversity from 

one generation of a population of chromosome to the next. It is analogous to 

biological mutation.  

Compared to the classical GA, the LQP P-C method is necessitated when 

evaluating the fitness function (4.53) for a given chromosome. The GA incorporating 

the LQP P-C method for solving the MPEC is called the hybrid GA-LQP P-C, which 

is stated below.  

Hybrid GA-LQP P-C  

Step 0. (Initialization) Randomly generate a population of N chromosomes. 

Step 1. (Calculation of the fitness function) For each chromosome x in the population, 

the value of fitness function F(x) defined by eqn. (4.53) is evaluated after 

implementing the LQP-PC method for the parameterized VI  (4.45) 

associated with the chromosome.  

Step 2. (Generation of a new temporary population). Repeat the following three sub-

steps until the new population is completed. 

Step 2.1. (Selection) According to the fitness function values evaluated in 

Step 1, use the roulette wheel selection method to choose two parent 

chromosomes from the population. 

Step 2.2. (Crossover) With a crossover probability, denoted by crr , cross over 

the parents to form a new offspring according to the one point 

crossover method. If no crossover is performed, offsprings are the 

exact copy of the parents 
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Step 2.3. (Mutation) Generate a number from [0,1] for each gene of the new 

offspring. If this number is less than the mutation probability, 

denoted by mur , change the value of this gene from 0 to 1 or vice 

versa.  

Step 3. Select the best N  chromosomes from the new temporary population and the 

last population, which forms the new population for the next generation.  

Step 4. (Stopping criterion). If a stopping criterion is fulfilled, then terminate, and 

output the best solution from the population. Otherwise, go to Step 1.  

For the above hybrid GA, Step 3 is an elitism strategy (Eshelman, 1991) by 

copying the strongest N  chromosomes from the new temporary population and the 

old population to generate a new generation. This guarantees monotonic non-

degradation of the best solution from an old population to a new population. There are 

two termination criteria that can be adopted in Step 4. It can be terminated when it 

achieves maximum number of generations specified or if there is no improvement in 

the fitness function value of the strongest chromosome in the population for more 

than the number of generations specified. Note that the performance of the hybrid 

GA-LQP P-C may depend on the population size and crossover and mutation 

probabilities.  

4.5 Numerical Examples 

To demonstrate the preceding models and solution methods, this chapter proceeds 

to carry out three numerical examples. The first one intends to numerically show a 
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distinction between the SCNE models with and without the production capacity 

constraints, and to exhibit strength of the LQP P-C method. The second and third 

examples target at the MPEC model of the competitive facility location problem and 

the hybrid GA incorporated with the LQP P-C method.  

4.5.1 An example for supply chain network equilibrium model with the production 

capacity constraints 

Example 4 of Nagurney et al. (2002) is here taken as our numerical example, and 

it is further assumed that each manufacturer has the production capacity tabulated in 

Table 4.1.  

 

Table 4.1 Production capacity of each Manufacturer 
Manufacturer ( i ) 1 2 3 

Production Capacity ( iC ) 20 30 100 

 

Referring to the LQP P-C method, the number of iterations required in the 

prediction step and the step size adjustment scheme of the correction step heavily 

depend on parameters η  and σ , respectively. Figure 4.1 shows performance of the 

LQP P-C method with three different groups of values of parameters η  and σ  after 

20 iterations when solving the numerical example for the SCNE with the production 

capacity constraints.  
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Figure 4.1 The convergent performance of the LQP P-C method with different 

parameters 
 

Note that values of ( ) ( ) ( ) ( ) ( )( )1 2
3, , , ,e Q Qτ τ τ τ τ

∞
ρ λ γ  within twenty iterations are not 

presented here due to their sharp changes in terms of magnitude. This figure confirms 

the global convergent property of the LQP P-C method for different parameters 

because ( ) ( ) ( ) ( ) ( )( )1 2
3, , , ,e Q Qτ τ τ τ τ

∞
ρ λ γ  approaches zero with the increasing number of 

iterations.  

 Implementing the LQP P-C method for the example yields the solutions of the 

SCNE model with and without the production capacity constraints, including the 

optimal Lagrangian multipliers, which are listed in Table 4.2. According to Table 4.2, 

it can be observed that the production capacity constraint, * *
11 12 20q q+ ≤ , makes the 

solution *
11q  and *

12q  of the SCNE model and SCNE with production capacity 

constraints different. This suggests that the production capacity constraints do affect 

the decisions of the manufacturers and the equilibrium state of the supply chain.  
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Table 4.2 Solutions of the supply chain network equilibrium models with and without 
production capacity constraints 

Solution With capacity constraints Without capacity 

constraints 

Shipments between 

Manufacturers and Retailers 

* *
11 12 10.000q q= =  

* *
21 22 13.077q q= =  

* *
31 32 50.000q q= =  

* *
11 12 12.395q q= =  

* *
21 22 12.395q q= =  

* *
31 32 50.078q q= =  

Shipments between Retailers 

and Demand markets 

* *
11 12 24.359q q= =  

* *
21 22 24.359q q= =  

* *
31 32 24.359q q= =  

* *
11 12 24.956q q= =  

* *
21 22 24.956q q= =  

* *
31 32 24.956q q= =  

Optimal Lagrangian multipliers 

with respect to the production 

capacity constraints 

*
1 27.7015λ =  

*
2 0λ =   

*
3 5.3574λ =  

 

N.A. 

Optimal Lagrangian multipliers 

with respect to the stock 

capacity constraints 

*
1 242.435γ =  

*
2 242.435γ =  

*
1 241.496γ =  

*
2 241.496γ =  

Prices consumers at different 

demand makers are willing to 

pay   

* * *
31 32 33 271.794ρ = ρ = ρ =

 

* * *
31 32 33 271.454ρ = ρ = ρ =

 

4.5.2 An example for analyzing impact of the production capacity and budget in the 

MPEC model 

The competitive facility location problem adopted here belongs to the preceding 

instance 1, i.e., it wishes to maximize the profit subject to the budget constraint. It is 

assumed that the existing decentralized supply chain consists of  5 manufacturers, 10 

retailers and 10 demand markets, and that there are 10 candidate facility locations 

from which the entering firm can choose, namely, 5m = , 10n = , 10o =  and 10L = .  
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The data for this example is constructed for easy interpretation purposes. Table 

4.3 gives the fixed setting up cost and two sets of production capacities of a facility 

that will be built at a candidate location. It is also assumed that the available budget of 

the entering firm is 200.0, i.e., 200.0B = . 

Following the production functions used in the numerical examples by Nagurney 

et al. (2002) and Dong et al. (2004), the production cost functions for the 

manufacturers including the new joining ones are assumed to have the form:  

 ( )
2

10 10
1

1 1

0.0005 , 1, ,15i ij ij
j j

f Q q i q i
= =

⎛ ⎞ ⎛ ⎞
= + =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑  (4.54) 

The transaction cost functions between manufacturers and retailers, and the handling 

cost functions of the retailers are defined below. 

 ( ) ( )1 22 , 1, ,15, 1, ,10ij ij ijc Q q i j q i j= + + = =  (4.55) 

 ( )
215

1

1
2 , 1, ,10j ij

i
c Q q j

=

⎛ ⎞= =⎜ ⎟
⎝ ⎠
∑  (4.56) 

The transaction cost functions between the retailers and the demand markets have the 

expressions: 

 ( )2 5, 1, ,10, 1, ,10jk jkc Q q j k= + = =  (4.57) 

The demand functions at the demand markets take the form: 

 ( )
15

3 3 3
1

5 2 2000, 1, ,10k k k
k

d k
=

ρ = − ρ − ρ + =∑  (4.58) 

 
 
 
 
 
 
 



  CHAPTER 4 COMPETITIVE FACILITY LOCATION ON DECENTRALIZED SUPPLY CHAINS 

 67

Table 4.3 Production capacities and setting up costs of facilities located at candidate 
locations  

Location 

candidate 

First set of 

production capacities

Second set of 

production capacities

Setting up  cost 

1 20 13 55 

2 18 12 52 

3 18.4 18.4 57 

4 25 16 58 

5 16.6 25 50 

6 18.5 18.8 52 

7 16 22 56 

8 17 17 48 

9 20 17.2 55 

10 23 18.8 58 

 

As there are ten candidate locations only, all the solutions of the facility location, 

including infeasible ones, amount to 102 1024= . Therefore, the exhaustive 

enumeration method incorporating with the LQP P-C method can be employed to find 

the optimal solution of the MPEC model of this example. Let values of the parameters 

necessitated in the LQP P-C method be 0.9η = , 2.0σ =  and 810−ε =  (tolerance in 

the stopping criterion). For three production capacity scenarios: two sets of the 

production capacities, shown in Table 4.3, and unlimited production capacities, 

performing the exhaustive enumeration method for the MPEC model of the numerical 

example comes out with the maximal profits and the optimal facility locations, which 

are presented in Table 4.4. 
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Table 4.4 Maximal profits and the optimal solutions of the MPEC model with 
different production capacity scenarios  

Scenario Maximal profit Optimal facility locations 

First set of production 

capacities 

1054.189 Location 1,2 and 4 

Second set of production 

capacities 

867.530 Locations 1,3 and 5 

Unlimited production 

capacities 

991.468 Locations 1 and 2 

 

Table 4.4 indicates that the maximal profit subject to the first set of the 

production capacities is higher than that subject to the second set of the production 

capacities. This is because the overall production capacity of the decentralized supply 

chain induced by the first set of the production capacities is greater than that induced 

by the second set of the production capacities. In addition, it is very interesting to see 

that the maximal profit subject to the first set of the production capacities is also 

higher than that without any production capacity constraint (i.e., unlimited production 

capacity). This is because the market competition in the case of limited production 

capacity that will raise the supply prices between manufacturers and retailers.  

With regard to the competitive facility location problem on a decentralized supply 

chain, the maximal profit and total expenditure spent by the entering firm in setting up 

manufacturing facilities should vary with the budget. Figures 4.2 and 4.3 depict 

changes of these two indices with different budgets, respectively, for this numerical 

example. According to these two figures, it can be seen that both the maximal profit 

and the total expenditure become a constant for budget levels greater than 240. In 

other words, more budget may not lead to more profit due to free-market competition. 
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It implicitly verifies the economic principle of the Nash noncooperative game.  
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Figure 4.2 The maximal profit vs. the budget 
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Figure 4.3 Total expenditure vs. budget 
 

4.5.3 Examples for evaluating hybrid GA-LQP P-C method  

Let us first use the above example with the first set of production capacities listed 

in Table 4.3 and budget 200.0B =  to evaluate performance of the hybrid GA-LQP P-

C method for solving the MPEC model because the global optimal solution of the 
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example has already been obtained. In the hybrid GA-LQP P-C method for solving 

this example, let the population size be 500N = , the penalty parameter involved in 

the fitness function expressed by eqn. (4.53) 10.0ω = , and the maximal number of 

iterations be 15.  
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Figure 4.4 Change of the fitness function values of the small example solved by the 

hybrid GA-LQP P-C method  
 

Figure 4.4 gives the change of the fitness function values obtained by the GA-

LQP P-C method with three different combinations of the crossover and mutation 

probabilities. It fully shows that the hybrid GA-LQP P-C is able to find the optimal 

solution of the MPEC model of the example after ten iterations even if different sets 

of crossover and mutation probabilities are chosen.  

Let us construct a relatively large competitive facility location problem with the 

maximization of profit with a budget constraint, for which the existing decentralized 

supply chain comprises 5 manufacturers, 25 retailers and 25 demand markets, namely, 
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5m = , 25n =  and 25o = . The number of location candidates available to the 

entering firm is assumed to be 20. Production capacities and fixed setting up costs of 

facilities built in these twenty location candidates are listed in Table 4.5. The relevant 

production cost functions, handling cost functions, transaction cost functions and 

elastic demand functions take the same formulae shown by eqns. (4.54)-(4.58). It is 

still assumed that the budget 200.0B = .  

 

Table 4.5 Production capacity and cost of a facility built at a location candidate for the 
large example  

Location 

candidate 

Production 

capacity 

cost Location 

candidate 

Production 

capacity 
cost 

1 42 55 11 41 57 

2 39 52 12 38 39 

3 40 57 13 36 41 

4 33 58 14 42 48 

5 35 50 15 39 51 

6 38 52 16 37 55 

7 30 56 17 40 43 

8 38 48 18 45 42 

9 39 55 19 42 43 

10 40 58 20 38 51 

 

For the hybrid GA-LQP P-C method, let the population size 500N = , the 

crossover probability 0.2crr =  , the mutation probability 0.5mur = , and the maximal 

number of iteration be equal to 100. The parameters used by the LQP P-C method are 

the same as that adopted by the numerical example in Subsection 5.2.  Figure 4.5 

depicts the stepwise increasing trend in terms of the fitness function value of the 
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hybrid GA-LQP P-C method for solving this example. It indicates that the fitness 

function value reaches a maximum (i.e., the maximal profit) after seventy two 

iterations.  
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Figure 4.5 Change of the fitness function values of the large example solved by the 

hybrid GA-LQP P-C method 
 

 To conclude, it can be seen that the enumeration method incorporated with 

LQP P-C method can find the optimal solution for the small example. For the large 

example, the hybrid GA-LQP P-C method depicts its convergence.  

4.6 Discussion and Summary 

This chapter has proposed a new competitive facility location problem which 

significantly extends the competitive facility location problem with the SPE 

constraints. Since the limited production capacity of a manufacturer in a decentralized 

supply chain cannot be neglected, this chapter has successfully developed the SCNE 
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model with production capacity constraints, which is formulated by the VI and solved 

by the LQP P-C method. By virtue of the SCNE model with the production capacity 

constraints, it has created an MPEC model for the proposed competitive facility 

location problem. Moreover, a meta-heuristics method called the hybrid GA-LQP P-C 

method has been designed for solving the MPEC model. The numerical examples 

have not only demonstrated the impact of production capacity constraints on the 

SCNE and the sensitivity analysis results of the MPEC model for the competitive 

facility location problem, but also shown the feasibility of the solution methods. To 

some extent, the proposed MPEC model in this chapter can more or less help a 

company to anticipate the reaction of the market after he enters the market. This can 

thus help the company to make decisions on locations of his plants.  
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CHAPTER 5 MULTIPERIOD PRODUCTION-DISTRIBUTION 

PLANNING WITH TRANSFER PRICING AND DEMAND 

UNCERTAINTY 

5.1 Introduction 

With consideration of demand uncertainty, this chapter develops a chance 

constrained programming model for a global supply chain on a four-tier network 

comprising external raw materials suppliers, plants, DCs and customers. The 

objective of this model is to maximize the expected after-tax profit of an MNC over a 

taxation period by determining the number of product to be manufactured at each 

plant, the amount to be supplied to each DC, the optimal level of flows of raw 

materials from external vendors to plants, inventory levels of raw materials and 

products at each plant, and the transfer price between each plant and each DC. In 

order to capture the fluctuation of time-dependent parameters such as currency 

exchange rates, the taxation period is divided into several sub-periods. Assuming a 

stochastic demand in each sub-period, the model is formulated as a nondifferentiable 

maximization problem with chance constraints for inventory control strategy at each 

DC. To solve the model, a penalty function method embedded with a simulated 

annealing procedure will be carried out. After moving the chance constraints into the 

objective function to penalize the violation of chance constraints, the resulting model 

is a linear constrained maximization problem. Hence, Phrase I of the simplex method 
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in linear program is employed to sample a solution in implementation of Metropolis 

Monte Carlo simulation in the simulated annealing procedure. 

5.2 Problem Statement 

Let us consider a global supply chain of an MNC. The supply chain consists of 

four tiers - external vendors of raw materials, plants, DCs and customers. The four 

tiers are located in different countries. It is assumed that the MNC owns all of the 

plants which produce a single product and all DCs which sell the product to the 

markets. The global supply chain operates as follows. Plants purchase raw materials 

from external vendors; in turn, DCs purchase the product from the plants and serve 

their own markets. For the sake of convenience, it is further assumed that each DC 

and its market are in the same country. Figure 5.1 provides a schematic example of a 

global supply chain network with seven external vendors located in three countries, 

three plants in countries two and three, six DCs in countries three and four and six 

markets served by these six DCs, respectively.    
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Figure 5.1 A four-tier global supply chain network  

 

Most countries have a fixed profit taxation period, typically one year, for MNCs. 

During the taxation period, a number of parameters including market demands and 

raw material price discounts offered by external vendors may fluctuate seasonally. To 

consider the impact of these time-dependent parameters on tactical decisions, the 

entire taxation period can be divided into several sub-periods.  

Currency exchange rates are important issues in tactical supply chain decisions 

for an MNC. Normally it is difficult to forecast a currency exchange rate. Hence, in 

this chapter it is assumed that the currency exchange rates of each country in each 

sub-period are random.    

Demand uncertainty is a practical concern for global supply chain managers 

because demand is forecasted when planning a global supply chain, and the forecast 
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may be biased. Therefore, it is more reasonable to assume a stochastic demand faced 

by each DC in each sub-period rather than a deterministic demand. Inventory control 

at plants and DCs is vital to a global supply chain because inventory cost is a major 

component of the total cost. For example, in some sub-periods, plants may purchase 

more raw materials if the saving from price discounts is able to offset the additional 

inventory cost for one sub-period. With stochastic demand, the inventory at each DC 

becomes a random variable. Since each DC has limited inventory capacity, an 

inventory control policy is needed to ensure a level of confidence that the inventory 

will not exceed the capacity.  

According to Organization for Economic Co-operation and Development (OECD) 

international guidelines based on the arm’s length principle, the transfer price for a 

product are limited within a range around the real market price. As a requirement for 

the justification of transfer prices to tax authorities, all the transfer prices charged by 

the same plant must be the same (Vidal and Goetschalckx, 2001).  

Finally, to make the calculations of cost and profit comparable, currencies of all 

the countries involved in the global supply chain are converted to a common currency, 

say, the US dollar. 

Based on the preceding assumptions, the multiperiod supply chain planning with 

transfer pricing and demand uncertainty aims to maximize the expected value of after-

tax profit of the MNC over the entire taxation period by determining the amount of 

production at each plant in each sub-period, the amount of supply to each DC in each 

sub-period, the optimal flow level of both raw materials from external vendors to 
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plants in each sub-period, inventory levels of raw materials and products at each plant 

in each sub-period, and the transfer price charged by each plant in each sub-period.   

5.3 Mathematical Model 

Before presenting the model, the parameters and decision variables used in the 

model are stated. For the sake of representation, ( )0h
iinr , ( )0iinp  and ( )0jinv  are 

used to represent the inventory of raw materials in plants, final products in plants and 

the final products in DCs at the beginning of sub-period 1. Except for these, for clarity 

and ease of reading, all parameters are denoted by capital letters, and all decision 

variables are in lower case letters.  Following are the parameters and decision 

variables.  

Sets and indices 

[ ]1,2, ,T   Set of sub-periods, indexed by t, and T is the total number of 

sub-periods. 

H Set of raw material types that are used to produce or assemble 

the product, indexed by h. 

L  Set of countries where external vendors are located, indexed by 

l. 

M Set of countries where plants are located, indexed by m. 

N Set of countries where DCs are located, indexed by n. 

mP  Set of plants in country m M∈ , indexed by i . 

h
lS  Set of vendors in country l L∈  that can supply raw material 
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type h H∈ , indexed by s . 

nW  Set of DCs in country n N∈ , indexed by j . 

Parameters associated with the international factors 

( )mnDUTY t  Import duty rate on value of the product shipped from country 

m to country n in sub-period t . 

( ) ( ) ( ), ,m n lE t E t E t  Currency exchange rates of countries m, n and l to a common 

currency in sub-period t , respectively [dollar/monetary units of 

country m, n and l].  

,i iLTP UTP   Lower and upper bounds of transfer price of product charged 

by plant i to any DC [monetary units of the country where plant 

i  is located /unit of the product].  

, ,m n lTAX TAX TAX  Corporate profit tax rates in countries m, n and l, respectively.  

Parameters associated with costs, prices and capacities  

( )h
sSCR t  Supply capacity of raw material type h  of vendor s  in sub-

period t [number of units of raw material type h]. 

iPCAP  Production capacity of plant i  during one sub-period [number 

of units of products] 

h
iICR  Inventory capacity of raw material type h  at plant i  [number 

of units of raw material type h]. 

iICP  Inventory capacity of the product at plant i  [number of units 

of the product]. 

iICW  Inventory capacity of the product at DC j  [number of units 
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of the product]. 

ijTC   Transaction cost per unit (not including the import duties) of 

the product shipped from plant i  to DC j  [monetary units of 

country where plant i  is located/unit of the product]. 

iPC   Production cost per unit of the product at plant i  [monetary 

units of country where plant i  is located/unit of the product]. 

h
sSP   Selling price of raw material h  by vendor s [monetary units 

of country where vendor s  is located/ unit of raw material 

type h].  

h
siTC   Transaction cost per unit of raw material type h obtained by 

plant i from raw material supplier s  [monetary units of 

country where plant i  is located / unit of raw material h]. 

h
iIC   Inventory cost per unit of raw material type h  in plant i  for 

one sub-period [monetary units of country where plant i  is 

located / unit of raw material h per sub-period]. 

iIC   Inventory cost per unit of the product at plant i  for one sub-

period [monetary units of country where plant i  is located / 

unit of the product per sub-period]. 

jMP   Market price of the product at DC j [monetary units of 

country of DC j]. 

1
jIC  Inventory cost per unit of the product at DC j  for one sub-

period [monetary units of country where DC j  is located / 
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unit of the product per sub-period]. 

2
jIC  Outsourced inventory cost per unit of product at DC j  for 

one sub-period in the case that the DC’s warehouse cannot 

accommodate all the product [monetary units of country 

where DC j  is located / unit of the product per sub-period]. 

Parameters associated with stochastic demand, bill of material and raw material 

discount rates 

hAMO  Quantity of raw material of type h needed to produce one unit 

of the product [number of units of raw material type h / unit 

of the product]. 

( )jD t  Stochastic demand for the product at DC j  in sub-period t 

[number of unit of the product]. 

( ),jf t x  Probability density function of random variable ( )jD t , where 

x  is the random variable.  

( )h
siDIS t  Price discount rate of raw material type h  supplied by vendor 

s  to plant i in sub-period t . 

Miscellaneous parameters 

( )0h
iinr  Inventory of raw material type h  at plant i  at the beginning 

of sub-period 1 [number of units of raw material type h]. 

( )0iinp  Inventory of the product at plant i  at the beginning of sub-

period 1 [number of units of the product]. 

( )0jinv  Inventory of the product at DC j  at the beginning of sub-
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period 1 [number of units of the product] 

Decision variables 

( )itp t  Transfer price of the product, charged by plant i  to any DC in 

sub-period t [monetary units of country where plant i  is 

located/unit of the product]. 

( )ipp t  Number of units of product produced by plant i  in sub-period 

t  [number of units of the product]. 

( )ijpw t  Quantity of the products, produced at plant i  and shipped to 

DC j  in sub-period t  [number of units of the product].  

( )h
siraw t   Quantity of raw material type h  supplied by vendor s to plant 

i  in sub-period t  [number of units of raw material h]. 

( )h
iinr t  Inventory of raw material h  in plant i  during sub-period t  

[number of units of raw material h]. 

( )iinp t  Inventory of the product in plant i  during sub-period t  

[number of units of the product] 

For the sake of presentation, let ( )X t  denote the vector of all the decision variables 

associated with sub-period t , 1, 2, ,t T= , and X  be the vector of all the decision 

variables, namely, 

 ( )
( ) ( ) ( ) ( ) ( ) ( ), , , , , :

, 1, 2,...,
, , , , , ,

h h
i i ij si i i

h
m n l

tp t pp t pw t raw t inr t inp t
X t t T

i P j W s S m M n N l L h H

⎡ ⎤
= =⎢ ⎥

∈ ∈ ∈ ∈ ∈ ∈ ∈⎢ ⎥⎣ ⎦
 (5.1) 

 ( ) : 1,2, ,X X t t T= =⎡ ⎤⎣ ⎦  (5.2) 
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5.3.1 Expected value of after-tax profit for a plant 

In sub-period t , the profit of plant i  in country m M∈  is defined by the revenue 

from selling the product to all DCs minus production cost, transaction cost, inventory 

cost and the cost for raw materials purchasing. Since the currency exchange rates 

( )mE t  and ( )lE t  are random, the expected value of the profit of plant i  in sub-period 

t , denoted by ( )( )iEPP X t  is expressed as:  

 

( )( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

         

         

          , ,

n

h
l

i m ij i ij
n N j W

h h
m i i i i m i i

h H

h h h h h
m si si l si s si

h H l L s S

m

EPP X t E E t pw t tp t TC

E t pp t PC inp t IC E t inr t IC

E t raw t TC E t raw t SP DIS t

i P m M

∈ ∈

∈

∈ ∈ ∈

⎛
⎡ ⎤= × −⎜ ⎣ ⎦

⎝
⎡ ⎤− × + × − ×⎡ ⎤⎣ ⎦ ⎣ ⎦

⎞
⎡ ⎤− × × + × × × ⎟⎣ ⎦ ⎟

⎠
∈ ∈

∑ ∑

∑

∑∑∑

 (5.3) 

The right hand side of equation (5.3) comprises of four terms. The first term is the 

revenue from selling the product to all the DCs minus the transaction cost between the 

plant and the DCs; the second term is the sum of production and inventory costs of the 

product in sub-period t ; the third term is the inventory cost of raw materials in sub-

period t ; the fourth term is the sum of transaction cost between the plant and external 

raw material suppliers and the expense of purchasing the raw materials. 

Adding up the profit shown in equation (5.3) over all sub-periods in the entire 

taxation duration yields the expected before-tax profit made by plant i , which is a 

function of all the decision variables X , denoted by ( )iEBTPP X : 

 ( ) ( )( )
1

, ,
T

i i m
i

EBTPP X EPP X t i P m M
=

= ∈ ∈∑  (5.4) 

Because tax is levied only if a plant makes a profit over the entire taxation period, 
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the after-tax profit made by plant i , denoted by ( )iEATPP X , can be expressed by a 

step-wise function: 

 ( )
( ) ( ) ( )

( )
1 ,  if 0 

, ,
,  otherwise

m i i
i m

i

TAX BTPP X EBTPP X
EATPP X i P m M

BTPP X

− >⎧⎪= ∈ ∈⎨
⎪⎩

 (5.5) 

5.3.2 Expected value of after-tax profit for a DC 

Demand uncertainty of the product at DC j  in sub-period t  causes stochastic 

inventory, which is denoted by ( )jinv t : 

 ( ) ( ) ( ) ( )1
m

j ij j j
m M i P

inv t pw t inv t D t
+

∈ ∈

⎡ ⎤
= + − −⎢ ⎥
⎣ ⎦
∑ ∑  (5.6) 

where 

( ) ( ) ( ) ( ) ( ) ( )1 max 1 ,0
m m

ij j j ij j j
m M i P m M i P

pw t inv t D t pw t inv t D t
+

∈ ∈ ∈ ∈

⎡ ⎤ ⎛ ⎞
+ − − = + − −⎜ ⎟⎢ ⎥

⎣ ⎦ ⎝ ⎠
∑ ∑ ∑ ∑ . 

The term ( )
m

ij
m M i P

pw t
∈ ∈
∑ ∑  in the right hand side of equation (5.6) is the number of 

products purchased by DC j  from all the plants in sub-period t ; the term ( )1jinv t −  

is the inventory of the product in the sub-period ( )1t − . Note that since the demand 

faced by DC j  in sub-period t , ( )jD t , is a random variable, ( )jinv t  is also a 

random variable. The probability density function of ( )jinv t  can be obtained in 

subsection 5.3.3. In reality, equation (5.6) indicates a fundamental phenomenon that 

inventory exists if and only if the supply exceeds demand. In addition, it should be 

pointed out that as ( )jinv t  exceeds the inventory capacity of DC j , the DC has to 

look for a thirty-party warehouse to store the inventory over capacity. It results in a 

higher unit inventory cost than the inventory cost at DC j . Hence, the inventory cost 

of DC j  during sub-period t , denoted by ( )jTIC t , is expressed as: 
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 ( ) ( ) ( )1 2
j j j j j jTIC t IC inv t IC inv t ICW

+
⎡ ⎤= × + × −⎣ ⎦  (5.7) 

where ( ) ( )( )max ,0j j j jinv t ICW inv t ICW
+

⎡ ⎤− = −⎣ ⎦ .  The first term of right hand side 

of equation (5.7) represents the cost of storing products in DC j , while the second 

term represents the cost of storing products in a thirty party warehouse.  

In sub-period t , the real quantity of the product from the DC j  purchased by 

customers is a random variable, denoted by ( )jrd t , is expressed as follows: 

 ( ) ( ) ( ) ( )min , 1
m

j j ij j
m M i P

rd t D t pw t inv t
∈ ∈

⎛ ⎞
= + −⎜ ⎟

⎝ ⎠
∑ ∑  (5.8) 

Equation (5.8) describes a fact that the number of the products purchased by 

consumers cannot exceed the available supply of the product. Thus, the revenue of 

DC j  from selling the product in sub-period t  is a random variable defined by 

 ( ) ( )j j jTIW t MP rd t= ×  (5.9) 

It is straightforward to check that  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

min 0, 1

      1 max 0, 1

      1 , 1, 2, , , ,

m

m m

m

j j ij j j
m M i P

ij j ij j j
m M i P m M i P

ij j j n
m M i P

rd t D t pw t inv t D t

pw t inv t pw t inv t D t

pw t inv t inv t t T j W n N

∈ ∈

∈ ∈ ∈ ∈

∈ ∈

⎛ ⎞
= + + − −⎜ ⎟

⎝ ⎠
⎛ ⎞

= + − − + − −⎜ ⎟
⎝ ⎠

= + − − = ∈ ∈

∑ ∑

∑ ∑ ∑ ∑

∑ ∑

 (5.10) 

According to equations (5.9)-(5.10), the revenue obtained from selling products for 

DC j  in sub-period t , denoted by ( )jTIW t , can be calculated by 

 ( ) ( ) ( ) ( ) ( )1
m

j j j j ij j j
m M i P

TIW t MP rd t MP pw t inv t inv t
∈ ∈

⎛ ⎞
= × = × + − −⎜ ⎟

⎝ ⎠
∑ ∑  (5.11) 

The expected profit in sub-period t  for DC j , denoted by ( ),jEPW X t  can be 

expressed as follows: 
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( ) ( ) ( ) ( ) ( )(

( ) ( ) ( ) ( )( )

,

                         1

j n j n j

m ij i mn
m M i M

EPW X t E E t TIW t E t TIC t

E t pw t tp t DUTY t
∈ ∈

= × − ×

⎞⎡ ⎤− × × × + ⎟⎣ ⎦ ⎠
∑ ∑

 (5.12) 

There are three terms in the right hand side of equation (5.12). The first term is the 

revenue from selling the product to consumers; the second term is the inventory cost 

and the third term is for the expense of purchasing the product from the plants, 

including import duties. Accordingly, the expected before-tax profit gained by a DC 

over the entire taxation period can be calculated as follows:  

 ( ) ( )
1

, , ,
T

j j n
t

EBTPW X EPW X t j W n N
=

= ∈ ∈∑  (5.13) 

The expected value of the after-tax profit for DC j , denoted by ( )jEATPW X , can be 

expressed by the step-wise function: 

 ( )
( ) ( ) ( )

( )
1 ,  if 0 

, ,
,                  otherwise

n j j
j n

j

TAX EBTPW X EBTPW X
EATPW X j W n N

EBTPW X

− >⎧⎪= ∈ ∈⎨
⎪⎩

(5.14) 

5.3.3 Probability density function of inventory for final products in each DC 

Let us first derive the probability density function of random variable ( )1jinv . 

According to equation (5.6), it follows that 

 ( ) ( ) ( ) ( )1 max 0, 1 0 1
m

j ij j j
m M i P

inv pw inv D
∈ ∈

⎛ ⎞
= + −⎜ ⎟

⎝ ⎠
∑ ∑  (5.15) 

For any 0x > , cumulative distribution function of random variable ( )1jinv , denoted 

by ( )1,I
jF x , can be expressed as follows: 

 
( ) ( ) ( ) ( )

( ) ( )

1, 1 0 1

             1 1, 1 0

m

m

I
j ij j j

m M i P

j ij j
m M i P

F x P pw inv D x

F pw inv x

∈ ∈

∈ ∈

⎡ ⎤
= + − ≤⎢ ⎥

⎣ ⎦
⎛ ⎞

= − + −⎜ ⎟
⎝ ⎠

∑ ∑

∑ ∑
 (5.16) 

where ( )1,jF x  is the cumulative distribution function of stochastic demand ( )1jD . 
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Let ( )1,I
jf x  denote the probability density function of ( )1jinv , and equation (5.16) 

implies that 

 ( ) ( ) ( ) ( )
1,

1, 1 0
m

I
jI

j j ij j
m M i P

dF x
f x f pw inv x

dx ∈ ∈

⎛ ⎞
= = + −⎜ ⎟

⎝ ⎠
∑ ∑  (5.17) 

where ( ) ( )0 1 0
m

ij j
m M i P

x pw inv
∈ ∈

< ≤ +∑ ∑ .  

In addition, the probability of ( )1 0jinv = , denoted by ( )1,0I
jf , can be expressed as 

follows: 

 
 

( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

1,0 1 0 max 0, 1 0 1 0

             1 0 1 0

             1 1, 1 0

m

m

m

I
j j ij j j

m M i P

ij j j
m M i P

j ij j
m M i P

f P inv t P pw inv D

P pw inv D

F pw inv

∈ ∈

∈ ∈

∈ ∈

⎛ ⎞⎛ ⎞
= − = = + − =⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎛ ⎞
= + − ≤⎜ ⎟

⎝ ⎠
⎛ ⎞

= − +⎜ ⎟
⎝ ⎠

∑ ∑

∑ ∑

∑ ∑

(5.18) 

For ( ) ( )1 0
m

ij j
m M i P

x pw inv
∈ ∈

> +∑ ∑ , the probability density function of ( )1jinv  is 

 ( )1,0 0I
jf =  (5.19) 

It is now ready to derive the probability density function of random variable 

( )jinv t  for 2t ≥ . Let ( ),I
jF t x  denote the cumulative distribution function of random 

variable ( )jinv t . Eqn (5.6) implies that  
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )

0

, max 1 ,0               

1 1 0 1 0

1 1 1,

m

m

ij
m M i Pm

m

I
j ij j j

m M i P

ij j j j j
m M i P

pw I
ij j j j j

m M i P

F t x P pw t inv t D t x

P pw t inv t D t x inv t P inv t

P pw t inv t D t x inv t f tτ= ∈ ∈

∈ ∈

∈ ∈

τ

∈ ∈

⎛ ⎞⎛ ⎞
= + − − ≤⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎛ ⎞
= + − − < − = × − = +⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞∑ ∑ + − − < − = ω × − ω⎜ ⎟⎜ ⎟
⎝ ⎠

∑ ∑

∑ ∑

∑ ∑
( )

( ) ( )

( ) ( )( ) ( )

1

1

1

1

0

0

0

 1 1,0

  1 1,

t

j

m

t

ij j
m M i Pm

m

inv

I
j ij j

m M i P

pw inv I
j ij j

m M i P

d

F pw t x f t

F pw t x f t d

−

−

τ= ∈ ∈

+

∈ ∈

τ +

∈ ∈

∑ ω

⎛ ⎞⎛ ⎞
− − × − +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞∑∑ ∑ − +ω− × − ω ω⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∫

∑ ∑

∑ ∑∫

 (5.20) 

Thus, for ( ) ( )
1

0 0
m

t

ij j
m M i P

x pw inv
τ

τ
= ∈ ∈

< ≤ +∑ ∑ ∑ , the probability density function of 

( )jinv t , denoted by ( ),I
jf t x , can be expressed as: 

 
( ) ( ) ( )

( ) ( )( ) ( )
1

1
0

0

, 1,0

                1,

m

t

ij j
m M i Pm

m

I I
j j ij j

m M i P

pw inv I
j ij j

m M i P

f t x f pw t x f t

f pw t x f t d
−

τ= ∈ ∈

∈ ∈

τ +

∈ ∈

⎛ ⎞
= − × − +⎜ ⎟

⎝ ⎠

⎛ ⎞∑∑ ∑ +ω− × − ω ω⎜ ⎟
⎝ ⎠

∑ ∑

∑ ∑∫
 (5.21) 

The probability of ( ) 0jinv t =  can be expressed as: 

 

( ) ( ) ( )

( ) ( )( ) ( )
1

1

0

0

, 1 1,0

                1 1,

m

t

ij j
m M i Pm

m

I I
j j ij j

m M i P

pw inv I
j ij j

m M i P

f t x F pw t f t

F pw t f t d
−

τ= ∈ ∈

∈ ∈

τ +

∈ ∈

⎛ ⎞⎛ ⎞
= − × − +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞∑∑ ∑ − +ω × − ω ω⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑ ∑

∑ ∑∫
 (5.22) 

For ( ) ( )
1

0
m

t

ij j
m M i P

x pw inv
τ

τ
= ∈ ∈

> +∑ ∑ ∑ , the probability density function of ( )jinv t  is: 

 ( ), 0I
jf t x =  (5.23) 

5.3.4 Chance constrained programming model  

Expected value of the after-tax profit for the MNC, denoted by function ( )ATP X , 
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is equal to the sum of after-tax profit for all the plants shown in eqn. (5.5) and the 

expected value of the after-tax profit for all the DCs shown in eqn. (5.14), namely,  

 ( ) ( ) ( )
m n

i j
m M i P n N j P

ATP X EATPP X EATPW X
∈ ∈ ∈ ∈

= +∑ ∑ ∑∑  (5.24) 

The multiperiod global supply chain planning with transfer pricing and demand 

uncertainty can be formulated into the following maximization model: 

 ( )Maximize ATP X  (5.25) 

s.t. 

 ( ) ( ) ( ) ( )1 , , , , 1,...,
h
l

h h h h
i i si i m

l L s S

inr t inr t raw t AMO pp t i P m M h H t T
∈ ∈

= − + − × ∈ ∈ ∈ =∑∑
 (5.26) 
 ( ) ( ) ( ) ( )1 , , , 1,2, ,

n

i i i ij m
n N j W

inp t inp t pp t pw t i P m M t T
∈ ∈

= − + − ∈ ∈ =∑ ∑  (5.27) 

 ( ) ( ) , , , , 1, 2, ,
m

h h h
si s l

m M i P
raw t SCR t s S h H l L t T

∈ ∈

≤ ∈ ∈ ∈ =∑ ∑  (5.28) 

 ( ) , , , 1, 2, ,i i minp t ICP i P m M t T≤ ∈ ∈ =  (5.29) 

 ( ) , , , 1, 2, ,h h
i i minr t ICR i P m M t T≤ ∈ ∈ =  (5.30) 

 ( )( )Pr 1 , , , 1,2, ,j j j ninv t ICW j W n N t T≤ ≥ −α ∈ ∈ =  (5.31) 

 ( ) , ,i i i mLTP tp t UTP i P m M≤ ≤ ∈ ∈  (5.32) 

 ( ) , , , 1, 2,...,i i mpp t PCAP i P m M t T≤ ∈ ∈ =  (5.33) 

 ( ) 0, 1, 2, ,X t t T≥ =  (5.34) 

Eqn. (5.25) is the objective function which is to maximize the expected valve of the 

after-tax profit. Eqns. (5.26)-(5.27) are inventory conservation equations for all raw 

materials and the product at a plant in each sub-period, respectively. Note that 

parameters, ,hAMO h H∈  in eqn. (5.26) reflect the bill of materials. Eqn. (5.28) is the 

supply capacity constraint of each type of raw material at a vendor in each sub-period. 

Eqns. (5.29)-(5.30) are inventory capacity constraints of a raw material type and the 
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product at plant i  in each sub-period, respectively. Eqn. (5.31) is the chance 

constraint ensuring that the probability of inventory of the product at DC j  in each 

sub-period greater than the inventory capacity is at most jα , where jα  is a pre-

specified threshold. Eqn. (5.32) gives the feasible interval of transfer price. Eqn. (5.33) 

is the production capacity constraint for each plant. Eqn. (5.34) represents 

nonnegativity of the decision variables. 

Because the after-tax profits gained by all the plants and DCs are step-wise 

functions with respect to the decision variables, the objective function defined by eqn. 

(5.24) is a nondifferentiable function. Therefore, the chance constrained programming 

model (5.25)-(5.34) is a nondifferentiable optimization problem.  

5.4 Solution Algorithm 

As shown in subsection 5.3.3, the probability density function of ( )jinv t  depends 

on the probability density function of ( )1iinv t −  and the decision variables, ( )1ijpw  , 

( )2ijpw , , ( )ijpw t  for all ,mi P m M∈ ∈ . The chance constraints represented by 

eqn. (5.31), thus, are nonlinear and nonconvex with respect to decision variable X . 

Although it is able to convert the nondifferentiable objective function (5.25) into a 

continuously differentiable one by the technique used by Vidal and Goetschalckx 

(2001), the resulting model is still a nonconcave maximization problem that is one of 

intractable problems with classical algorithms in nonlinear programming. 

Alternatively, simulated annealing (SA) method, one of the artificial intelligent 

algorithms, can be applied to solve the chance constrained programming model (5.25)
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-(5.34) since SA method has been successfully applied to some intractable 

optimization models arising from production planning and control (Onwubolu, 2002). 

The simulated annealing method originated from an analogy with the physical 

annealing process to find low energy states of a solid in a heat bath (Metropolist et al., 

1953). It is a stochastic method to avoid getting stuck in a local, non-global optimum 

in a search for the global optimum. This is made by accepting transitions 

corresponding to a decrease in function value in addition to transitions corresponding 

to an increase in function value. The latter is done in a limited way by means of a 

stochastic acceptance criterion. In the course of the maximization process, probability 

of accepting deteriorations descends slowly towards zero by using a cooling schedule. 

These 'deteriorations' make it possible to climb out of the local optimum and explore 

the feasible region of the problem entirely. This procedure will lead to a (near) global 

optimum. In general, an SA method consists of two main steps - Metropolis Monte 

Carlo Simulation and cooling schedule (Kirkpatrick et al., 1983).  

The chance constraints in model (5.25)-(5.34) bring a computational challenge in 

implementation of the Metropolis Monte Carlo Simulation due to their nonlinearity 

and nonconvexity. To overcome such a difficulty, these chance constraints are put into 

the objective function (5.25) by means of the penalty function method (Bazaraa et al., 

1993). The induced linearly constrained optimization model with a penalty function 

can be formulated as follows:  

 ( ) ( ) ( ) ( )( )
1

Maximize  , max ,0j

j

n

T
inv t

jX t n N j W
X ATP X Z X ICWα∈Ω = ∈ ∈

Ψ µ = −µ −∑∑ ∑  (5.35) 

where µ  is a positive penalty parameter, Ω  is the set of feasible solutions satisfying 
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constraints (5.26)-(5.30) and (5.32)-(5.34), namely, 

 { } satisfies constraints (26)-(30) and (32)-(34)X XΩ =  (5.36) 

( ) ( )j

j

inv tZ Xα  is a number such that the probability of random variable ( )jinv t  greater 

than this number is equal to jα  for a given X ∈Ω , i.e., 

 ( ) ( ) ( )( )Pr j

j

inv t
jinv t Z Xα≥ = α  (5.37) 

According to the probability definition, it is easy to verify that  

 ( )( ) ( ) ( )Pr 1   if and only if  , ,j

j

inv t
j j j j ninv t ICW Z X ICW j W n Nα≤ ≥ −α ≤ ∈ ∈

 (5.38) 

Therefore, the second term in the right hand side of eqn. (5.35) penalizes violation of 

the chance constraints in the model (5.25)-(5.34), and it is referred to as the penalty 

function. 

It can be seen that all the constraints defining set Ω  are linear. Hence, the 

following SA method can be employed to obtain a solution to the linearly constrained 

maximization model (5.35) beginning with an initial solution ( )0X ∈Ω . 

Simulation annealing procedure for solving the linearly constrained maximization 

model (5.35) 

Step 0: (Initialization) Let initial solution ( )0X ∈Ω , ( )0τ  and τ̂  be the initial and final 

temperatures, 0 1σ< <  be the parameter in the temperature cooling schedule, 

IteMax  be the maximum number of iterations used in the Metropolis Monte 

Carlo Simulation. Let UB  be a predetermined vector with the same dimension 

of the decision variable vector X , : 0k =  and : 0k′ = .  

Step 1: (Metropolis Monte Carlo Simulation)  

Step 1.1: (Sampling) Randomly generate a vector ( ]0,UBξ∈  and then gain a 
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solution in set ( ) ( ){ }k kX X XΩ −ξ ≤ ≤ + ξ∩  , denoted by ( )kX , by 

applying Phase I of the simplex method in linear program, where 

( )( )max 1, /100kUB X= . 

Step 1.2: (Boltzmaann acceptance criterion) If ( )( ) ( )( )k kX XΨ > Ψ , then let 

( ) ( )1k kX X+ = . Otherwise, randomly generate a number ( )1 0,1λ ∈  and 

perform the operation: 

 ( )
( ) ( )( ) ( )( ) ( ){ }
( )

11 ,   if exp /

,  otherwise

k k k k
k

k

X X X
X

X

′

+
⎧ ⎡ ⎤λ ≤ Ψ −Ψ τ⎪ ⎣ ⎦= ⎨
⎪⎩

 (5.39) 

 Step 1.3: (Sampling termination criterion) Let : 1k k= + . If k IteMax= , go to 

Step 2; otherwise, go to Step 1.1.  

Step 2: (Perform a proportional cooling schedule) Let ( ) ( )1 :k kτ στ′ ′+ =  and : 1k k′ ′= + , 

go to Step 3. 

Step 3: (Stop criterion) If ( ) ˆkτ τ′ > , let ( ) ( )0 kX X=  and : 0k = , go to Step 1. Otherwise, 

stop and the output is ( )kX   

The above SA procedure starts with the Metropolis Monte Carlo simulation at a 

high temperature and consists of a pair of nested Do-loops. The outer loop sets the 

temperature and the inner-most loop, namely, Step 1, runs a Metropolis Monte Carlo 

simulation at that temperature. Step 2 presents a proportional cooling schedule to 

decrease the temperature. As set Ω  is a polyhedral, compared to the interval 

constraints, it is not easy to sample a feasible solution. Thus, there is a need of a 

systematic approach that can randomly generate a solution in a polyhedral. Step 1.1 

contributes such an approach by employing Phrase I of the simplex method in linear 



 CHAPTER 5 MULTIPERIOD PRODUCTION-DISTRIBUTION PLANNING 

 94

program to sample in the set of feasible solutions. Step 1.2 is the typical Boltzmann 

acceptance criterion that is able to accept a solution with a lower objective function 

value. 

Having a solution to the linearly constrained maximization model (5.35) 

corresponding to penalty parameter µ , the penalty function method will increase the 

value of the penalty parameter if the solution violates any chance constraints. The 

penalty function method embedded with the simulated annealing procedure can be 

presented below.   

Penalty function method embedded with the simulated annealing procedure 

Step 0: (Initialization) Let 0ε >  be a termination tolerance, 0µ  be an initial positive 

penalty parameter and a known parameter 1β > . Let 1K =  and 0µ = µ .  

Step 1: (Find an initial solution) Find a feasible solution in set Ω , denoted by ( )KY , 

by Phrase I of the simplex method. 

Step 2: (Invoke the SA procedure) Figure a solution to the maximization model (5.35) 

associated with penalty parameter µ , denoted by ( )1KY + , by the preceding 

simulated annealing procedure starting with ( ) ( )0 KX Y= . 

Step 3: (Check a stop criterion) If ( ) ( )( )( )1

1

max ,0j

j

n

T
inv t k

j
t n N j W

Z Y ICW+
α

= ∈ ∈

µ − ≤ ε∑∑ ∑ , then 

stop and output ( )1KY + ; otherwise, go so Step 4. 

Step 4: (Enlarge the penalty parameter) Let :µ = βµ , : 1K K= +  and go to Step 2.  

Convergence of the above method can be guaranteed if the simulated annealing 

method can lead to a global optimum of linearly constrained maximization (5.35) at 

Step 2 (see, Bazaraa et al., 1993). Although the simulated annealing procedure is able 
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to theoretically find a global optimum for an optimization problem, however, it 

usually terminates at a local optimal solution in a limited computational time. In other 

words, the penalty function method embedded with the simulated annealing procedure 

is a heuristic algorithm.      

5.5 Numerical Examples 

In this section, hypothetical examples are constructed to demonstrate the model 

and solution algorithm since it is difficult to obtain any example in the literature with 

sufficient data for this problem. Assume that an MNC assembling personal computers 

(PCs) possesses a global supply chain comprising five external vendors, three plants 

and five DCs serving five markets as shown in Figure 5.2. These three assembling 

plants are hypothetically assumed to be located in Thailand, Mexico and India, 

respectively, and they purchase CPUs, mainboards, hard disks, DVD-ROMS and 

monitors, forming five types of raw materials, from five external vendors located in 

Taiwan. It is further assumed that these five DCs are located in USA, Britain, Canada, 

Germany and Japan, respectively, and that each vendor is able to provide all five parts 

(raw materials). The objective of the company is to maximize its overall after-tax 

profit over a one-year taxation period, which is divided into four quarters, namely, 

4T = . As for the demand uncertainty, it is assumed that the stochastic demand in each 

quarter in each market follows a normal distribution.  
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Figure 5.2 Global supply chain network of the numerical example 

 

Market price, time-dependent discount and supply capacity for each type of raw 

material are tabulated in Tables 5.1-5.3. Tables 5.4-5.5 list the unit transaction and 

inventory costs of each type of material at a plant; Tables 5.6-5.7 give the unit 

production and inventory costs of PCs at each plant; Tables 5.8-5.9 present production 

and inventory capacities of PCs at each plant; Tables 5.10-5.11 show inventory 

capacity of each type of raw material at each plant and bill of the parts (materials) to 

produce a PC. Regarding each DC, the unit transaction cost between a plant and the 

DC, the unit inventory and outsourced inventory costs of PCs, and the inventory 

capacity of PCs are shown in Tables 5.12-5.15. As to the international factors, time-

dependent currency exchanges rates, profit tax rate in each country and allowable 

intervals of transfer pricing are shown in Tables 5.16-5.18, respectively. Table 5.19 

gives market price of PCs in each market; Tables 5.20-5.21 list mean and standard 
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derivation of the normal distribution for the stochastic demand in each sub-period in a 

market, respectively.  

 

Table 5.1 Prices of raw materials 
Raw material CPU Hard disk Mainboard DVD-ROM Monitor 

Price 

(TWD/Unit) 

4200 3000 4500 1200 8400 

 

Table 5.2 Discount of each type of raw material in each sub-period 
Vendor Sub-Period 1 2 3 4 

CPU 0.92 1 1 0.9 

Hard disk 1 0.94 0.92 0.95 

Mainboard 0.9 0.94 0.92 0.95 

DVD-ROM 0.99 0.93 0.96 0.91 

1 

Monitor 1 0.96 0.94 0.95 

CPU 0.9 0.94 0.88 0.95 

Hard disk 0.97 0.95 0.92 0.97 

Mainboard 0.92 0.93 0.93 1 

DVD-ROM 0.94 0.98 0.92 0.96 

2 

Monitor 0.97 1 0.86 0.97 
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Table 5.2 Discount of each type of raw material in each sub-period (Continued) 
CPU 0.99 0.96 0.93 0.95 

Hard disk 0.93 0.98 1 0.94 

Mainboard 0.95 1 0.87 0.93 

DVD-ROM 0.96 0.93 0.8 0.97 

3 

Monitor 0.94 0.9 0.84 0.96 

CPU 0.99 0.93 0.7 0.93 

Hard disk 0.94 0.92 0.93 0.95 

Mainboard 0.96 0.88 0.85 1 

DVD-ROM 0.95 0.97 0.92 0.93 

4 

Monitor 0.98 0.86 0.94 0.97 

CPU 1 0.88 0.94 0.99 

Hard disk 0.97 0.92 0.93 0.94 

Mainboard 1 0.89 1 0.95 

DVD-ROM 0.94 0.94 0.85 0.96 

5 

Monitor 0.95 0.96 0.88 1 

 

Table 5.3 Supply capacity of raw materials of each vendor in each sub-period (Unit) 
     Vendor Sub-period 1 2 3 4 

CPU 300 280 290 350 

Hard disk 150 140 145 180 

Mainboard 190 180 190 210 

DVD-ROM 210 200 205 240 

1 

Monitor 220 200 210 220 
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Table 5.3 Supply capacity of raw materials of each vendor in each sub-period (Unit) 
(Continued) 

CPU 150 160 180 140 

Hard disk 200 210 220 160 

Mainboard 230 240 250 200 

DVD-ROM 210 220 230 180 

2 

Monitor 220 240 250 190 

CPU 220 200 190 240 

Hard disk 210 195 180 230 

Mainboard 220 190 185 225 

DVD-ROM 150 140 135 180 

3 

Monitor 180 170 160 170 

CPU 210 220 160 130 

Hard disk 190 200 150 120 

Mainboard 195 200 140 110 

DVD-ROM 190 210 160 140 

4 

Monitor 180 190 145 130 

CPU 200 190 140 200 

Hard disk 200 190 130 160 

Mainboard 240 220 160 180 

DVD-ROM 210 200 150 180 

5 

Monitor 180 170 110 175 
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Table 5.4 Unit transaction cost related to raw materials at each plant (TWD/Unit) 
Plant CPU Hard disk Mainboard DVD-ROM Monitor 

1(Thailand) 300 200 320 80 600 

2(Mexico) 600 410 640 160 1200 

3(India) 350 225 360 90 700 

 

Table 5.5 Unit inventory cost of each type of raw material at each plant 
Raw Material CPU Hard 

disk 

Mainboard DVD-

ROM 

Monitor 

Plant 1(THB/Unit/Unit time) 20 19 21 12.5 400 

Plant 2(MXN/Unit/Unit time) 5 4.5 5.25 3 9.5 

Plant 3(INR/Unit/Unit time) 19.5 19 20.5 12 39 

 

Table 5.6 Unit assembly cost of PCs at each plant 
Plant 1(THB/Unit) 2(MXN/Unit) 3(INR/Unit) 

Assembly cost 140 30 150 

 

Table 5.7 Unit inventory cost of PCs at each plant 
DC Thailand(THB/unit) Mexico(MXN/unit) India(INR/unit) 

Inventory cost 500 150 520 

 

Table 5.8 Production capacity of each plant 
Plant 1 2 3 

Capacity (Unit) 200 250 230 
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Table 5.9 Inventory capacity of PCs at each plant 
Plant 1 2 3 

Capacity (Unit) 300 350 320 

 

Table 5.10 Inventory capacity of each type of raw material at each plant 
Raw Material CPU Hard disk Mainboard DVD-ROM Monitor 

Plant 1(Unit) 500 300 450 400 300 

Plant 2(Unit) 450 250 430 350 300 

Plant 3(Unit) 400 200 410 340 250 

 

Table 5.11 Bill of material 
Raw 

material 

CPU Hard disk Mainboard DVD-ROM Moritor 

BOM 1 1 1 1 1 

 

Table 5.12 Unit transaction cost between each plant and each DC 
DC 1 

(USA) 

2 

(Britain) 

3 

(Canada) 

4 

(Germany) 

5 

(Japan) 

Plant 1 (THB/Unit) 50 45 55 43 25 

Plant 2 (MXN/Unit) 5 12 5.5 12.5 8 

Plant 3 (INR/Unit) 60 40 65 39 32 
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Table 5.13 Unit inventory cost of PCs at each DC 
DC USA 

(USD/Unit) 

Britain 

(GBP/Unit) 

Canada 

(CAD/Unit) 

Germany 

(EUR/Unit) 

Japan 

(JPY/Unit) 

Inventory 

cost 

25 13.75 29.5 20.475 2700 

 

Table 5.14 Unit outsourcing inventory cost of PCs for each DC 
DC USA 

(USD/Unit) 

Britain 

(GBP/Unit) 

Canada 

(CAD/Unit) 

Germany 

(EUR/Unit) 

Japan 

(JPY/Unit) 

Inventory 

cost 

30 16.75 35.5 25.475 3100 

 
Table 5.15 Inventory capacity of PCs at each DC 

DC 1 2 3 4 5 

Capacity (Unit) 250 270 290 240 230 

 
Table 5.16 Expected value of currency exchange rates in each sub-period 
Sub-period 

Country 
1 2 3 4 

Thailand 0.0240 0.0242 0.0243 0.0241 

Mexico 0.0860 0.0865 0.0862 0.0863 

India 0.0218 0.0217 0.0215 0.0217 

USA 1 1 1 1 

Britain 1.82 1.83 1.80 1.79 

Canada 0.8456 0.8455 0.8454 0.8455 

Germany 1.23 1.24 1.22 1.21 

Japan 0.0091 0.0092 0.0093 0.0094 
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Table 5.17 Revenue tax rate in each country 
Country Thailand Mexico India USA Britain Canada Germany Japan 

tax 10% 20% 15% 35% 30% 13.7% 15% 20% 

 

Table 5.18 Allowable intervals for transfer pricing 
Plant Thailand(THB/unit) Mexico(MXN/unit) India(INR/unit) 

Transfer price 

range 

[89000,93000] [24000,26000] [100000,104000] 

 

Table 5.19 Market price of PCs at each demand market 
Demand 

market 

1 

(USD/Unit) 

2 

(GBP/Unit) 

3 

(CAD/Unit) 

4 

(EUR/Unit) 

5 

(JPY/Unit) 

Price 2200 1210 2620 1780 244000 

 

Table 5.20 Mean of normal distribution for the stochastic demand in each sub-period 
at each demand market  

     Demand market 

Sub-period 
1 2 3 4 5 

1 200 210 220 190 180 

2 210 190 200 190 200 

3 190 180 165 170 190 

4 200 210 220 190 188 
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Table 5.21 Scenario 1 of standard deviation of normal distribution for the stochastic 
demand in each sub-period at each demand market  

     Demand market 

Sub-period 
1 2 3 4 5 

1 40 42 40 39 43 

2 30 29 28 33 31 

3 52 51 50 53 51 

4 21 22 23 20 19 

 

We assume that the confidence level in defining the chance constraint for each 

DC is 80%, i.e., 0.2, 1, 2, ,5j j= =α , and that the inventory of raw materials and 

PCs in plants or DCs at the beginning of sub-period 1 is 0. Without loss of generality, 

all of the duties are assumed to be 0. In addition, it is set that ( )0 1000000τ = , ˆ 100τ = , 

0.9σ = , 1.5β = , 0.001ε = , IteMax = 10 and 0 40µ =  for implementing the 

proposed solution algorithm for the example.  

Figure 5.3 depicts changes of the objective function ( ),Xψ µ , shown in eqn. 

(5.35) , and the value of the penalty function shown in the second term of objective 

function ( ),Xψ µ  with the number of iterations for the penalty function method. 

According to Figure 5.3, it can be seen that the value of penalty function at the fifth 

iteration is equal to zero; this means that the solution is US$ 62.7 10× . 
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Figure 5.3 Convergent trend of the penalty function method embedded in the 

simulated annealing procedure 

 

At each iteration, the penalty function method invokes the simulated annealing 

procedure for solving linearly constrained maximization problem (5.35) 

corresponding to a fixed penalty parameter µ . Figure 5.4 shows the performance of 

the simulated annealing procedure in solving the sub-problem (5.35) with 5
0µ = µ β . It 

clearly demonstrates the convergence trend of the simulated annealing procedure in 

solving the linearly constrained maximization problem (5.35). 
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Figure 5.4 Convergence trend of the simulated annealing procedure in solving linearly 

constrained maximization problem (5.35) with parameter µ=µ0β5 

 

Demand stochasticity has impact on the maximum expected value of the after-tax 

profit. It can be described by the standard deviation of the normal distribution shown 

in Table 5.21. In this presentation, four sets of standard deviation shown in Tables 

5.21-5.24 were applied to the numerical example. Figure 5.5 shows that the maximum 

after-tax profit increases as the standard deviation increase.  

 
Table 5.22 Scenario 2 of standard deviation of normal distribution for the stochastic 

demand in each sub-period at each demand market 
       Demand market 

Sub-period 
1 2 3 4 5 

1 45 47 45 44 48 

2 35 34 33 38 36 

3 57 56 55 58 56 

4 26 27 28 25 24 
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Table 5.23 Scenario 3 of standard deviation of normal distribution for the stochastic 
demand in each sub-period at each demand market 

       Demand market 

Sub-period 
1 2 3 4 5 

1 50 52 50 49 53 

2 40 39 38 43 41 

3 62 61 60 63 61 

4 31 32 33 30 29 

 

Table 5.24 Scenario 4 of standard deviation of normal distribution for the stochastic 
demand in each sub-period at each demand market 

       Demand market 

Sub-period 
1 2 3 4 5 

1 55 57 55 54 58 

2 45 44 43 48 46 

3 67 66 65 68 66 

4 36 37 38 35 34 
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Figure 5.5 Changes of maximum expected value of after-tax profit with respect to 

four scenarios of standard deviation 
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Different confidence levels, each of which applies to all DCs are applied, to 

examine the impact of the chance constraints defined by equations (5.31) on the 

model. Figure 5.6 shows that the maximum expected after-tax profit value increases 

monotonically as the confidence level decreases.  
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Figure 5.6 Changes of maximum expected value of after-tax profit with respect to 

different confidence levels 

 

To numerically test the performance of the heuristic method proposed in section 4, 

10 numerical examples are generated, whose values of parameters are in twenty 

percent difference with the values showed in Tables 5.1-5.21. Table 5.25 shows the 

time used to obtain the results of the 10 numerical examples.  
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Table 5.25 Computational time of the randomly generated numerical examples 
No. of numerical example Computational time (seconds) 

1 15644 

2 12369 

3 16112 

4 7850 

5 13461 

6 5322 

7 10021 

8 8098 

9 6689 

10 7891 

 

5.6 Discussion and Summary  

This chapter has developed a chance constrained programming model for a 

multination production-distribution planning for an MNC with consideration of 

transfer pricing and demand uncertainty. Maximization of the expected after-tax profit 

in the objective includes these decision variables: the order of raw materials for each 

plant, the inventory of both raw materials and products in each plant, the shipment of 

the products from each plant to each DC, the production of each plant and the transfer 

price charged by each plant, for all sub-periods. The proposed model can more or less 

help an MNC to plan his global supply chain.  

To solve the model, this chapter has proposed a heuristic method that is a penalty 

function method embedded with the simulated annealing procedure that employs 
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Phrase I of the simplex method to perform the Metropolis Monte Carlo simulation. 

Numerical results not only demonstrate efficiency of the proposed heuristics method, 

but also analyze impacts of the stochastic demand and chance constraints on the 

expected profit.  
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CHAPTER 6 GAME-THEORETICAL MODEL FOR 

DECENTRALIZED GLOBAL SUPPLY CHAINS 

6.1 Introduction 

In the last chapter, the research is conducted on a global supply chain design 

problem with consideration of transfer pricing and demand uncertainty for an MNC. 

In this chapter, the research is moved to the competition of MNCs that are producing 

substitutable products and hence compete with each other with consideration of 

transfer pricing, allocation of transportation cost and gradual tax brackets for each 

MNC.   

6.2 Problem Statement and Assumptions  

Assume that a number of MNCs producing and selling substitutable products 

compete with each other worldwide via their respective two-echelon global supply 

chains comprising plants and DCs. These two-echelon global supply chains with 

market competition are referred to as the decentralized global supply chain. In each 

individual two-echelon global supply chain owned by an MNC, plants produce or 

assemble a product and DCs purchase the product from the plants and sell them to 

consumers. To maximize after-tax profit, each MNC involved in the decentralized 

global supply chains seek an optimal plan of production, distribution, pricing and 

transportation cost allocation, which consists of quantity of the product produced at a 

plant, price of the product quoted by a DC, transfer price, and the shipment of the 
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product and transportation cost allocation between a plant and a DC. It is interested in 

characterizing and finding an equilibrium solution in terms of the production-

distribution, pricing and transportation cost allocation plan for each MNC involved in 

the decentralized global supply chain by assuming that all the MNCs which are 

incentive to maximize their own after-tax profit compete each other without 

cooperation.  

Given a two-echelon global supply chain owned by an MNC, it is assumed that 

each DC in the global supply chain buys the product from only one plant. Such an 

assumption is known as the single-sourcing strategy and has been used by Huang et al. 

(2005) and Romeijn et al. (2007). Since the currency exchange rate, import duty rate 

and income tax rate, transfer price, called the international economic parameters, vary 

over different countries, they should be thus taken into account by each MNC in 

making the optimal the production, distribution, pricing and transportation cost 

allocation plan for maximizing the after-tax profit. More interestingly, the MNC is 

able to coordinate transportation cost allocation between its plants and DCs to reduce 

tax paid because these plants and DCs belong to the same MNC. 

 Because corporate income tax rates of a country are usually comprised by several 

brackets, these tax brackets are numbered by consecutive integers starting from 

number 1, namely, { }1, 2,..., , and assume that the larger the tax bracket number is, the 

bigger the income tax rate will be. It is further assumed that demand for the product at 

a DC owned by an MNC is a function of selling prices quoted by those DCs located in 

the same country or territory in the decentralized global supply chain. 
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The following is notation that will be used throughout this chapter, including 

indices, sets, parameters and decision variables.  

Sets and indices  

{ }1, 2,...,C  Set of MNCs involved in the decentralized global supply chains, 

indexed by c , where C  is total number of the MNCs. 

M  Set of countries where plants in the decentralized global supply 

chain are located, indexed by m . 

N   Set of countries where DCs in the decentralized global supply 

chain are located, indexed by n . 

c
mP                           Set of plants owned by MNC c  and located in country m M∈ , 

indexed by i .  

ci
nmW              Set of DCs owned by MNC c , located in country n N∈  and 

purchasing the product from plant c
mi P∈ , indexed by j . 

{ }1, 2, ,mS =  Set of corporate income tax brackets of country m M∈ , 

indexed by s . 

{ }1,2, ,nS =  Set of corporate income tax brackets of country n N∈ , indexed 

by ŝ . 

International economic parameters  

mnDUTY  Import duty rate on the value of product shipped from country 

m M∈  to country n N∈ .   

mE  Currency exchange rate of country m M∈  to US dollars [US 

dollars/monetary units of country m ].  



  CHAPTER 7 CONCLUSIONS, CONTRIBUTION AND FUTURE RESEARCH 

 114

nE  Currency exchange rate of country n N∈  to US dollars [US 

dollars/monetary units of country n ]. 

mTPR  Maximal transfer price perturbation range of product imposed 

by tax authority of country m M∈  [monetary units of country 

m M∈ ].  

s
mTAX  Income tax rate for bracket s  in country m M∈ . 

ŝ
nTAX  Income tax rate for bracket ŝ  in country n N∈ . 

s
mU  Upper bound of tax bracket ms S∈  in country m M∈  

[monetary units of country m M∈ ]. 

ŝ
nU  Upper bound of tax bracket ˆ ns S∈  in country n N∈  [monetary 

units of country n N∈ ]. 

Costs, production capacity and demand function associated with MNC c C∈   

c
iCA  Production capacity of plant i  owned by MNC c  [unit of 

product]. 

c
iPC   Unit production cost of the product produced in plant i  of 

MNC c  [monetary units of the country where plant i  is 

located/ unit of product]. 

c
ijTC   Unit transportation cost excluding import duty of product 

shipped from plant i  of MNC c  to DC j  of MNC 

c [monetary units of the country where plant i  is located /unit 

of product]. 

( ),c c c
j j nD z −z  Demand function for product at DC j  located in country 
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n N∈ , owned by MNC c , where c
jz  is selling price of the 

product quoted by DC j  located in country n N∈ , and c
n
−z  is 

a row vector of all the selling prices of the product quoted by 

those DCs located in country n  but owned by the other MNCs, 

namely,  

 { }, , 1, 2, , 1, 1,...,c k ki k
n j nm mz j W i P k c c C− = ∈ ∈ = − +z . 

Decision variables associated with MNC c C∈   

c
ijx  Amount of product, produced in plant i  of MNC c  and 

supplied to DC j  of MNC c  [amount of unit of product].  

c
ijy  Transfer price charged by plant i  of MNC c  for product 

supplied to DC j  of MNC c  [US dollars/unit of product]. 

c
jz  Selling price of product quoted by DC j  of MNC c  

[monetary units of the country where DC j  is located /unit of 

product]. 

c
ijα  Fraction of transportation cost allocated to plant i  of MNC c  

for transporting product from plant i  of MNC c  to DC j  of 

MNC c . 

In relation to the incorporate income tax rates, without loss of generality, it is 

assumed that 

 0 0 1 10; 0;  ; , ,s s s s
m m m m m m mTAX U TAX TAX U U s S m M− −= = ≤ ≤ ∈ ∈  (6.1) 

  ˆ ˆ ˆ ˆ0 0 1 1 ˆ0; 0;  ; , ,s s s s
n n n n n n nTAX U TAX TAX U U s S n M− −= = ≤ ≤ ∈ ∈  (6.2) 

Eqns. (6.1)-(6.2) reflect the stepwise corporate income rate. For any DC j  owned by 
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MNC c , it is assumed that demand function for the product has the partial linear 

expression: 

 ( ) ( ),c c c c c c c c
j j n j j j j nD z a b z f− −= − +z z  (6.3) 

where c
ja  and c

jb  are two nonnegative parameters, and ( )c c
j nf −z  is assumed to be a 

continuous differentiable function with respect to vector c
n
−z . It should be pointed out 

that the price-sensitive linear demand function has been postulated by many game 

theoretical applications in domestic supply chain management (Corbett and 

Karmarker, 2001; Leng and Parlar, 2005). Our partial linear demand function defined 

by eqn. (6.3) is obviously more generic than those linear demand functions used in the 

literature.      

6.3 Two Maximization Models to Characterize Behavior of an Individual MNC in 

Maximization of his After-profit  

Let cµ  be a row vector of all the decision variables defining a feasible plan of 

production, distribution, pricing and transportation cost allocation for MNC 

{ }1, 2, ,c C∈ , namely, 

 ( ), , , , , , ,c c c c c c ci
ij ij j ij m nmx y z i P j W m M n N= α ∈ ∈ ∈ ∈µ  (6.4) 

Given a row vector cµ , revenues of MNC c  in terms of US dollars gained from plant 

i  and DC j  can be expressed by two functions of decision variable cµ , respectively:  

 ( ) ( ) ( ) , ,
ci

nm

c c c c c c c c c c
i ij ij m i ij ij ij ij m

n N j W

x y E PC x TC x i P m M
∈ ∈

⎡ ⎤Ψ = × − × × +α × × ∈ ∈⎣ ⎦∑ ∑µ  (6.5) 

 
( ) ( ) ( )

( )
1

                   1 , , , ,

c c c c c c
j n j ij mn ij ij

c c c c ci
m ij ij ij m nm

E z x DUTY x y

E TC x i P j W n N m M

⎡ ⎤Ψ = × × − + × ×⎣ ⎦
⎡ ⎤− × −α × × ∈ ∈ ∈ ∈⎣ ⎦

µ
 (6.6) 
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Eqn. (6.5) indicates that revenue generated by a plant of MNC c  amounts to the 

income from selling the product to all the DCs less the sum of the production cost and 

the allocated transportation cost. Eqn. (6.6) implies that revenue yielded by a DC of 

MNC c  is equal to the income from selling the product to consumers minus expense 

in purchasing the product from a plant and the relevant transportation cost allocated to 

the DC. 

Identifying the optimal plan of production, distribution, pricing and transportation 

cost allocation to maximize the after-profit for MNC c  can be mathematically 

formulated by the nonlinearly constrained maximization model with decision 

variables cµ , dummy variables cπ  and parameter c−z : 

 
( ) ( ) ( )

( ) ( )

,

ˆ ˆ

ˆ

max , ,

                             

c c
c

mm

ci
nnm

c c c c c s cs
c i m m i

m M s Si P

c c s cs
j n n j

n N s Sj W

F E TAX

E TAX

−

∈ ∈∈

∈ ∈∈

⎡ ⎤
= Ψ − × ×π⎢ ⎥

⎣ ⎦
⎡ ⎤

+ Ψ − × ×π⎢ ⎥
⎣ ⎦

∑ ∑ ∑

∑ ∑ ∑

µ π
µ π z µ

µ

 (6.7) 

subject to 

 ( ) , ,
m

c c cs c
i m i m

s S

E i P m M
∈

Ψ ≤ × π ∈ ∈∑µ  (6.8) 

 ( ) ˆ

ˆ
, , , ,

n

c c cs c ci
j n j m nm

s S

E i P j W m M n N
∈

Ψ ≤ × π ∈ ∈ ∈ ∈∑µ  (6.9) 

 1, , ,cs s s c
i m m m mU U i P m M s S−π ≤ − ∈ ∈ ∈  (6.10) 

 ˆ ˆ ˆ 1 ˆ, , , , ,cs s s ci c
j n n nm m nU U j W i P m M n N s S−π ≤ − ∈ ∈ ∈ ∈ ∈  (6.11) 

 ( ) ( ) , , , ,c c c ci c
n j m ij n j m nm mE z TPR y E z TPR j W i P m M n N× − ≤ ≤ × + ∈ ∈ ∈ ∈  (6.12) 

 , ,
ci

nm

c c c
ij i m

n N j W

x CA i P m M
∈ ∈

≤ ∈ ∈∑ ∑  (6.13) 

 ( ) , , , ,c c c c c c ci c
ij j j j j n nm mx a b z f j W i P m M n N−≤ − + ∈ ∈ ∈ ∈z  (6.14) 

 0 1, , , ,c c ci
ij m nmi P j W m M n N≤ α ≤ ∈ ∈ ∈ ∈  (6.15) 
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 , , 0, , , ,c c c c ci
ij ij j m nmx y z i P j W m M n N≥ ∈ ∈ ∈ ∈  (6.16) 

 0, , ,cs
i m mi P m M s Sπ ≥ ∈ ∈ ∈  (6.17) 

 ˆ ˆ0, , , , ,cs ci c
j nm m nj W i P m M n N s Sπ ≥ ∈ ∈ ∈ ∈ ∈  (6.18) 

where the row vector ( ),c c
n n N− −= ∈z z , and the row vector of all the dummy 

variables: 

 ( )ˆ ˆ, , , , , , ,c cs cs c ci
i j m nm m ni P j W s S s S m M n N= π π ∈ ∈ ∈ ∈ ∈ ∈π  (6.19) 

The dummy variables in the bracket of right hand side of eqn. (6.19) play a role 

in converting the stepwise income tax rates, shown in eqns. (6.1)-(6.2), into two 

continuous differentiable parts defining the total after-tax profit of MNC c , shown in 

the right hand side of eqn. (6.7).  Eqn. (6.7) is the objective function that is to 

maximize the after-tax profit of MNC c . Eqns. (6.8) and (6.9) partition the incomes 

of plant i  and DC j  into two components ˆcs
iπ  and ˆcs

jπ  corresponding to the gradual 

income tax brackets of countries m  and n , respectively. Eqns. (6.10) and (6.11) 

imposes upper bounds on dummy decision variables cs
iπ  and ˆcs

jπ . It can be seen that 

maximization of the objective function, together with constraints eqns. (6.8)-(6.10), 

guarantee the income tax paid following the gradual tax rates when a plant or a DC 

makes a positive income. Eqn. (6.12) imposes the bounds for transfer prices according 

to tax authorities’ regulation. This is because according to OECD international 

guidelines based on arm’s length principle, transfer prices are restricted in a certain 

range around the real market prices of a product. Eqn. (6.13) is the production 

capacity constraint for each plant. Eqn. (6.14) implies that the amount of the product 

purchased by DC j  does not exceed demand that DC j  faces. Eqn. (6.15) is a 
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straightforward constraint for the transportation cost allocation ratio between a plant 

and a DC. Eqns. (6.15)-(6.18) show nonnegativity of all the decision variables 

including the dummy variables. 

Given any fixed value of parameter c−z , it can be seen that model (6.7)-(6.18) is 

a nonlinear and non-concave maximization problem with respect to variables cµ  and 

cπ  because of these three terms, c c
ij ijy x , c c

ij ijxα  and c c
j ijz x , involved in revenue functions 

( )c c
iΨ µ  and ( )c c

jΨ µ . Fortunately, a simple but useful mathematical transformation 

technique can be employed for the above non-concave maximization model to yield a 

concave maximization formulation. To do so, three groups of new variables are 

defined as follows: 

 , , , ,c c c c ci
ij ij ij m nmx y i P j W m M n Nη = × ∈ ∈ ∈ ∈  (6.20) 

 , , , ,c c c c ci
ij ij ij m nmv x i P j W m M n N= α × ∈ ∈ ∈ ∈  (6.21) 

 , , , ,c c c c ci
ij j ij m nmz x i P j W m M n Nγ = × ∈ ∈ ∈ ∈  (6.22) 

Let cλ  be a row vector of all the new variables and the distribution variables { }c
ijx , 

namely,  

 ( ), , , , , , ,c c c c c c ci
ij ij ij ij m nmx i P j W m M n N= η ν γ ∈ ∈ ∈ ∈λ  (6.23) 

In terms of vector cλ , two revenue functions shown in eqns. (6.5)-(6.6) can be 

rewritten by 

 ( ) ( ) , ,
ci

nm

c c c c c c c c
i ij m i ij ij ij m

n N j W

E PC x TC i P m M
∈ ∈

⎡ ⎤Ψ = η − × × + ×ν ∈ ∈⎣ ⎦∑ ∑λ  (6.24) 

 
( ) ( ) ( )1

               , , , ,

c c c c
j n ij mn ij

c c c c ci c
m ij ij m ij ij nm m

E DUTY

E TC x E TC j W i P n N m M

⎡ ⎤Ψ = × γ − + ×η⎣ ⎦
⎡ ⎤− × × − × ×ν ∈ ∈ ∈ ∈⎣ ⎦

λ
 (6.25) 

According to Eqns. (6.24)-(6.25), it can be seen that functions ( )c c
PiΨ λ  and 

( )c c
DCjΨ λ  both are linear functions of vector cλ . In terms of variable cλ , dummy 
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variable csπ , and parameters c−x  and c−γ , model (6.7)-(6.15) can be reformulated as 

follows: 

 
( ) ( )

( ) ˆ ˆ

ˆ

max , , ,

                             

c
mm

ci
nnm

c cs c c c c s cs
c i m m i

m M s Si P

c c s cs
j n n j

n N s Sj W

F E TAX

E TAX

− −

∈ ∈∈

∈ ∈∈

⎛ ⎞
= Ψ − × ×π⎜ ⎟

⎝ ⎠
⎛ ⎞

+ Ψ − × ×π⎜ ⎟
⎝ ⎠

∑ ∑ ∑

∑ ∑ ∑

λ π x γ λ

λ

 (6.26) 

subject to 

 ( ) , ,
m

c c cs c
i m i m

s S
E i P m M

∈

Ψ ≤ × π ∈ ∈∑λ  (6.27) 

 ( ) ˆ

ˆ
, , , ,

n

c c cs ci c
j n j nm m

s S
E j W i P m M n N

∈

Ψ ≤ × π ∈ ∈ ∈ ∈∑λ  (6.28) 

 1, , ,cs s s c
i m m m mU U i P m M s S−π ≤ − ∈ ∈ ∈  (6.29) 

 ˆ ˆ ˆ 1 ˆ, , , , ,cs s s ci c
j n n nm m nU U j W i P m M n N s S−π ≤ − ∈ ∈ ∈ ∈ ∈  (6.30) 

( ) ( ) ( ) ( ) , , , ,c c c c c ci c
n j m ij ij n j m ij nm mE TPR x E TPR x j W i P m M n N× γ − × ≤ η ≤ × γ + × ∈ ∈ ∈ ∈

 (6.31) 
 , ,

ci
nm

c c c
ij i m

n N j W

x CA i P m M
∈ ∈

≤ ∈ ∈∑ ∑  (6.32) 

 ( ) ( )2
, 0, , , ,c c c c c c c c c ci c

ij j ij j ij ij j n n nm mx a x b x f j W i P m M n N− −− + γ − ≤ ∈ ∈ ∈ ∈γ x  (6.33) 

 0 , , , ,c c ci c
ij ij nm mv x j W i P m M n N≤ ≤ ∈ ∈ ∈ ∈  (6.34) 

 , , 0, , , ,c c c c ci
ij ij ij m nmx i P j W m M n Nη γ ≥ ∈ ∈ ∈ ∈  (6.35) 

 0, , ,cs
i m mi P m M s Sπ ≥ ∈ ∈ ∈  (6.36) 

 ˆ ˆ0, , , , ,cs ci c
j nm m nj W i P m M n N s Sπ ≥ ∈ ∈ ∈ ∈ ∈  (6.37) 

where the four row vectors associated with the other MNCs are: 

 ( ), , , , 1, 2, , 1, 1, ,c k k ki k
n ij j nm mx z j W i P m M k c c C− = ∈ ∈ ∈ = − +γ  (6.38) 

  ( ), , , , 1, 2, 1, 1, ,c k ki k
n ij nm mx j W i P m M k c c C− = ∈ ∈ ∈ = − +x  (6.39) 

 ( ),c c
n n N− −= ∈γ γ  (6.40) 

 ( ),c c
n n N− −= ∈x x  (6.41) 
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It can be seen that constraints (6.31), (6.33) and (6.34) are derived by multiplying 

c
ijx  for both sides of constraints (6.12), (6.14) and (6.15), respectively, due to 

nonnegativity of multiplier c
ijx . As the left hand side of eqn. (6.33) is a convex 

function with respect to variable cλ , model (6.26)-(6.37) is hence a concave 

maximization problem with respect to variables cλ  and csπ , which can be effectively 

solved by several solution algorithms in nonlinear program. In addition, eqns. (6.20)-

(6.22) implies the following proposition.  

Proposition 6.1. Non-concave maximization model (6.7)-(6.18) and concave 

maximization model (6.26)-(6.37) are equivalent in the optimal solution and objective 

function value. 

6.4 Generalized Nash Game Model  

As the decentralized global supply chain consists of C  MNCs producing 

substitutable products, these MNCs hence compete with each other without any 

cooperation in order to maximize their respective after-tax profit. This non-

cooperative competition problem can be formulated by a generalized Nash game 

model. In terms of terminology used in game theory, each MNC is also regarded as a 

player whose behavior is described by either model (6.7)-(6.18) or model (6.26)-

(6.37). Here model (6.26)-(6.37) is preferred due to its favorable concavity with 

efficient optimization solvers. As a result, the payoff function and strategy set of 

MNC (or player) { }1, 2, ,c C∈  are the objective function shown in eqn. (6.26) and 

the feasible solution set defined by constraints (6.27)-(6.37), respectively.  
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To emphasize a strategy of a specified MNC { }1, 2, ,c C∈ , let us define three 

row vectors: 

 ( ), , 1, 2, ,c c c c C= =ξ λ π  (6.42) 

 ( )1 2 1 1, , , , , , , 1, 2, ,c c c C c C− − += =ξ ξ ξ ξ ξ ξ  (6.43) 

 ( ),c c−=ξ ξ ξ  (6.44) 

Vector cξ  denotes a strategy (or a feasible solution) of player c  (or MNC c ); vector 

c−ξ  subsumes all the other MNCs’ strategies except MNC c ; vector ξ  is a joint 

strategy of all the MNC. Given a fixed vector c−ξ , the rivals’ strategies of MNC c , let 

( )c
c

−Ω ξ  be the set of all strategies of MNC c , namely,  

 ( ) { } satisfies constraints (6.27)-(6.37) , 1, 2,...,c c c c C−Ω = =ξ ξ ξ  (6.45) 

( )c−Ω ξ  is the feasible solution set of the concave maximization model (6.26)-(6.37) 

associated with parameter c−ξ . Therefore, ( )c−Ω ξ  is a compact and convex set in the 

space 
c

ℜ
ξ , where cξ  denotes dimension of vector cξ . Let Ω  be the set of all joint 

strategies for all the MNCs, namely, 

( ){ },  satisfies constraints (6.27)-(6.37) for each MNC 1,2, ,  c c c C−Ω = = =ξ ξ ξ ξ

 (6.46) 

The above set Ω  is no longer convex in the space ℜ ξ , where ξ  denotes dimension 

of vector ξ , because the left hand side of constraint (6.33) is a non-convex function in 

variable ξ .  

Given a joint strategy ξ , let ( )Ω ξ  be Cartesian product of the corresponding 

strategy set shown in eqn. (6.45) of each MNC, namely,  

 ( ) ( ) ( )1
1 1

C− −Ω = Ω × ×Ωξ ξ ξ  (6.47) 

Assuming that each MNC { }1, 2,...,c C∈  follows passive perception, the game-
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theoretical model to characterize the equilibrium solution of the decentralized global 

supply chain can be formulated as follows: 

Find a vector ( ) ( )* *,1 *,2 *, *, 1 *, *, , , , , ,c c C+= ∈Ωξ ξ ξ ξ ξ ξ ξ  such that 

 ( ) ( ) ( ) { }*, *, *, *,, , ,  for each player 1, 2,...,c c c c c c
c cF F c C− − −≥ ∀ ∈Ω ∈ξ ξ ξ ξ ξ ξ  (6.48) 

where payoff function ( ),cF ⋅ ⋅  is the objective function shown in eqn. (6.26).   

Eqn. (6.48) reflects an equilibrium situation that no MNC can increase its after-

profit by unilaterally changing its own strategy compared to the joint strategy *ξ . 

According to taxonomy of games (Harker, 1991), model (6.48) is nominated as the 

generalized Nash game, and any of its solution is called the generalized Nash 

equilibrium solution. With regarding to a specific MNC c , its strategy set ( )c−Ω ξ  is a 

non-empty, closed and convex set for any given c−ξ . In addition, payoff function 

( ),c c
cF −ξ ξ  is continuous in variable ξ  and concave in variable cξ . Theorem 12.3 of 

Aubin (1998) guarantees the existence of a solution to the generalized Nash game 

model (6.48), namely: 

Proposition 6.2. The generalized Nash game model (6.48) possesses at least one 

solution. 

It should be pointed out that the solution to the generalized Nash game model 

(6.48) may not be unique. Uniqueness of the generalized Nash equilibrium solution 

needs very strong conditions on the payoff function and joint strategy set (Aubin, 

1998).    
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6.5 Two Heuristic Methods 

Compare to a normal Nash game, it is more challenging to develop an efficient 

and convergent solution method for solving a generalized Nash game model. This is 

because the strategy set of each player depends on the other players’ strategies; see 

strategy set ( )c−Ω ξ  of player c  shown in eqn. (6.48). Up to now, operations research 

scholars have contributed two sorts of approaches for solving a generalized Nash 

game model: quasi-variational inequality and optimization formulation. Since a 

generalized Nash game model can be reformulated as a quasi-variational inequality 

(Harker, 1991), Chan and Pang (1982) and Pang and Fukushima (2005) proposed a 

projection method and a penalty function method for solving the induced quasi-

variational inequality, respectively. These two solution methods are conceptual with 

computational difficulty in implementation even for small problems. More recently, 

Heusinger and Kanzow (2006) and Fukushima (2006) transformed a generalized Nash 

game model into an optimization formulation by making use of Nikaido-Isoda type 

function (Nikaido and Isoda, 1955), which allows us to employ any solution method 

solving optimization problems to find a generalized Nash equilibrium solution. Notice 

that Nikaido-Isoda function based solution methods have been employed to solve the 

normal Nash game models (Uryasev and Rubinstein, 1994; Krawczyk and Uryasev, 

2000). However, all these solution methods need a fundamental assumption that the 

full Cartesian product of the strategy sets of a generalized Nash game model is convex; 

otherwise these methods are inapplicable. Unfortunately, the full Cartesian product of 

the strategy sets for the generalized Nash game model (6.48), namely, set Ω  defined 
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by eqn. (6.46), is a non-convex set. In other words, it is necessary to seek heuristic 

methods to find an equilibrium solution of model (6.48).  

Given a fixed vector c−ξ , strategies of the other MNCs, the optimal strategy of 

MNC c  corresponding to c−ξ  can be obtained easily by solving the parameterized 

concave maximization model (6.26)-(6.37). Such a property enables us to seek an 

iterative solution method that needs to solve the concave maximization model (6.26)-

(6.37) at each iteration. Inspired by the solution methods solving the normal Nash 

game model of Basar (1987), two heuristic methods are come out as follows. 

Gauss-Seidel Iterative Method 

Step 0: (Initiation) Choose an initial joint strategy ( ) ( ) ( )( )0 00 1 ,..., C= ∈Ωξ ξ ξ , and let the 

number of iterations : 0k =  and the number of players examined : 0c =  

Step 1: (Solve the concave maximization for MNC c ) Let : 1c c= + , and find optimal 

solution 
( )1kc +

ξ  that solves the concave maximization model (6.26)-(6.37) 

associated with given parameter 
( ) ( ) ( ) ( )( )1 1 1,..., , ,...,
k k k kc c C− +ξ ξ ξ ξ .  

Step 2: (Check the number of MNCs that have been examined) If c C< , go to Step 1. 

Otherwise, go to step 3. 

Step 3: (Check a stop criterion) If 
( ) ( )( ) ( ) ( )( )1 1

1,2,...,
max , ,

k k k kc c c c
c cc C

F F
+ +− −

=
− ≤ εξ ξ ξ ξ , then 

stop, where ε  is a predetermined stop tolerance; otherwise, set : 1k k= + , 

: 0c =  and go to step 1.  

In the above Gauss-Seidel iterative method, Steps 1-2 simulates the decision 

procedure of a MNC that acts on the other MNCs’ strategies made in the last iteration. 

It can be easily checked that ( )1k+ξ  is a generalized Nash equilibrium solution if  
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( ) ( )( ) ( ) ( )( )1 1

1,2,...,
max , , 0

k k k kc c c c
c cc C

F F
+ +− −

=
− =ξ ξ ξ ξ  (6.49) 

In other words, the stop criterion of Step 3 is applicable. As an alternative, Steps 1-2 

can be replaced with another computational process that assumes that the MNCs take 

their turns sequentially and act on the latest updated information obtained from the 

other MNCs, which leads to the second heuristic method: 

Cournot Iterative Method 

Step 0: (Initiation) Choose an initial joint strategy ( ) ( ) ( )( )0 00 1 ,..., C= ∈Ωξ ξ ξ , and let the 

number of iterations : 0k =  and the number of players examined : 0c =  

Step 1: (Solve a concave maximization model of player c ) Let : 1c c= + , and find 

optimal solution 
( )1kc +

ξ  that solves the concave maximization model (6.26)-

(6.37) associated with given parameter 
( ) ( ) ( ) ( )( )1 11 1 1,..., , ,...,
k k k kc c C+ +− +ξ ξ ξ ξ .  

Step 2: (Check the number of MNCs that have been examined) If c C< , go to Step 1. 

Otherwise, go to step 3. 

Step 3: (Check a stop criterion) If 
( ) ( )( ) ( ) ( )( )1 1

1,2,...,
max , ,

k k k kc c c c
c cc C

F F
+ +− −

=
− ≤ εξ ξ ξ ξ , then 

stop, where ε  is a predetermined stop tolerance; otherwise, set : 1k k= + , 

: 0c =  and go to step 1.  

Compared the two heuristic methods presented above, difference only lies in the 

parameters defining the concave maximization model of Step 1. The latter heuristic 

method uses parameter 
( ) ( ) ( ) ( )( )1 11 1 1,..., , ,...,
k k k kc c C+ +− +ξ ξ ξ ξ  that includes the latest updated 

decisions 
( ) ( )1 11 1,...,
k kc+ +−ξ ξ  made by MNCs from number 1 to number 1c − .  
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6.6 Numerical Examples 

To evaluate the generalized Nash game model (6.48) and assess two heuristic 

methods presented above, several illustrative numerical examples are used of the 

decentralized global supply chain. Two heuristic methods - Gauss-Seidel and Cournot 

iterative methods - are coded by Version 7.0 of Matlab, and both are run on a Desktop 

computer with CPU of Intel P4 3.00GHZ and RAM of 512M. The relevant concave 

maximization model (6.26)-(6.37) in Step 1 of these two heuristic methods is solved 

by optimization solver “fmincon” of Matlab. Moreover, the stop tolerance 610−ε =  is 

applied for all the numerical examples. 

6.6.1 An example with two MNCs 

To evaluate impact of currency exchange rate, income tax bracket and 

transportation allocation on the generalized Nash equilibrium solution, a numerical 

example of the decentralized global supply chain with two MNCs producing 

substitutable products as shown in Figure 6.1 is developed.  
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D2

Demand 
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Figure 6.1 A decentralized global supply chain with two MNCs 

 

It is assumed that the two-echelon global supply chain of MNC 1 comprises plant 

P1 and DC D1 and the two-echelon global supply chain of MNC 2 consists of plant 

P2 and DC D2.  Plants P1 and P2 are located in Countries 1 and 2, respectively, while 

DCs D1 and D2 are both located in Country 3. It is further assumed that DCs D1 and 

D2 serve the same demand market.  

 

Table 6.1 Currency exchange rate to US$ of each country 
Country 1 2 3 

Currency exchange rate 0.130 0.277 1.000 
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Table 6.2 Income tax brackets with different tax rates for each country 
Income tax bracket 

( 510  monetary units of 

Country 1) 

(0, 8] (8,16] (16,24] (24,+∞ ) Country 

1 

Income tax rate 0.2 0.25 0.30 0.35 

Income tax bracket 

( 510  monetary units of 

Country 2) 

(0,3] (3,6] (6,9] (9,+∞ ) Country 

2 

Income tax rate 0.30 0.35 0.40 0.45 

Income tax bracket 

( 510  monetary units of 

Country 3) 

(0,1] (1,2] (2,3] (3,+∞ ) Country 

3 

Income tax rate 0.15 0.20 0.25 0.30 

 

Table 6.3 Import duty rate ( mnDUTY ) between two countries 

To 

From 

Country 3 

Country 1 0.20 

Country 2 0.30 
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Table 6.4 Unit production cost, unit transportation cost and production capacity for 
each plant  

Parameter 

Plant 

Unit production 

cost ( c
iPC ) 

Unit transportation 

cost ( c
ijTC )  

Production 

capacity ( c
iCP )  

Plant 1 1000 30 2000 

Plant 2 520 15 2000 

 

Table 6.5 Maximum transfer price perturbation range imposed by tax authority of 
each country 

Perturbation 

range 

Country 1 Country 2 

mTPR (US$) 100 150 

 

For each country, currency exchange rate and 4 income tax brackets with the 

relevant tax rates are tabulated in Tables 6.1 and 6.2, respectively. Table 6.3 gives the 

import duty rates from Country 1 to Country 3 and from Country 2 to Country 3. 

Table 6.4 shows the unit production cost, the unit transportation cost and the 

production capacity for each plant; Table 6.5 lists the maximum transfer price 

perturbation range imposed by tax authority of each country. It is further assumed that 

the demand functions of two DCs have the following expressions: 

 ( )1 2 1 2
1 1 2 1 2, 1000 2 1.5D z z z z= − +  (6.50) 

 ( )1 2 2 1
2 1 2 2 1, 1200 2 1.5D z z z z= − +  (6.51) 

6.6.1.1 Impact of currency exchange rate 

Figures 6.2 and 6.3 respectively depict changes of the after-tax profits and market 
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prices of the product at the generalized Nash equilibrium solution, obtained by either 

of the two heuristic methods, with respect to different currency exchange rates of 

Country 1.  
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Figure 6.2 Impact of currency exchange rate of Country 1 on the after-tax profit 
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Figure 6.3 Impact of currency exchange rate of Country 1 on the market price of 
product 
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From Figure 6.2, it can be seen that the after-tax profit of MNC 1 declines with 

increase in currency exchange rate of Country 1 while the after-tax profit of MNC 2 

increases. As shown in Figure 6.3, both market prices of the product quoted by MNCs 

1 and 2 increases with currency exchange rate of Country 1.  

Results shown in Figures 6.2 and 6.3 can be collaborated as follows. With 

increasing currency change rate of Country 1 where plant of MNC 1 is located, the 

production cost in raw material purchase and transportation cost of MNC 1 will be 

also be driven upwards. Hence in order to cover the increased cost, DC 1 of MNC 1 

may tend to increase the market price of its product. This action will lead to a 

decrease in the demand faced by DC1 due to the market competition with MNC 2. As 

a result, the resulting after-tax profit of MNC 1 decreases because the increase in price 

is unable to cover the lost incurred from the decrease in demand. On the other hand, 

demand faced by DC 2 will increase due to increase of the market price of the product 

from DC 1. Accordingly, upon seeing this potential, MNC 2 will tend to increase its 

market price to obtain more after-tax profit. Therefore, the after-tax profit of MNC 2 

increases.   

6.6.1.2 Impact of income tax rates  

To investigate impact of income tax rate on the transfer price and transportation 

allocation, three sets of income tax rates of Country 3, shown in Table 6.6, are used. 

Figure 6.4 illustrates change of transfer prices charged by Plants P1 and P2 with 

respect to the three sets of tax rates. By looking at Figure 6.4, it can be observed that 

both transfer prices increase with increase of tax rates of Country 3. This is because 
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when Country 3 (where two DCs are located) increases its income tax rates, each 

MNC will increase its transfer prices to shift their profits from DCs to plants in order 

to reduce the income tax paid in Country 3.  

 
Table 6.6 Three sets of income tax brackets with different income tax rates for 

Country 3 
   Tax brackets ( 510 monetary units of 

Country 3)

Set number of income tax rates 

(0,1] (1,2] (2,3] (3,+∞ ) 

Set 1  0.20 0.25 0.3 0.35 

Set 2  0.30 0.35 0.4 0.45 

Set 3  0.40 0.45 0.5 0.55 
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Figure 6.4 Impact of tax rates of Country 3 on transfer prices 

 

Table 6.7 shows the transportation cost allocation ratios assigned to each plant 
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with respect to the three set of income tax rates of Country 3 listed in Table 6.6. 

According to this table, MNC 1 will allocate all transportation cost to its DC D1 when 

the income tax rate of Country 3 increases to Set 3. This is because such an allocation 

can reduce the income tax paid in Country 3. In other words, MNC 1 can gain more 

after-tax profit by coordinating transportation allocation between its plants and DCs. 

 

Table 6.7 Transportation cost allocation ratios ( )ijα  for the two plants 

    Plants 

 

Set number of income tax rates 

P1 P2 

Set 1 1.0 1.0 

Set 2 1.0 1.0 

Set 3 0 1.0 

 

Tables 6.8 and 6.9 give three sets of income tax rates of Countries 1 and 2, 

respectively. Figures 6.5 and 6.6 plot transfer prices charged by Plants P1 and P2 with 

respect two scenarios of income tax rates shown in Tables 6.8 and 6.9, respectively. 

According to these two figures, it can be clearly seen that transfer price charged by a 

plant decrease with increase of the income tax rates of the country where the plant 

located in. These two figures also shows that change of tax rate of one country will 

not only affect the transfer price of plants located in the country, but also affect 

transfer prices of plants located in other countries due to the competition. In addition, 

the impact on the transfer prices of plants located in other countries is not as much as 
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the impact on the transfer prices of plant located in the country where the tax rates 

change.  

 
Table 6.8 Three sets of income tax brackets with different income tax rates for 

Country 1 
   Tax brackets ( 510  monetary units of 

Country 1)

 

Set number of income tax rates 

(0, 8] (8,16] (16,24] (24,+∞ ) 

Set 1  0.30 0.35 0.40 0.45 

Set 2  0.40 0.45 0.50 0.55 

Set 3  0.50 0.55 0.60 0.65 

 

Table 6.9 Three sets of income tax brackets with different income tax rates for 
Country 2 

   Tax brackets( 510  monetary units of 

country 2)

 

Set number of income tax rates 

(0,3] (3,6] (6,9] (9,+∞ ) 

Set 1 0.15 0.2 0.25 0.3 

Set 2  0.25 0.3 0.35 0.4 

Set 3 0.35 0.4 0.45 0.5 
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Figure 6.5 Impact of tax rates of Country 1 on transfer prices 
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Figure 6.6 Impact of tax rates of Country 2 on transfer prices 
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6.6.2 Performance of two heuristic methods  

Two scenarios of the decentralized global supply chain, shown in Table 6.10 was 

designed to numerically evaluate the performance of two heuristic methods. Scenario 

A consists of the decentralized global supply chain with a network structure shown in 

Figure 6.1. It is further assumed that each Country imposes 4 income tax brackets 

with different income tax rates and that the demand function takes the linear form like 

the one shown in eqn. (6.50) or (6.51). 

 

Table 6.10 Two scenarios of the decentralized global supply chain 
Scenario

Configuration 
A B 

Number of MNCs 2 5 

Number of plants of each MNC 1 2 

Number of DCs of each MNC 1 5 

Number of decision variables for 

each MNC   

14 48 
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Figure 6.7 The decentralized supply chain of Scenario B 

 

Regarding Scenario B, Figure 6.7 depicts the network structure of the 

decentralized global supply chain, which involves 5 MNCs and each MNC owns 2 

plants and 5 DCs. More specifically, the two-echelon global supply chain of MNC 1 

consists of plants P1, P2 and DCs D1 to D5; the two-echelon global supply chain of 

MNC 2 possesses plants P3, P4 and DCs D6 to D10; the two-echelon supply chain of 
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MNC 3 comprises plants P5, P6 and DCs D11 to D15; the two-echelon global supply 

chain of MNC 4 has plants P7, P8 and DCs D16 to D20; the two-echelon global 

supply chain of MNC 5 includes plants P9, P10 and DCs D21 to D25. Countries 

where these plants and DCs are located are shown in Figure 6.7. In addition, it is 

assumed that each country imposes 4 income tax brackets with different income tax 

rates. The demand function of a DC takes the following expression: 

 
( ) 1 2 3

, 1 ,

,  

, , , ,

c i
nm m

C
c c c c c
j j n j j

c c c j W i P

ci c
nm m

D z a a z a z

j W i P n N m M

′ ′
′

′−
′

′ ′≠ = ′ ′ ′∈ ∈

= − × + ×

∈ ∈ ∈ ∈

∑ ∑z
 (6.52) 

where 1a  is real number in the interval [ ]2000,3000 ; 2a  is a real number in the 

interval [ ]3.0,4.0 ; 3a  is a real number in the interval [ ]0.8,1.1 .  

For each scenario, values of those parameters involved in the concave 

maximization model (6.26)-(6.37) within the corresponding interval to yield 10 

examples are generated.  Fortunately, both of the two heuristic methods can find a 

solution for each of these twenty numerical examples. CPU time and the number of 

iterations used by these two heuristic methods are summarized in Tables 6.11 and 6.12, 

respectively. These two tables clearly indicate that the CPU time used by either of the 

two heuristic methods depends on the problem size. Finally, it is emphasized again 

that these two solution methods are heuristic rather than the convergent methods.  

 
 
 
 
 
 
 
 



  CHAPTER 7 CONCLUSIONS, CONTRIBUTION AND FUTURE RESEARCH 

 140

Table 6.11 CPU time and the number of iterations used by the Gauss-Seidel iterative 
method 

Example No. 

(Scenario A) 

CPU 

Time(s) 

Number of 

Iterations 

Example 

No.  

(Scenario B) 

CPU 

Time(s)  

Number of 

Iteration 

1 25 14 1 1093 7 

2 30 13 2 1138 7 

3 33 15 3 1291 8 

4 18 11 4 4925 23 

5 21 12 5 4503 23 

6 28 13 6 2627 17 

7 43 26 7 2883 17 

8 19 16 8 2635 14 

9 38 22 9 2010 10 

10 37 21 10 2331 12 
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Table 6.12 CPU time and the number of iterations used by the Cournot Iterative 
Method 

Example No. 

(Scenario A) 

CPU 

Time(s)

Number of 

Iterations 

Example No.  

(Scenario B) 

CPU 

Time(s)  

Number of 

Iteration 

1 22 13 1 1533 10 

2 20 11 2 1631 12 

3 35 17 3 1288 9 

4 39 20 4 1649 13 

5 30 15 5 4435 26 

6 28 14 6 3012 19 

7 53 28 7 2833 21 

8 33 18 8 2001 15 

9 42 21 9 1732 13 

10 44 21 10 1305 9 

 

6.7 Discussion and Summary 

In this chapter a generalized Nash game model is proposed to investigate the 

equilibrium solution in terms of production, distribution, pricing and transportation 

cost allocation plan for each MNC involved in the decentralized global supply chain. 

After demonstrating existence of the generalized Nash equilibrium solution, two 

heuristic methods are employed to find an equilibrium solution, which need to solve a 

concave maximization model that reflects the behavior of an individual MNC in 

maximizing his after-tax profit. An example with two MNCs is applied to show the 

impact of international features on the equilibrium solution of the game-theoretical 
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model proposed in this chapter. Moreover, twenty numerical examples randomly 

generated from two scenarios were carried out to numerically access the performance 

of two heuristic methods. As long as the demand function and other data is got, the 

proposed model in this chapter can help an MNC to anticipate his after-tax profit at 

the equilibrium state.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  CHAPTER 7 CONCLUSIONS, CONTRIBUTION AND FUTURE RESEARCH 

 143

CHAPTER 7 CONCLUSIONS, RESEARCH CONTRIBUTION 

AND RECOMMENDATIONS FOR FUGURE RESEARCH 

7.1 Conclusions 

In this thesis, mathematical models and algorithms is developed for some issues 

in supply chain design and planning.  

The unconstrained minimization formulations for the SCNE models were 

successfully derived. They enable us to employ the quasi-Newton algorithm to obtain 

the SCNE solution. Compared to the modified projection method, quasi-Newton 

algorithm does not need to predetermine the step size since a line search at each 

iteration obtains an optimal step size. Furthermore, the numerical results showed that 

for most cases the computational time used by quasi-Newton algorithm is less than 

that used by the modified projection method.  

To reflect the production capacity constraints, the SCNE model with production 

capacity constraints was proposed. The numerical results showed that the outputs of 

equilibrium solutions with and without production capacity constraints are different, 

namely, the production capacity does affect the equilibrium solution of a decentralized 

supply chain.  

Subsequently, an MPEC model was developed for a competitive facility location 

problem by using the SCNE model with production capacity constraints as the 

equilibrium constraints to describe the economic equilibrium state of a supply chain. 

The results showed that the maximal profit and total expenditure of establishing 
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facilities increase as the budget for establishing facilities increase, and they will stop 

increasing as the budget is large enough. This interesting result means that an entering 

firm that wants to choose the location for opening its manufacturing facilities, 

opening more manufacturing facilities may not lead to more profit. This is because the 

competition exists among the newly opened and existing manufacturing facilities.  

Regarding global supply chain planning, a chance-constrained programming 

model was proposed for multiperiod production-distribution planning for an MNC 

with consideration of transfer pricing and demand uncertainty. Sensitivity analysis of 

the confidence level and the standard deviation of the demand were studied. The 

numerical results showed that the expected value of the after-tax profit increases as 

the confidence level of inventories at DCs decreases or the standard deviation of the 

demand increases.  

Finally, a generalized Nash game model was proposed for MNCs that produce 

substitutable products and compete with each other by considering transfer pricing, 

allocation of transportation cost and the gradual tax brackets for each MNC. Although 

20 numerical examples demonstrated the convergence of Gauss-Seidel Iterative 

Method and Cournot Iterative Method, the convergence of the solution algorithms is 

yet to be proven. Actually, the solution algorithm for solving generalized Nash game 

model is an open question. To the best of our knowledge, up to date there is no 

efficient algorithm whose convergence has been proven for the generalized Nash 

game whose joint strategy set is nonconvex. It is a potential research topic in supply 

chain design and planning.  
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7.2 Research Contribution 

The major contributions of this thesis are summarized as follows: 

1. A comprehensive literature review of SCNE models, competitive facility 

location problems and global supply chain planning is provided. 

2. An alternative formulation and solution method are investigated for SCNE 

models (Nagurney et al., 2002; Dong, et al., 2004). More specifically, the VI 

formulations for the SCNE models is transformed to unconstrained 

minimization problems and hence the quasi-Newton algorithm can be applied 

to solve it. The solution method, quasi-Newton algorithm, overcomes the 

limitation that it is impossible to find a universal step size while 

implementing the modified projection method for solving the SCNE models.  

3. The SCNE model with production capacity constraints is developed. The 

modified projection method is unusable to solve this model because of the 

existence of capacity constraints. Therefore, the logarithmic-quadratic 

proximal prediction-correction (LQP P-C) method is investigated. A 

numerical example is applied to show the impact of production capacities of 

manufacturers on the equilibrium state of a supply chain. 

4. A novel and interesting research issue regarding the competitive facility 

location on decentralized supply chains is explored. More specifically, an 

MPEC model is proposed for a competitive facility location by applying the 

SCNE model with production capacity constraints to describe the economic 

equilibrium state of the decentralized supply chain. A hybrid Genetic 
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algorithm (GA) incorporated with LQP P-C method is developed for solving 

this model. This is the first time that an equilibrium model that can describe 

the economic equilibrium of a decentralized supply chain comprising 

manufacturers, retailers and demand markets is applied to in a competitive 

facility location problem.  

5. A chance-constrained programming model is built for the optimal 

production-distribution planning for an MNC with consideration of transfer 

pricing and demand uncertainty. A penalty function method incorporated with 

simulated annealing procedure is then presented for solving this model. This 

model would capture the fluctuation of currency exchange rates over a 

taxation period and the demand uncertainty, which have not been considered 

together with transfer pricing for an MNC so far.  

6. A generalized Nash game model is developed to analyze the competition of 

MNCs that produce substitutable products. This is the first game-theoretical 

model for analyzing the competition of MNCs, taking into account transfer 

pricing, allocation of transportation cost and graduate tax brackets. Two 

heuristic methods are investigated and numerically analyzed.   

7.3 Recommendation for Future Research 

This thesis has only investigated a few interesting issues in supply chain design 

and planning. There are still many opportunities for further study on it. Following are 

several recommendations for the future study: 
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1. The competitive facility location problem studied in Chapter 3 assumes 

that there is one entering firm. As an extension, the game theory can be 

employed to examine multiple entering firms.  

2. The currency exchange rate is one of the most important international 

features in global supply chain. In practice, currency exchange rates of 

different countries are dependent. With taking into consideration of 

dependent currency exchange rates, a novel research topic on global 

supply chain planning will be emerged. To our best knowledge, it has not 

been examined up to now.  

3. The game-theoretical model proposed in Chapter 6 is actually a 

generalized Nash equilibrium problem. Up to date, algorithms for solving 

generalized Nash equilibrium problem are restricted in some kinds of 

special cases. Future research can be conducted on evolving efficient 

algorithms to solve the generalized Nash equilibrium problems.  

4. The game-theoretical model proposed in Chapter 6 assumes that the 

market demand is deterministic. Hence, a model to study the Nash game 

of multiple MNCs that are facing random demand can be developed in the 

future.  

Overall, the research in this thesis is a significant step of further understanding of 

mathematical models and algorithms for supply chain design and planning. It may 

have a potential in future research with regards to its importance and application in 

the field of academic.   
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